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Charging spectrum and configurations of a Wigner crystal island
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~Received 21 July 1997!

Charging of a clean two-dimensional island is studied in the regime of small concentration of electrons when
they form the Wigner crystal. Two forms of electron-electron interaction potential are studied: the pure
Coulomb interaction and the exponential interaction corresponding to the screening by a pair of close metallic
gates. The electrons are assumed to reside in a parabolic external confining potential. Due to the crystalline
symmetry the center of the confinement can be situated at distinct positions with respect to the crystal. With the
increasing number of electronsN the center periodically hops from one such a location to another providing
the lowest total energy. These events occur with the period;N1/2. At these moments in the case of the pure
Coulomb interaction the charging energy of the island has a negative correction'15%. For the case of the
exponential interaction at the moments of switching the capacitance becomes negative and;N1/4 new elec-
trons enter the island simultaneously. The configurations of disclinations and dislocations in the island are also
studied.@S0163-1829~98!02704-0#
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I. INTRODUCTION

In recent experiments1,2 the charging of a quantum dot i
studied by the single electron capacitance spectrosc
method. The quantum dot is located between two capac
plates: a metallic gate and a heavily doped GaAs layer. T
neling between the dot and the heavily doped side is poss
during the experimental times while the barrier to the me
is completely insulating. dc potentialVg and a weak ac po
tential are applied to the capacitor. With the increase ofVg
the differential capacitance experiences periodic peaks w
addition of a new electron to the dot becomes possible.
spacing between two nearest peaksDVg can be related to the
ground-state energyE(N) of the dot withN electrons:

aeDVg5E~N11!22E~N!1E~N21!5D~N![e2/CN .
~1.1!

Here a is a geometrical coefficient,D(N) is the charging
energy,CN is the capacitance of the dot withN electrons. It
was observed in Refs. 1 and 2 that at a low concentratio
electrons or in a strong magnetic field the nearest peaks
merge, indicating that at some values ofVg two or even three
electrons enter the dot simultaneously. In other words so
charging energies apparently become zero or negative.
fixed magnetic field this puzzling event repeats periodica
in N. Disappearance of the charging energy looks like a
sult of an unknown attraction between electrons and re
sents a real challenge for theory.

Pairing of the differential capacitance peaks has b
studied theoretically before fordisordereddots. Explanation
of the pairing based on thelattice polaronic mechanism ha
been suggested in Ref. 3. In Ref. 4 it was demonstrated
electron-electron repulsion, screened by a close met
gate, can lead to electron pairing for a specially arran
compact clusters of localized states in a disordered dot. T
effect is a result of redistribution of the other electrons af
arrival of new ones. It was interpreted in Ref. 4 aselectronic
bipolaron.

In this paper we study the addition spectrum of a dot
which the density of electrons is small and the external d
570163-1829/98/57~4!/2352~16!/$15.00
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order potential is very weak, so that electrons in the dot fo
the Wigner crystal. We call such a dot a Wigner crys
island. In the experimental conditions of Ref. 1 one can th
about a Wigner crystal island literally only in the highe
magnetic field. One can also imagine similar experime
with a Wigner crystal island on the surface of liquid helium
In the present paper we consider the extreme classical l
of the Wigner crystal, when the amplitude of the quantu
fluctuations is much smaller than the interparticle distan
In this case one can think of electrons as of classical parti
and the energy of the system is given by the following e
pression:

E5(
i , j

U~r i2r j !1A(
i

r i
2 . ~1.2!

The first term represents interactions among electrons
cated at pointsr i , with U(r) being the interaction potential
The second term is the contribution to the energy due to
external confinement, which is assumed to have parab
form. CoefficientA plays the role of strength of the confine
ment. The forms of the interaction potential considered
the pure Coulomb interaction

U~r!5e2/kr , ~1.3!

with e and k being the electron charge and the dielect
constant correspondingly, and the exponential interaction

U~r!5U0exp~2r /s!. ~1.4!

The latter interaction potential corresponds to the case w
the island is situated between two metallic gates, withs be-
ing of the order of the distance between them andU0
;e2/ks. In this paper we study the casea@s, wherea is the
average interparticle distance.

First we study the addition spectrumE(N) of such a sys-
tem numerically. We notice that for the both types of inte
action the energy of the ground state has a quasiperi
2352 © 1998 The American Physical Society
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57 2353CHARGING SPECTRUM AND CONFIGURATIONS OF A . . .
correction. The period of this correction scales as;AN, or
the number of crystalline rows in the island. Its shape
universal, i.e., independent of the form of the electro
electron interaction. Explanation of these oscillations is
subject of the subsequent theoretical analysis.

We attribute the aforementioned oscillations to the co
bination of two effects: insertion of new crystalline rows a
motion of the center of the confinement relative to the cr
tal. Consider the former effect first. Let us fix the position
the center of the external parabola relative to the adjac
Bravais unit cell. For example, let it coincide with one of t
lattice sites. As electrons are added to such a system
number of crystalline rows grows roughly as;AN. The pe-
riodic appearances of the new rows bring about oscillati
of the total energyE(N) with N. The period of these oscil
lations scales asdN;AN in agreement with our numerica
results.

Let us discuss the influence of the position of the confi
ment center. The energy of the system as a function of
position has the same symmetry as the lattice. Hence
extrema of the energy have to be situated at the point
high symmetry, e.g., the centers of twofold rotational sy
metry or higher. There are three such points in the tw
dimensional~2D! triangular lattice@see Fig. 6~a! below#. The
evolution of the island withN consists of switching betwee
these three positions of the center, each time choosing
location providing the lowest total energy. This effect is on
based on the symmetry considerations and is therefore
versal, i.e., independent of the form of interaction. This id
suggests a simple recipe for the calculation of the energ
the island. One has to calculate three energy branches c
sponding to the different locations of the center and th
choose the lowest one.

Let us consider these two effects in more detail, se
rately for the two types of interaction. We start with the ca
of extremely short-range interaction given by Eq.~1.4!: a
@s. This case can be realized, e.g., if the confining parab
is very weak compared to the interaction prefactor:AR2

!U0. Here R is the radius of the island. For this case t
interaction between the nearest neighbors is a very s
function of distance due to the fast decay of the exponen
~1.4!. The variations of the lattice constant in this case
very small~see a more elaborate discussion in Sec. III!. This
implies that the crystalline rows are almost straight lines~see
Fig. 1!. Hence we deal with a piece of almost perfect tria
gular crystal with new electrons being added on the surf

FIG. 1. The configuration of electrons in the island for the ca
N580, A51028, U051, ands51. A typical surface particle
in a large dot has four nearest neighbors. Two particles with th
and five nearest neighbors are shown by the circle and the tria
correspondingly. They represent a pair of opposite surface disc
tions or a surface dislocation.
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of the island. A new crystalline row, therefore, appears
the surface. It can be shown that this creates an anoma
increase in the density of states~DOS! of electrons. Such
variations of DOS result in the appearance of the perio
correction to the energy of the island. This correction is co
sidered in detail in Sec. II. An interesting implication of th
picture is the multiple electron entering. It turns out that
one slowly raises the chemical potential of electrons in
island, then at the points of switching between the branc
mentioned above aboutN1/4 electrons enter the island simu
taneously. A simple model of this phenomenon has b
suggested before in Ref. 5 for a small island containing&55
electrons. In this paper we discuss this phenomenon
larger islands.

One can think about the new rows appearing in the cr
talline island as of pairs of dislocations of opposite sign.
the case of the short-range interaction these defects
pushed to the surface by a huge price for elastic defor
tions. In the Coulomb case, described by Eq.~1.3!, the shear
modulus and, subsequently, the Young’s modulus of
crystal are relatively small. As discussed in Sec. V the
commensurability of the circular shape of the dot with t
lattice and the inhomogeneity of the density of electrons g
erate in this case topological defects, disclinations, and
locations,inside the island. We argue that these defects d
termine the variations of the energy when the center of
confinement is fixed relative to the crystal. The number
dislocations scales as the number of crystalline rows;AN.
This implies that a new dislocation appears every;AN elec-
trons. Due to the discreteness of these defects a single br
of the total energy corresponding to a fixed position of t
center acquires a quasiperiodic correction. This perio
building up and relaxation of the elastic energy of the d
caused by the discreteness of dislocations is very simila
the variations of the electrostatic energy brought about by
discreteness of electrons, known as Coulomb blockade.
lowing this analogy we call the former periodic phenomen
an elastic blockade.

