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Mode mixing in antiferromagnetically correlated double quantum wells
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We examine the robustness of a recently predicted exchange-induced zero-field magnetic phase in semicon-
ductor double quantum wells in which each well is spin polarized and the polarization vectors are antiparallel.
Magnetic instabilities are a general feature of Coulombic double-quantum-well systems at low densities. We
argue that this antiferromagnetic phase is stabilized relative to ferromagnetic ones by an effective superex-
change interaction between the wells. Detailed self-consistent Hartree-Fock calculations using a point-contact
model for the interaction show that the antiferromagnetic phase survives intrasubband repulsion matrix ele-
ments neglected in earlier work in a large portion of the model’s parameter space. We also examine the role of
asymmetry due to biasing or to differences in the widths of the two quantum wells. The asymmetry creates a
mode coupling between the intra- and intersubband collective spin-density excitations~SDE’s! that changes the
Raman spectroscopy signature of the phase transition from a complete softening of the intersubband SDE to a
cusp as the density is tuned through the transition. This cusp may be detectable in inelastic light scattering
experiments in samples of sufficient quality at low enough temperatures and densities.
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I. INTRODUCTION

The subject of exchange-correlation-induced phase tra
tions has proved to be a rich field of research that has
vealed many intriguing phenomena. Normal Fermi-liqu
state instabilities occur when the kinetic energy of t
particles in a quantum system is of the same order as
smaller than the interparticle exchange and correlation e
gies. The instabilities lead to a variety of electronic states
Coulombic systems, this situation obtains at low densi
and instabilities are more likely in systems of reduced
mensionality or, especially in two dimensions, in an appl
magnetic field. Perhaps the best known examples of s
states occur in the fractional-quantum-Hall, strong-field
gime of two-dimensional electronic systems.1

The interest in exchange-correlation-induced phase tra
tions can be traced in part to the availability of high-qual
semiconductor quantum wells, quantum wires, and supe
tices. These artificial structures may be fabricated with
markable precision and quality and possess electron dens
that can be varied over a large range through a combina
of modulation doping and judicious gating. The one- or tw
dimensional nature of the resulting electronic systems
the low densities realizable in devices of this kind ma
them ideal for studies of interaction-driven physics. Anoth
feature of these devices of importance to the current wor
the extra degree of freedom available when multiple lay
are present, as in multiple quantum wells or superlattic
This degree of freedom allows transitions to states with or
not only in the intralayer electronic degrees of freedom
also in diagonal or off-diagonal interlayer charge2–13 or
spin10,14–18observables.
570163-1829/98/57~4!/2342~10!/$15.00
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In particular, a great deal of attention has focused rece
on the possibility of interlayer spin ordering in wide single
double quantum wells. This attention is motivated by stud
of quantum-well structures in which the lowest two subban
are well separated in energy from the higher subbands
the density is sufficiently low so that only these two su
bands are occupied. In these structures, an earlier theore
calculation of the collective spin-density excitations~SDE’s!
in the absence of a magnetic field showed a complete s
ening of the intersubband SDE in a range of densities aro
that at which the second subband begins to populate.14 Sub-
sequent analysis indicated that this softening corresponde
a phase transition to a state in which each well in the dou
quantum well~or the electron gases on each side of a w
single quantum well! was spin polarized with the polariza
tion vectors antiparallel, i.e., a transition to an antiferroma
netic order in the well spin densities.15 Further work pre-
dicted that a similar transition to a canted antiferromagne
phase should occur in the presence of a magnetic fieldn
52,17 and this transition seems to have been obser
experimentally.16 However, the predicted transition in th
zero-field case has not yet been observed.18

Several possibilities exist that may explain the absenc
the zero-field antiferromagnetic phase in these experime
The calculations predicting this phase15 are based on a mean
field treatment of the interacting system, which is known
overestimate the densities and temperatures at which
symmetry-breaking transitions occur. In addition, electro
scattering by disorder or impurities generally has a detrim
tal effect on correlation-induced phases. Both of these d
culties are exacerbated by the low dimensionality of
2342 © 1998 The American Physical Society
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57 2343MODE MIXING IN ANTIFERROMAGNETICALLY . . .
double-quantum-well system considered. Thus the zero-fi
antiferromagnetic phase may exist, but may not have b
observed due to measurements made at temperatures th
too large in samples of insufficiently high quality. The fa
that then52 transition is observed16 as predicted by the
mean-field calculations17 does not contradict this point o
view since the magnetic field completely quenches the
netic energy and makes the mean-field theory a contro
approximation to the interacting system.

Alternative explanations for the absence of the zero-fi
phase lie in the structure of the theory itself,15 which was
derived to explore the qualitative features of the antifer
magnetic phase without considering several confounding
fects that may nonetheless be important. In particular,
previous calculation15 did not account for interactions be
tween electrons in the same subband, which should be o
same size as or stronger than the interactions between
trons in different subbands that were included. This omiss
can become especially important when the intersubband
citation softens. These interactions could introduce fer
magnetic or charge-ordered phases into the model that
not probed by the current experiments. More seriously,
slight asymmetry present in any realistic double-quantu
well structure will couple the intra- and intersubband SDE
potentially preventing the latter from softening. As this so
ening was expected to be a hallmark of the antiferromagn
phase transition,14,15it seemed reasonable to hypothesize t
any asymmetry in the structure might suppress the antife
magnetic phase entirely.

