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Charging spectrum and configurations of a Wigner crystal island
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Charging of a clean two-dimensional island is studied in the regime of small concentration of electrons when
they form the Wigner crystal. Two forms of electron-electron interaction potential are studied: the pure
Coulomb interaction and the exponential interaction corresponding to the screening by a pair of close metallic
gates. The electrons are assumed to reside in a parabolic external confining potential. Due to the crystalline
symmetry the center of the confinement can be situated at distinct positions with respect to the crystal. With the
increasing number of electromé the center periodically hops from one such a location to another providing
the lowest total energy. These events occur with the peridi’?. At these moments in the case of the pure
Coulomb interaction the charging energy of the island has a negative correelib®. For the case of the
exponential interaction at the moments of switching the capacitance becomes negativéldhdew elec-
trons enter the island simultaneously. The configurations of disclinations and dislocations in the island are also
studied.[S0163-182@98)02704-0

I. INTRODUCTION order potential is very weak, so that electrons in the dot form
the Wigner crystal. We call such a dot a Wigner crystal
In recent experiments the charging of a quantum dot is island. In the experimental conditions of Ref. 1 one can think
studied by the single electron capacitance spectroscopgbout a Wigner crystal island literally only in the highest
method. The quantum dot is located between two capacitomagnetic field. One can also imagine similar experiments
plates: a metallic gate and a heavily doped GaAs layer. Tunwith a Wigner crystal island on the surface of liquid helium.
neling between the dot and the heavily doped side is possible the present paper we consider the extreme classical limit
during the experimental times while the barrier to the metabf the Wigner crystal, when the amplitude of the quantum
is completely insulating. dc potenti#l; and a weak ac po- fluctuations is much smaller than the interparticle distance.
tential are applied to the capacitor. With the increas&of In this case one can think of electrons as of classical particles
the differential capacitance experiences periodic peaks wheand the energy of the system is given by the following ex-
addition of a new electron to the dot becomes possible. Thpression:
spacing between two nearest peaké; can be related to the
ground-state energif(N) of the dot withN electrons:
E=2 U(ri—r)+AX r2. (1.2
aeAVy=E(N+1)—2E(N)+E(N-1)=A(N)=e?/Cy. = '

1.1
@9 The first term represents interactions among electrons lo-

Here o is a geometrical coefficientA(N) is the charging cated at points; , with U(r) being the interaction potential.
energy,Cy, is the capacitance of the dot witt electrons. It  The second term is the contribution to the energy due to the
was observed in Refs. 1 and 2 that at a low concentration ggxternal confinement, which is assumed to have parabolic
electrons or in a strong magnetic field the nearest peaks cdarm. CoefficientA plays the role of strength of the confine-
merge, indicating that at some valueswftwo or even three  ment. The forms of the interaction potential considered are
electrons enter the dot simultaneously. In other words somthe pure Coulomb interaction

charging energies apparently become zero or negative. In a

fixed magnetic field this puzzling event repeats periodically U(r)=e?«r, (1.3

in N. Disappearance of the charging energy looks like a re-

sult of an unknown attraction between electrons and repregii e and being the electron charge and the dielectric

sents_a_l real challenge for t'heory. . constant correspondingly, and the exponential interaction
Pairing of the differential capacitance peaks has been

studied theoretically before fatisordereddots. Explanation
of the pairing based on tHattice polaronic mechanism has U(r)=Ugexp(—r/s). 1.9
been suggested in Ref. 3. In Ref. 4 it was demonstrated how
electron-electron repulsion, screened by a close metallidhe latter interaction potential corresponds to the case when
gate, can lead to electron pairing for a specially arrangeghe island is situated between two metallic gates, withe-
compact clusters of localized states in a disordered dot. Thigg of the order of the distance between them édugl
effect is a result of redistribution of the other electrons after~e?/ «s. In this paper we study the caae>s, wherea is the
arrival of new ones. It was interpreted in Ref. 4edactronic  average interparticle distance.
bipolaron First we study the addition spectrua(N) of such a sys-

In this paper we study the addition spectrum of a dot intem numerically. We notice that for the both types of inter-
which the density of electrons is small and the external disaction the energy of the ground state has a quasiperiodic
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ot of the island. A new crystalline row, therefore, appears on
L. '. ¢ e the surface. It can be shown that this creates an anomalous
e ',A.Q increase in the density of stat¢éBOS) of electrons. Such
e, " c e ., '. variations of DOS result in the appearance of the periodic
" R ° toe correction to the energy of the island. This correction is con-
L '. C ., '_ * sidered in detail in Sec. Il. An interesting implication of this
te., ', S picture is the multiple electron entering. It turns out that if
el one slowly raises the chemical potential of electrons in the

, ) _ ) island, then at the points of switching between the branches
FIG. 1. The configuration of electrons in the island for the cas€nantioned above abotil electrons enter the island simul-
B R < = . )
N=80, A=10"", Uo=1, ands=1. A typical surface particle yho,51y A simple model of this phenomenon has been

in a large dot has four nearest neighbors. Two particles with three . - -
and five nearest neighbors are shown by the circle and the trianglseljgge":’tEd before in Ref. 5 for a small island containiri

correspondingly. They represent a pair of opposite surface disclin clectrons. In this paper we discuss this phenomenon for

tions or a surface dislocation. alarger |slands.. N
One can think about the new rows appearing in the crys-

correction. The period of this correction scales-agN, or  talline island as of pairs of dislocations of opposite sign. In
the number of crystalline rows in the island. Its shape isthe case of the short-range interaction these defects are
universal, i.e., independent of the form of the electron-Pushed to the surface by a huge price for elastic deforma-
electron interaction. Explanation of these oscillations is theions. In the Coulomb case, described by Eig3), the shear
subject of the subsequent theoretical analysis. modulus and, subsequently, the Young's modulus of the
We attribute the aforementioned oscillations to the com<£rystal are relatively small. As discussed in Sec. V the in-
bination of two effects: insertion of new crystalline rows and commensurability of the circular shape of the dot with the
motion of the center of the confinement relative to the cryslattice and the inhomogeneity of the density of electrons gen-
tal. Consider the former effect first. Let us fix the position of €rate in this case topological defects, disclinations, and dis-
the center of the external parabola relative to the adjaceriecations,insidethe island. We argue that these defects de-
Bravais unit cell. For example, let it coincide with one of the termine the variations of the energy when the center of the
lattice sites. As electrons are added to such a system, tmg)nfinement is fixed relative to the Crystal. The number of
number of crystalline rows grows roughly asyN. The pe-  dislocations scales as the number of crystalline rowdN.
riodic appearances of the new rows bring about oscillationd his implies that a new dislocation appears everyN elec-
of the total energyE(N) with N. The period of these oscil- trons. Due to the discreteness of these defects a single branch
lations scales asN~+/N in agreement with our numerical ©f the total energy corresponding to a fixed position of the
results. center acquires a quasiperiodic correction. This periodic
Let us discuss the influence of the position of the confinebuilding up and relaxation of the elastic energy of the dot
ment center. The energy of the system as a function of thisaused by the discreteness of dislocations is very similar to
position has the same symmetry as the lattice. Hence thi&e variations of the electrostatic energy brought about by the
extrema of the energy have to be situated at the points dliscreteness of electrons, known as Coulomb blockade. Fol-
high symmetry, e.g., the centers of twofold rotational sym-lowing this analogy we call the former periodic phenomenon
metry or higher. There are three such points in the twoan elastic blockade.
dimensional2D) triangular latticg see Fig. 6a) below]. The The elastic blockade appears to be a bit more complicated
evolution of the island wittN consists of switching between than its electrostatic counterpart. The center of the confine-
these three positions of the center, each time choosing tH8€nt can move among three distinct points of the triangular
location providing the lowest total energy. This effect is only lattice mentioned above making the system switch from one
based on the symmetry considerations and is therefore un@nergy branch to another. Such a sudden switching results in
versal, i.e., independent of the form of interaction. This idegd correction to the charging enerfsee Eq(1.1)]:
suggests a simple recipe for the calculation of the energy of

the island. One has to calculate three energy branches corre- SA~—0.1%, (1.5
sponding to the different locations of the center and then o
choose the lowest one. where A is the average charging energy. This reduction of