The elastic blockade appears to be a bit more complica
than its electrostatic counterpart. The center of the confi
ment can move among three distinct points of the triangu
lattice mentioned above making the system switch from o
energy branch to another. Such a sudden switching resul
a correction to the charging energy@see Eq.~1.1!#:

dD'20.15D̄, ~1.5!

where D̄ is the average charging energy. This reduction
the distance between the nearest Coulomb blockade p
happens with the period;AN determined by the elastic
blockade. It can be thought of as an analog of merging o
few peaks observed in the case of the short-range interac

The optimum configurations of electrons in the parabo
confinement with the Coulomb interaction have been stud
before in Ref. 6. Our numerical results both for the energ
and the configurations agree with the results of this wo
However, our interpretation of the results is different. T
authors of Ref. 6 adopt a model in which the electrons fill
shells concentric to the perimeter of the island. We argue
in the regime studied in the numerical experiment only
narrow ring adjacent to the perimeter is concentric to it. T
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2354 57A. A. KOULAKOV AND B. I. SHKLOVSKII
width of such a ring is;ARa. The rest of the island is filled
with an almost perfect crystal~see Secs. V and VI!.

The paper is organized as follows. First we consider
case of an extremely short-range interaction@Eq. ~1.4!#,
when the Young’s modulus of the crystal is very large a
no lattice defects can exist in the interior of the island. T
case is discussed in Secs. II and III. In Sec. IV we report
results of the numerical solution of the problem with t
Coulomb interaction@Eq. ~1.3!#. In Sec. V we turn to the
discussion of different kinds of defects, which can exist in
compressible island. In Sec. VI, we discuss the theory of
elastic blockade for the case of the Coulomb interacti
Section VII is dedicated to our conclusions.

II. SHORT-RANGE INTERACTION: NUMERICAL
RESULTS

In this section we consider the system ofN electrons in-
teracting by a strongly screened short-range potential. T
limit is defined by Eq.~1.2! with interaction given by Eq.
~1.4! and a@s. As it is shown later in Sec. III the latte
condition can be realized if the interaction prefactor sign
cantly exceeds the typical confinement energy:U0@AR2. At
this condition the variations of the lattice constant of t
crystal are negligible. This indeed can be observed in
configurations obtained in the numerical experiment. O
such configuration is shown in Fig. 1, obtained ata'13s.

In our numerical analysis we minimized the energy fun
tional ~1.2! with the exponential interaction given by Eq
~1.4! with respect to the coordinates of electrons using
genetic algorithm similar to that outlined in Ref. 7. Belo
we describe this numerical technique and the motivation
its use.

The problem at hand belongs to the vast class of probl
of finding the global minimum of a multidimensional func
tion, which has plenty of local minima. The well-develop
methods for convex differentiable functions~the conjugate
gradient, Newton’s method! do not work here as they find
only some local minimum. The most frequently used meth
in this case is the Metropolis simulated annealing techniq6

In this method the system is modeled at some artificia
introduced temperature, which is gradually decreased
very small value. It is assumed that after this annealing
system falls into the state of the lowest energy. Although
principle, in this method the system can hop from a me
stable state to the ground state, in practice, if the poten
barrier between them is high, the time to perform such a
can exceed the time of the simulation.

An alternative method is the genetic algorithm, which w
proved to be superior to the simulated annealing.7 Initially
five different parent configurations were obtained by relax
random configurations using the conjugate gradient a
rithm. Then these configuration were mated pairwise to
tain additional 15 child configurations~including mating
with itself!, which were again relaxed using the conjuga
gradient algorithm. Mating consisted of cutting two config
rations into halves by a random line and then connec
those halves belonging to different parents to form a n
child. From the resulting 20 conformations~parents and chil-
dren! five were chosen to be parents for the next iterati
The new parents consisted of the lowest-energy config
e
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tion and the other four separated by at least the precisio
the conjugate gradient. This has been done to avoid domi
ing the process by one conformation. During ten iterations
many as 155 local minima were examined. The energie
the optimum conformations obtained in this way agree w
those of Ref. 6 and for someN are even lower. Before pre
senting these results we would like to discuss the method
used to process the data.

To analyze the dependence of the ground-state en
E(N) on the number of particles we split it into the smoo
Ē(N) and the fluctuating componentdE(N):

E~N!5 Ē~N!1dE~N!, ~2.1!

in the manner of Ref. 5. The smooth component has the f
Ē(N)5h1N21h2N1h3N2/31h4N1/21h5N1/3, where the
coefficientsh1•••h5 are chosen to minimize the fluctua
tions. The fluctuating part is displayed in Fig. 2.

The curve in Fig. 2 evidently has a quasiperiodic stru
ture. It consists of the series of interchanging deep and s
low minima, separated by the peeks with more or le
smooth slopes. The period of this structure with a very go
precision scales asN1/2 and numerically is equal to the num
ber of electrons in the outer crystalline row of the island. T
amplitude of the oscillations grows withN as5

udEu}Ng, g50.860.1. ~2.2!

Although the crystal in the bulk is almost perfect, i
boundary is extremely irregular~see Fig. 1!. It can be
thought of as a superposition of various types of defe
pushed against the surface by extremely large Youn
modulus, provided by the short-range interaction. These
fects can be associated with the particles having an ano
lous coordination number. Normally a particle on the surfa
of the triangular crystal has four nearest neighbors. But th
are particles having a coordination number equal to three
five. These particles can be associated with positive
negative disclinations on the surface correspondingly,
their creation assumes removal~insertion! of a p/3 wedge
~see Fig. 1!. Dislocations on the surface are pairs of su
disclinations of the opposite sign forming a dipole. At

FIG. 2. The fluctuating part of the ground-state energy in
model with the exponential interaction~1.4! for A51028, U051,
ands51.
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57 2355CHARGING SPECTRUM AND CONFIGURATIONS OF A . . .
small Young’s modulus however these defects can dive
side the island. This transition is quantitatively described
Sec. V.

III. SHORT-RANGE INTERACTION: A THEORY

In this section we use a hard disk model to explain o
numerical results obtained in the limitU0@AR2. To justify
this model we first show that the variation of the lattice co
stant in the island is small in this limit:

da5a~R!2a~0!5
s

2
lnN!a~0!. ~3.1!

Then we demonstrate that the interaction energy is sm
compared to the confinement energy and hence can be
glected.

To prove the first statement we find the pressures rr in the
crystal associated with its contraction by the external pot
tial Ar2. The solution can be found similar to Ref. 8:

s rr52S~s!A~R22r 2!, ~3.2!

whereS(s)5(31s)/4, 3/4<S(s)<1, ands is the Pois-
son ratio. The solution is easy to understand for the limit
case of liquids→1, whens ik52pd ik , p being pressure. In
this casep is of purely hydrostatic origin:

dp~r !

dr
522Arn~r !. ~3.3!

Assuming the densityn(r ) to be uniform andp(R)50 we
obtain the following solution:

p~r !5An~R22r 2!, ~3.4!

which agrees with Eq.~3.2! taken ats51. The forces pro-
duced by this pressure have to be balanced by the intera
forces between particles:

f ;s rra;An~R22r 2!a;
U0

s
e2a/s. ~3.5!

In this equation we assumedS(s);1. From this condition
we obtain the following result for the lattice spacing in t
island:

a~r !'s lnF U0

A~R22r 2!
G . ~3.6!

The difference between the lattice spacing on the bound
and in the center can be readily obtained:

da's lnS U0

ARaD2s lnS U0

AR2D 5s ln
R

a
5

s

2
lnN. ~3.7!

Comparing Eqs.~3.6! and ~3.7! one can see that the casea
@da can be realized whenU0@AR2. This implies that the
prefactor of the interaction potential has to be large. In t
case the nearest particles are far away from each other w
the exponential interaction is very steep. This eliminates
nificant changes in the interparticle distance.

Although the derivative of the interaction potential is im
portant in determining the lattice spacing the typical value
-
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interaction energy in this case is very small. The charac
istic interaction energy per particle can be estimated
Enn;U0exp(2a/s). From Eq.~3.5! we conclude that

U0e2a/s&
s

a
AR2. ~3.8!

Hence in the considered regimea@s the interaction energy
indeed can be neglected.

It is plausible then to accept the hard disk model to e
plain our numerical results obtained for this case. We assu
therefore that the interaction has the form

U~r !5H `, r ,a,

0, r>a.
~3.9!

