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Mode mixing in antiferromagnetically correlated double quantum wells
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We examine the robustness of a recently predicted exchange-induced zero-field magnetic phase in semicon-
ductor double quantum wells in which each well is spin polarized and the polarization vectors are antiparallel.
Magnetic instabilities are a general feature of Coulombic double-quantum-well systems at low densities. We
argue that this antiferromagnetic phase is stabilized relative to ferromagnetic ones by an effective superex-
change interaction between the wells. Detailed self-consistent Hartree-Fock calculations using a point-contact
model for the interaction show that the antiferromagnetic phase survives intrasubband repulsion matrix ele-
ments neglected in earlier work in a large portion of the model's parameter space. We also examine the role of
asymmetry due to biasing or to differences in the widths of the two quantum wells. The asymmetry creates a
mode coupling between the intra- and intersubband collective spin-density excit&DB%) that changes the
Raman spectroscopy signature of the phase transition from a complete softening of the intersubband SDE to a
cusp as the density is tuned through the transition. This cusp may be detectable in inelastic light scattering
experiments in samples of sufficient quality at low enough temperatures and densities.
[S0163-182698)06004-4

I. INTRODUCTION In particular, a great deal of attention has focused recently
on the possibility of interlayer spin ordering in wide single or
The subject of exchange-correlation-induced phase transitouble quantum wells. This attention is motivated by studies
tions has proved to be a rich field of research that has reof quantum-well structures in which the lowest two subbands
vealed many intriguing phenomena. Normal Fermi-liquid-5re well separated in energy from the higher subbands and
state instabilities occur when the kinetic energy of they,q density is sufficiently low so that only these two sub-

particles in a quantum system Is of the same ord_er as Yands are occupied. In these structures, an earlier theoretical
smaller than the interparticle exchange and correlation ener-

gies. The instabilities lead to a variety of electronic states. Incalculatlon of the collective spin-density excitatig@DE'y

Coulombic systems, this situation obtains at low densities” Fhe absen_ce of a magnetic f!eld showed a cor.n.plete soft-
and instabilities are more likely in systems of reduced di-S"'"Y of the intersubband SDE in a range of densities around
mensionality or, especially in two dimensions, in an appliedih@t at which the second subband begins to popufaeib-
magnetic field. Perhaps the best known examples of sucheduent analy_s_ls indicated th_at thl_s softening co_rresponded to
states occur in the fractional-quantum-Hall, strong-field re-2 Phase transition to a state in which each well in the double
gime of two-dimensional electronic systefns. quantum well(or the electron gases on each side of a wide
The interest in exchange-correlation-induced phase transgingle quantum wellwas spin polarized with the polariza-
tions can be traced in part to the availability of high-quality tion vectors antiparallel, i.e., a transition to an antiferromag-
semiconductor quantum wells, quantum wires, and superlaretic order in the well spin densitiés.Further work pre-
tices. These artificial structures may be fabricated with redicted that a similar transition to a canted antiferromagnetic
markable precision and quality and possess electron densitiphase should occur in the presence of a magnetic field at
that can be varied over a large range through a combinatior2,}” and this transition seems to have been observed
of modulation doping and judicious gating. The one- or two-experimentally:® However, the predicted transition in the
dimensional nature of the resulting electronic systems andero-field case has not yet been obseried.
the low densities realizable in devices of this kind make Several possibilities exist that may explain the absence of
them ideal for studies of interaction-driven physics. Anotherthe zero-field antiferromagnetic phase in these experiments.
feature of these devices of importance to the current work ighe calculations predicting this phd3are based on a mean-
the extra degree of freedom available when multiple layerdield treatment of the interacting system, which is known to
are present, as in multiple quantum wells or superlatticesoverestimate the densities and temperatures at which such
This degree of freedom allows transitions to states with ordesymmetry-breaking transitions occur. In addition, electronic
not only in the intralayer electronic degrees of freedom butcattering by disorder or impurities generally has a detrimen-
also in diagonal or off-diagonal interlayer chatg€ or tal effect on correlation-induced phases. Both of these diffi-
spin'®14-8observables. culties are exacerbated by the low dimensionality of the
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57 MODE MIXING IN ANTIFERROMAGNETICALLY ... 2343
double-quantum-well system considered. Thus the zero-fieldroperties in what follows. In Sec. IV we present the results
antiferromagnetic phase may exist, but may not have beeaf our computations for the matrix elements, phase diagram,
observed due to measurements made at temperatures that arel collective modes in this model and discuss their impli-
too large in samples of insufficiently high quality. The fact cations. Finally, in Sec. V we summarize our results and
that the =2 transition is observéfl as predicted by the conclude.
mean-field calculatiorté does not contradict this point of II. ORIGIN AND STABILITY
view since the magnetic field completely quenches the ki- OF THE ANTIFERROMAGNETIC PHASE
netic energy and makes the mean-field theory a controlled
approximation to the interacting system.