In this paper we address the question of the robustnes
the zero-field antiferromagnetic phase in the presence o
trasubband interactions and asymmetry in the dou
quantum-well structure. First, we argue on general grou
that the antiferromagnetic phase is a direct consequenc
the importance of the intrawell exchange interaction at l
densities and is stabilized by the interwell hopping, wh
leads to an effective superexchange interaction. Thus
phase should obtain in a suitably constructed heterostruc
Second, we extend the self-consistent Hartree-Fock calc
tions of earlier work15 to include both intra- and intersub
band matrix elements of the model interaction and the effe
of an asymmetric double quantum well. These calculati
demonstrate that while the intrasubband interaction does
troduce ferromagnetic phases and asymmetry does re
the region of the phase diagram occupied by the antife
magnetic phase, the antiferromagnetic phase does not d
pear. By examining the collective mode spectrum in
asymmetric structure, we also find that the intersubband S
does not soften due to the mode coupling between the in
and intersubband SDE’s. The antiferromagnetic transit
nevertheless occurs as a result of the collapse of theintra-
subbandSDE, which, through the mode coupling, has
strongly antiferromagnetic character.

The outline of this paper is as follows. In Sec. II w
employ a simple model for two weakly coupled tw
dimensional electron gases to examine the energetics o
antiferromagnetic transition. Section III contains the form
ism for the extended self-consistent Hartree-Fock the
used in the remainder of the paper. This formalism inclu
asymmetry and all matrix elements of the interaction and
used to compute both the ground state and collective m
ld
en
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properties in what follows. In Sec. IV we present the resu
of our computations for the matrix elements, phase diagr
and collective modes in this model and discuss their im
cations. Finally, in Sec. V we summarize our results a
conclude.

II. ORIGIN AND STABILITY
OF THE ANTIFERROMAGNETIC PHASE

In this section we examine a simple model of a dou
quantum well in order to extract the basic physics underly
the zero-field antiferromagnetic phase. To that end, cons
two two-dimensional electron gases separated by a ba
constructed so that the interaction between them is ne
gible. This would be the case if the two-dimensional laye
were widely separated or the barrier were very high and
the dielectric constant of the barrier were large. Suppose
electrons in each layer move freely except for a Hubbard-
point-contact interactionV(r )5V0d(r ), as used in textbook
treatments of itinerant magnetism.19

For equal charge density in the two layers, the Hartr
Fock energyEHF of the two-layer system with areaA can be
derived following Refs. 2, 3, and 10 and may be expresse
the form

EHF

A
5

n2

8N0
~12N0V0!S 11m1

2

2
1

11m2
2

2 D 1
1

4
V0n2, ~1!

wheren is the total electronic density in both layers,N0 is
the single-spin, two-dimensional~2D! density of states, and

mi5
ni↑2ni↓
ni↑1ni↓

~2!

is the relative spin polarization in layeri 51,2 with partial
spin-dependent densitiesnis . In this equation the first term
represents the contribution to the energy from combined
netic and exchange effects and the last term is the Har
contribution. As is clear from Eq.~1!, whenN0V0.1, it is
energetically favorable for both layers to acquire a sponta
ous spin polarizationum1u5um2u51, while forN0V0,1, the
layer remain unpolarized. This result is simply the Ston
criterion for 2D itinerant magnetism.19

This description of spontaneous spin polarization in tw
dimensional electron systems is unrealistic both in the us
a point-contact interaction and in the use of the Hartree-F
approximation. Our objective in this section is to obtain
qualitative understanding of the influence of weak electro
tunneling between the layers on a double-layer system w
isolated single-layer systems are close to their ferromagn
instabilities. We postpone a realistic discussion of the sys
parameters for which the physics we address in this pape
likely to be realized to Sec. V. For a sufficiently strong i
tralayer repulsion then, the exchange interaction forces b
layers to spin polarize, but the relative orientation of t
polarizations is unknown. For simplicity, let us restrict o
attention to two possibilities for the relative orientation: pa
allel ~ferromagnetic! alignment or antiparallel~antiferromag-
netic! alignment. With the spin-unpolarized~paramagnetic!
phase, the three possible phases for the two-layer system
shown in Fig. 1.

In the absence of any interlayer coupling, the ferroma
netic and antiferromagnetic phases are degenerate, but
situation changes if we introduce a small amplitude for ho
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2344 57R. J. RADTKE, S. DAS SARMA, AND A. H. MacDONALD
ping between the layers. Writingciks for the annihilation
operator of an electron in layeri 51,2 with two-dimensional
wave vectork and spin projections, this interlayer hopping
is governed by the Hamiltonian

H'52
D0

2 (
k,s

@c1ks
† c2ks1H.c.#, ~3!

where D0 is the splitting between the symmetric and an
symmetric single-particle eigenstates. The leading-or
change in the ground-state energy due toH' can be calcu-
lated using linear-response theory and is proportional to
transverse pseudospin susceptibility of double-layer syst
defined in Ref. 20. For the present model with no interla
interactions and contact intralayer interactions, the tim
dependent Hartree-Fock approximation for the susceptib
gives

dE

A
5H 2 1

2 N0D0
2 ~paramagnetic!

2 1
4 N0D0

2 ~ ferromagnetic!

2 1
2 D0

2/V0 ~antiferromagnetic!.

~4!