In this model the interaction energy is zero and the to
energy of the system can be written as

E5A(
i 51

N

r i
2 , ~3.10!

wherer i belong to the triangular lattice, with the lattice spa
ing equal to the radius of the interactiona. This energy for-
mally coincides with the moment of inertia of the system
N particles of massA. Hence to find the minimum-energ
configuration one has to cut a piece from the triangular cr
tal that has a minimum moment of inertia. This piece m
contain the given number of particlesN. The average values
of the total energy, chemical potential and the charging
ergy are given by

Ē5ANR2/25AN2/2pn, m̄5dĒ/dN5AN/pn,

D̄5dm̄/dN5A/pn, ~3.11!

where R is the average radius of the circle,npR25N, n
52/a2A3 is the concentration of lattice sites.

A similar problem has been considered in the literature
the context of the so-called circle problem. The problem is
find the fluctuations of the number of particles belonging
some lattice inside of a circle of radiusR ~see Ref. 9!. The
quantity that has been studied is the deviation of the num
of particles from its average value:

dN~R![N~R!2npR2, ~3.12!

where npR25N̄ is the average number of particles in th
circle. The classical circle problem which goes back to Ga
is to find the uniform bound forudN(R)u. The best result in
this direction is9

udNu<CeR
46/731e;N̄23/731e/2 ~3.13!

Here Ce is an R-independent constant ande.0. A simple
estimate for these fluctuations can be obtained from the
sumption that they occur around the perimeter of the circ9

in the strip of width of the order of the lattice spacinga. The
number of such pointsNper;R/a and the fluctuations are

dN;ANper;AR/a;N̄1/4. ~3.14!
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2356 57A. A. KOULAKOV AND B. I. SHKLOVSKII
This estimate may imply a pseudorandom behavior ofdN.
Notice that it agrees with the uniform upper bound~3.13! as
23/73.1/4.

Reference 9 also considers the distribution ofdN. It was
found that the distribution function is non-Gaussian:

p~dN!&exp~2dN4/N̄!, ~3.15!

with the mean-square deviation given by Eq.~3.14!. It was
also noted thatdN(R) in addition to being pseudorandom
an almost periodic function of the radius.

Below we will concentrate on the periodicity ofdN(R),
rather than on its randomness. In essence we would lik
find the average ofdN(R) over many periods and understan
the nature of its oscillations. Then the question about
deviations from this average becomes relevant. Our ana
shows that the oscillations are associated with the perio
intersections of the circle with the crystalline rows~see Fig.
3!. At the moment of intersection an anomalously large nu
ber of particles can be put into the circle. This brings ab
an increase in the functiondN(R) every time the circle hits
a new crystalline row. This increase is accompanied b
decrease later in the period as the average value ofdN is
zero. To illustrate this point consider the triangular latti
~Fig. 3!. In this case for the most part the oscillations ofdN
are associated with the collisions of the circle with the m
crystalline rows, (A3,1) plus other five obtained byp/3 ro-
tations, separated byh5aA3/2. Hence the variations ofdN
associated with these rows have a period inR equal toTR
5h. One can collapsedN from many such periods into on
and average over all of them. To do this we first define
normalized variation of the number of particles:

dh~R![
dN

AR
. ~3.16!

According to Eq.~3.14! the average amplitude of this func
tion does not change withR. To extract the component o
this function having the periodTR5h we average it over
many such periods:

dh~R!5 lim
M→`

F 1

M (
m50

M

dh~TRm1R!G . ~3.17!

FIG. 3. The circular island~gray! covering the crystalline rows
shown by lines. The lattice points within the circle are shown
larger disks than those outside. Every time the circle intersec
new row a new terrace appears. One of such terraces is show
the bold segment.
to

e
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Thus obtained functiondN(R)[dh(R)AR is shown in Fig.
4 by a smooth line. The actualdN(R) is also presented in
this figure to show that its main variation is indeed asso
ated with the aforementioned period.

Before embarking into the calculation of thedN we
would like to mention that other crystalline planes produ
similar oscillations. These oscillations have a period tha
smaller thanh and can be incommensurate to it. The amp
tude of these satellite oscillations is numerically smaller th
the main one and hence they will be neglected in this pa
All the periodicities added together produce a complex fr
tal curve shown in Fig. 4.

Before getting into the details of the averaging we wou
like to show a simple way to estimate the amplitude of the
oscillations. Look at Fig. 3. The collision of a crystalline ro
with the circle results in the formation of the ‘‘terrace’’ o
the surface of the crystal bounded by the circle. The aver
length of such a ‘‘terrace’’ is

l;ARa. ~3.18!

The number of crystalline sites in such a ‘‘terrace’’ provid
an estimate for the variations in the number of particles
side the circle:

dN5 l /a;AR/a. ~3.19!

This estimate agrees with Eq.~3.14!. However, it is based on
the existence of the ordered periodic structure indN.

This argument allows us to estimate the amplitude of
oscillations of the total energy~3.10!. Indeed, we have found
the oscillations of the number of particles as a function
radius or, in other words, of the chemical potentialm
5AR2. Now it easy to calculate the related oscillation of t
chemical potential as a function of the number of particl
To this end we notice that if the oscillations are weak th
are simply proportional to each other:

dm52dN/ n̄ , ~3.20!

where n̄ 51/D̄ is the average density of states. The period
dm(N) is related to the period ofdN(R) in the obvious way:
TN5TRdN/dR5pnRh;AN. Now the oscillating part of
the total energy can be easily estimated:

a
by

FIG. 4. The averaged oscillations of the number of particles a
function of the radius of the circle~bold smooth line! and the actual
value, observed in the numerical simulation on the lattice~thin
rough line!. The center of the circle is located at one of the latti
sites.
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dE~N!5E dNdm~N!;TNdND̄;Aa2N3/4. ~3.21!

Notice that both the periodicity and amplitude of the oscil
tions given by this estimate agree with our numerical res
~2.2!. Below we will calculate the form of these oscillation
averaged over many periods.

We now turn to the calculation ofdN(R). We follow the
guidelines of Ref. 9. Assume that the center of the circle
located at pointr0 reduced to Bravais unit cell. The numb
of particles in the circle can be expressed through the s
over the lattice pointsRl :

dN~R!5N2npR25(
Rl

f ~Rl !2E nd2r f ~r!, ~3.22!

where

f ~r!5H 1, ur2r0u<R,

0, ur2r0u.R.
~3.23!

Using the Poisson summation formula, Eq.~3.22! can be
rewritten as follows:

dN~R!5n (
QiÞ0

f̃ ~Qi !, ~3.24!

where the summation is assumed over the reciprocal la
vectors Qi and f̃ (q)52pRJ1(uquR)/uquexp(2iqr0) is the
Fourier transform of function~3.23!, with J1(x) being the
Bessel function. For the normalized variation of number
particles~3.16! we then obtain

dh~R!52pnAR (
QiÞ0

J1~ uQi uR!

uQi u
e2 iQi r0. ~3.25!

The limit in Eq. ~3.17! can be most easily evaluated upo
noticing that J1(x)'A2/pxcos(x23p/4), when x@1.
Changing the order of summation overQi andm we obtain

dh~R!5 lim
M→`

F 1

M
2pn (

QiÞ0
(

m50

M

3A2

p

cos~ uQi uTRm1uQi uR23p/4!

uQi u3/2
e2 iQi r0G .

~3.26!

To evaluate the sum overm we again can use the Poisso
summation formula, which establishes a selection rule for
values of the wave vectorQi :

uQi uTR52pn, ~3.27!

wheren is an integer. The reciprocal lattice vectors are re
resentable in the formQi5Q0(k1A3/2,k1/21k2), where
Q054p/aA3 andk1,2 are integers. Equation~3.27! can be
rewritten in terms ofk1,2 in the following way: 3k1

21(k1

12k2)254n2, which is a Diophantine equation. It has
trivial set of solutions,k150, k25n plus five others ob-
tained from it byp/3 rotations. They correspond to the co
lisions of the circle with the main sequence of the crystall
rows, separated byTR . These solutions will be taken int
-
ts

s

m

ce

f

e

-

e

account below. The other solutions of Eq.~3.27! are more
sparse in theQ space, and hence produce smaller thanTR
periods in the real space. They correspond to the collisi
with other crystalline lines. They produce numerica
smaller variations than the main sequence and will be di
garded below. Thus we conclude that

lim
M→`

F 1

M (
m50

M

cos~ uQi uTRm1uQi uR23p/4!G
5(

Q̃i

dQ̃i ,Qi
cos~ uQi uR23p/4!, ~3.28!

where Q̃i are solutions of Eq.~3.27! with the reservations
mentioned above. The remaining summation overQi is eas-
ily performed and we obtain finally the result for the avera
variation of the number of particles:

dNr0
~R!5(

i 51

6

dN0~R2êir0!, ~3.29!

whereêi are the unitary vectors normal to the six main cry
talline rows, êi5Û i(A3/2,1/2), Û is the p/3 rotation, i
50, . . . ,5. Function dN0 determines the oscillations pro
duced by one set of rows if the center of the circler0 coin-
cides with one of the lattice sites:

dN0~R!5
23/433/8

p1/4
@N̄~R!#1/4zS 2

1

2
,

R

TR
D . ~3.30!