Alternative explanations for the absence of the zero-fiel
phase lie in the structure of the theory its€lfwhich was
derived to explore the qualitative features of the antiferro

In this section we examine a simple model of a double
uantum well in order to extract the basic physics underlying
he zero-field antiferromagnetic phase. To that end, consider

two two-dimensional electron gases separated by a barrier

magnetic phase without considering several confounding ef(-:antrUCt.ed so that the mterapnon betwgen thgm is negli-

fects that may nonetheless be important. In particular, th ible. T.h's would be the case if th? two-d|men5|onal Iayerg
were widely separated or the barrier were very high and if

previous calculatiol? did not account for interactions be- the dielectri tant of the barri | S th
tween electrons in the same subband, which should be of th € dielectric constant of n€ barrier were large. suppose the

same size as or stronger than the interactions between ele%_gc';ronstm f?cth Iaysr fr‘:rllove_f\r/etzly except fo:jq Hubbsrd-lllke
trons in different subbands that were included. This omissioff '+ contact interactio (r)=Vod(r), as used in textboo

can become especially important when the intersubband e}[ele;tments ?f |Enerané magt”'?“éi‘- wo | the Hart
citation softens. These interactions could introduce ferro- ' Of €dual charge density in the two layers, the Rartree-

magnetic or charge-ordered phases into the model that ageOCk energyE,e of the two-layer system with aret.can be

not probed by the current experiments. More seriously, th&le"ved following Refs. 2, 3, and 10 and may be expressed in
slight asymmetry present in any realistic double-quantum-he form
well structure will couple the intra- and intersubband SDE’s, Eur
potentially preventing the latter from softening. As this soft- A
ening was expected to be a hallmark of the antiferromagnetic
phase transitioh'%it seemed reasonable to hypothesize thatvheren is the total electronic density in both layefd, is
any asymmetry in the structure might suppress the antiferrdhe single-spin, two-dimensioné2D) density of states, and
magnetic phase entirely. N —n;,

In this paper we address the question of the robustness of m; hotn. 2
the zero-field antiferromagnetic phase in the presence of in- e
trasubband interactions and asymmetry in the doubleis the relative spin polarization in layer 1,2 with partial
guantum-well structure. First, we argue on general groundspin-dependent densities,, . In this equation the first term
that the antiferromagnetic phase is a direct consequence ofpresents the contribution to the energy from combined ki-
the importance of the intrawell exchange interaction at lownetic and exchange effects and the last term is the Hartree
densities and is stabilized by the interwell hopping, whichcontribution. As is clear from Eq1), whenNgVy>1, it is
leads to an effective superexchange interaction. Thus thignergetically favorable for both layers to acquire a spontane-
phase should obtain in a suitably constructed heterostructureus spin polarizatiohm,|=|m,| =1, while forNyV,<1, the
Second, we extend the self-consistent Hartree-Fock calculdayer remain unpolarized. This result is simply the Stoner
tions of earlier work® to include both intra- and intersub- criterion for 2D itinerant magnetisit.
band matrix elements of the model interaction and the effects This description of spontaneous spin polarization in two-
of an asymmetric double quantum well. These calculationslimensional electron systems is unrealistic both in the use of
demonstrate that while the intrasubband interaction does ira point-contact interaction and in the use of the Hartree-Fock
troduce ferromagnetic phases and asymmetry does reduepproximation. Our objective in this section is to obtain a
the region of the phase diagram occupied by the antiferrogualitative understanding of the influence of weak electronic
magnetic phase, the antiferromagnetic phase does not disatpmneling between the layers on a double-layer system when
pear. By examining the collective mode spectrum in theisolated single-layer systems are close to their ferromagnetic
asymmetric structure, we also find that the intersubband SDihistabilities. We postpone a realistic discussion of the system
does not soften due to the mode coupling between the intrggarameters for which the physics we address in this paper is
and intersubband SDE's. The antiferromagnetic transitiorikely to be realized to Sec. V. For a sufficiently strong in-
nevertheless occurs as a result of the collapse ofrttne-  tralayer repulsion then, the exchange interaction forces both
subbandSDE, which, through the mode coupling, has alayers to spin polarize, but the relative orientation of the
strongly antiferromagnetic character. polarizations is unknown. For simplicity, let us restrict our

The outline of this paper is as follows. In Sec. Il we attention to two possibilities for the relative orientation: par-
employ a simple model for two weakly coupled two- allel (ferromagnetitalignment or antiparalldlantiferromag-
dimensional electron gases to examine the energetics of theetic) alignment. With the spin-unpolarizegharamagnetic
antiferromagnetic transition. Section Il contains the formal-phase, the three possible phases for the two-layer system are
ism for the extended self-consistent Hartree-Fock theorghown in Fig. 1.
used in the remainder of the paper. This formalism includes In the absence of any interlayer coupling, the ferromag-
asymmetry and all matrix elements of the interaction and isietic and antiferromagnetic phases are degenerate, but this
used to compute both the ground state and collective modgtuation changes if we introduce a small amplitude for hop-
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The mechanism for this stabilization can be deduced from

Paramagnetic the form of SE/A to be a superexchange interaction; that is,
Phase , : an electron is able to hop from one layer to the other and
(a8 A \l’ back at the cost of a Hubbard energy in the intermediate

state, yielding an energy savings mg/zvo. A similar
- - mechanism is blocked by the Pauli exclusion principle in the

Ferromagnetic ferromagnetic phase since the hopping Hamiltonian pre-
Phase serves spinEqg. (3)].
by (RK We argue that this mechanism favoring an antiferromag-

netic arrangement of the ordered moments in the two layers
| — will be dominant in most circumstances. The calculations

Antiferromagnetic | descri_bed below indicate that an effecti\_/g superexphange in-
Phase teraction between the wells should stabilize an antiferromag-
R by netic phase for moderate interaction strengths. This explana-