Let us consider these two effects in more detail, sepathe distance between the nearest Coulomb blockade peaks
rately for the two types of interaction. We start with the casehappens with the period- N determined by the elastic
of extremely short-range interaction given by E@.4): a  blockade. It can be thought of as an analog of merging of a
>s. This case can be realized, e.g., if the confining paraboléew peaks observed in the case of the short-range interaction.
is very weak compared to the interaction prefactaiR? The optimum configurations of electrons in the parabolic
<U,. HereR is the radius of the island. For this case the confinement with the Coulomb interaction have been studied
interaction between the nearest neighbors is a very stedpefore in Ref. 6. Our numerical results both for the energies
function of distance due to the fast decay of the exponentighnd the configurations agree with the results of this work.
(1.4). The variations of the lattice constant in this case areHowever, our interpretation of the results is different. The
very small(see a more elaborate discussion in Se¢. This  authors of Ref. 6 adopt a model in which the electrons fill in
implies that the crystalline rows are almost straight liteee  shells concentric to the perimeter of the island. We argue that
Fig. 1. Hence we deal with a piece of almost perfect trian-in the regime studied in the numerical experiment only a
gular crystal with new electrons being added on the surfacearrow ring adjacent to the perimeter is concentric to it. The
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width of such a ring is~ VRa. The rest of the island is filled P

with an almost perfect crystaébee Secs. V and VI 2001 |
The paper is organized as follows. First we consider the ol i

case of an extremely short-range interactidtg. (1.4)], <

when the Young’'s modulus of the crystal is very large and = o0 | i

no lattice defects can exist in the interior of the island. This B

case is discussed in Secs. Il and Ill. In Sec. IV we report the 400 - ]

results of the numerical solution of the problem with the ]

Coulomb interactiof{Eq. (1.3)]. In Sec. V we turn to the 600F Ly

discussion of different kinds of defects, which can exist in a 0 10 20 30 40 50 60 70 80 90 100

compressible island. In Sec. VI, we discuss the theory of the
elastic blockade for the case of the Coulomb interaction.

Section VIl is dedicated to our conclusions. FIG. 2. The fluctuating part of the ground-state energy in the

model with the exponential interactidii.4) for A=10"8, U,=1,
ands=1.

II. SHORT-RANGE INTERACTION: NUMERICAL

RESULTS tion and the other four separated by at least the precision of
the conjugate gradient. This has been done to avoid dominat-

In this section we consider the systemMfelectrons in- . . : : )
; : .ing the process by one conformation. During ten iterations as
teracting by a strongly screened short-range potential. This

limit is defined by Eq.(1.2) with interaction given by Eq. mhany as 155 IOC?I minima Were.examlnﬁq. The energies ﬁf
(1.4 and a>s. As it is shown later in Sec. Il the latter the optimum conformations obtained in this way agree wit

condition can be realized if the interaction prefactor signifi-thosfa of Ref. 6 and for sormé are evenllower. Before pre-
. i > senting these results we would like to discuss the method we
cantly exceeds the typical confinement enetdy>AR*. At

this condition the variations of the lattice constant of theusﬁ%tgnp;?iis‘:’ht:e dgateaﬁ dence of the around-state ener
crystal are negligible. This indeed can be observed in th Y b 9 gy

configurations obtained in the numerical experiment. On(;%_(N) on the number of particles we split it into the smooth

such configuration is shown in Fig. 1, obtainedaat 13s. E(N) and the fluctuating componedE(N):
In our numerical analysis we minimized the energy func-
tional (1.2) with the exponential interaction given by Eq.
(1.4) with respect to the coordinates of electrons using a
genetic algorithm similar to that outlined in Ref. 7. Below

we describe this numerical technique and the motivation foin the manner of Ref. 5. The smooth component has the form

its use. TN — 2 2/3 112 3
E(N) = 7]1N + 7]2N+ 7]3N + 7]4N + 775N y Where the

The problem at hand belongs to the vast class of problemggeficients 7, - - . are chosen to minimize the fluctua-
of finding the global minimum of a multidimensional func- tions. The fluctuating part is displayed in Fig. 2
tion, which has plenty .Of Ioca! minima. The weII-deyeIoped The curve in Fig. 2 evidently has a quasiperiodic struc-
methods for conYex differentiable functiorite comugaﬁe ture. It consists of the series of interchanging deep and shal-
gradient, Newton's methocdo not work here as they find |, minima, separated by the peeks with more or less
only some local minimum. The most frequently used methody o, sjopes. The period of this structure with a very good
in this case is the Metropolis simulated annealing technfque. recision scales ds'2 and numerically is equal to the num-

In this method the system is modeled at some art"C'C""‘")}t:er of electrons in the outer crystalline row of the island. The
introduced temperature, which is gradually decreased to

Amplitude of the oscillations grows witk as
very small value. It is assumed that after this annealing the P g

system falls into the state of the lowest energy. Although, in
principle, in this method the system can hop from a meta- |SE|xN?, y=0.8+0.1. 2.2
stable state to the ground state, in practice, if the potential
barrier between them is high, the time to perform such a hop
can exceed the time of the simulation. Although the crystal in the bulk is almost perfect, its
An alternative method is the genetic algorithm, which wasboundary is extremely irregulafsee Fig. 1 It can be
proved to be superior to the simulated anneafingitially thought of as a superposition of various types of defects
five different parent configurations were obtained by relaxingpushed against the surface by extremely large Young'’s
random configurations using the conjugate gradient algomodulus, provided by the short-range interaction. These de-
rithm. Then these configuration were mated pairwise to obfects can be associated with the particles having an anoma-
tain additional 15 child configurationéincluding mating lous coordination number. Normally a particle on the surface
with itself), which were again relaxed using the conjugate-of the triangular crystal has four nearest neighbors. But there
gradient algorithm. Mating consisted of cutting two configu- are particles having a coordination number equal to three or
rations into halves by a random line and then connectindive. These particles can be associated with positive and
those halves belonging to different parents to form a newnegative disclinations on the surface correspondingly, as
child. From the resulting 20 conformatiofysarents and chil- their creation assumes removahsertion of a =/3 wedge
dren five were chosen to be parents for the next iteration(see Fig. 1 Dislocations on the surface are pairs of such
The new parents consisted of the lowest-energy configuradisclinations of the opposite sign forming a dipole. At a

E(N)=E(N)+ 6E(N), (2.0
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small Young’s modulus however these defects can dive ininteraction energy in this case is very small. The character-
side the island. This transition is quantitatively described inistic interaction energy per particle can be estimated as:
Sec. V. Enn—Uoexp(—a/s). From Eq.(3.5 we conclude that

I1l. SHORT-RANGE INTERACTION: A THEORY _ S
SHO G CTio © Ue @5 AR (3.8

In this section we use a hard disk model to explain our
numerical results obtained in the limit,>AR?. To justify ~ Hence in the considered reginae>s the interaction energy
this model we first show that the variation of the lattice con-indeed can be neglected.
stant in the island is small in this limit: It is plausible then to accept the hard disk model to ex-
S plain our numerica] result§ obtained for this case. We assume
sa=a(R)—a(0)= E'”N@(o)' (3.1) therefore that the interaction has the form

Then we demonstrate that the interaction energy is small U(r)= o r<a (3.9

compared to the confinement energy and hence can be ne- 0, r=a.
glected.

To prove the first statement we find the pressuyén the
crystal associated with its contraction by the external poten
tial Ar2. The solution can be found similar to Ref. 8:

In this model the interaction energy is zero and the total
energy of the system can be written as

N
o= S(0)A(RE 1), (32 E=AZ, 17, (310

whereS(o) =(3+0)/4, 3/4<S(s)<1, ando is the Pois-  \herer. helong to the triangular lattice, with the lattice spac-
son ratio. T_he solution is easy to understa}nd for the I|m|t|nging equal to the radius of the interactian This energy for-
case of liquido— 1, wheno=—pdjc, p being pressure. In 5y coincides with the moment of inertia of the system of
this casep is of purely hydrostatic origin: N particles of mas#\. Hence to find the minimum-energy
dp(r) configuration one _has to cut a piece _from_ the tr_iangular crys-
———=—2Arn(r). (3.3 tal that has a minimum moment of inertia. This piece must
dr contain the given number of particlds The average values

Assuming the density(r) to be uniform andp(R)=0 we of the total energy, chemical potential and the charging en-

obtain the following solution: ergy are given by

p(r)=An(R?-r?), (3.4 E=ANRY/2=AN?%27n, u=dE/dN=AN/mn,
which agrees with Eq3.2) taken ato=1. The forces pro- .
duced by this pressure have to be balanced by the interaction A=du/dN=A/mn, (3.11

forces between particles: . . .
P whereR is the average radius of the circlazrR>=N, n