The fact that the results for paramagnetic and ferromagn
states are independent of the interaction strength is a sp
property of the present model related to both the absenc
interlayer interactions and the wave-vector independenc
the exchange self-energy.

We see that, in all cases, introducing interlayer hopp
reduces the ground-state energy, as one might expect w
the confinement of the electrons to the layers is weaken
Comparing the energies of the ferromagnetic and antife
magnetic phases, we also observe that the degenerac
tween these phases is broken by the hopping term. Spe
cally, the antiferromagnetic phase is found to be more sta
than the ferromagnetic phase ifN0V0,2, implying that the
interlayer hopping opens up a region of antiferromagne
order between the paramagnetic and ferromagnetic pha

FIG. 1. Population of spin and well states for the phases o
double quantum well considered in Sec. II. In the paramagn
phase, there is no spin polarization in either well. In the magn
phases, each well is completely spin polarized with the polariza
vectors parallel in the ferromagnetic phase and antiparallel in
antiferromagnetic phase.
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The mechanism for this stabilization can be deduced fr
the form ofdE/A to be a superexchange interaction; that
an electron is able to hop from one layer to the other a
back at the cost of a Hubbard energy in the intermed
state, yielding an energy savings ofD0

2/2V0. A similar
mechanism is blocked by the Pauli exclusion principle in
ferromagnetic phase since the hopping Hamiltonian p
serves spin@Eq. ~3!#.

We argue that this mechanism favoring an antiferrom
netic arrangement of the ordered moments in the two lay
will be dominant in most circumstances. The calculatio
described below indicate that an effective superexchange
teraction between the wells should stabilize an antiferrom
netic phase for moderate interaction strengths. This expla
tion of the zero-field antiferromagnetic phase suggests w
the presence of asymmetry and additional interaction ma
elements may not eliminate this phase: Both the tw
dimensional ferromagnetism within each well and the sup
exchange interaction between the wells should be fairly
sensitive to these perturbations. In the remainder of
paper, we perform a more detailed self-consistent Hartr
Fock calculation to support this statement and to explore
consequences of these perturbations.

III. FORMALISM

To accomplish the goal of investigating matrix eleme
and asymmetry effects, we employ an extension of the po
contact model described in Ref. 15. In the original calcu
tion, the full Coulomb interaction between the electrons
the double quantum well was approximated by ad function
in real space with only the matrix elements of this interact
between the lowest two subbands being kept and the rem
der being set to zero.15 The use of ad-function or point-
contact interaction is based primarily on a desire to crea
simple, solvable model that mimics the qualitative featu
of the fully interacting system. A quantitative theory wou
require that the interaction be made realistic and also that
interactions be treated more accurately than in the Hart
Fock approximation. In practice this would require quantu
Monte Carlo calculations of some type, which would invol
an enormous amount of effort and would not be able to
dress the excitation spectrum that provides the experime
signature for the state we are proposing. We therefore m
tain the point-contact form of the interaction here. Howev
there is no reason to set matrix elements of this interac
other than those between the lowest subbands to zero,
previous work. Indeed, we shall see below that these o
matrix elements are of the same order as the intersubb
ones. Thus we shall include all the matrix elements involv
the lowest two subbands in our calculations.

In addition to the issue of intrasubband repulsion,
would also like to study the effects of quantum-well asy
metry on the phase diagram and collective modes of
system. This asymmetry arises in real quantum wells thro
alloy fluctuations across the profile of the well or fluctuatio
in the well thickness and we model it by allowing one of t
wells to be deeper than the other, as illustrated in Fig.
Although we have assumed the effective asymmetry to e
through the well depth, the results of our calculations
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57 2345MODE MIXING IN ANTIFERROMAGNETICALLY . . .
systems with asymmetric well widths should be qualitativ
similar.

We therefore consider a three-dimensional electron
confined along thez direction by a potentialVcon f(z) of the
type shown in Fig. 2, which interacts through athree-
dimensionalpoint-contact potentialV(R)5Vd(R). In the
absence of the interactionV(R), the electronic eigenstate
are given by the solution of the time-independent Sch¨-
dinger equation

F2
\2

2m*

d2

dz2
1Vcon f~z!Gjn~z!5enjn~z!, ~5!

where m* is the effective mass, which is assumed to
constant throughout the heterostructure. Normalizing th
eigenfunctions by

E dzujn~z!u251, ~6!

we write the electron annihilation operatorcs(R) as

cs~R!5
1

AA
(
n,k

eik–rjn~z!cnks , ~7!

where R5(r ,z)5(x,y,z), k5(kx ,ky), A is the transverse
area of the sample, andcnks annihilates a quasiparticle i
subbandn, of transverse wave vectork, and with spin pro-
jection s ~these conventions will be used throughout th
paper!.

Defining a composite subband and spin indexa
5(na ,sa) with summation over repeated indices implie
the Hamiltonian for this system is

H5(
k

eakcak
† cak1

1

2A (
k,k8,q

Vad,bccak1q
† cbk82q

† cck8cdk .

~8!

Here the quasiparticle energy

FIG. 2. Diagram of the asymmetric double quantum well co
sidered in this paper indicating the well widthw, barrier widthb,
confining potentialU, and potential asymmetrydU. The values of
the parameters used here and in previous studies of magnetic
bilities of these systems~Refs. 14 and 15! model a typical GaAs/
Al xGa12xAs double quantum well withw 5 140 Å,b 5 30 Å, and
U5220 meV. We consider both symmetric (dU50) and weakly
asymmetric (dU50.5 meV! double quantum wells in what follows
s

e
se

,

eak5en1
\2k2

2m*
2m ~9!

is measured with respect to the chemical potentialm and the
matrix elements of the interaction are

Vab,cd5dsasb
dscsd

VE dz jna
* ~z!jnb

~z!jnc
* ~z!jnd

~z!.