. tion of the zero-field antiferromagnetic phase suggests why

Left Right the presence of asymmetry and additional interaction matrix

Well Well elements may not eliminate this phase: Both the two-

FIG. 1. Population of spin and well states for the phases of gimensional ferromagnetism within each well and the super-
double quantum well considered in Sec. II. In the paramagneti€Change interaction between the wells should be fairly in-
phase, there is no spin polarization in either well. In the magneti$ensitive to these perturbations. In the remainder of the
phases, each well is completely spin polarized with the polarizatioPaPer, we perform a more detailed self-consistent Hartree-

vectors parallel in the ferromagnetic phase and antiparallel in th&0Ck calculation to support this statement and to explore the
antiferromagnetic phase. consequences of these perturbations.

ping between the layers. Writing;,, for the annihilation
operator of an electron in layér 1,2 with two-dimensional Ill. FORMALISM

wave vectork and spin projectiorr, this interlayer hopping . . Lo .
is governed by the Hamiltonian To accomplish the goal of investigating matrix element

A and asymmetry effects, we employ an extension of the point-
__"2o T contact model described in Ref. 15. In the original calcula-

HL = 2 kz:‘, [C1usCorstH-C, ® tion, the full Coulomb interaction between the electrons in

the double quantum well was approximated by function

in real space with only the matrix elements of this interaction

between the lowest two subbands being kept and the remain-

der being set to zert. The use of as-function or point-

where A is the splitting between the symmetric and anti-
symmetric single-particle eigenstates. The leading-orde
change in the ground-state energy dueHto can be calcu-

lated using linear-response theory and is proportional to thgontact interaction is based primarily on a desire to create a

transverge pseudospin susceptibility of doub_le-laye_r SySterTQmple, solvable model that mimics the qualitative features
Qet\fmedt_ln Ref. 50‘ Fotr tTe. ptrelsent mp?el Wt'th no Lﬂte”?yerof the fully interacting system. A quantitative theory would
intéractions -and contact intraiayer interactions, the Ime'require that the interaction be made realistic and also that the

dependent Hartree-Fock approximation for the SusceptibilitBfnteractions be treated more accurately than in the Hartree-

gives Fock approximation. In practice this would require quantum
-3 NOAS (paramagnetic Monte Carlo calculations of some type, which would involve

SE N ) ) an enormous amount of effort and would not be able to ad-

2 =) ~ #Nodo (ferromagneti¢ (4 dress the excitation spectrum that provides the experimental

signature for the state we are proposing. We therefore main-
tain the point-contact form of the interaction here. However,
The fact that the results for paramagnetic and ferromagnetithere is no reason to set matrix elements of this interaction
states are independent of the interaction strength is a specialher than those between the lowest subbands to zero, as in
property of the present model related to both the absence gfrevious work. Indeed, we shall see below that these other
interlayer interactions and the wave-vector independence ohatrix elements are of the same order as the intersubband
the exchange self-energy. ones. Thus we shall include all the matrix elements involving
We see that, in all cases, introducing interlayer hoppinghe lowest two subbands in our calculations.

reduces the ground-state energy, as one might expect when In addition to the issue of intrasubband repulsion, we
the confinement of the electrons to the layers is weakeneavould also like to study the effects of quantum-well asym-
Comparing the energies of the ferromagnetic and antiferrometry on the phase diagram and collective modes of this
magnetic phases, we also observe that the degeneracy kmystem. This asymmetry arises in real quantum wells through
tween these phases is broken by the hopping term. Specifdloy fluctuations across the profile of the well or fluctuations
cally, the antiferromagnetic phase is found to be more stabla the well thickness and we model it by allowing one of the
than the ferromagnetic phaseNfVy<2, implying that the wells to be deeper than the other, as illustrated in Fig. 2.
interlayer hopping opens up a region of antiferromagnetidAlthough we have assumed the effective asymmetry to enter
order between the paramagnetic and ferromagnetic phasdbrough the well depth, the results of our calculations for

— 1 A2V, (antiferromagnetic
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w b B 12k?
i €ak=€nt om* M 9
is measured with respect to the chemical potentiand the
matrix elements of the interaction are
aU v Vab,cd= 00,0, 00,0,V f dz & (2)£n,(2) €5 (D) €0 (2).
(10)
We treat this Hamiltonian within self-consistent Hartree-
Fock theory allowing for the possibility of phases with bro-
ken symmetry in subband and spin indices, but imposing
w translational invariance within each layer. The electronic

Green'’s function in the interacting system can therefore be

FIG. 2. Diagram of the asymmetric double quantum well con- ~.
written

sidered in this paper indicating the well widih, barrier widthb,
confining potentialJ, and potential asymmetrgU. The values of B .

the parameters used here and in previous studies of magnetic insta- Gap(kn) =~ J dTelwnT<TT[Cak(T)Cgk(o)]>7 (11)
bilities of these system@Refs. 14 and 16model a typical GaAs/ 0

AlGa,_As double quantum well wit = 140 A,b=30A and wherek, = (K,iw,), B=1/T (h=kg=1 throughout this pa-
U=220 meV. We consider both symmetrid¢=0) and weakly 5o 4nq the rest of the notation is standatdhis Green’s
asymmetric §U=0.5 mej double quantum wells in what follows. - £, ion is determined self-consistently from the self-energy

. . : .. in the Hartree-Fock approximation
systems with asymmetric well widths should be qualitatively PP

similar.

