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Kinetic theory of high-field transport in semiconductors
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The paper deals with electron transport in a semiconductor of arbitrary band structure and electron-phonon
interaction, subjected to a high, but not necessarily homogeneous, electric field. The Boltzmann transport
equation is simplified under the assumption that the occupation of momentum space is almost isotropic, as is
the case for a drifting, not ballistic, electron. A closed-form equation for the electron energy distribution
ensues: the equation is of the multivariate Fokker-Planck type in four-dimensional energy-position space. The
typical relative departure between the Boltzmann and Fokker-Planck transport equations is the ratio of the
hard-phonon energy to the average electron energy. Previous electron-transport equations in solids and gases
are recovered as instantiations of ours. The hierarchies of scales underlying the derivation of the Fokker-Planck
equation are those used in the lucky-drift model.@S0163-1829~98!04204-0#
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I. PURPOSE AND SCOPE

The interest of an analytical description of high-fie
transport in semiconductors is obvious. It has been rema
that a good understanding of semiclassical transport sh
be achieved prior to handling quantum effects.1 Semiclassi-
cal transport is contained in Boltzmann’s kinetic equation
which a realistic band structure should be used, and the c
plexity of the problem has led to the use of Monte Ca
solution techniques. A comparison of Monte Carlo simu
tions in Si in homogeneous electric fields has disclos2

‘‘significant, often vast, difference even between mode
which would at first appear to be similar.’’ It was late
shown3 that two models yielding identical predictions in h
mogeneous fields may exhibit considerable discrepanc
inhomogeneous fields. In view of these findings, it is de
able to devise a theoretical tool as analytical as possibl
order to achieve better physical insight and simplicity
computation in transport problems. Statistical mechanics
always afforded a simpler approach than kinetic theory,
this has led us to set up a Fokker-Planck description
transport.4 While the former considers the momentum-spa
occupation functionf (p), the latter is concerned with th
energy-space occupationf 0(E). The Fokker-Planck equatio
is a simpler master equation which is used as an approx
tion to the actual one, i.e., Boltzmann’s. In Ref. 4, on t
basis of van Kampen’s general scheme,5 we wrote that the
approximate equation could in principle be derived from
actual one through an expansion in powers of (\v/Eav)

1/2,
and is accurate to order (\v/Eav)

1/2, where\v is the typical
phonon energy~optical and zone-edge acoustic phonons, c
lectively termed hard phonons!, andEav is the average elec
tron energy.

Comparison between Fokker-Planck and Monte Ca
predictions in homogeneous fields demonstrated6 that simple
convergence of the Fokker-Planck distribution towards
exact one always holds as the fieldF→1`, and brought out
the condition for uniform convergence over the entire ene
range. Recently, we showed7 that the Fokker-Planck machin
ery has the inborn capacity to take up transport in inhom
geneous fields as well, where the energy distribution exhi
570163-1829/98/57~4!/2280~6!/$15.00
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explicit position dependence, not accountable for within
dependence of field with position. Again the Boltzmann a
Fokker-Planck predictions agreed with each other in the
ample considered. In the present article, we want to estab
the mathematical link between both master equations an
physical meaning. Section II develops the Boltzmann kine
equation in the case of drifting particles, whereby t
Fokker-Planck equation is derived, and Sec. III briefly
views the links with early and recent works and disclos
their common background in physical terms.

II. KINETIC THEORY OF DRIFTING PARTICLES

A. The problem

The particle’s motion is semiclassically pictured as a
quence of unscattered flights controlled by the crystal pot
tial and the applied electric forceqF ~q denotes the charge o
the particle!, separated by collisions making the crystal m
mentump change abruptly and at random, at a rate

1/t~p!5E E E Wp,p8d
3p8/h3 ~1!

~taking a unit volume of material!, whereWp,p8d
3p8/h3 is

the probability per unit time that an electron with cryst
momentump be scattered to the momentum-space volu
d3p8 aboutp8, andh is Planck’s constant. For definitenes
scattering with lattice vibrations is considered herein, but
nearly elastic scatterings may be lumped together inWp,p8 ,
while deeply inelastic mechanisms such as hole-electron
creation are waived.

The crystal potential determines the spectrum of stati
ary statesE(p) and the group velocityvg5]E/]p ~the band
index is omitted for simpler notation!. If r is the position of
the particle, the unscattered motion obeys

dr /dt5vg~p!, ~2a!

and the superimposed effect ofF results in

dp/dt5qF~r ,t !. ~2b!
2280 © 1998 The American Physical Society
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57 2281KINETIC THEORY OF HIGH-FIELD TRANSPORT IN . . .
An important feature of the spectrum is the density of sta
per unit energy

N~E![E E E d@E2E~p!#d3p/h3. ~3!