~10!

We treat this Hamiltonian within self-consistent Hartre
Fock theory allowing for the possibility of phases with br
ken symmetry in subband and spin indices, but impos
translational invariance within each layer. The electro
Green’s function in the interacting system can therefore
written

Gab~kn!52E
0

b

dteivnt^Tt@cak~t!cbk
† ~0!#&, ~11!

wherekn5(k,ivn), b51/T (\5kB51 throughout this pa-
per!, and the rest of the notation is standard.21 This Green’s
function is determined self-consistently from the self-ene
in the Hartree-Fock approximation

Sab5@Vab,dc2Vac,db#
T

A(
km8

e2 ivm02Gcd~km8 ! ~12!

and the Dyson equation

@~ ivn2eak!dab2Sab#Gbc~kn!5dac ~13!

under the constraint of constant sheet densityNs ,

Ns5
T

A(
km

e2 ivm02Gaa~km!, ~14!

which determines the chemical potential.
We solve these equations in the following way. Given

double-quantum-well structure defined by the effective m
m* , sheet densityNs , and the structural parameters shown
Fig. 2, we compute the eigenfunctions and eigenenergie
solving Eq.~5! with the normalization condition~6!. These
eigenfunctions are used to compute the matrix element
the interaction via Eq.~10! in terms of a single parameter V
The resulting matrix elements and eigenenergies are
ployed to solve Eqs.~11!–~14! self-consistently atT50 fol-
lowing the procedure outlined in Sec. II B of Ref. 15 an
includingall matrix elements of the interaction involving th
lowest two subbands. This procedure yields the ground-s
properties of the system as a function of the sheet den
Ns , the interaction parameterV, and the structural param
eters of the double quantum well~Fig. 2!.

To illuminate the properties of the interacting system fu
ther, we also compute the generalized density-density
sponse function, which is defined by the analytic continu
tion of

Pm~Q,inn!52E dR

V e2 iQ–RE
0

b

dteinnt

3^Tt@rm~R,t!rm~0,0!#& ~15!

-

ta-
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2346 57R. J. RADTKE, S. DAS SARMA, AND A. H. MacDONALD
to real frequencies. In this expression,V is the system vol-
ume and the generalized density operator is

rm~R!5 (
s,s8

cs
†~R!sss8

m cs8~R!, ~16!

wherecs(R) is given by Eq.~7! andsm5(1,sx,sy,sz) are
the Pauli matrices. This response function is computed fr
the noninteracting response function in subband and
space within the conserving approximation described in S
V A of Ref. 15 but with the inclusion of all interaction ma
trix elements. In addition to the information this respon
function reveals about the excitations of the interacting s
tem, its imaginary part is proportional to the intens
observed in resonant inelastic light scattering meas
ments,22,23 allowing us to make contact with experimen
This is particularly relevant here because searches for
antiferromagnetic phase in both finite16 and zero18 magnetic
fields have employed this technique.

IV. RESULTS

In this section we apply the formalism described in S
III to compute the ground-state phase diagram and collec
modes in a typical GaAs/AlxGa12xAs double-quantum-wel
structure that is expected to exhibit the zero-field antifer
magnetic instability. The structure has a well width of 140
a barrier width of 30 Å, a well depth of 220 meV~cf. Fig. 2!,
and an electronic effective massm* 50.067me . For the mo-
ment, we leave the asymmetry unspecified.

A. Matrix elements

As a first step in obtaining the phase diagram for t
structure, we must solve the time-independent Schro¨dinger
equation@Eq. ~5!# for the lowest two eigenfunctionsjn(z)
and eigenenergiesen at a fixed value of the asymmetry pa
rameterdU ~cf. Fig. 2! and then compute the matrix ele
ments of the interaction through Eq.~10!. Solving Eq.~5! is
straightforward and yields a noninteracting symmetr
antisymmetric~SAS! splitting of DSAS

0 5e22e152.25 meV
for dU50. As dU is increased, this splitting increases to
maximum of 18.5 meV atdU59.4 meV; for largerdU, the
lowest eigenfunction is localized in one well. Since the str
tures examined experimentally have subband splittings
the order of 1 meV,16,18we restrict our attention to smalldU
values.

The dependence of the matrix elements on the asymm
parameter is somewhat more interesting and merits a b
discussion. Since our model interaction is ad function in real
space and we have chosen the wave functions to be rea
matrix elements defined by Eq.~10! are invariant under per
mutation of the indices. Thus there are only five independ
matrix elementsV11,11, V22,22, V11,22, V11,12, and V22,21,
which are displayed in Fig. 3 as a function of the asymme
parameterdU. In a symmetric double quantum well (dU
50), theV11,12 and V22,21 matrix elements vanish by sym
metry, but the remaining intersubband (V11,22) and intrasub-
band (V11,11 andV22,22) matrix elements are equal to withi
5%. We remark that for more realistic interaction mod
V11,22, which is roughly24 proportional to the difference o
intralayer and interlayer interactions, is weaker thanV11,11
m
in
c.

e
s-

e-

he

.
e

-
,

s

-

-
n

try
ef

the

nt

y

s

andV22,22, which are roughly proportional to the sum. Th
latter matrix elements would be equal if the electrons w
localized to the wells; the fact that they are nearly so in
cates that the wave-function overlap between the wells
small. Additionally, this calculation provides direct eviden
that the neglect of the intrasubband repulsion employed
earlier work15 is not generally justified for these double
quantum-well structures. We shall see, however, that th
inclusion in the calculation changes the qualitative pictu
only slightly.