Uy =2/a?\/3 is the concentration of lattice sites.
f~oma~An(R*-r?a~ ?efals- (3.5 A similar problem has been considered in the literature in
the context of the so-called circle problem. The problem is to
In this equation we assume®{o)~1. From this condition find the fluctuations of the number of particles belonging to
we obtain the following result for the lattice spacing in the some lattice inside of a circle of radil® (see Ref. § The
island: guantity that has been studied is the deviation of the number
of particles from its average value:

Uy
a(r)~sin —A(Rz_rz)]- (3.6 SN(R)=N(R)—nmR?, (3.12
The difference between the lattice spacing on the boundarwheren7R2=N is the average number of particles in the
and in the center can be readily obtained: circle. The classical circle problem which goes back to Gauss
is to find the uniform bound fofdN(R)|. The best result in
5 I Uo I Uo I R s, this direction i§
a~s In ARa —sln ﬁ =s n——EnN. (3.7 B
|5N|$C R46/73+ €~N23/73+ €l2 (313

Comparing Eqs(3.6) and (3.7) one can see that the caae

> 5a can be realized whebl,>AR?. This implies that the Here C_ is anR-independent constant ard>0. A simple

prefactor of the interaction potential has to be large. In thisestimate for these fluctuations can be obtained from the as-

case the nearest particles are far away from each other whefgmption that they occur around the perimeter of the circle

the exponential interaction is very steep. This eliminates sigih the strip of width of the order of the lattice spaciagThe

nificant changes in the interparticle distance. number of such pointdl,,,~R/a and the fluctuations are
Although the derivative of the interaction potential is im- o

portant in determining the lattice spacing the typical value of ON~ \/We,—"’ JR/a~N¥4, (3.19
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FIG. 4. The averaged oscillations of the number of particles as a

FIG. 3. The circular |sflancdgr.ay) coyerlng the.crystalllne TOWS, function of the radius of the circléold smooth ling¢ and the actual
shown by lines. The lattice points within the circle are shown by . ) . . ,
value, observed in the numerical simulation on the latfiiten

larger disks than those outside. Every time the circle intersects a . . - .
. rough ling. The center of the circle is located at one of the lattice
new row a new terrace appears. One of such terraces is shown bsYtes

the bold segment.

This estimate may imply a pseudorandom behaviosif 1 hus obtained functio@N(R) = 67(R) \/ﬁ is shown in Fig.
Notice that it agrees with the uniform upper bou@dl3 as 4 Py @ smooth line. The actua@N(R) is also presented in

23/73>1/4. this figure to show that its main variation is indeed associ-
Reference 9 also considers the distributionsdf. It was ~ ated with the aforementioned period. __
found that the distribution function is non-Gaussian: Before embarking into the calculation of théN we
would like to mention that other crystalline planes produce
p(SN)=<exp — SN*/N), (3.15  similar oscillations. These oscillations have a period that is

_ o ) smaller tharh and can be incommensurate to it. The ampli-
with the mean-square deviation given by E8.14. It was e of these satellite oscillations is numerically smaller than
also noted thabN(R) in addition to being pseudorandom is the main one and hence they will be neglected in this paper.
an almost periodic function of the radius. All the periodicities added together produce a complex frac-

Below we will concentrate on the periodicity @N(R),  ta| curve shown in Fig. 4.
rather than on its randomness. In essence we would like to Before getting into the details of the averaging we would
find the average odN(R) over many periods and understand jike to show a simple way to estimate the amplitude of these
the nature of its oscillations. Then the question about thgscillations. Look at Fig. 3. The collision of a crystalline row
deviations from this average becomes relevant. Our analysiith the circle results in the formation of the “terrace” on
intersections of the circle with the crystalline roéeee Fig.  |ength of such a “terrace” is
3). At the moment of intersection an anomalously large num-
ber of particles can be put into the circle. This brings about I~VRa (3.19
an increase in the functiofN(R) every time the circle hits
a new Crysta”ine row. This increase is accompanied by d he number of crystalline sites in such a “terrace” provides
decrease later in the period as the average valuéNbis  an estimate for the variations in the number of particles in-
zero. To illustrate this point consider the triangular latticeside the circle:
(Fig. 9. In this case for the most part the oscillationssdf
are associated with the collisions of the circle with the main SN=I/a~Ria. (3.19
crystalline rows, (/3,1) plus other five obtained by/3 ro-

tations, separated Hy=a./3/2. Hence the variations &N a eistence of the ordered periodic structureSiy

associated with these rows have a periocRirequal t0Tg This argument allows us to estimate the amplitude of the
=h. One can collapséN from many such periods into one ggcillations of the total energi.10. Indeed, we have found
and average over all of them. To do this we first define ane oscillations of the number of particles as a function of
normalized variation of the number of particles: radius or, in other words, of the chemical potentjal
=AR?. Now it easy to calculate the related oscillation of the
Sn(R)= ﬁ (3.16 chem.ical potential as a fung:tion of the number of particles.
JR To this end we notice that if the oscillations are weak they
are simply proportional to each other:

This estimate agrees with E@®.14). However, it is based on

According to Eq.(3.14) the average amplitude of this func-
tion does not change witR. To extract the component of
this function having the periodg=h we average it over

many such periods:

Su=—5N/v, (3.20

where v =1/A is the average density of states. The period of
1M Su(N) is related to the period afN(R) in the obvious way:

S7(R)=lim | — 3 sp(Txm+R)|. 317  Tn=TrdN/dR=mnRh~N. Now the oscillating part of
Mm=o the total energy can be easily estimated:

M—o
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_ account below. The other solutions of E§.27) are more
5E(N)=J dNSu(N)~TyoNA~Aa®N¥.  (3.2)  sparse in the) space, and hence produce smaller tfign
periods in the real space. They correspond to the collisions
NO“Ce that bOth the perIOdICI'[y and amplltude Of the OSC|”a'W|th other Crysta'“ne lines. They produce numenca”y
tions given by this estimate agree with our numerical resultgmaller variations than the main sequence and will be disre-
(2.2). Below we will calculate the form of these oscillations garded below. Thus we conclude that

averaged over many periods.
M

We now turn to the calculation ofN(R). We follow the 1
guidelines of Ref. 9. Assume that the center of the circle is lim 2 cog| Q| Trm+|Q;|R—37/4)
located at point, reduced to Bravais unit cell. The number M- FImM=0
of particles in the circle can be expressed through the sum
over the lattice point, : :Z 8G. . Cog|Q|R—3m/4), (3.28
Q

5N(R)=N_”WR2=; f(RI)_f nd*rf(r), (3.22 where Q, are solutions of Eq(3.27 with the reservations
' mentioned above. The remaining summation aers eas-

where ily performed and we obtain finally the result for the average
variation of the number of particles:
. 1, |r—ro/<R, )
(n= 0, |r—rg/>R. 3.23 °
SN, (R) =§ No(R—&r), (3.29

Using the Poisson summation formula, E§.22 can be

rewritten as follows: A ) ) )
whereg are the unitary vectors normal to the six main crys-

talline rows, =01(1/3/2,1/2), U is the «/3 rotation, i
—0 ,5. Function 6N, determines the oscillations pro-

ced by one set of rows if the center of the cingjecoin-
where the summation is assumed over the reciprocal Iattlc(edes with one of the lattice sites:

vectors Q; and T(q)=2mRJ;(|q/R)/|qlexp(-iqry) is the

SN(R)=n 2 T(Q, (3.24

Fourier transform of function3.23, with J;(x) being the o 0314338 1 R
Bessel function. For the normalized variation of number of 5N0(R)=T[N(R)]1’4§( - E’T_)' (3.30
particles(3.16 we then obtain ™ R
3L(QIR) . Here
Sn(R)=2mnyR D, ' —'Qifo. (3.25
¢ QI I'(1l-2)< |n(217kq+27-r/2)
The limit in Eq. (3.17) can be most easily evaluated upon 6z Q)_ (2m)1-2 2 (339

noticing that J;(x)=~2/mxcosk—3n/4), when x>1.
Changing the order of summation oM@ andm we obtain  is the generalized Riemanh function® In addition to the
numerical coefficient in Eq(3.30 we obtained the overall

1 amplitude N4, which agrees with our qualitative analysis,
Sp(R)= lim p2mn E;&o 20 and the oscillating parg(— 1/2R/Tg), which has an ampli-
M= " tude of the order of unity. In Fig. 4N, _, is shown by a
\FC05(|Qi|TRm+ |Q|R—3m/4) smooth line. It is clear from Ed3.29 that six sequences of
X P TYEC e Qo] the crystalline rows contribute to oscillations independently,
I

with er, determining a “delay” produced by the displace-
(3.26  ment of the center of the circle from a lattice site.