Here

z~z,q!5
2G~12z!

~2p!12z (
k51

`
sin~2pkq1zp/2!

k12z
~3.31!

is the generalized Riemannz function.10 In addition to the
numerical coefficient in Eq.~3.30! we obtained the overal
amplitudeN1/4, which agrees with our qualitative analysi
and the oscillating partz(21/2,R/TR), which has an ampli-
tude of the order of unity. In Fig. 4dNr050 is shown by a
smooth line. It is clear from Eq.~3.29! that six sequences o
the crystalline rows contribute to oscillations independen
with êir0 determining a ‘‘delay’’ produced by the displace
ment of the center of the circle from a lattice site.

We would like now to calculate the oscillations of th
total energy of the incompressible island. First, as parame
of the problem we will user0 and R. This implies that we
will have a given value of the chemical potential in the isla
m5AR2. The relevant thermodynamic potential in this ca
is V r0

(m). We will evaluate this potential and optimize

with respect tor 0. We will then use the theorem of sma
increments to findE(N). This function will indeed be similar
to the Kremlin wall structure displayed in Fig. 2.

The first step in this program is realized similar to obta
ing dN. We apply the method used above to the function

V~R!5E~R!2mN, m5AR2. ~3.32!

The average value of this function is negative:



e
r

al

h
de

s

o be

the
n-
es.
hree
ini-

g
c-

g
and

the
m-
not

ass
of
r-

b
i-
t-

en

ice

The
the

2358 57A. A. KOULAKOV AND B. I. SHKLOVSKII
V̄52ANR2/252 Ē ~3.33!

@compare to Eq.~3.11!#. The deviation of the potential from
the average is given by

dV~R!5dE~R!2AR2dN~R!

5(
Rl

g~Rl !2E nd2rg~r!2AR2dN~R!,

~3.34!

where

g~r!5H A~r2r0!2, ur2r0u<R,

0, ur2r0u.R.
~3.35!

Using

g̃~q!5F2pAR3

q
J1~ uquR!2

4pAR2

q2
J2~ uquR!Ge2 iqr0,

~3.36!

one can obtain the oscillations of the thermodynamic pot
tial in exactly the same manner as those of the numbe
particles. To this end, as it follows from Eq.~3.21!, one has
to average the normalized variations of potenti
dv[dV/R3/2 @compare to~3.16!#. Eventually we obtain

dV r0
~R!5(

i 51

6

dV0~R2êir0!, ~3.37!

where

dV0~R!52D̄
p1/429/4

33/8
@N̄~R!#3/4zS 2

3

2
,

R

TR
D , ~3.38!

is the function describing the oscillations if the center of t
circle coincides with one of the lattice sites. Its amplitu
agrees with our presumption~3.21!. Notice thatdV r0

given
by Eq.~3.37! is in fact a function of the chemical potential a
the latter is related to the radius bym5AR2. This function
for r050 is shown in Fig. 5.

The next step is to minimize it with respect tor0. To do
this we notice thatdV r0

as a function ofr0 must have the

FIG. 5. The averaged oscillations of the thermodynamic pot
tial V as a function of the radius of the circle~bold smooth line!
and the values actually observed in the numerical simulation~thin
rough line!. The center of the circle is located at one of the latt
sites.
n-
of

:

e

same symmetry as the lattice. Hence its extrema have t
located at points denoted in Fig. 6~a! by A, B, andC, unaf-
fected by the transformations of the symmetry. Those are
points coinciding with a lattice site, the center of the tria
gular face, and the point halfway between two lattice sit
Thus we actually need to make a choice between these t
positions of the center. This choice has to be made to m
mize the energydV r0

. In Fig. 6~b! this minimization is done

graphically. From the three curvesdVA, dVB, anddVC for
every value ofR the lowest one is chosen. The resultin
curve is shown by a bold line. It indeed looks like the stru
ture obtained in the numerical experiment.

We would like now to discuss the points of switchin
between two curves. At these points the center of the isl
hops from one of the locationsA, B, or C to another. If the
chemical potential is below or above one of these points
newly added electrons are spread uniformly over the circu
ference of the island, so that the center of mass does
move. But exactly at this point;N1/2 electrons travel from
one side of the island to another shifting the center of m
relative to the crystal. In addition to that at the point
transition ;N1/4 new electrons enter the island. To unde
stand this we recall thatN52dV/dm. As it is seen from
Fig. 6~b! at the point of transition the first derivative ofV
has a discontinuity of the order of

DF2
ddV

dm G52
1

2AR
DFddV

dR G; Aa2N3/4

AaN1/2a
;N1/4.

~3.39!

This implies that at this point a few peaks of the Coulom
blockade merge so that;N1/4 electrons enter the island s
multaneously. The origin of this effect is in the electron a

-

FIG. 6. ~a! Three pointA, B, andC where the functionV̄ r0
has

to have extrema due to symmetry.~b! The oscillations of the ther-
modynamic potential for these three positions of the center.
minimum of these functions, shown by the bold line, represents
actual value of the total energy of the island.
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traction mediated by the multipolaronic effect associa
with the confinement. A simple toy model of this effect w
suggested in Ref. 5.

The dependence of the total energy on the numbe
particles can be obtained from our result using the sm
increment theorem, stating that the small corrections to
the thermodynamic potentials are the same:11,12

dE~N!5dV@m~N!#. ~3.40!

This explains why in the dependence of the total energy
the number of particles we also observe a structure simila
Fig. 6. The amplitude and phase of the oscillations in Fig
are in a very good agreement with those given by Eq.~3.37!
minimized in the way shown in Fig. 6.

We finally would like to note that the appearance of a n
terrace actually means starting a new crystalline row. T
can be thought of as appearance of the pair of opposite
locations on the boundary of the island. Thus the variati
of the total energy discussed above are associated with
periodic formation of the defects in the island. This line
thinking will be further developed for the case of the co
pressible crystal, where these defects are situated inside
island.

IV. COULOMB ISLAND: A NUMERICAL STUDY

In this section we present the results of numerical solut
of problem ~1.2! with the unscreened Coulomb interactio
~1.3!. To obtain these results we employed the numer
technique described in the previous section. The total ene
E(N) resulting from such a calculation was split into th
smooth and the fluctuating components in the way descr
in the previous section. The smooth component was cho
to have the form5

Ē~N!5~e2/k!2/3A1/3~h1N5/31h2N7/61h3N2/31h4N7/15

1••• !, ~4.1!

whereh i are some constants. The first term in this serie
the electrostatic energy. The next three terms are the co
lation energy, the overscreening energy associated with
screening of the external potential by the Wigner crystal, a
the surface energy. The coefficientsh i can be found from the
best fit to the numerical data:h15(3p/8)2/36/5, h25
21.0992, h3520.3520, h450.1499. The fluctuating
part is displayed in Fig. 7~a!.

The curve in Fig. 7~a! has a quasiperiodic structure sim
lar to the incompressible case~see Fig. 2!. It consists of the
sequence of interchanging deep and shallow minima.
positions of minima on this graph almost exactly coinci
with those for the case of incompressible island. The am
tude of the oscillations does not change withN appreciably
and is;0.1e2/ka. The charging energyD(N) experiences
fluctuations '15% correlated with the positions of th
maxima and minima.