As the asymmetry is increased from zero, we discern s
eral features. We see that the intrasubband matrix elem
V11,11 and V22,22 are approximately equal and increase w
increasingdU to saturate at a value about twice thedU50
one. The approximate equality of these diagonal matrix e
ments follows from the normalization condition~6! imposed
on the two eigenfunctions. The increase in these matrix
ments withdU, on the other hand, can be attributed to t
increasing confinement of the wave functions of the two s
bands to opposite wells, similar to what occurs in the pr
ence of an applied electric field.6,7 Thus, at largedU, the two
subband wave functions are almost completely localized
opposite wells, enhancing the magnitude of the diagonal
trix elements. For the same reason, the intersubband m
elementV11,22 decreases with increasing asymmetry: As t
wave functions from different subbands are increasingly
calized, their overlap, and henceV11,22, decreases to zero
Since the zero-field antiferromagnetic transition depends
this matrix element, it is clear that large asymmetry is inim
cal to this phase. Based on the small values of the obse
splitting of the lowest two subbands in the experimen
samples,16,18 however, we expect the actual samples to be
a regime in whichV11,22 is still non-negligible. Hence the
antiferromagnetic phase is not immediately excluded.

FIG. 3. Dependence of the interaction matrix elementsVi j ,kl /V
@Eq. ~10!# on the double-quantum-well asymmetry parameterdU
~cf. Fig. 2!. Shown are the intrasubband matrix elementsV11,11~dot-
dashed line! and V22,22 ~dotted line!, the intersubband matrix ele
ment V11,22 ~solid line!, and the asymmetry-induced matrix ele
mentsV11,12 ~long dashed line! and V22,21 ~short-dashed line!. For
the point-contact interaction employed in this paper, the matrix
ements are invariant under permutation of the indices, so these
trix elements span the entire set.
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57 2347MODE MIXING IN ANTIFERROMAGNETICALLY . . .
Finally, we note that the mixing termsV11,12 and V22,21
have opposite signs and increase in magnitude withdU to a
maximum arounddU51 meV. The wave function for the
lowest (n51) subband has no nodes and we chose it to
positive. Orthogonality requires that then52 wave function
have a node and we choose it to be negative in the w
whereuj1(z)u2 is largest; with this conventionV11,12 is nega-
tive andV22,21 is positive, as observed in Fig. 3. In additio
since these matrix elements must vanish both in the symm
ric (dU50) limit and whendU is large and the subban
wave functions are localized in different wells, the maximu
seen in this figure is also expected. These results sugges
the mode coupling between intra- and intersubband exc
tions induced by these matrix elements will be maxim
arounddU51 meV.

Taken together, the behavior of the interaction matrix
ements presented in Fig. 3 indicate that the zero-field a
ferromagnetic phase will probably not be stable against la
asymmetry in the quantum wells. However, the current
perimental samples have subband splittings more consis
with small asymmetry and therefore these samples may b
high enough quality to observe this phase, at least in p
ciple. To examine this situation further, we shall compute
phase diagram and collective modes for two choices ofdU
in the weak asymmetry regime:dU50 ~the symmetric case!
and dU50.5 meV ~the asymmetric case!. The following
subsections discuss the results of these calculations.

B. Phase diagram

As described in the preceding subsection, the structur
the double quantum well yields the eigenenergies and eig
functions of the noninteracting system, which are then u
to compute the interaction matrix elements up to an ove
factor V @Eq. ~10!#. To be consistent with earlier work,15 we
choose to parametrize the interaction strength by the ma
tude of the intersubband repulsionV11,225V12 rather than by
V, but all the matrix elements are uniquely determined
either parameter. With the structure and interaction stren
fixed, the only other parameter in our model is the sh
densityNs . Given these parameters, Eqs.~11!–~14! can be
solved atT50 to yield the interacting ground state of th
system. The resulting phase diagrams in terms of the dim
sionless interaction strengthN0V12 and sheet density
Ns /2N0DSAS

0 are presented in Fig. 4 for the double-quantu
well structure of Fig. 2. In these figures,N0 is the single-
spin, two-dimensional density of states andDSAS

0 5e22e1 is
the subband splitting in the noninteracting system as defi
above.

Consider the symmetric (dU50) case first@Fig. 4~a!#. At
first glance, this phase diagram is very similar to the o
obtained from the neglect of intrasubband repulsion,15 even
though this repulsion is included in our calculations. At lo
density, the paramagnetic phase with one spin-degene
subband occupied~labeledN1 in the figure! is stable, while
at higher densities (Ns /2N0DSAS

0 .1) but weak interaction
(N0V12,1/2) the paramagnetic phase with two sp
degenerate subbands occupied~labeled N2) is stable. For
larger interaction strengths and intermediate densities, we
a broad region in which the antiferromagnetic~AF! phase
obtains. Thus the inclusion of intrasubband repulsion d
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not eliminate the zero-field antiferromagnetic phase from
phase diagram of the model, despite the fact that the in
and intersubband repulsions are of the same order~Fig. 3!.