We would like now to calculate the oscillations of the
éotal energy of the incompressible island. First, as parameters
of the problem we will use, andR. This implies that we
will have a given value of the chemical potential in the island
|Qi| Tr=2mn, (3.2 ,u AR?. The relevant thermodynamic potential in this case

s Q, (,u) We will evaluate this potential and optimize it
with respect toro. We will then use the theorem of small
increments to finde(N). This function will indeed be similar
to the Kremlin wall structure displayed in Fig. 2.

The first step in this program is realized similar to obtain-
ing SN. We apply the method used above to the function

To evaluate the sum oven we again can use the Poisson
summation formula, which establishes a selection rule for th
values of the wave vectd; :

wheren is an integer. The reciprocal lattice vectors are rep
resentable in the formQ,= Qo(kl\/_lz K1/2+Kk,), where
Qo=4mla\3 andk, , are integers. Equatiof8.27 can be
rewritten in terms ofk, , in the following way: 3<1+(k1
+2k,)%2=4n?, which is a Diophantine equation. It has a
trivial set of solutions,k1=0, k,=n plus five others ob-
t_ai_ned from it t_)yw/S _rotations. _They correspond to the cql- Q(R)=E(R)—uN, u=AR2. (3.3
lisions of the circle with the main sequence of the crystalline

rows, separated by¥r. These solutions will be taken into The average value of this function is negative:
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FIG. 5. The averaged oscillations of the thermodynamic poten-
tial Q as a function of the radius of the circ{bold smooth ling
and the values actually observed in the numerical simuldtizin
rough ling. The center of the circle is located at one of the lattice
sites.

Q=-ANRY2=-E (3.33
48 49 50 51 52
[compare to Eq(3.11)]. The deviation of the potential from R [a]
the average is given by (b)
S5Q(R)=SE(R)— AR?SN(R) FIG. 6. (a) Three pointA, B, andC where the fun(:tior(Tro has

to have extrema due to symmetf}p) The oscillations of the ther-
_ B 2 AD2 modynamic potential for these three positions of the center. The
_;I 9(R) f nd“rg(r) —AR°ON(R), minimum of these functions, shown by the bold line, represents the
actual value of the total energy of the island.
(3.39

same symmetry as the lattice. Hence its extrema have to be
located at points denoted in Fig(a by A, B, andC, unaf-
A(r—rg)?, |r—ro|<R, fected by the transformations of the symmetry. Those are the
g(r =+0 -~ (3.39 points coinciding with a lattice site, the center of the trian-
,r=rol>R. . o
gular face, and the point halfway between two lattice sites.
Using Thus we actually need to make a choice between these three
positions of the center. This choice has to be made to mini-
3 2 mize the energy(}, . In Fig. &b) this minimization is done

R 47AR .
Ji(lalR) — —; b(lqu)le aro, .
q graphically. From the three curvé¥) ,, 6Qg, and 5Q for
(3.36 every value ofR the lowest one is chosen. The resulting
curve is shown by a bold line. It indeed looks like the struc-

one can obtain the oscillations of the thermodynamic poten; ; : . ;
fure obtained in the numerical experiment.

tial in exactly the same manner as those of the number o We would like now to discuss the points of switchin
particles. To this end, as it follows from E(B.21), one has between two curves. At these points thg center of the islzgnd
o averaggc/ez the normalized variations of p(.)tential:hops from one of thé Iocation@pB or C to another. If the
dw=50/R" [compare t0(3.16]. Eventually we obtain chemical potential is below or above one of these points the
6 newly added electrons are spread uniformly over the circum-
80, (R)=, 8Q(R—e&ry), (3.37  ference of the island, so that the center of mass does not
° i=1 move. But exactly at this point N2 electrons travel from
one side of the island to another shifting the center of mass

where

9(g)=

q

where
relative to the crystal. In addition to that at the point of
ap9is 3 R transition ~NY4 new electrons enter the island. To under-
8Qo(R)=—A T [N(R)]3’4§( - E’T_)’ (3.39  stand this we recall thall=—dQ/du. As it is seen from
R

Fig. 6(b) at the point of transition the first derivative 6f

is the function describing the oscillations if the center of thehas a discontinuity of the order of

circle commdes with one _of the Iattlc_e sites. Its amphtude 430 1 d3a]  Az2N¥4

agrees with our presumptiai3.21). Notice thatéﬂro given A[ - =— A ~ TN 14

by Eq.(3.37) is in fact a function of the chemical potential as dp 2ART1 dR | AaNY2a

the latter is related to the radius y=AR?. This function (339

for ro=0 is shown in Fig. 5. This implies that at this point a few peaks of the Coulomb

The next step is to minimize it with respectitg To do  blockade merge so that N'* electrons enter the island si-
this we notice that(), as a function ofro must have the multaneously. The origin of this effect is in the electron at-
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traction mediated by the multipolaronic effect associated
with the confinement. A simple toy model of this effect was
suggested in Ref. 5.

The dependence of the total energy on the number of
particles can be obtained from our result using the small
increment theorem, stating that the small corrections to all
the thermodynamic potentials are the sam¥

SE(N)= Q[ u(N)]. (3.40

This explains why in the dependence of the total energy on
the number of particles we also observe a structure similar to (a) N
Fig. 6. The amplitude and phase of the oscillations in Fig. 2
are in a very good agreement with those given by B7)
minimized in the way shown in Fig. 6.

We finally would like to note that the appearance of a new
terrace actually means starting a new crystalline row. This
can be thought of as appearance of the pair of opposite dis-
locations on the boundary of the island. Thus the variations
of the total energy discussed above are associated with the 1r 1
periodic formation of the defects in the island. This line of
thinking will be further developed for the case of the com- 0 . : : ’ : ' :
pressible crystal, where these defects are situated inside the (b) 0 20 40 60 N80 100 120 140
island.

FIG. 7. (@) Fluctuating part of energy of the Wigner crystal

IV. COULOMB ISLAND: A NUMERICAL STUDY island. (b) The number of particles adjacent to the center of the
confinement.
In this section we present the results of numerical solution

of problem (1.2 with the unscreened Coulomb interaction ¢, iny They represent the first crystalline shell closest to

(1.3. To obtain these results we employed the numerical,, conter The number of these particles is shown in Fig.

technique described in the previous section. The total energ-y(b) as a function of the total number of electrons in the

E(N) resulting from such a calculation was split into theeigland. The first thing to notice is the correlation of the latter

_smooth an(_j the qucFuating components in the way describe raph with the fluctuations of energy in Figia¥. The deep
n thhe pr%wofusﬁ?ectlon. The smooth component was chos€liinima in the energy are associated with having one electron
to have the for next to the center. The shallow minima mostly correspond to
— having three electrons at the center. This in fact means that
— (a2 2/371/3 5/3 716 2/3 7115
E(N)=(e7k)TAT (71N> 7N 7aN== 7N the center of the confinement is situated in the center of the
4+, (4.2) triangular cry_stalline face. Maxima of energy usually corre-
_ o ~_spond to having two or four electrons next to the center. This
where 7; are some constants. The first term in this series iss equivalent to saying that the center is in the middle of a
the electrostatic energy. The next three terms are the correrystalline bond. Thus we see that this correspondence is
lation energy, the overscreening energy associated with théxactly the same as switching between tefns®, andC in
screening of the external potential by the Wigner crystal, anghe incompressible cadeee Fig. 6 This analogy will be
the surface energy. The coefficienfscan be found from the further developed in Sec. VI.

best fit to the numerical dataz,=(3/8)%%/5, 7,= Let us now examine the conformations of electrons. Some

—1.0992, 73=-0.3520, 7,=0.1499. The fluctuating of them are shown in Figs. 8 and 9. The first thing obvious

part is displayed in Fig. (3). from these figures is that the surface of the island is not so
The curve in Fig. 7@ has a quasiperiodic structure simi-

lar to the incompressible cagsee Fig. 2 It consists of the T

sequence of interchanging deep and shallow minima. The PLec® .

positions of minima on this graph almost exactly coincide * @. N

with those for the case of incompressible island. The ampli- * .' R .' o« *

tude of the oscillations does not change withappreciably f et .' e @,

and is~0.1e%/ ka. The charging energ(N) experiences @ . .' e’ : .

fluctuations ~15% correlated with the positions of the Lo’ ,' o

maxima and minima. R I
The similarity of Figs. 2 and (&) calls for the conclusion R A

that the fluctuations in both cases are of the same origin. To
test this idea we studied such a quantity as the number of FIG. 8. The magic number configuratioN==85. Six five-
electrons adjacent to the center of the confinement. Those aggordinated particles associated with disclinations are marked by
defined as electrons nearest to the center, with dispersion iihgs. Triangulation of the neighborhood of one of them is shown
the distance to the center being less thHaof the lattice  explicitly.