We therefore consider a three-dimensional electron gas _ T w0 ,
confined along the direction by a potentiaV/.,,«(z) of the Eab_[vab'dc_vacldb]ﬁg e *m Geg(km) (12
type shown in Fig. 2, which interacts through tharee- m

dimensionalpoint-contact potentiaM(R)=V4(R). In the  ang the Dyson equation
absence of the interactiovi(R), the electronic eigenstates

are given by the solution of the time-independent $chro [(i @~ €ak) Sab— 2 ab] Ghe(Kn) = Sac (13
dinger equation under the constraint of constant sheet density
2 d2 T
T d—22+Vconf(2)]§n(2)=6n§n(2), ©) NSZKZ e 190G, (K), (14)
km

wherem* is the effective mass, which is assumed to bewhich determines the chemical potential.
constant throughout the heterostructure. Normalizing these e solve these equations in the following way. Given a

eigenfunctions by double-quantum-well structure defined by the effective mass
m*, sheet densiti,, and the structural parameters shown in
j dz&,(2)|%=1, (6)  Fig. 2, we compute the eigenfunctions and eigenenergies by
solving Eq.(5) with the normalization conditiori6). These
we write the electron annihilation operatgy,(R) as eigenfunctions are used to compute the matrix elements of
1 the interaction via Eq10) in terms of a single parameter V.
_ T iK-r The resulting matrix elements and eigenenergies are em-
VolR)= JA % e n(2)Cnko @ ployed to solve Eqs(11)—(14) self-consistently al =0 fol-

lowing the procedure outlined in Sec. Il B of Ref. 15 and
where R=(r,z) =(X,y,2), k=(ky,ky), A is the transverse includingall matrix elements of the interaction involving the
area of the sample, ang,, annihilates a quasiparticle in lowest two subbands. This procedure yields the ground-state
subbandn, of transverse wave vectdr, and with spin pro- properties of the system as a function of the sheet density
jection o (these conventions will be used throughout thisNg, the interaction paramet&f, and the structural param-

papej. eters of the double quantum wéHig. 2).

Defining a composite subband and spin index To illuminate the properties of the interacting system fur-
=(n,,0,) with summation over repeated indices implied, ther, we also compute the generalized density-density re-
the Hamiltonian for this system is sponse function, which is defined by the analytic continua-

tion of
1

H=2> 5akC;kCak+ﬂ > Vad,bcC;k+qC;kr_chk’Cdk- ) dR . (8.

k k.k',q ® M4(Q,iv,)=— f 7e iQ Rfo drelvnT

Here the quasiparticle energy X(T,[p*(R,7)p*(0,0)]) (19
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to real frequencies. In this expressidnjs the system vol- 10
ume and the generalized density operator is i
p“(R)= 2 ¢ (R)oh, 4 (R), (16) Ve
o0’ 5| /,‘/ 22,22

where¢,(R) is given by Eq.7) ando*=(1,0%,0Y,0%) are

the Pauli matrices. This response function is computed from
the noninteracting response function in subband and spir
space within the conserving approximation described in Sec.
V A of Ref. 15 but with the inclusion of all interaction ma-
trix elements. In addition to the information this response AN T
function reveals about the excitations of the interacting sys-

tem, its imaginary part is proportional to the intensity
observed in resonant inelastic light scattering measure- -5
ments??? allowing us to make contact with experiment.

This is particularly relevant here because searches for the
antiferromagnetic phase in both finfiteand zero® magnetic FIG. 3. Dependence of the interaction matrix elemanjs, /V

fields have employed this technique. [Eq. (10)] on the double-quantum-well asymmetry parametey
(cf. Fig. 2. Shown are the intrasubband matrix elemants, ; (dot-
IV. RESULTS dashed ling and V,; », (dotted ling, the intersubband matrix ele-
ment Vy; ,, (solid line), and the asymmetry-induced matrix ele-
In this section we apply the formalism described in SecmentsVy; ;, (long dashed lineand V,, »; (short-dashed line For
[l to compute the ground-state phase diagram and collectivéhe point-contact interaction employed in this paper, the matrix el-
modes in a typical GaAs/AlGa, _,As double-quantum-well ements are invariant under permutation of the indices, so these ma-
structure that is expected to exhibit the zero-field antiferrotrix elements span the entire set.
magnetic instability. The structure has a well width of 140 A,
a barrier width of 30 A, a well depth of 220 me\f. Fig. 2),
and an electronic effective mass' =0.067n,. For the mo-
ment, we leave the asymmetry unspecified.

V! V(107 A7)

o

dU (meV)