The similarity of Figs. 2 and 7~a! calls for the conclusion
that the fluctuations in both cases are of the same origin
test this idea we studied such a quantity as the numbe
electrons adjacent to the center of the confinement. Those
defined as electrons nearest to the center, with dispersio
the distance to the center being less than1

3 of the lattice
d

of
ll
ll

n
to
2

is
is-
s
he
f
-
the

n

l
gy

d
en

is
re-
he
d

e

i-

o
of
re
in

spacing. They represent the first crystalline shell closes
the center. The number of these particles is shown in F
7~b! as a function of the total number of electrons in t
island. The first thing to notice is the correlation of the lat
graph with the fluctuations of energy in Fig. 7~a!. The deep
minima in the energy are associated with having one elec
next to the center. The shallow minima mostly correspond
having three electrons at the center. This in fact means
the center of the confinement is situated in the center of
triangular crystalline face. Maxima of energy usually corr
spond to having two or four electrons next to the center. T
is equivalent to saying that the center is in the middle o
crystalline bond. Thus we see that this correspondenc
exactly the same as switching between termsA, B, andC in
the incompressible case~see Fig. 6!. This analogy will be
further developed in Sec. VI.

Let us now examine the conformations of electrons. So
of them are shown in Figs. 8 and 9. The first thing obvio
from these figures is that the surface of the island is not

FIG. 7. ~a! Fluctuating part of energy of the Wigner cryst
island. ~b! The number of particles adjacent to the center of
confinement.

FIG. 8. The magic number configurationN585. Six five-
coordinated particles associated with disclinations are marked
rings. Triangulation of the neighborhood of one of them is sho
explicitly.
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2360 57A. A. KOULAKOV AND B. I. SHKLOVSKII
rough as it was in the incompressible case~compare to Fig.
1!. At large N the surface contains no defects. The defe
reside in the interior instead.

Let us define these defects. An elementary defect in a
lattice is disclination. The only possible form of such a d
fect in 2D crystals is the so-called wedge disclination. It c
be viewed as a wedge that is removed~inserted! from the
crystal. The ‘‘charge’’ of the disclination is the angl
formed by the wedge. The minimum possible disclinati
charge for a triangular lattice isp/3. The disclinations can be
identified with the particles having an anomalous coordi
tion number. In the triangular crystal the cores of the posit
or negative disclinations are associated with the partic
having five or seven nearest neighbors, respectively, the
mal coordination being six. Some examples of such defe
are shown in Fig. 8.

Dislocations are the pairs of positive and negative dis
nations forming a dipole. They can be seen in Fig. 9. Wh
number of electrons in the island is less than some crit
valueÑ'150, there exist highly symmetric electron config
rations free of dislocations. These configurations can be
alized only at some distinct values ofN5Nm
57,19,35,55,85, which we callmagic numbers. One of such
magic number configurationsNm585 is demonstrated in
Fig. 8. On the other hand, ifN.Ñ the dislocations are al
ways present and the magic number configurations neve
ist.

We would like to stress again that all these defects are
observed directly on the surface. Moreover, if the numbe
electrons in the island is large, they do not come close to
surface. The same is true for the central region of the isla
It is also usually free of defects. All the irregularities in th
lattice are normally observed in a ring of width (243)a at a
fixed distance from the edge.

We would like to discuss now the accuracy of the resu
we have obtained. We believe that the total energy for
cases shown in Fig. 7~a! is calculated with precision
1026(e2/k)2/3A11/3. This was tested by reruns~starting from
different initial conditions! and comparison with the result
of simulated annealing. The configurations, however, can
be reproduced reliably. The thing is that several comple
different configurations for the same number of electron
have very close energies, within 1026(e2/k)2/3A11/3 from
each other. However the general features of all these l
energy configurations described above remain true. Thus
though we cannot reproduce the position of every individ

FIG. 9. The electron configuration forN5235. The particles
having five and seven nearest neighbors are shown by the rings
the triangles, respectively.
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defect reliably, we believe that we can say that in gene
defects reside in a ring concentric to the surface of the wi
of a few lattice constants.

We will see in Sec. VI that the interaction of defects
crucial in understanding of the energy fluctuations. In t
next section we discuss the general properties of the de
distributions. These properties are essential for the ar
ments given in Sec. VI.

V. LATTICE DEFECTS IN THE CIRCULAR WIGNER
CRYSTAL ISLAND

When the triangular crystal is packed into the island
circular form the obvious incompatibility of these two stru
tures leads to the appearance of the lattice defects: disc
tions and dislocations. The important difference between
former and the latter is that disclinations arealwayspresent
in the ground state. The number of disclinations in the isla
is determined by Euler’s theorem~see below! and, hence,
cannot be changed. Dislocations, on the other hand, ma
may not appear depending on whether they are energetic
favorable. Let us first explain why the disclinations have
appear in the ground state.

The disclinations within some region of lattice can
identified by the number ofp/3 turns that one has to make t
walk around it. Normally one has to make a minimum of s
such turns~consider, for example, the central point in Fig. 8!.
For the region havingNc such defects inside, the minimum
number ofp/3 turns is 62Nc . Look, e.g., at the pentagon i
Fig. 8. It obviously contains one disclination, because
number of the aforementioned turns is 5. Let us now m
tally walk around thewhole circular sample along its edge
As the surface of the island is circular we do not make a
turns at all. Hence the total number ofp/3 disclinations is
exactly 6:

Nc56. ~5.1!

In the simplest possible case shown in Fig. 8 there are o
six disclinations in the sample. If both positive~removal of
p/3 wedge! and negative~insertion of such a wedge! discli-
nations are present, the total disclination charge should
calculated accounting for the sign of these defects:

Nc[Nc
12Nc

2 , ~5.2!

whereNc
1 andNc

2 are the numbers of positive and negati
defects, correspondingly. Such complex cases are reali
for example, when there are a few dislocations in the isla
Dislocation is a pair of positive and negative disclinatio
bound together to form a dipole. Hence addition of a dis
cation to the sample increases bothNc

1 andNc
2 keeping their

difference the same. Consequently the number of dislo
tions is not controlled by the topological constraints e
pressed by Eq.~5.1!. This equation can also be proved usin
Euler’s theorem. The proof can be found in Appendix A.

Now let us turn to the dislocations. At zero temperatu
they embody inelastic deformations. There are two main r
sons for the existence of such deformations: inhomogen
of the concentration of electrons and the presence of dis
nations. The first reason is not universal: the exact profile
density is determined by the form of confinement and int

nd
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action potential. The second one is universal, because
presence of disclinations is required by theorem~5.1!.

The dislocations produced by the varying crystal dens
were recently discussed by Nazarov.13 He noticed that the
dislocation density must be equal to the gradient of the
ciprocal lattice constant:

b~r!5a~r!ẑ3¹a21~r!. ~5.3!

Hereb(r) is the density of Burgers vector,ẑ is the unit vector
perpendicular to the surface, anda5A2/n(r)A3 is the local
lattice constant. This formula is easy to understand. First
notice that a dislocation adds an extra row to the latti
Hence the density of dislocations is given by the rate
change of concentration of these planes equal to 1/a. To
obtain the Burgers vector density we multiply this gradie
by the elementary Burgers vectora ~see also Ref. 14!.

This formula has an interesting implication for the que
tion of applicability of the elasticity theory to the Wigne
crystal. Consider a sample of sizeL. Assume that there is a
variation of concentration in the sample induced by an ex
nal sourcedn;uikn, whereuik is the strain tensor. Let u
find the value ofuik at which dislocations start to appea
This would imply that inelastic~plastic! deformations occur
and the elasticity theory brakes down. The energy of pur
elastic deformations is

Eel;YL2uik
2 . ~5.4!

Here Y is the Young’s modulus. For inelastic deformatio
we have

Einel5EcNd , ~5.5!

whereEc is the dislocation core energy andNd is the total
number of dislocations in the sample. Equation~5.3! pro-
vides the following estimate for the latter:

Nd;L2
dn

nLa
;uik

L

a
. ~5.6!

Comparing the elastic and inelastic energies we concl
that the deformations are completely elastic when

uik&
Ec

YaL
. ~5.7!

For the Wigner crystal with the Coulomb interaction usi
Ec;e2/ka, Y;e2/ka3, and uik;u/L, where u is the
characteristic displacement, we obtain

u&a. ~5.8!

Hence equilibrium elastic displacements cannot exceed
lattice spacing for the Wigner crystal. This agrees with
known result that the elasticity theory has a zero radius
convergence with respect to the strain tensor.15 In effect we
conclude that the radius of convergence depends on the
cial scale of the problem and in the macroscopic limitL→`
is indeed zero, according to Eq.~5.7!. This surprising result
emphasizes the difference between electron crystal and c
tal consisting of heavy particles~atoms!. In an electron crys-
tal the relaxation time provided by tunneling is smaller th
the time of experiment and, hence, the system can find
he
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ground state. In an atomic crystal the relaxation time is ty
cally much larger than the experimental time and the sys
can remain in the metastable state described by the elas
theory.