2360 A. A. KOULAKOV AND B. I. SHKLOVSKII 57

I AL defect reliably, we believe that we can say that in general
ot '@.-.- . -é-.‘ . defects reside in a ring concentric to the surface of the width
* e, .-.-.-'-°. '.%- . of a few lattice constants.
Jeett e L We will see in Sec. VI that the interaction of defects is
. :%‘.',';.-.-:-:o:.'.'.'.b: . crucial in understanding of the energy fluctuations. In the
. .®.',',‘,'_'.-_-.-.-:.'.'.%- N next section we discuss the general properties of the defect
‘.'.'.'.'.',',g'.-.-.-'.','.‘,' distributions. These properties are essential for the argu-
RO MAALIETOREE ments given in Sec. VI.
....©.... . .©.. ..
e oo ® V. LATTICE DEFECTS IN THE CIRCULAR WIGNER
FIG. 9. The electron configuration fd¥=235. The particles CRYSTAL ISLAND

having five and seven nearest neighbors are shown by the rings and \y/hen the triangular crystal is packed into the island of

the triangles, respectively. circular form the obvious incompatibility of these two struc-
tures leads to the appearance of the lattice defects: disclina-
rough as it was in the incompressible cédsempare to Fig. tions and dislocations. The important difference between the
1). At large N the surface contains no defects. The defect§ormer and the latter is that disclinations aievayspresent
reside in the interior instead. in the ground state. The number of disclinations in the island
Let us define these defects. An elementary defect in a 2[5 determined by Euler's theoreifsee below and, hence,
lattice is disclination. The only possible form of such a de-cannot be changed. Dislocations, on the other hand, may or
fect in 2D crystals is the so-called wedge disclination. It canmay not appear depending on whether they are energetically
be viewed as a wedge that is remov@aserted from the favorable. Let us first explain why the disclinations have to
crystal. The ‘“charge” of the disclination is the angle, appear in the ground state.
formed by the wedge. The minimum possible disclination The disclinations within some region of lattice can be
charge for a triangular lattice i8/3. The disclinations can be identified by the number of/3 turns that one has to make to
identified with the particles having an anomalous coordinawalk around it. Normally one has to make a minimum of six
tion number. In the triangular crystal the cores of the positivesuch turngconsider, for example, the central point in Fig. 8
or negative disclinations are associated with the particle§or the region havingN. such defects inside, the minimum
having five or seven nearest neighbors, respectively, the nonrumber ofr/3 turns is 6- N, . Look, e.g., at the pentagon in
mal coordination being six. Some examples of such defectbig. 8. It obviously contains one disclination, because the
are shown in Fig. 8. number of the aforementioned turns is 5. Let us now men-
Dislocations are the pairs of positive and negative disclitally walk around thewhole circular sample along its edge.
nations forming a dipole. They can be seen in Fig. 9. WherAs the surface of the island is circular we do not make any
number of electrons in the island is less than some criticalurnsat all. Hence the total number af/3 disclinations is
valueN~ 150, there exist highly symmetric electron configu- €xactly 6:
rations free of dislocations. These configurations can be re-
alized only at some distinct values ofN=Np Nc=6. 5.9
=7,19,35,55,85, which we cathagic numbersOne of such |, yhe simplest possible case shown in Fig. 8 there are only
magic number configurationbl,,=85 is demonstrated in gy gisclinations in the sample. If both positieemoval of

Fig. 8. On the other hand, X>N the dislocations are al- 7/3 wedgg and negativeinsertion of such a wedgeliscli-
ways present and the magic number configurations never exmations are present, the total disclination charge should be

Ist. _ . calculated accounting for the sign of these defects:
We would like to stress again that all these defects are not
observed directly on the surface. Moreover, if the number of N.= NZ -N¢, (5.2

electrons in the island is large, they do not come close to the
surface. The same is true for the central region of the islandvhereN; andN_ are the numbers of positive and negative
It is also usually free of defects. All the irregularities in the defects, correspondingly. Such complex cases are realized,
lattice are normally observed in a ring of width3)a ata  for example, when there are a few dislocations in the island.
fixed distance from the edge. Dislocation is a pair of positive and negative disclinations
We would like to discuss now the accuracy of the resultoound together to form a dipole. Hence addition of a dislo-
we have obtained. We believe that the total energy for theation to the sample increases bbdth andN_ keeping their
cases shown in Fig. (@ is calculated with precision difference the same. Consequently the number of disloca-
10 5(e?/k)?*A3 This was tested by reruristarting from  tions is not controlled by the topological constraints ex-
different initial condition$ and comparison with the results pressed by Eq5.1). This equation can also be proved using
of simulated annealing. The configurations, however, canndEuler’'s theorem. The proof can be found in Appendix A.
be reproduced reliably. The thing is that several completely Now let us turn to the dislocations. At zero temperature
different configurations for the same number of electron carthey embody inelastic deformations. There are two main rea-
have very close energies, within 1%[e?/x)?°A'" from  sons for the existence of such deformations: inhomogeneity
each other. However the general features of all these lowef the concentration of electrons and the presence of discli-
energy configurations described above remain true. Thus, ahations. The first reason is not universal: the exact profile of
though we cannot reproduce the position of every individuadensity is determined by the form of confinement and inter-
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action potential. The second one is universal, because thground state. In an atomic crystal the relaxation time is typi-

presence of disclinations is required by theoré&mn). cally much larger than the experimental time and the system
The dislocations produced by the varying crystal densitycan remain in the metastable state described by the elasticity

were recently discussed by NazardvHe noticed that the theory.

dislocation density must be equal to the gradient of the re- Below we compare the number of dislocations of two

ciprocal lattice constant: different origin. First we calculate the total number of dislo-
R cations produced by the nonuniformity of the electron den-
b(ry=a(r)zx Va (r). (5.3 sity. We consider the case of the Coulomb interaction. For

- this case the corresponding electrostatic problémnoring
Hereb(r) is the density of Burgers vectarjs the unit vector  the discreteness of the charge of electjocan be solved
perpendicular to the surface, amek \2/n(r) V3 is the local  exactly!® The solution for the density of electrons can be
lattice constant. This formula is easy to understand. First wghown to be a “hemisphere:”
notice that a dislocation adds an extra row to the lattice.

Hence the density of dislocations is given by the rate of r2
change of concentration of these planes equal o Ib n(r)=nq 1——2
obtain the Burgers vector density we multiply this gradient R
(5.9
by the elementary Burgers vectar(see also Ref. 14
This formula has an interesting implication for the ques- 4AKR 37Ne?\ 13
tion of applicability of the elasticity theory to the Wigner “o=ﬁv R= 8Ax

crystal. Consider a sample of site Assume that there is a
variation of concentration in the sample induced by an exteraccording to Eq.(5.3) the density of dislocations induced by
nal sourcesn~u;n, whereu;, is the strain tensor. Let Us varying electron density is

find the value ofu;, at which dislocations start to appear.

This would imply that inelasti¢plastio deformations occur b,,(r) on r
and the elasticity theory brakes down. The energy of purely ng(r)= AN e 5 —aa (510
elastic deformations is h V3 RA(1-1?%/R?)