These matrix elements do have an effect on the ph
diagram, however. At higher densities (Ns/2N0DSAS

0 larger
than approximately 2! and strong interaction (N0V12.1/2),
two different ferromagnetic phases appear. In these pha
each quantum well is spin polarized and the polarization v
tors are parallel. They differ in the arrangement and filling
the interacting bands, as indicated by the labels in the fig
The phase FMi corresponds to an interacting band structu
with i spin-split subbands occupied. The presence of the
romagnetic phases is expected when intrasubband repu

FIG. 4. Phase diagram of~a! a symmetric and~b! an asymmetric
double quantum well in terms of the sheet densityNs and the inter-
action parameterV12 for the point-contact model described in Se
III. The points are the numerically computed boundaries betw
the various phases of this model, which are labeled as follows:N1

andN2 are paramagnetic phases with one and two spin-degene
subbands occupied, respectively; FMi are ferromagnetic phase
with i nondegenerate subbands occupied; and AF is the antife
magnetic phase. See Fig. 1 for a real-space depiction of th
phases and Fig. 2 for the structural parameters of the double q
tum well. In the figure,N0 is the single-spin, 2D electronic densit
of states andDSAS

0 is the splitting between the lowest two states
the noninteracting system. Note that asymmetry reduces the e
of the antiferromagnetic phase in~b!, but does not destroy it alto
gether.
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in present; what is surprising is that the ferromagnetic pha
do not exclude the presence of the antiferromagnetic ph
As argued in Sec. II based on a weak-coupling model,
antiferromagnetic phase is stabilized by a superexchang
teraction for intermediate interaction strengths. Similar
havior is seen in Fig. 4~a! based on our strong-coupling com
putations and presumably originates from the sa
mechanism. Note that, in the limit of vanishing hopping b
tween the wells,V12 may be associated withV0/2 in the
model of Sec. II, implying that the phase boundaryN0V12
51/2 in Fig. 4~a! is nothing but the Stoner criterion for th
related Hubbard model. The fact that the model of Sec
does not have a closer correspondence to Fig. 4~a! suggests
that the relative magnitudes of the intra- and intersubb
interaction matrix elements, which are all equal in the mo
of Sec. II, are important for determining whether ferro-
antiferromagnetic phases obtain in a specific region of
phase diagram.

With the introduction of weak asymmetry (dU50.5
meV!, the qualitative features of the phase diagram do
change, as seen in Fig. 4~b!. As before, we find paramagnet
phases at small interaction strengths, the antiferromagn
phase at larger interaction strengths and intermediate de
ties, and ferromagnetic phases at larger interaction stren
and higher densities. The identification of these phases
cisely matches those in the symmetric case of Fig. 4~a!, al-
though the position of the phase boundaries have shi
somewhat. An apparently different feature occurs at low d
sity and large interaction strength, where an FM1 ferromag-
netic phase has replaced the paramagneticN1 phase. How-
ever, this phase also occurs in the symmetric structure w
N0V12.1, but is cut off in Fig. 4~a!. It corresponds to the
usual ferromagnetic instability in a single, spin-degener
band that obtains when the interaction is sufficien
strong.19

Although weak asymmetry clearly does not destroy
antiferromagnetic phase, it does have observable co
quences. The most noticeable effect of the asymmetry on
ground state is that the spin polarizations in the magn
phases, which can be obtained from the expectation valu
the density operator~16!, are no longer of equal magnitud
in the wells. This is an obvious consequence of an asymm
ric structure that nonetheless does not disturb the identifi
tion of ferro- and antiferromagnetic phases since one
determine whether the spin polarizations are parallel or a
parallel without referring to their magnitudes.

C. Collective modes

The effects of asymmetry on the antiferromagnetic ph
cannot be fully appreciated based on the ground-state p
erties alone, but must be augmented by an examination o
excitation spectrum of the system. We focus on the sp
density excitations in what follows since they are the exc
tions most strongly coupled to the magnetic nature of
ground state and can also be probed experimentally by
man scattering.22,23 For these calculations, we compute t
spin-spin response function@m53 in Eq. ~15!# for the ap-
propriate ground state as discussed in Sec. III and iden
the collective modes by peaks in the imaginary part of t
response function. Since this procedure is used in the Ra
scattering measurements, our results have direct implicat
es
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for experiment and we shall discuss them in this context.
concreteness, we fix the interaction strength and sweep
sheet density through the second-order transition from theN1
to the AF phase in these calculations~cf. Fig. 4!.

As an introduction to the general phenomenology of sp
density excitations in double quantum wells, consider
symmetric (dU50) case first. By appropriately arrangin
the light scattering geometry, Raman scattering can se
tively probe the intersubband spin-density excitations,16,18

which, in our approximation, have the form shown in Fi

FIG. 5. Collective spin-density excitations in a symmet
double quantum well of the type shown in Fig. 2 withdU50. ~a!
Collective mode spectrum in terms of excitation energyE and in-
trawell wave vectorq showing the inter-~solid line! and intra-
~dashed line! collective spin-density excitations as well as the co
tinuum of intersubband particle-hole excitations~shaded area!. Al-
though not apparent in the figure, the intersubband collective m
does disperse withq. ~b! q50 intersubband SDE energyE as the
sheet densityNs is tuned through theN1 to AF transition at fixed
interaction strengthN0V1250.55 @cf. Fig. 4~a!#. Note that the SDE
~solid line! softens completely at the transition point and that t
collective mode appearing on the antiferromagnetic s
(Ns /2N0DSAS