Below we compare the number of dislocations of tw
different origin. First we calculate the total number of disl
cations produced by the nonuniformity of the electron de
sity. We consider the case of the Coulomb interaction.
this case the corresponding electrostatic problem~ignoring
the discreteness of the charge of electrons! can be solved
exactly.16 The solution for the density of electrons can
shown to be a ‘‘hemisphere:’’

n~r !5n0A12
r 2

R2

~5.9!

n05
4AkR

p2e2
, R5S 3pNe2

8Ak D 1/3

.

According to Eq.~5.3! the density of dislocations induced b
varying electron density is

nd~r !5
bf~r !

h
5A2n0

A3

r

R2~12r 2/R2!3/4
~5.10!

Hereh5aA3/2 is the distance between crystalline rows. T
total number of dislocations is readily obtained by integr
ing this distribution:

Nd15E
0

R

2prdrnd~r !'4.08N1/2. ~5.11!

The electrostatic formula~5.9! is correct if the number of
electrons is large. In the opposite case of a small island
density profile is very far from being a hemisphere. In th
case the density is almost constant.5 This is obvious from
looking at Figs. 8 and 9 above. To evaluate the variation
the electron density we will find the lattice constant on t
surface of the island and compare it to that in the center.
this end we note that near the edge the density of dislocat
given by Eq.~5.10! would become infinitely large. However
it cannot exceed the density of electron themselves, given
Eq. ~5.9!. The position of the edge of the crystal can, the
fore, be determined matching the dislocation density and
density of electrons. As a result we obtain for the latti
constant on the edge the following expression:

l;a0
4/5R1/5}N21/15. ~5.12!

This expression agrees with conclusions of Ref. 5 obtai
in a different way. Our numerical data agree very well w
this theory and give the following coefficient:

l50.88a0
4/5R1/5, ~5.13!

The interelectron distance on the edge given by this form
differs very slightly from the lattice constant in the center
the sample if the radius of the island is not too large.
evaluate the number of dislocations for a small island
approximate the electron density profile with a parabola:
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n~r !.n0F12
r 2

R2S 12
a0

2

l2D G . ~5.14!

Applying Eq. ~5.3! to this expression we obtain

Nd1'2.05N1/2S 12
a0

2

l2D . ~5.15!

In the consideration below we will assume that the num
of electrons in the island is not too large. Therefore the e
tron density is almost uniform.

As mentioned above, another reason for appearanc
dislocations is the stress, produced by disclinations. The
ter deform the lattice enormously. These deformations ca
significantly reduced by introducing dislocations into the l
tice. This process is usually referred to as screening.
screening of disclinations by dislocations has been stud
before in the context of the hexatic liquid–homogeneous
uid transition.17,18The screening is that case is accomplish
by polarization of the thermally excited dislocations abo
the Kosterlitz-Thouless transition. It was therefore treated
the framework of the linear Debye-Huckel approximatio
Here we deal with the case when there areno thermally
excited dislocations and all the Burgers vector density n
essary for screening exists due to the appearance of
dislocations.

The phenomenon can be most easily understood con
ering the total disclination density:18

stot~r!5s~r!2« ik¹ ibk~r!, ~5.16!

where the first term is the density of free disclinations wh
the second is the density of disclinations induced by
varying in space density of dislocations~the latter are the
dipoles formed from the former!. The elastic energy of the
crystal can be written in terms of this total defect density

E5
Y

2E d2q

~2p!2

ustot~q!u2

q4
, ~5.17!

whereY is the Young’s modulus. For case of the Coulom
crystal19 Y5ae2n3/2/k, wherea50.9804. We notice that fo
the large distancesq→0 the numerator in this expression
pushed to zero by theq4 term contained in the denominato
Thus, ignoring the effects at the distancesr;a, one can
write the condition of the perfect screening:

stot~r!50. ~5.18!

It is instructive now to consider one disclination in the cen
of an infinite sample:s(r)5s0d(r). Equations~5.18! and
~5.16! have in general many solutions. Two of them are e
to guess: b1f5s0/2pr , b1r50 and b2x50, b2y
5s0Q(x)d(y). They represent the Burgers vector rotati
around the disclination and the solution in the form of a gr
boundary, respectively. They are different by the longitu
nal Burgers vector density:b15b21¹ f , where f is some
scalar function, and hence have the same elastic energy.
nonuniqueness is a consequence of the essentially mean
character of Eq.~5.18!. Discreteness of the dislocations r
moves this degeneracy in favor of the grain boundary. T
idea is that the fluctuations of the local elastic energy cau
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by the discreteness of the defects can be estimated aE
;Ya2ln(^r&/a) per defect, wherêr & is the average distanc
between them. In the former distributionb1 this average dis-
tance grows with the size of the sample^r &;ALa. In the
case of the grain boundary the average distance is mainta
of the order of the lattice spacing. Hence the self-energy
defects in the latter case does not grow with the size of
sample.

The next logical step is to consider six disclinations in t
circular crystalline sample. A possible solution for the dist
bution of defects is shown in Fig. 10. It is prompted by t
results of the numerical simulations showing that in the m
jority of cases the defects~dislocations and disclinations! are
situated in a ring concentric to the surface of the island. T
regions adjacent to the center and to the edge of the is
appear to be free of defects. We assume that the disclinat
form a figure close to a perfect hexagon. The dislocatio
form grain boundaries connecting the disclinations. This
done to smear out the charge of disclinations in accorda
with the screening theory expressed by Eq.~5.18!.

Next we calculate the distance from the surface to
layer of defects. We consider the case of a uniform crys
The central region of the island can be formed with no d
formations in it. It can be thought of as a piece of the u
form crystal having a circular form, the same as the o
considered in Secs. II and III. The central region is shown
Fig. 10 by a gray disk. The region between the surface of
island and the layer of defects is free of defects too. It can
be free of elastic deformations, however. These deformat
are the same as those of a 2D rectangular elastic rod,
opposite edges of which are glued together. To find the
timum thickness of this rodw ~see Fig. 10! one has to bal-
ance the energy associated with this bending, which tend
reducew, and the surface energy of the grain boundary. T
latter is proportional to the length of the grain boundary a
therefore, has a tendency to increasew. The bending energy
can be calculated from the elasticity theory20

Eel5
p

12
Y

w3

R
. ~5.19!

FIG. 10. The distribution of defects in a compressible islan
Rings and arrows show the positions of disclinations and the di
tion of the Burgers vector density, respectively. The gray d
shows the free of defects central region.
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The surface energy of the grain boundary can be estim
from the core energies of the dislocations:

Egb'EcNd . ~5.20!

The total number of dislocation follows from elementa
geometric calculation done for the incompressible crystal
region of radiusr 5R2w:

Nd2512~12A3/2!r /h, ~5.21!

whereh5aA3/2. Minimizing the total energyE5Eel1Egb
we find the optimum at

w'1.5AEcR

Ya
'0.5ARa. ~5.22!

In the derivations of Eq.~5.22! we usedEc50.11e2n1/2/k
and Y50.9804e2n3/2/k ~Ref. 19!. This result can be also
obtained from our condition of stability of a crystal~5.8!.
Indeed the strain tensor in the ring can be estimated asuff
;w/R. The corresponding displacementu;w2/R cannot
exceed the lattice spacinga, according to Eq.~5.8!. The
estimate for the width of the ringw obtained from this argu-
ment is consistent with Eq.~5.22!.

Now we would like to find the condition at which th
dislocations stay on the surface of the island. We will co
sider the case of the short-range interaction~1.4!. To this end
one has to compare the energy of the defects on the boun
with that in the bulk of the crystal. The former is associat
with the roughness of the surface~see Fig. 1!. It can be
estimated as a product of the total number of particles th
AN, the typical force acting on a particle on the surfa
F(R)52AR, and the characteristic deviation of the shape
the surface from the circle, given by the lattice consta
dEsur;ANF(R)a. The energy of the defects inside the i
land is given bydEbulk;ANYa2lnN. The first term in the
right-hand side is the number of defects and the second
is the typical energy per dislocation. It is estimated as
typical interaction energy of two dislocations. Note that w
neglect the core energy of dislocations as it is small co
pared to theYa2 for the crystal with short-range interaction
Indeed the former is of the order of the correlation ener
Ec;U0exp(2a/s). The Young’s modulus for the considere
system can be estimated as the second derivative of th
teraction potential between two particles:

Y;
U0

s2
expS 2

a

sD . ~5.23!