andVy, 5, which are roughly proportional to the sum. The
latter matrix elements would be equal if the electrons were
localized to the wells; the fact that they are nearly so indi-
cates that the wave-function overlap between the wells is
A. Matrix elements small. Additionally, this calculation provides direct evidence
As a first step in obtaining the phase diagram for thisthat the neglect of the intrasubband repulsion employed in
structure, we must solve the time-independent Sdinger  earlier work® is not generally justified for these double-
equation[Eq. (5)] for the lowest two eigenfunctiong,(z)  quantum-well structures. We shall see, however, that their
and eigenenergies, at a fixed value of the asymmetry pa- inclusion in the calculation changes the qualitative picture
rameterdU (cf. Fig. 2 and then compute the matrix ele- only slightly.
ments of the interaction through EAQ.0). Solving Eq.(5) is As the asymmetry is increased from zero, we discern sev-
straightforward and vyields a noninteracting symmetric-eral features. We see that the intrasubband matrix elements
antisymmetric(SAS) splitting of A2,c=€,— €;=2.25 meV Vi111 andV,, o, are approximately equal and increase with
for dU=0. AsdU is increased, this splitting increases to aincreasingdU to saturate at a value about twice ttheJ=0
maximum of 18.5 meV atlU=9.4 meV,; for largedU, the  one. The approximate equality of these diagonal matrix ele-
lowest eigenfunction is localized in one well. Since the strucments follows from the normalization conditig6) imposed
tures examined experimentally have subband splittings oon the two eigenfunctions. The increase in these matrix ele-
the order of 1 me\!®*8we restrict our attention to smallu ~ ments withdU, on the other hand, can be attributed to the
values. increasing confinement of the wave functions of the two sub-
The dependence of the matrix elements on the asymmettyands to opposite wells, similar to what occurs in the pres-
parameter is somewhat more interesting and merits a briafnce of an applied electric fiefd. Thus, at largelU, the two
discussion. Since our model interaction i§ unction inreal  subband wave functions are almost completely localized in
space and we have chosen the wave functions to be real, tipposite wells, enhancing the magnitude of the diagonal ma-
matrix elements defined by E(LO) are invariant under per- trix elements. For the same reason, the intersubband matrix
mutation of the indices. Thus there are only five independentlementV, ,, decreases with increasing asymmetry: As the
matrix elementsVyy 11, Vo222, V1122, Vir12, and Voo, wave functions from different subbands are increasingly lo-
which are displayed in Fig. 3 as a function of the asymmetrycalized, their overlap, and hen&g ,,, decreases to zero.
parameterdU. In a symmetric double quantum weld Since the zero-field antiferromagnetic transition depends on
=0), theVy; 1, and V,, 3 matrix elements vanish by sym- this matrix element, it is clear that large asymmetry is inimi-
metry, but the remaining intersubband,¢ ,) and intrasub- cal to this phase. Based on the small values of the observed
band {1, 1; andV,;, o) matrix elements are equal to within splitting of the lowest two subbands in the experimental
5%. We remark that for more realistic interaction modelssamples?*® however, we expect the actual samples to be in
V1120, Which is roughly* proportional to the difference of a regime in whichVy; 5, is still non-negligible. Hence the
intralayer and interlayer interactions, is weaker than ;;  antiferromagnetic phase is not immediately excluded.
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Finally, we note that the mixing term¢,; 1, and Vy; 5, 1.0
have opposite signs and increase in magnitude dfthto a " " (@)
maximum arounddU=1 meV. The wave function for the 08 | . AF ' FM
lowest (h=1) subband has no nodes and we chose it to be . -
positive. Orthogonality requires that the=2 wave function
have a node and we choose it to be negative in the well o6 | RS r
where|&,(2)|? is largest; with this conventiod; ;,is nega- &) e .o M,
tive andV,, », is positive, as observed in Fig. 3. In addition, ;C’ 1
since these matrix elements must vanish both in the symmet- 04 |
ric (dU=0) limit and whendU is large and the subband
wave functions are localized in different wells, the maximum 0z | : N2
seen in this figure is also expected. These results suggest the
the mode coupling between intra- and intersubband excita-
tions induced by these matrix elements will be maximal 0.0
arounddU=1 meV.

Taken together, the behavior of the interaction matrix el-
ements presented in Fig. 3 indicate that the zero-field anti- 1 : :
ferromagnetic phase will probably not be stable against large |=|\/|1 " (b)
asymmetry in the quantum wells. However, the current ex- .
perimental samples have subband splittings more consistent 0.8 | .- -
with small asymmetry and therefore these samples may be of / N .
high enough quality to observe this phase, at least in prin- el /T '
ciple. To examine this situation further, we shall computethe ™" | FM, - )

N

phase diagram and collective modes for two choiced Wf > BRI = V
in the weak asymmetry regimdiU=0 (the symmetric cage z 04 - T SR
and dU=0.5 meV (the asymmetric cage The following :
subsections discuss the results of these calculations.

0.0 1.0 2.0 3.0
N/ 2NA%q

e .
. LI
.
S e e

0.2 | N . N,

B. Phase diagram

As described in the preceding subsection, the structure of %% 10 20 3.0

the double quantum well yields the eigenenergies and eigen- N, /2NA’ o

functions of the noninteracting system, which are then used _ ) _

to compute the interaction matrix elements up to an overall FIG. 4. Phase diagram ¢) a symmetric andb) an asymmetric
factorV [Eq. (10)]. To be consistent with earlier wolR we double quantum well in terms of the sheet densltyand the inter-
choose to parametrize the interaction strength by the magm’i_ction parameteY,, for the point-contact model described in Sec.
tude of the intersubband repulsidh; ,,=V,, rather than by lll. The points are the numerically computed boundaries between
V, but all the matrix elements arelvzuz;iquzely determined by}he various phases of this model, WhiCh are labeled as follewys:
either parameter. With the structure and interaction strengtﬁnOI N are paramagnetic pha.ses Yv'th one and two Sp'.n'degenerate
fixed, the only other parameter in our model is the shee ubbands occupied, respectively; FMre ferromagnetic phases

i : ith i nondegenerate subbands occupied; and AF is the antiferro-
densityNs. Given these parameters, E¢$1)—~(14) can be magnetic phase. See Fig. 1 for a real-space depiction of these