0 .0.919) is the amplitude mode of the antiferroma
netic order parameter~dashed line!. The dot indicates the point in
parameter space presented in~a!. In this figure,N0 is the single-
spin, 2D electronic density of states,DSAS

0 is the energy separation
of the lowest two subbands in a noninteracting double quan
well, DSAS is the splitting in the interacting system, andqD

2

52m* DSAS
0 /\2. The intrasubband particle-hole continuum is n

indicated.
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5~a!. In addition to a continuum of intersubband particle-ho
excitations, there is a collective SDE with a finite energy
q50 that disperses with increasingq toward the particle-
hole continuum. The magnitude of theq50 SDE energy is
reduced from the subband splittingDSAS by vertex correc-
tions appearing in the response function due to the excha
interaction.25,26 In addition, there is an intrasubband SD
that has a linear-in-q dispersion in our model, shown by th
dashed line in Fig. 5~a!. If the well is symmetric, this mode
will not appear in Raman spectra taken in a scattering ge
etry meant to observe intersubband excitations. A symme
system with identical quantum wells is invariant under inv
sion about the midpoint between the wells so that all sta
can be classified by a parity quantum number. Intersubb
excitations, which are odd, and intrasubband excitatio
which are even, do not interact and can cross as seen in
5~a!.

As the density increases in our model, the exchan
induced reduction in theq50 intersubband SDE energy in
creases until the mode softens entirely, as illustrated in
5~b!. This complete softening was seen initially in tim
dependent, local-density approximation calculations of
SDE spectrum in these systems and was evidence for
zero-field antiferromagnetic phase.14 An analysis of the real-
space spin response identified this softening as an antife
magnetic transition of the well spin polarizations.15 As the
density is increased past the antiferromagnetic transition,
intersubband SDE turns into the collective mode associa
with amplitude fluctuations of the antiferromagnetic ord
parameter.15 Experimentally, then, one expects to see a co
plete softening of the intersubband SDE and the recover
this amplitude mode as the density is tuned through the t
sition.

The presence of asymmetry in the double quantum w
complicates this picture somewhat. The SDE spectrum
our asymmetric (dU50.5 meV! double quantum well illus-
trates these complications and is shown in Fig. 6~a!. Most
noticeably, the asymmetry mixes the intra- and intersubb
excitations, so that even in scattering geometries designe
measure only intersubband response, both intra- and in
subband excitations will appear.27 This effect is seen through
both an enlarged particle-hole continuum and the presenc
a damped mode in the intersubband spectrum correspon
to the intrasubband SDE. Furthermore, the asymm
couples the intra- and intersubband SDE’s themselves, l
ing to an avoided crossing, which may be seen by compa
Fig. 6~a! to Fig. 5~a!.

This avoided crossing effectively prevents the inters
band SDE from completely softening on entering the antif
romagnetic phase, as shown in Fig. 6~b!. In this figure, one
sees that as the density is tuned toward the antiferromag
transition, theq50 intersubband SDE energy decreases t
finite value. A further increase of the density into the an
ferromagnetic phase reverses this trend and the energy o
amplitude mode of the antiferromagnetic order parameter
creases, resulting in a cusp.

Despite the fact that the intersubband SDE does not c
pletely soften, the antiferromagnetic phase appears, dem
strating that this softening is a sufficient but not necess
signature of the zero-field phase transition. We expect so
mode to soften at this transition, however, and it turns
t
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that it is the intrasubband SDE that collapses. Specifica
the mode coupling between inter- and intrasubband SD
pushes the latter mode down in energy at allq, effectively
reducing the group velocity of this mode. Approaching t
antiferromagnetic transition, theq→0 group velocity of the
intrasubband SDE decreases until it vanishes at the trans
point. The resulting phase has the character of the real-s
spin density profile of the intrasubband mode, which dir
calculation reveals to be antiferromagnetic. The characte
the intrasubband excitation at smallq is therefore very simi-
lar to the intersubband excitation in the symmetric well d
to the mode coupling between the two excitations. Thus
softening can lead to an antiferromagnetic transition with
inconsistency.

V. CONCLUSION

In this paper we have examined the origin and robustn
of a zero-field antiferromagnetic phase in double quant

FIG. 6. Collective spin-density excitations in a weakly asy
metric double quantum well of the type shown in Fig. 2 withdU
50.5 meV. The organization of and notation in the figure are
same as Fig. 5 with the interaction strength fixed atN0V1250.55
and the antiferromagnetic transition occurring atNs /2N0DSAS

0

50.698. As seen in~a!, the asymmetry induces a coupling betwe
the inter- and intrasubband spin-density excitations that result
the avoided crossing of inter- and intrasubband spin-density dis
sions and a mixing of intrasubband particle-hole excitations w
the intersubband continuum. In~b!, one sees that this mode cou
pling also prevents the intersubband SDE from softening when
ing from the paramagnetic to the antiferromagnetic phase.
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wells predicted in previous calculations.14,15 Based on a
simple model, we determined that such magnetic phases
a direct consequence of the magnetism expected at low
sities in two-dimensional systems where interaction effe
dominate. In particular, magnetic phases with either ferro
antiferromagnetic spin polarizations are possible and a su
exchange interaction between the wells leads to a regio
intermediate densities and interaction strengths where the
tiferromagnetic phase is preferred.