It is clear then thatEc /Ya2;s2/a2!1. Comparison ofdEsur
with dEbulk gives the condition that the defects stay on t
surface:

Y lnN@AAN. ~5.24!

The coefficientA can be conveniently related to the intera
tion strength by balancing the forces acting on a particle
the surface:AR;U0 exp(2a/s)/s. Combining this equation
with Eqs. ~5.23! and ~5.24! we obtain the following condi-
tion for the defects staying on the boundary:

a lnN@s. ~5.25!
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This coincides with the condition of uniformity of the cryst
~see Sec. III!. Note that this entire consideration is based
the assumption of uniformity of the crystal.

Finally, in this section we evaluate the critical number
electronsN* at which the number of dislocations due to th
inhomogeneity of the electron densityNd1 and produced by
the screening of disclinationsNd2 become equal. To do so
we compare Eq.~5.15! with Eq. ~5.21!. They become equa
if l'1.55a0 or, using Eq.~5.12!,

N5N* .700. ~5.26!

Therefore if the number of electrons in the island is sma
that N* dislocations are mostly due to the screening of d
clinations and are arranged into the grain boundary~see Fig.
10!. In the opposite case the dislocations are generated in
interior according to Eq.~5.3!.

The above consideration is essentially mean field, trea
the density of dislocations as a continuous quantity. In
next section we give an argument that the discretenes
dislocations is responsible for the fluctuations of the ela
energy of the Wigner lattice.

VI. ELASTIC BLOCKADE

The number of dislocations in the Wigner crystal island
of the order of the number of crystalline rows in it@see Eq.
~5.21!#:

Nd;R/a;AN. ~6.1!

Hence, it grows while the island in filled with electrons. O
the average one dislocation appears asN increases bydN
;AN. The elastic energy stored due to the deviation of
number of dislocations from the average is relaxed whe
new one is added. This phenomenon is similar to the C
lomb blockade, with the words ‘‘electron’’ and ‘‘electrostat
energy’’ replaced by ‘‘dislocation’’ and ‘‘elastic energy.’’

Using this analogy to the Coulomb blockade one can e
ily estimate the order of the fluctuations of energy. In t
Coulomb blockade case the fluctuations of the electrost
energy are given by the following expression:

dE5
e2

2C
dN2, ~6.2!

where 21/2<dN,1/2 is the deviation of the number o
electrons in the dot from the average, determined by the g
voltage. Following the convention of the above mapping o
has to replacee2/C by the characteristic energy of intera
tion of two dislocations in the islandU0;Ya2;e2/ka. One
also has to replacedN by the deviation of the number o
dislocations from the averagedNd;dN/AN. As a result we
obtain

dEel5a
e2

ka

dN2

N
. ~6.3!

Herea'0.5 is a numerical constant. The approximate va
of this constant is obtained from the numerical results of S
IV. As the total period of such an ‘‘elastic’’ blockade isTN

;AN, the maximum fluctuation of energy that can b
reached isdEmax;ae2/ka.
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Another implication of this analogy is the appearance
the elastic blockade peaks. In the case of Coulomb block
the intersection of two terms described by Eq.~6.2! for dif-
ferent numbers of electrons in the dot produce a spike in
conductance through the dot. At this point a new elect
enters the dot. For the ‘‘elastic’’ blockade at the similar po
a new dislocation enters the crystalline island. The chem
potential of an electron has a discontinuity of the order
Dm;dE/dN;2ae2/kaTN;2ae2/R. The charging en-
ergy at this point fluctuates by a value

dD5
ddm

dN
5

Dm

1
;2a

e2

kR
, ~6.4!

which is of the order of the averageD̄5be2/kR, b being
another constant. This, however, does not lead to the bu
ing in the charging spectrum as it did in the case of
short-range interaction, because of the smallness of the
merical constanta.

Let us consider the elastic blockade in more detail. In
previous section we derived the condition at which the cr
tal can be considered to be uniform. If the number of el
trons in the island is less than some critical valueN* .700,
the variations in the density of electrons can be ignored
the number of dislocations associated with the variable d
sity is small. Below we examine these two regimes se
rately.

A. Almost uniform crystal: N&N*

As follows from the previous section, in this regime th
density of electrons in the island is almost uniform. The cr
tal is packed into the circular form by forming two mon
crystals: the almost circular internal region, free of elas
deformations, similar to the incompressible island; and
external ring~see Fig. 10!. The interface between these tw
monocrystals is a grain boundary, which can be viewed a
string of dislocations.

Assume now that the position of the center of the confi
ment relative to the latticer0 is fixed. This coordinate ha
been introduced earlier in Sec. III. One can then calculate
energy of the island as a function of the number of electr
and the position of the centerEr0

(N). Due to the symmetry
considerations given in Sec. III this function has extrema
pointsA, B, andC shown in Fig. 6~a! similar to the incom-
pressible island. Filling of the island results in switchin
among three energetic branchesEA(N), EB(N), and
EC(N), every time choosing the lowest. Below in this su
section we estimate the correction to the total ene
dEr0

(N).
The grain boundary has a tendency to be at a fixed

tance from the centerr 5R2w, calculated in Sec. V. If po-
sition of the center relative to the crystal is fixed, filling
the island brings about expanding of the mean grain bou
ary position with respect to the crystal. Hence, periodica
the grain boundary has to intersect a new crystalline row
this moment in the corresponding incompressible proble
new terrace appears on the boundary of the island. In
Coulomb problem the grain boundary is submerged into
island. Therefore at this moment in the compressible ca
new row is added to the island. Since the termination po
f
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of the new row can be thought of as dislocations, we can
that a new pair of opposite dislocations appears on the g
boundary~see Fig. 10 with the gray internal region shown
more detail in Fig. 3!.

The corresponding fluctuation of energy can be evalua
as the energy of interaction of two opposite dislocations h
ing chargedNd5Nd2N̄d , whereNd is the actual number o
dislocations in the neighborhood of the new row, andN̄d is
the average one. This energy is given by18

dE0.
Ya2

4p
dNd

2lnS l

hD . ~6.5!

The typical distance between defectsl is given by Eq.~3.18!:
l;ARa. The average number of dislocations is given by t
number of crystalline rowsN̄d5( i(r 2êir0)/h, êi being the
unit vector normal to the series of rows considered. The
fore,

dNd5(
i 51

6 H r 2êir0

h J 2
1

2
, ~6.6!

where by$•••% we assume taking the fractional part. Th
oscillations of energy are given by the formula similar to E
~3.37!,

dEr0
5(

i 51

6

dE0~r 2êir0!, ~6.7!

where

dE0~r !.
Ya2

16pF S H r

hJ 2
1

2D 2

2
1

12G lnN ~6.8!

are the fluctuations of energy given by Eq.~6.5!. The last
term in the square brackets is chosen so thatdE0(r )50.

The oscillations of energy calculated in this way for thr
positions of the centerr05A, B, andC are shown in Fig. 11.

As usual the lowest one is to be chosen. Comparison
the numerical experiment~Fig. 7! shows, that this mode
predicts very well the phase and the shape of the oscillatio
The amplitude, however, is smaller by a factor of 2–2.5 th
observed in the simulations. This difference can be explai
by the influence of the boundary of the sample on the in
action energy of dislocations~6.5!. Indeed the boundary o
the island is at the distancew'0.5ARa from the ring of
dislocations. This scale is smaller than the characteristic

FIG. 11. The fluctuating part of the energy of the Wigner crys
island calculated from the interaction of dislocations.
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tance between dislocationsl'(243)ARa. Hence the
boundary of the island should play an important role in
interaction of dislocations.

To understand the character of the correction we no
that the boundary in the numerical experiment is almost
deformed. The island tends to preserve its circular sha
Hence we can assume that the normal displacement o
boundary is zero. Assume now that the dislocations are m
farther away from each other than from the boundaryl @w.
In practice we havel'5w. The problem of interaction of the
pair of dislocations in the presence of the boundary can t
be solved using the method of images. It is easy to see th
the zero normal displacement boundary condition a dislo
tion with the Burgers vector perpendicular to the bound
produces an image of the same sign. Indeed, such a dis
tion is a crystalline semirow, parallel to the surface. The z
normal displacement boundary condition can be realized
putting a parallel semirow on the other side of the bounda
Hence, effectively, the boundary doubles the charge of e
dislocation. The interaction energy, being proportional to
square of charge, would acquire a factor of four due to s
images. However, as the crystal exists only in the semisp
the deformations only there contribute to the elastic ene
Therefore the overall factor that arises due to the presenc
the boundary is 2:

Eboundary~r !52Efree~r !5
Ya2

2p
lnS r

aD . ~6.9!