Ee~ Y L2U2 . (5.4) Hereh=a\/3/2 is the distance between crystalline rows. The

total number of dislocations is readily obtained by integrat-
HereY is the Young's modulus. For inelastic deformationsing this distribution:

we have
R
Eine=EcNg, (5.5 Nd1=f 2mrdrng(r)~4.08NY2 (5.11
0
whereE. is the dislocation core energy amd, is the total
number of dislocations in the sample. Equati@?3) pro- The electrostatic formulés.9) is correct if the number of
vides the following estimate for the latter: electrons is large. In the opposite case of a small island the
density profile is very far from being a hemisphere. In this
N~ 2 on —u E (5.6 case the density is almost constankhis is obvious from
d nLa “a’ ' looking at Figs. 8 and 9 above. To evaluate the variation of

the electron density we will find the lattice constant on the
Surface of the island and compare it to that in the center. To
this end we note that near the edge the density of dislocations
E. given by Eq.(5.10 would become infinitely large. However,
Uik= - (5.7 it cannot exceed the density of electron themselves, given by
Eqg. (5.9. The position of the edge of the crystal can, there-

For the Wigner crystal with the Coulomb interaction usingfore, be determined matching the dislocation density and the
E.~e%ka, Y~e’/«ka®, and uy,~u/L, whereu is the density of electrons. As a result we obtain for the lattice

characteristic displacement, we obtain constant on the edge the following expression:

Comparing the elastic and inelastic energies we conclud
that the deformations are completely elastic when

u<a. (5.8) A~ agPRYSx N5, (5.12

Hence equilibrium elastic displacements cannot exceed thehis expression agrees with conclusions of Ref. 5 obtained
lattice spacing for the Wigner crystal. This agrees with thejn a different way. Our numerical data agree very well with

known result that the elasticity theory has a zero radius ofhjs theory and give the following coefficient:

convergence with respect to the strain teriSdn effect we

conclude that the radius of convergence depends on the spa- A=0.88¢°R, (5.13

cial scale of the problem and in the macroscopic limit

is indeed zero, according to E(.7). This surprising result The interelectron distance on the edge given by this formula
emphasizes the difference between electron crystal and crydiffers very slightly from the lattice constant in the center of

tal consisting of heavy particléatomg. In an electron crys- the sample if the radius of the island is not too large. To
tal the relaxation time provided by tunneling is smaller thanevaluate the number of dislocations for a small island we
the time of experiment and, hence, the system can find thapproximate the electron density profile with a parabola:
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r2 a2
n(r)y=ng| 1— E 1—F (5.19
Applying Eq. (5.3) to this expression we obtain
ag
Ng;~2.0NY2 1— 2/ (5.15

In the consideration below we will assume that the number
of electrons in the island is not too large. Therefore the elec-
tron density is almost uniform.

As mentioned above, another reason for appearance of
dislocations is the stress, produced by disclinations. The lat-
ter deform the lattice enormously. These deformations can be
significantly reduced by introducing dislocations into the lat-
tice. This process is usually referred to as screening. The
screening of disclinations by dislocations has been studied FIG. 10. The distribution of defects in a compressible island.
before in the context of the hexatic liguid—homogeneous ligRings and arrows show the positions of disclinations and the direc-
uid transition'”*® The screening is that case is accomplishedion of the Burgers vector density, respectively. The gray disk
by polarization of the thermally excited dislocations aboveshows the free of defects central region.
the Kosterlitz-Thouless transition. It was therefore treated in
the framework of the linear Debye-Huckel approximation.by the discreteness of the defects can be estimatel as
Here we deal with the case when there aethermally — ~Y&In((r)/a) per defect, wherér) is the average distance
excited dislocations and all the Burgers vector density necbetween them. In the former distributidm this average dis-
essary for screening exists due to the appearance of nel@nce grows with the size of the samgie~ \La. In the

dislocations. case of the grain boundary the average distance is maintained
The phenomenon can be most easily understood consid@f the order of the lattice spacing. Hence the self-energy of
ering the total disclination density: defects in the latter case does not grow with the size of the
sample.
Sor(1) =S(r) — &y Vibk(r), (5.19 The next logical step is to consider six disclinations in the

where the first term is the density of free disclinations WhiIeCirC.UIar crystalline. sample. A pqssible sollution for the distri-
the second is the density of disclinations induced by thedution of defects is §how_n in Fig. 10. It 'S promptgd by the
varying in space density of dislocatiotithe latter are the results of the numerical simulations showing that in the ma-
dipoles formed from the formgrThe elastic energy of the jority of cases the defectslislocations and disclinatiopare

crystal can be written in terms of this total defect density: S|tu.ated In a ring concentric to the surface of the |sland._ The
regions adjacent to the center and to the edge of the island

Y[ d2q |se(9) appear to be free of defects. We assume that the disclinations
= _f ; %, (5.17  form a figure close to a perfect hexagon. The dislocations
2) (2m) q form grain boundaries connecting the disclinations. This is

done to smear out the charge of disclinations in accordance
with the screening theory expressed by E%18.

Next we calculate the distance from the surface to the
layer of defects. We consider the case of a uniform crystal.
The central region of the island can be formed with no de-
formations in it. It can be thought of as a piece of the uni-
form crystal having a circular form, the same as the one

S 1) =0. (5.18 considered in Secs. Il and Ill. The central region is shown in

Fig. 10 by a gray disk. The region between the surface of the

It is instructive now to consider one disclination in the centerisland and the layer of defects is free of defects too. It cannot
of an infinite samples(r)=sy4(r). Equations(5.18 and be free of elastic deformations, however. These deformations
(5.16 have in general many solutions. Two of them are easyre the same as those of a 2D rectangular elastic rod, two
to guess: by,=sy/2@r, by, =0 and by=0, b,  opposite edges of which are glued together. To find the op-
=5,0(x)8(y). They represent the Burgers vector rotatingtimum thickness of this roav (see Fig. 1D one has to bal-
around the disclination and the solution in the form of a grainance the energy associated with this bending, which tends to
boundary, respectively. They are different by the longitudi-reducew, and the surface energy of the grain boundary. The
nal Burgers vector densityp,=b,+ Vf, wheref is some latter is proportional to the length of the grain boundary and,
scalar function, and hence have the same elastic energy. Thiserefore, has a tendency to increaseThe bending energy
nonuniqueness is a consequence of the essentially mean-fialdn be calculated from the elasticity the®ry
character of Eq(5.18. Discreteness of the dislocations re- 5
moves this degeneracy in favor of the grain boundary. The E =1YW— (5.19
idea is that the fluctuations of the local elastic energy caused ¢ 12" R’ '

whereY is the Young’s modulus. For case of the Coulomb
crystal® Y= ae’n®? k, wherea=0.9804. We notice that for
the large distanceg— 0 the numerator in this expression is
pushed to zero by the* term contained in the denominator.
Thus, ignoring the effects at the distanaesa, one can
write the condition of the perfect screening:
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The surface energy of the grain boundary can be estimatethis coincides with the condition of uniformity of the crystal

from the core energies of the dislocations: (see Sec. l). Note that this entire consideration is based on
the assumption of uniformity of the crystal.
Egr~EcNg. (5.20 Finally, in this section we evaluate the critical number of

The total number of dislocation follows from elementary electronsN* at which the number of dislocations due to the

geometric calculation done for the incompressible crystallindthomogeneity of the electron densiy,; and produced by
region of radiug =R—w: the screening of disclinationdy, become equal. To do so

we compare Eq(5.15 with Eq. (5.21). They become equal
Ngo=12(1—3/2)r/h, (5.2  if A~1.55, or, using Eq«(5.12,

whereh=a+/3/2. Minimizing the total energ§=E+ Ego N=N*=700. (5.26

we find the optimum at Therefore if the number of electrons in the island is smaller

ER that N* dislocations are mostly due to the screening of dis-
w=~1.5 * _~05/Ra (5.22 clinations and are arranged into the grain boundaeg Fig.
Ya . . : .
10). In the opposite case the dislocations are generated in the
In the derivations of Eq(5.22 we usedE,=0.11e’n"%x  interior according to Eq(5.3).
and Y=0.9804?n%*?% x (Ref. 19. This result can be also The above consideration is essentially mean field, treating
obtained from our condition of stability of a crysté.8).  the density of dislocations as a continuous quantity. In the
Indeed the strain tensor in the ring can be estimated,gs next section we give an argument that the discreteness of
~w/R. The corresponding displacement-w?R cannot dislocations is responsible for the fluctuations of the elastic
exceed the lattice spacing, according to Eq(5.8. The energy of the Wigner lattice.
estimate for the width of the ring obtained from this argu-

ment is consistent with Eq5.22). VI. ELASTIC BLOCKADE

Now we would like to find the condition at which the The number of dislocations in the Wianer crvstal island i
dislocations stay on the surface of the island. We will con- € number of dislocations € VWigner crystal isiand 1S

sider the case of the short-range interactibd). To this end of the order of the number of crystalline rows in#ee Eq.