solved atT=0 to yield the interacting ground state of the phases and Fig. 2 for the structural parameters of the double quan-
system. The resulting phase diagrams in terms of the dimeRgm well. In the figureN, is the single-spin, 2D electronic density
sionless interaction strengtiNoV,, and sheet density of states and\2, is the splitting between the lowest two states in
Ng/2NyA2,sare presented in Fig. 4 for the double-quantum-the noninteracting system. Note that asymmetry reduces the extent
well structure of Fig. 2. In these figureBl, is the single- of the antiferromagnetic phase {h), but does not destroy it alto-
spin, two-dimensional density of states am@AS; e;—€,is  gether.
the subband splitting in the noninteracting system as defined
above. not eliminate the zero-field antiferromagnetic phase from the
Consider the symmetriddU=0) case firsfFig. 4a)]. At phase diagram of the model, despite the fact that the intra-
first glance, this phase diagram is very similar to the oneand intersubband repulsions are of the same afféigr 3).
obtained from the neglect of intrasubband repulsibayen These matrix elements do have an effect on the phase
though this repulsion is included in our calculations. At low diagram, however. At higher densitiesld2NoA2, larger
density, the paramagnetic phase with one spin-degeneratRan approximately Rand strong interactionNgyV,,>1/2),
subband occupiedabeledN; in the figurg is stable, while two different ferromagnetic phases appear. In these phases,
at higher densitiest/2N0A2A5> 1) but weak interaction each quantum well is spin polarized and the polarization vec-
(NoV1,<1/2) the paramagnetic phase with two spin-tors are parallel. They differ in the arrangement and filling of
degenerate subbands occupigabeled N,) is stable. For the interacting bands, as indicated by the labels in the figure:
larger interaction strengths and intermediate densities, we sd#e phase FMcorresponds to an interacting band structure
a broad region in which the antiferromagneti&F) phase with i spin-split subbands occupied. The presence of the fer-
obtains. Thus the inclusion of intrasubband repulsion doesomagnetic phases is expected when intrasubband repulsion
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in present; what is surprising is that the ferromagnetic phases
do not exclude the presence of the antiferromagnetic phase.
As argued in Sec. Il based on a weak-coupling model, the
antiferromagnetic phase is stabilized by a superexchange in-
teraction for intermediate interaction strengths. Similar be-
havior is seen in Fig. @) based on our strong-coupling com-
putations and presumably originates from the same
mechanism. Note that, in the limit of vanishing hopping be-
tween the wellsV;, may be associated withy/2 in the
model of Sec. Il, implying that the phase bound&iyV,,
=1/2 in Fig. 4a) is nothing but the Stoner criterion for the
related Hubbard model. The fact that the model of Sec. Il
does not have a closer correspondence to Hig). fliggests
that the relative magnitudes of the intra- and intersubband
interaction matrix elements, which are all equal in the model
of Sec. Il, are important for determining whether ferro- or
antiferromagnetic phases obtain in a specific region of the
phase diagram.

With the introduction of weak asymmetryd(J=0.5
meV), the qualitative features of the phase diagram do not
change, as seen in Figib}. As before, we find paramagnetic
phases at small interaction strengths, the antiferromagnetic
phase at larger interaction strengths and intermediate densi-
ties, and ferromagnetic phases at larger interaction strengths
and higher densities. The identification of these phases pre-
cisely matches those in the symmetric case of Fig), 4l-
though the position of the phase boundaries have shifted
somewhat. An apparently different feature occurs at low den-
sity and large interaction strength, where an Ffdrromag-
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netic phase has replaced the paramagrétiphase. How- N,/ 2N s

ever, this phase also occurs in the symmetric structure when
NoVio>1, but is cut off in Fig. 4a). It corresponds to the
usual ferromagnetic instability in a single, spin-degenerat
band that obtains when the interaction is sufficiently . . o .
trawell wave vectorq showing the inter<(solid line) and intra-

19
Strc;‘rlltgh. h K i learlv d t dest h (dashed ling collective spin-density excitations as well as the con-
ough weak asymmelry ciearly does not aestroy &, ,m of intersubband particle-hole excitatioshaded area Al-

antiferromagnetic pha?’e’ it does have observable Consﬁw'ough not apparent in the figure, the intersubband collective mode
guences. The most notlceaple effecF of _the asymmetry on th&’oes disperse withy. (b) q=0 intersubband SDE enerdy as the
ground state is that the spin polarizations in the magnetigneet density, is tuned through thél, to AF transition at fixed
phases, which can be obtained from the expectation value Gfteraction strengtiNgV;,=0.55[c. Fig. 4@]. Note that the SDE
the density operatof16), are no longer of equal magnitude (solid line) softens completely at the transition point and that the
in the wells. This is an obvious consequence of an asymmetollective mode appearing on the antiferromagnetic side
ric structure that nonetheless does not disturb the identificaig/2N,A2,5>0.919) is the amplitude mode of the antiferromag-
tion of ferro- and antiferromagnetic phases since one canetic order parametedashed ling The dot indicates the point in
determine whether the spin polarizations are parallel or antiparameter space presented(@. In this figure,N, is the single-
parallel without referring to their magnitudes. spin, 2D electronic density of states2, is the energy separation

of the lowest two subbands in a noninteracting double quantum
well, Agas IS the splitting in the interacting system, arqi
The effects of asymmetry on the antiferromagnetic phasg?__m*AgAS{hz. The intrasubband particle-hole continuum is not
cannot be fully appreciated based on the ground-state proqu'cated'
erties alone, but must be augmented by an examination of the

excitation spectrum of the system. We focus on the spinfor experiment and we shall discuss them in this context. For
density excitations in what follows since they are the excita-concreteness, we fix the interaction strength and sweep the
tions most strongly coupled to the magnetic nature of thesheet density through the second-order transition fronlNthe
ground state and can also be probed experimentally by Rde the AF phase in these calculatiofts. Fig. 4).

man scattering>?® For these calculations, we compute the As an introduction to the general phenomenology of spin-
spin-spin response functidnu=3 in Eq. (15)] for the ap- density excitations in double quantum wells, consider the
propriate ground state as discussed in Sec. Ill and identifgymmetric §U=0) case first. By appropriately arranging
the collective modes by peaks in the imaginary part of thighe light scattering geometry, Raman scattering can selec-
response function. Since this procedure is used in the Ramdively probe the intersubband spin-density excitatitii,
scattering measurements, our results have direct implicationghich, in our approximation, have the form shown in Fig.