This factor can explain the discrepancy between our calc
tion and the numerical experiment.

B. Nonuniform crystal: N@N*

In this case as it follows from Eq.~5.10! there areNd

;AN dislocations in the island associated with the variatio
of the electron density. According to Eq.~5.10! these defects
have to be present in the bulk of the crystal. Hence th
cannot be arranged into grain boundaries as in the case
sidered above. The nearest dislocations repel each othe
one could imagine that they form a crystal themselves.13 We
argue, however, that this cannot be the case. The reas
that dislocation can occupy a fixed position within an ele
tron lattice cell. Hence the incommensurability of the ele
tron and dislocation lattices eventually produces frustrat
and destroys the long-range order in the dislocation latt
Therefore we expect that the dislocations form a glassy s

This implies that the coherence of the crystalline rows
the electron crystal itself is destroyed. We think, therefo
that in this regime the variations of the total energy are
periodic. They retain however the general features descr
in the introduction to this section. To understand how th
features arise in this particular case we would like to stu
the reconstructions in the dislocation lattice caused by a
tion of a new electron. To this end it is necessary to cons
two cases: when this addition does not change the total n
ber of defects, and when the number of defects is increa
The former case takes place most of the time, while the la
happens once inAN electrons when a new defect has
appear.

Consider the first case. Electron can be added into
core of dislocation increasing the length of the extra crys
e
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line row associated with it. The dislocation after this is d
placed by the lattice constant. Let us find the maximu
change in the elastic energy of the island associated w
such a displacement. It can be expressed through the in
action between dislocations:

dEmax;
d2U~r !

dr2
a2, ~6.10!

whereU(r )5Yh2ln(r)/4p is the dislocation interaction en
ergy. The reason why the second derivative is relevant to
calculation of this energy is that the dislocation is in equil
rium before adding the new electron. Hence the gradien
the self-energy of the dislocation is zero. Now we have
remember that there areAN dislocations in the island. Henc
the actual addition energies range from zero todEmax with
the average level spacing,

dE;
dEmax

AN
;

e2a

kR2
. ~6.11!

This quantity describes the energy one pays when addin
electron at the fixed number of dislocations. This is a corr
tion to the energy spacing. Multiplied by the total number
electrons between two consecutive additions of dislocati
AN it gives the variation of the chemical potentialdEAN
;e2/kR. This variation should be equal to the discontinu
of the chemical potential when a new dislocation is added
the island, as the average correction to this quantity due
elastic effects does not grow. Thus the drop of chemi
potential is equal todm;e2/kR. This is consistent with Eq
~6.4!.

Thus elongated crystalline lines draw dislocations fro
the center to the periphery of the island. Eventually a n
row has to be inserted in the center. This event manife
itself in the appearance of a new pair of dislocations. T
distance from the centerj at which they are situated can b
found from Eq.~5.10! by stating that

nd~j!;
1

j2
. ~6.12!

This results in
j;a1/3R2/3. ~6.13!

The energetics of switching between two branches co
sponding to different number of dislocations has alrea
been discussed above@see Eq.~6.4!#.

VII. CONCLUSIONS

In this section we would like to discuss the degree
universality of our results. The first question is what happe
if confinement potentialV(r ) is not parabolic. The answer i
almost obvious for the hard-disk interaction. In this ca
electrons are added to the crystal on the equipotential de
mined by the level of chemical potential. Therefore only t
shape of this equipotential and the confinement potential
dient matter for energy fluctuations. It is obvious that situ
tion is almost identical for any isotropic confinementV(r ). It
is also easy to generalize our calculations for the confi
ments of oval shapes.

In the latter case the theory developed in Sec. III can
applied with a few modifications. As it was explained th
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variations of energy are associated with periodic inters
tions of the equipotentials with the crystalline rows. T
main contribution to these oscillations comes from the ‘‘c
herence’’ spots of the size;ARa tangential to the rows. The
oscillations of energy are sensitive then only to the proper
of the equipotential in the immediate vicinity to those spo
If it can be well approximated there by a circle Eq.~3.37!
should hold with additional phase shifts introduced into
arguments of the contributions from different rows. The
phase shifts arise due to the deviation of the global shap
the equipotential from the circle, and express the incohere
of contributions coming from six different series of rows.
addition to that each contribution should be rescaled acc
ing to dV0}ARiTm , whereRi is the curvature radius of th
corresponding equipotential. We would like to emphas
again that this theory works only for an island of oval sha
It is not applicable for example to a square. All of the cu
vature radiiRi have to be of the order of the size of th
island. In general as the contributions from different terra
are not coherent anymore, the overall amplitude of osci
tions has to be smaller in the oval case compared to the
of rotational symmetry.

Let us discuss the universality of the results with resp
to the choice of the interaction potential. As we have se
both short-range and Coulomb interactions give rise to
fluctuations of energy of the same functional shape. We
gue that the other forms of long-range interactions, logar
mic for instance, bring about similar results. Thus the ene
of a disorder-free cylinder or disk of a type-II superco
ductor filled with the fluxoid lattice or a rotating cylindrica
vessel of the superfluid helium as a function of the numbe
vortices21 should experience oscillations similar to those
Fig. 7. To check this prediction we have performed a n
merical calculation in our model with the interactionU(r )
5U0ln(1/r ). It revealed a quasiperiodic correction to the e
ergy of the same functional shape as shown in Fig. 7.
amplitude of the correction was consistent with the conc
sions of Sec. VI. The configurations were also very similar
the observed in the Coulomb case. In particular the corr
tion between the position of the center of the confinem
relative to the crystal and the oscillations of the energy
also observed.

In conclusion we have studied the charging spectrum
the crystal formed by particles in the parabolic confineme
We considered two forms of the interactions between p
ticles: the short-range and Coulomb interactions. In the co
puter simulations employing the genetic algorithm we ha
observed the oscillations of the ground-state energy wh
have a universal form, independent of the form of inter
tion. We attribute these oscillations to the combination
two effects: periodic additions of new crystalline rows a
hopping of the center of the confinement relative to the cr
tal. The hops are separated by addition of;N1/2 electrons.
These hops make a dramatic difference for the addition s
trum of the island. In the case of the short-range interac
they make the charging energy negative, so that;N1/4 new
electrons enter the island simultaneously. This apparen
traction between electrons is a result of the confinement
laron effect discussed in Ref. 5. In the case of Coulo
interaction such a hop results in an abrupt'15% decrease in
the charging energy.
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APPENDIX A: TOTAL DISCLINATION CHARGE OF THE
ISLAND AND EULER’S THEOREM

To prove Eq.~5.1! one has to first consider some triang
lation of the electron lattice. It is convenient to consider t
triangulation in which every electron is connected by edg
to the nearest neighbors. In the case of a triangular lattice
electron in the bulk has six nearest neighbors, while an e
tron on the surface of the sample has only four. For so
electrons, however, this number can be different. For
ample, an electron in the core ofp/3 disclination has only
five nearest neighbors~see Fig. 8!. Electrons on the surface
can have the coordination number equal to three. We a
ciate such electrons with thep/3 disclinations stuck to the
surface.

Let us now use the Euler’s theorem. For our case it sa

v1 f 2e51, ~A1!

where v, f , and e are the numbers of vertices, faces, a
edges contained in the graph formed by our triangulation.
the vertices of the graph can be divided into the internal o
v i , belonging to the bulk, and the ones on the surfaceve .
The same can be done for the edges:

v5v i1ve,

e5ei1ee . ~A2!

As all the faces of our figure are triangular by constructi
the following relationship, expressing the general balance
edges, is true:

3 f 5ee12ei . ~A3!

Next we can relate the number of edges to the numbe
vertices. As it was mentioned above the bulk vertices
connected to six edges while the surface ones to four.
exceptions are the cores of disclinations. They have
anomalous coordination number. Expressing now the ove
balance of edges one can write

2e56v i2dv i14ve2dve , ~A4!

wheredv i anddve are total deviations from the normal co
ordination numbers for the internal and external vertices,
spectively. One can finally use the obvious fact that

ve5ee ~A5!

to solve the system of Eqs.~A1!–~A4! and to obtain

Nc5dv i1dve56. ~A6!

This completes the proof of Eq.~5.1!. We would like to
notice that a similar theorem is well known for a triangul
crystal on the surface of a sphere:7,22

Nc512. ~A7!
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