one has to compare the energy of the defects on the bounda@‘zm'
with that in the bulk of the crystal. The former is associated CDia.

with the roughness of the surfadeee Fig. 1 It can be Na~R/a~VN. ©.3
estimated as a product of the total number of particles therelence, it grows while the island in filled with electrons. On
JN, the typical force acting on a particle on the surfacethe average one dislocation appearsNamcreases bysN
F(R)=2AR, and the characteristic deviation of the shape of~\/N. The elastic energy stored due to the deviation of the
the surface from the circle, given by the lattice constantnumber of dislocations from the average is relaxed when a
SEqu~ VNF(R)a. The energy of the defects inside the is- new one is added. This phenomenon is similar to the Cou-
land is given bySE,~ VNY &InN. The first term in the lomb blockade, with the words “electron” and “electrostatic
right-hand side is the number of defects and the second orgnergy” replaced by “dislocation” and “elastic energy.”

is the typical energy per dislocation. It is estimated as the Using this analogy to the Coulomb blockade one can eas-
typical interaction energy of two dislocations. Note that weily estimate the order of the fluctuations of energy. In the
neglect the core energy of dislocations as it is small comCoulomb blockade case the fluctuations of the electrostatic
pared to they & for the crystal with short-range interaction. energy are given by the following expression:

Indeed the former is of the order of the correlation energy:

2

E.~Ugexp(=a/s). The Young's modulus for the considered SE= e—6N2 6.2
system can be estimated as the second derivative of the in- 2C ' '
teraction potential between two particles:

where —1/2< 6N<1/2 is the deviation of the number of

electrons in the dot from the average, determined by the gate
(5.23 voltage. Following the convention of the above mapping one
has to replace?/C by the characteristic energy of interac-
tion of two dislocations in the island ,~ Y &~ €%/ ka. One
also has to replacéN by the deviation of the number of
dislocations from the averagiN4~ 6N//N. As a result we
obtain

Ug a
Y~—2ex ——.
[S S

It is clear then thaE,./Y a®~ s?/a?<1. Comparison 0BEg,,
with 8E, gives the condition that the defects stay on the
surface:

Y InN>AN. (5.24) & SN2

5Ee|=aE T (63)

The coefficientA can be conveniently related to the interac-
tion strength by balancing the forces acting on a particle on

the surface AR~U,exp(-a/s)/s. Combining this equation Herea~0.5is a numerical constant. The approximate value
with Egs. (5.23 and (5.24 we obtain the following condi- ©f this constant is obtained from the numerical results of Sec.

~ N, the maximum fluctuation of energy that can be
alnNs>s. (5.25  reached iSSE .~ a€?/ ka.
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Another implication of this analogy is the appearance of
the elastic blockade peaks. In the case of Coulomb blockade
the intersection of two terms described by E6.2) for dif-
ferent numbers of electrons in the dot produce a spike in the
conductance through the dot. At this point a new electron
enters the dot. For the “elastic” blockade at the similar point
a new dislocation enters the crystalline island. The chemical
potential of an electron has a discontinuity of the order of
Au~dE/dN~ — ae?/kaTy~—ae’/R. The charging en-
ergy at this point fluctuates by a value

1 1 L 1 1 L 1 1

1
60 80 100 120 140 160 180 200 220 240
N

déu Au e? . )
A= =—~—a— (6.4 FIG. 11. The fluctuating part of the energy of the Wigner crystal

dN 1 kR island calculated from the interaction of dislocations.

. . __ 2 .
which is of the order of the averagke=e“/«xR, B being  of the new row can be thought of as dislocations, we can say
another constant. This, however, does not lead to the bunchy5t 5 new pair of opposite dislocations appears on the grain

ing in the charging spectrum as it did in the case of theyoyndary(see Fig. 10 with the gray internal region shown in
short-range interaction, because of the smaliness of the Niygre detail in Fig. 3

merical constantr. The corresponding fluctuation of energy can be evaluated

Let us consider the elastic blockade in more detail. In theys the energy of interaction of two opposite dislocations hav-

previous section we derived the condition at which the crys- N .
tal can be considered to be uniform. If the number of eIec-mgl chargedNg=Nq— Ny, whereNg is the actual number of

trons in the island is less than some critical valfe~=700, ~ dislocations in the neighborhood of the new row, aylis
the variations in the density of electrons can be ignored an#1® a@verage one. This energy is givertby

the number of dislocations associated with the variable den- vy & |
sity is small. Below we examine these two regimes sepa- 5E0:—5N§In —. (6.5
4 h
rately.
The typical distance between defetis given by Eq(3.18):
A. Almost uniform crystal: N<N* I ~+Ra. The average number of dislocations is given by the

As follows from the previous section, in this regime the number of crystalline rowdly==;(r —gro)/h, & being the
density of electrons in the island is almost uniform. The crys-Unit vector normal to the series of rows considered. There-
tal is packed into the circular form by forming two mono- fore,
crystals: the almost circular internal region, free of elastic

6 ~
deformations, similar to the incompressible island; and the Ny=S r—er| 1 6.6
external ring(see Fig. 10 The interface between these two =~ h 2’ :
monocrystals is a grain boundary, which can be viewed as a . )
string of dislocations. where by{---} we assume taking the fractional part. The

Assume now that the position of the center of the confine0scillations of energy are given by the formula similar to Eq.
ment relative to the lattice, is fixed. This coordinate has (3.37),
been introduced earlier in Sec. Ill. One can then calculate the 6
energy of the island as a function of the number of electrons _ -
and the position of the centé, (N). Due to the symmetry s, izl OFo(r —8fo), ©.7

considerations given in Sec. Il this function has extrema aly here

pointsA, B, andC shown in Fig. §a) similar to the incom-

pressible island. Filling of the island results in switching Ya[/(r] 1\2 1

among three energetic branchds,(N), Eg(N), and OEy(r)= = {ﬁ] - 5) 1 InN (6.8
Ec(N), every time choosing the lowest. Below in this sub-

section we estimate the correction to the total energyare the fluctuations of energy given by H&.5. The last
oE; (N). term in the square brackets is chosen so #&j(r)=0.

The grain boundary has a tendency to be at a fixed dis- The oscillations of energy calculated in this way for three
tance from the centar=R—w, calculated in Sec. V. If po- positions of the centap=A, B, andC are shown in Fig. 11.
sition of the center relative to the crystal is fixed, filling of ~ As usual the lowest one is to be chosen. Comparison to
the island brings about expanding of the mean grain boundthe numerical experimentFig. 7) shows, that this model
ary position with respect to the crystal. Hence, periodicallypredicts very well the phase and the shape of the oscillations.
the grain boundary has to intersect a new crystalline row. Afrhe amplitude, however, is smaller by a factor of 2-2.5 than
this moment in the corresponding incompressible problem @bserved in the simulations. This difference can be explained
new terrace appears on the boundary of the island. In they the influence of the boundary of the sample on the inter-
Coulomb problem the grain boundary is submerged into thection energy of dislocation&.5). Indeed the boundary of
island. Therefore at this moment in the compressible case the island is at the distanog~0.5/Ra from the ring of
new row is added to the island. Since the termination pointslislocations. This scale is smaller than the characteristic dis-
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tance between dislocations~(2+3)JRa Hence the line row associated with it. The dislocation after this is dis-

boundary of the island should play an important role in theplaced by the lattice constant. Let us find the maximum

interaction of dislocations. change in the elastic energy of the island associated with
To understand the character of the correction we noticsuch a displacement. It can be expressed through the inter-

that the boundary in the numerical experiment is almost noaction between dislocations:

deformed. The island tends to preserve its circular shape. d2U(r)

Hence we can assume that the normal displacement of the SEmax~ ——5— &, (6.10

boundary is zero. Assume now that the dislocations are much dr

farther away from each other than from the boundasw.  whereU(r)=Y hIn(r)/4= is the dislocation interaction en-

In practice we havé~5w. The problem of interaction of the ergy. The reason why the second derivative is relevant to the

pair of dislocations in the presence of the boundary can thegalculation of this energy is that the dislocation is in equilib-

be solved using the method of images. It is easy to see that um before adding the new electron. Hence the gradient of

the zero normal displacement boundary condition a dislocathe self-energy of the dislocation is zero. Now we have to

tion with the Burgers vector perpendicular to the boundaryemember that there akéN dislocations in the island. Hence

produces an image of the same sign. Indeed, such a dislocgre actual addition energies range from zeroSEy,,, with
tion is a crystalline semirow, parallel to the surface. The zeranhe average level spacing,

normal displacement boundary condition can be realized by SE e?a
putting a parallel semirow on the other side of the boundary. SE~ —I& (6.1
Hence, effectively, the boundary doubles the charge of each VN «kR?