FIG. 5. Collective spin-density excitations in a symmetric
ouble quantum well of the type shown in Fig. 2 widtu=0. (a)
ollective mode spectrum in terms of excitation enekggnd in-

C. Collective modes
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5(a). In addition to a continuum of intersubband particle-hole
excitations, there is a collective SDE with a finite energy at
g=0 that disperses with increasirgy toward the particle-
hole continuum. The magnitude of tlge=0 SDE energy is
reduced from the subband splittimgs,s by vertex correc-
tions appearing in the response function due to the exchange
interaction?2% In addition, there is an intrasubband SDE
that has a linear-img+ dispersion in our model, shown by the
dashed line in Fig. &). If the well is symmetric, this mode
will not appear in Raman spectra taken in a scattering geom-
etry meant to observe intersubband excitations. A symmetric
system with identical quantum wells is invariant under inver-
sion about the midpoint between the wells so that all states
can be classified by a parity quantum number. Intersubband
excitations, which are odd, and intrasubband excitations,
which are even, do not interact and can cross as seen in Fig.
5(a).

As the density increases in our model, the exchange-
induced reduction in thg=0 intersubband SDE energy in-
creases until the mode softens entirely, as illustrated in Fig.
5(b). This complete softening was seen initially in time-
dependent, local-density approximation calculations of the
SDE spectrum in these systems and was evidence for the
zero-field antiferromagnetic pha¥®An analysis of the real-
space spin response identified this softening as an antiferro-
magnetic transition of the well spin polarizatiolsAs the
density is increased past the antiferromagnetic transition, the
intersubband SDE turns into the collective mode associated
with amplitude fluctuations of the antiferromagnetic order
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parametef?® Experimentally, then, one expects to see a com-
plete softening of the intersubband SDE and the recovery of FIG. 6. Collecti i densit it , »
this amplitude mode as the density is tuned through the tran- .~ ™ ofiective spin-densily excitations in a weakly asym-
sition metric double quantum well of the type shown in Fig. 2 with

’ . 0.5 meV. The organization of and notation in the figure are the

The presence of asymmetry in the double quantum wel] ' . . . ; _

licates this pict hat. The SDE ¢ f same as Fig. 5 with the interaction strength fixed\NgV,,=0.55
complicates _|s picture somewnat. e spec_rum Ohnd the antiferromagnetic transition occurring Ng/ZNOAgAS
our asymmetric U= 0.5 me\) double quantum well illus-

. : . . =0.698. As seen iffi@), the asymmetry induces a coupling between
trates these complications and is shown in Fig).6Most the inter- and intrasubband spin-density excitations that results in

noticeably, the asymmetry mixes the intra- and intersubbange ayoided crossing of inter- and intrasubband spin-density disper-
excitations, so that even in scattering geometries designed t9ons and a mixing of intrasubband particle-hole excitations with
measure only intersubband response, both intra- and intefhe intersubband continuum. Iib), one sees that this mode cou-
subband excitations will appe&iThis effect is seen through piing also prevents the intersubband SDE from softening when go-
both an enlarged particle-hole continuum and the presence @fg from the paramagnetic to the antiferromagnetic phase.

a damped mode in the intersubband spectrum correspondirﬁ

at it is the intrasubband SDE that collapses. Specifically,
he mode coupling between inter- and intrasubband SDE’s
ushes the latter mode down in energy atcglleffectively

to the intrasubband SDE. Furthermore, the asymmetr
couples the intra- and intersubband SDE’s themselves, lea

:?Ig t(é(g)ntivl(:);gedag)rossmg, which may be seen by comparin educing the group velocity of this mode. Approaching the
This avoided crossing effectively prevents the imersub_gntlferromagnetlc transition, thg—-0 group velocity of the

band SDE from completely softening on entering the antiferiNtrasubband SDE decreases until it vanishes at the transition

romagnetic phase, as shown in Figb)6 In this figure, one point. The resulting phase has the character of the real-space

sees that as the density is tuned toward the antiferromagneffPi" density profile of the intrasubband mode, which direct

transition, theq=0 intersubband SDE energy decreases to Lalculation reveals to be antiferromagnetic. The character of
finite vallje. A further increase of the density into the anti—the intrasubband excitation at smalis therefore very simi-

ferromagnetic phase reverses this trend and the energy of tijg%rttho the :jntersublla_andbeglc\:lltatlotrrl] mtthe syn_lrrl[_etrlc VYI_?]” du_te
amplitude mode of the antiferromagnetic order parameter int© ("€ Mode coupling between the two excitations. Thus 1ts

creases, resulting in a cusp. softening can lead to an antiferromagnetic transition without

Despite the fact that the intersubband SDE does not conjhconsistency.
pletely soften, the antiferromagnetic phase appears, demon-
strating that this softening is a sufficient but not necessary
signature of the zero-field phase transition. We expect some In this paper we have examined the origin and robustness
mode to soften at this transition, however, and it turns oubf a zero-field antiferromagnetic phase in double quantum

V. CONCLUSION
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wells predicted in previous calculatioffs*® Based on a mate the temperatures and densities at which exchange-
simple model, we determined that such magnetic phases averrelation-induced phase transitions occur. The source of
a direct consequence of the magnetism expected at low dethis difficulty lies in the neglect of fluctuations in the theory,
sities in two-dimensional systems where interaction effectsvhich play an important role in the low-dimensional struc-
dominate. In particular, magnetic phases with either ferro- okyres considered. If one goes to densities and temperatures
antiferromagnetic spin polarizations are possible and a supefteep below the critical values of these parameters, we expect

exchange interaction between the wells leads to a region gat the mean-field theory will give an accurate qualitative
intermediate densities and interaction strengths where the icture of the phas® Additionally, impurities or defects

tiferromagnetic phase is preferred. present in real samples may suppress the magnetic phases in

By performing a detailed self-consistent Hartree-Fock cal-a sample-dependent way.