By performing a detailed self-consistent Hartree-Fock c
culation on a model of these double-quantum-well syste
we addressed two features left out of preceding work:15 in-
trasubband repulsion and asymmetry of the heterostruc
Our results support and extend those of Ref. 15. Specifica
we found that the antiferromagnetic phase is stable in a la
region of the model phase diagram despite the presenc
intrasubband repulsion that is as strong as the intersubb
repulsion that drives the antiferromagnetic instability. T
intrasubband repulsion does, however, introduce ferrom
netic phases, producing a rich phase diagram. Note, h
ever, that no charge ordering phases of the type discuss
Refs. 2–10 were observed, even though our formalism
allow for that possibility. In addition, both ferro- and antife
romagnetic phases persist in the presence of asymmet
the quantum-well structure; indeed, the phase diagram
qualitatively unaffected by its introduction. Asymmetry do
have a strong influence on the collective mode spectr
though, and induces a mode coupling between inter-
intrasubband spin-density excitations that prevents the la
from completely softening at the antiferromagnetic pha
transition. Instead, the intersubband spin-density excita
exhibits a cusp at the transition, while theq→0 group ve-
locity of the intrasubband excitation vanishes. The coupl
between these two modes nonetheless lends an antiferro
netic character to the intrasubband excitation in the as
metric system and enables the collapse of its group velo
to yield the antiferromagnetic phase.

Taken together, these results strongly indicate that if
exchange-correlation-induced ferromagnetic transition
curs in a single-layer system at sufficiently low density, th
the antiferromagnetic phase in a double-layer system sh
also occur. However, the issue of whether or not the fe
magnetic phase obtains in a single two-dimensional laye
not settled. Variational Monte Carlo calculations28,29 show
the presence of a ferromagnetic phase between the para
netic and Wigner crystal phases, but Green’s-function Mo
Carlo computations29 find no intervening ferromagnetism
More recent numerical work based on the Monte Ca
technique30,31,9 once again favors the existence of a ferr
magnetic transition. Other calculations using dens
functional theory in the local-spin-density approximation15,10

also support the existence of a ferromagnetic transition
sufficiently low density. Thus, although a definitive demo
stration of ferromagnetism in a single, two-dimensional la
is lacking, a large body of evidence exists that firmly su
ports this hypothesis.

The precise conditions under which these phases wo
be observable are somewhat harder to elucidate based o
mean-field theory presented in this paper. The principle
ficulty is that mean-field calculations will tend to overes
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mate the temperatures and densities at which excha
correlation-induced phase transitions occur. The source
this difficulty lies in the neglect of fluctuations in the theor
which play an important role in the low-dimensional stru
tures considered. If one goes to densities and temperat
deep below the critical values of these parameters, we ex
that the mean-field theory will give an accurate qualitat
picture of the phase.32 Additionally, impurities or defects
present in real samples may suppress the magnetic phas
a sample-dependent way.

In sum, work on the single-layer system indicates that
ferromagnetic state is unlikely to occur for electron-gas d
sity parameters smaller thanr s'10, a much lower density
than would be indicated by the Hartree-Fock approximati
for which the transition to the ferromagnetic state occurs
r s'2. The present work suggests that the two-layer anti
romagnetic phase, as well as two-layer ferromagnetic pha
is likely to be present in double-layer systems when the d
sity per layer approaches the low value at which the sing
layer ferromagnetic instability occurs. For the GaAs syste
studied experimentally it therefore seems unlikely that
antiferromagnetic state will occur for densities per layer s
stantially larger than'1010 cm22. However, it is exceed-
ingly difficult to estimate the transition density theoretica
and one must rely on experiment.

Currently, a single experimental publication regarding
search for the antiferromagnetic phase has appeared in
literature18 and the results are equivocal. The authors of t
study report inelastic light scattering measurements of
long-wavelength intersubband collective spin-density exc
tions as a function of density in a double quantum well th
was expected, on the basis of the original theoretical work
show the antiferromagnetic instability.18 Instead of com-
pletely softening at a finite density, as predicted in ear
work,14,15 the intersubband SDE shows no dramatic struct
down to the lowest densities measured.18 These results could
be accounted for in at least two different ways. The m
likely explanation is that the electron density of the samp
of order 1011 cm22,18 is above the critical density for the
antiferromagnetic transition. Alternatively, the calculatio
in this paper demonstrate that slight asymmetry in the dou
quantum well will prevent a complete softening of the inte
subband SDE and yield a cusp as a function of density. S
the energy of the amplitude mode in the antiferromagne
phase is similar to that of the intersubband SDE away fr
the critical density@cf. Fig. 6~b!#, measurements at a close
spaced grid of densities may be required to detect this c
In addition, the cusp may be broadened by impurity or flu
tuation effects that are beyond our mean-field theory, furt
increasing the difficulty of detecting the transition. Thus t
current experimental results cannot exclude the existenc
the zero-field antiferromagnetic state, and its robustnes
demonstrated by the calculations in this paper leaves us
timistic that such a unique exchange-driven phase can o
in nature.

Note added in proof.We recently became aware of th
work by F. A. Reboredo and C. R. Proetto,33 which also finds
a stable antiferromagnetic phase in asymmetric double qu
tum wells within a density functional calculation.
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