dislocation. The interaction energy, being proportional to thel.his quantity describes the energy one pays when adding an
square of charge, would acquire a factor of four due to SUCI%Iectron at the fixed number of dislocations. This is a correc-

images. However, as the crystal exists only in the semispage. ", "\ energy spacing. Multiplied by the total number of

the deformations only there contribute to the elastic energy(?ctrons between two consecutive additions of dislocations

,;Lr;e[)e(;cﬁ:%:r‘e i(')svg.rall factor that arises due to the presence 0 N it gives the variation of the chemical potentidE N
y ’ ~e?/ kR. This variation should be equal to the discontinuity
va [r of the chemical potential when a new dislocation is added to
Ebounda,)(r)=2Ef,ee(r)=2—ln(—). (6.9  the island, as the average correction to this quantity due to
T \a ; )
elastic effects does not grow. Thus the drop of chemical
This factor can explain the discrepancy between our calculgpotential is equal t&u~ e?/ kR. This is consistent with Eq.

tion and the numerical experiment. (6.4).
Thus elongated crystalline lines draw dislocations from
B. Nonuniform crystal: N>N* the center to the periphery of the island. Eventually a new

) ) row has to be inserted in the center. This event manifests
In this case as it follows from EQ5.10 there areNy  jiself in the appearance of a new pair of dislocations. The
~ N dislocations in the island associated with the variationsjistance from the center at which they are situated can be
of the electron density. According to EG.10 these defects  found from Eq.(5.10 by stating that

have to be present in the bulk of the crystal. Hence they 1
cannot be arranged into grain boundaries as in the case con- ng(é)~ —. (6.12
sidered above. The nearest dislocations repel each other and 2
one could imagine that they form a crystal themsefaale . .
: This results in
argue, however, that this cannot be the case. The reason Is _ qlaR2 6.13
that dislocation can occupy a fixed position within an elec- ¢~a : :
tron lattice cell. Hence the incommensurability of the elec-The energetics of switching between two branches corre-

tron and dislocation lattices eventually produces frustratiorsponding to different number of dislocations has already
and destroys the long-range order in the dislocation latticepeen discussed aboysee Eq.(6.4)].

Therefore we expect that the dislocations form a glassy state.

This implies that the coherence of the crystalline rows in
the electron crystal itself is destroyed. We think, therefore,
that in this regime the variations of the total energy are not In this section we would like to discuss the degree of
periodic. They retain however the general features describeghiversality of our results. The first question is what happens
in the introduction to this section. To understand how thesdf confinement potentiaV/(r) is not parabolic. The answer is
features arise in this particular case we would like to studyalmost obvious for the hard-disk interaction. In this case
the reconstructions in the dislocation lattice caused by addielectrons are added to the crystal on the equipotential deter-
tion of a new electron. To this end it is necessary to considemined by the level of chemical potential. Therefore only the
two cases: when this addition does not change the total nunshape of this equipotential and the confinement potential gra-
ber of defects, and when the number of defects is increasedient matter for energy fluctuations. It is obvious that situa-
The former case takes place most of the time, while the latteion is almost identical for any isotropic confinemé{tr). It
happens once in/N electrons when a new defect has tois also easy to generalize our calculations for the confine-
appear. ments of oval shapes.

Consider the first case. Electron can be added into the In the latter case the theory developed in Sec. Il can be
core of dislocation increasing the length of the extra crystalapplied with a few modifications. As it was explained the

VII. CONCLUSIONS
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of the equipotential in the immediate vicinity to those spots.

If it can be well approximated there by a circle H§.37)

should hold with additional phase shifts introduced into theAPPENDIX A: TOTAL DISCLINATION CHARGE OF THE
arguments of the contributions from different rows. These ISLAND AND EULER'S THEOREM

phase shifts arise due to the deviation of the global shape of T4 prove Eq.(5.1) one has to first consider some triangu-
the equipotential from the circle, and express the incoherenqgtion of the electron lattice. It is convenient to consider the
of contributions coming from six different series of rows. In yriangulation in which every electron is connected by edges
addition to that each contribution should be rescaled accordy, the nearest neighbors. In the case of a triangular lattice an
ing to 800 JR;T,, whereR; is the curvature radius of the electron in the bulk has six nearest neighbors, while an elec-
corresponding equipotential. We would like to emphasiz&ron on the surface of the sample has only four. For some
again that this theory works only for an island of oval shapeglectrons, however, this number can be different. For ex-
It is not applicable for example to a square. All of the cur-ample, an electron in the core af/3 disclination has only
vature radiiR; have to be of the order of the size of the five nearest neighborsee Fig. 8 Electrons on the surface
island. In general as the contributions from different terracegan have the coordination number equal to three. We asso-

are not coherent anymore, the overall amplitude of oscillagjate such electrons with the/3 disclinations stuck to the
tions has to be smaller in the oval case compared to the casgface.

of rotational symmetry. . _ Let us now use the Euler’s theorem. For our case it says:
Let us discuss the universality of the results with respect
to the choice of the interaction potential. As we have seen v+f-e=1, (A1)

both short-range and Coulomb interactions give rise to the

fluctuations of energy of the same functional shape. We aryvhereu, f, ande are the numbers of vertices, faces, and

edges contained in the graph formed by our triangulation. All

gue that the other forms of long-range interactions, Iogarith-h . fth h be divided i he'i |
mic for instance, bring about similar results. Thus the energ e vertices of the graph can be divided into the internal ones
v;, belonging to the bulk, and the ones on the surfage

of a disorder-free cylinder or disk of a type-ll supercon- b be d for the edges:
ductor filled with the fluxoid lattice or a rotating cylindrical 1"'€ Same can be done for the edges:

vessel of the superfluid helium as a function of the number of V=0tV
vortice$! should experience oscillations similar to those in
Fig. 7. To check this prediction we have performed a nu- e=ej+ee. (A2)

merical calculation in our model with the interacti@(r) ) ) )
—U,In(1/r). It revealed a quasiperiodic correction to the en-As all the faces of our figure are triangular by construction

ergy of the same functional shape as shown in Fig. 7. Thihe following relationship, expressing the general balance of

amplitude of the correction was consistent with the conclu£dges, is true:

sions of Sec. VI. The configurations were also very similar to 3f=e.+2e. (A3)

the observed in the Coulomb case. In particular the correla-

tion between the position of the center of the confinemenNext we can relate the number of edges to the number of

relative to the crystal and the oscillations of the energy isvertices. As it was mentioned above the bulk vertices are

also observed. connected to six edges while the surface ones to four. The
In conclusion we have studied the charging spectrum obxceptions are the cores of disclinations. They have an

the crystal formed by particles in the parabolic confinementanomalous coordination number. Expressing now the overall

We considered two forms of the interactions between parbalance of edges one can write

ticles: the short-range and Coulomb interactions. In the com-

puter simulations employing the genetic algorithm we have 2e=6v;— dvit+4ve— dve, (A4)

observed the oscillations of the ground-state energy which

have a universal form, independent of the form of interac—\"’here‘svi and dv, are total deviations from the normal co-

tion. We attribute these oscillations to the combination ofordinz_;\tion numbers fqr the internal and_external vertices, re-
two effects: periodic additions of new crystalline rows andspectwely. One can finally use the obvious fact that
hopping of the center of the confinement relative to the crys- Ve=€ (A5)

tal. The hops are separated by addition~of*/? electrons.

These hops make a dramatic difference for the addition spede solve the system of EqéA1)—(A4) and to obtain

trum of the island. In the case of the short-range interaction

they make the charging energy negative, so that"* new Ne=dv;+ 6ve=6. (AB)
eIect.rons enter the island §imultaneously. This gpparent atrpis completes the proof of Eq5.1). We would like to
traction betwe_en eIectro_ns is a result of the confinement POotice that a similar theorem is well known for a triangular
!aron effect discussed in Ref. 5. In the case of COUI.Ombcrystal on the surface of a sphéré
interaction such a hop results in an abrefit5% decrease in

the charging energy. N.=12. (A7)
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