\(/:vlfgla:(;)grgsns: dn:\(,)vgefle(:uj?s:?e?togﬂec;?u?gé:r(;}hwe\l,:}ggg.tems’ In sum, work on the single-layer system indicates that its
) P 9 ferromagnetic state is unlikely to occur for electron-gas den-
trasubband repulsion and asymmetry of the heterostructureit arameters smaller than~10. a much lower densit
Our results support and extend those of Ref. 15. SpecificallyS Y P L an ' -nsity
an would be indicated by the Hartree-Fock approximation,

we found that the antiferromagnetic phase is stable in a Iargg hich th - he f .
region of the model phase diagram despite the presence &' Whic the transition to the ferromagnetic state occurs at

intrasubband repulsion that is as strong as the intersubbafig™2- The present work suggests that the two-layer antifer-
repulsion that drives the antiferromagnetic instability. Thefomagnetic phase, as well as two-layer ferromagnetic phases,
intrasubband repulsion does, however, introduce ferromags likely to be present in double-layer systems when the den-
netic phases, producing a rich phase diagram. Note, howsity per layer approaches the low value at which the single-
ever, that no charge ordering phases of the type discussed liyer ferromagnetic instability occurs. For the GaAs systems
Refs. 2—10 were observed, even though our formalism digtudied experimentally it therefore seems unlikely that the
allow for that possibility. In addition, both ferro- and antifer- antiferromagnetic state will occur for densities per layer sub-
romagnetic phases persist in the presence of asymmetry stantially larger thar=10° cm 2. However, it is exceed-
the quantum-well structure; indeed, the phase diagram imgly difficult to estimate the transition density theoretically
qualitatively unaffected by its introduction. Asymmetry doesand one must rely on experiment.

have a strong influence on the collective mode spectrum, Currently, a single experimental publication regarding a
though, and induces a mode coupling between inter- andearch for the antiferromagnetic phase has appeared in the
intrasubband spin-density excitations that prevents the lattditeraturé® and the results are equivocal. The authors of this
from completely softening at the antiferromagnetic phasestudy report inelastic light scattering measurements of the
transition. Instead, the intersubband spin-density excitatiofong-wavelength intersubband collective spin-density excita-
exhibits a cusp at the transition, while tqe-~0 group ve- tions as a function of density in a double quantum well that
locity of the intrasubband excitation vanishes. The couplingvas expected, on the basis of the original theoretical work, to
between these two modes nonetheless lends an antiferromasfiow the antiferromagnetic instabilit§. Instead of com-
netic character to the intrasubband excitation in the asympletely softening at a finite density, as predicted in earlier
metric system and enables the collapse of its group velocityork,'**the intersubband SDE shows no dramatic structure
to yield the antiferromagnetic phase. down to the lowest densities measutédhese results could

Taken together, these results strongly indicate that if afbe accounted for in at least two different ways. The most
exchange-correlation-induced ferromagnetic transition oclikely explanation is that the electron density of the sample,
curs in a single-layer system at sufficiently low density, thenof order 13* cm~2,'® is above the critical density for the
the antiferromagnetic phase in a double-layer system shouldntiferromagnetic transition. Alternatively, the calculations
also occur. However, the issue of whether or not the ferroin this paper demonstrate that slight asymmetry in the double
magnetic phase obtains in a single two-dimensional layer iguantum well will prevent a complete softening of the inter-
not settled. Variational Monte Carlo calculatiéhé’ show  subband SDE and yield a cusp as a function of density. Since
the presence of a ferromagnetic phase between the paramabe energy of the amplitude mode in the antiferromagnetic
netic and Wigner crystal phases, but Green’s-function Montghase is similar to that of the intersubband SDE away from
Carlo computatiorfs find no intervening ferromagnetism. the critical densitycf. Fig. 6b)], measurements at a closely
More recent numerical work based on the Monte Carlospaced grid of densities may be required to detect this cusp.
techniqué®3!® once again favors the existence of a ferro-In addition, the cusp may be broadened by impurity or fluc-
magnetic transition. Other calculations using density-tuation effects that are beyond our mean-field theory, further
functional theory in the local-spin-density approximatil?  increasing the difficulty of detecting the transition. Thus the
also support the existence of a ferromagnetic transition aturrent experimental results cannot exclude the existence of
sufficiently low density. Thus, although a definitive demon-the zero-field antiferromagnetic state, and its robustness as
stration of ferromagnetism in a single, two-dimensional layerdemonstrated by the calculations in this paper leaves us op-
is lacking, a large body of evidence exists that firmly sup-timistic that such a unique exchange-driven phase can occur
ports this hypothesis. in nature.

The precise conditions under which these phases would Note added in proofWe recently became aware of the
be observable are somewhat harder to elucidate based on tverk by F. A. Reboredo and C. R. Proeffowhich also finds
mean-field theory presented in this paper. The principle difa stable antiferromagnetic phase in asymmetric double quan-
ficulty is that mean-field calculations will tend to overesti- tum wells within a density functional calculation.
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