Given the dispersion relationE(p) and the scattering law
the goal of kinetic theory is to determine the momentu
space occupation functionf (p,r ,t) at locationr at time t. It
is the solution of the Boltzmann~or Lorentz8! transport equa-
tion

~] f /]t !1vg~p!•~] f /]r !1qF~r ,t !•~] f /]p!5S$ f %, ~4!

whereS$ f % is the scattering integral

S$ f %[E E E @Wp8,p f ~p8,r ,t !2Wp,p8 f ~p,r ,t !#d3p8/h3.

~5!

The electron energy distribution is determined by t
energy-space occupation functionf 0(E,r ,t), which is the
mean value, denoted by(•••)E of f (p,r ,t) over a constant-
energy surfaceE(p)5E,

f 0~E,r ,t ![@ f ~p,r ,t !#E. ~6a!

A function of cardinal interest is the deviationf 1 of f from
f 0 ,

f 1~p,r ,t ![ f ~p,r ,t !2 f 0@E~p!,r ,t#, ~6b!

since the average drift velocityvd , defined as thep-space
average ofvg , is given by

vd5

EEE vg~p! f 1~p,r ,t !d3p

EEE f 0~p,r ,t !d3p
, ~7!

owing to E(2p)5E(p).

B. The idea of drift

If u f 1u! f 0 , the momenta corresponding to a given ene
are almost evenly distributed, and the drift velocityvd is
much less than the instantaneous velocityvg . This is what is
usually meant bydrift, the opposite notion being that of
streamingparticle whose average velocity~directed along
the field in an isotropic or cubic material! is of the order of
the instantaneous velocity. In Wannier’s words,9 a drifting
particle stores large amounts of energy gained in the fiel
the form of random motion, not visible in the drift motion
The condition for electron transport to exhibit that feature
drift can be understood from Baraff’s work10 where the pas-
sage from streaming to drifting electrons is associated w
the average energyEav largely exceeding the collisional loss
namely, a constant optical-phonon energy\v. If Eav is about
\v, the electron’s energy almost vanishes after the collis
and so too does the velocity. The subsequent acceleratio
gives rise to a velocity essentially directed along the elec
force, that is, the electrons stream down field, andvd is of
the order ofvg . In contradistinction, ifEav largely exceeds
\v, the velocity after the collision is little changed,except
s
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for its direction, the memory of which is lostin the absence
of polar scattering, so that the random motion overwhel
the average one. The contrast between the streaming
drifting states may be envisioned differently. Calll the mean
free path. The typical energypossiblygained from the field
between two scattering events isqFl, coming about for an
electron moving downfield, while the typical energyactually
gained is\v, since on the average it should balance the lo
If qFl@\v, energy balance prevents the electron from p
ceeding along the electric-field line, and the trajectory
‘‘folded’’ so that the average direction cosine of the insta
taneous trajectory with the field line is11 vd /vg'\v/qFl.
@Momentum balance and the constancy of effective masm
entail mvd5qF(l/vg), whence the typical energyEav

'mvg
2'(qFl)2/\v, and\v/qFl'(\v/Eav)

1/2, which is
the parameter expected to be small.#

In the drifting state, Baraff’s theory reproduces Wolff’s,12

which assumesu f 1u! f 0 from the outset, but allows for col
lision anisotropy. Then a collision does not randomize
electron’s motion any more, but just lengthens or short
the mean free path~defined as the mean distance travel
before the direction of motion is randomized!, thereby en-
hancing or reducingEav. While the anisotropy renormalize
the mean free path,13 the drift condition keeps the same, viz
Eav@\v: the scattering inelasticity should be small. Th
link between the small inelasticity andvd!vg is indeed
ubiquitous, and has been noticed in the case of electron
neutral gases14 as well as in solids.

We shall henceforth consider drifting particles and d
velop the Boltzmann transport equation under the condit
u f 1u! f 0 . In the remainder of this subsection, an equation
derived relatingf 1 to f 0 , and Sec. II C gives a closed-form
equation onf 0 .

There are many published works dealing with the re
tionship between the ‘‘isotropic’’~in the sense of constant
energy average! and ‘‘anisotropic’’ ~deviation from the av-
erage! parts off . Regarding electron transport in gases, th
are reviewed in Huxley and Crompton’s book,15 while in
semiconductors the relationship has been derived in the
tially uniform case by the present author4 following
Shockley.16 In the right-hand side of Eq.~5!, since\v!E
the transition probabilitiesWp,p8 connect states lying ap
proximately on the same energy surfaceE(p)5E, so that

Wp,p85Tp,p8d@E~p!2E~p8!#, ~8!

S$ f %52 f 1~p!/t~p!1E E
E

f 1~p8!Tp8,pdSp8 Y uvg8uh
3,

~9!

wheredSp8 is the surface element aboutp8. In the left-hand
side of Eq.~4!, f is replaced byf 0 . Proceeding likewise in
the spatially nonuniform case yields an integral equation
f 1 involving f 0 :

~] f 0 /]t !1vg~p!•~] f 0 /]r !1qF•~] f 0 /]p!

52 f 1~p!/t~p!1E E
E

f 1~p8!Tp8,pdSp8 Y uvg8uh
3.

~10!
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2282 57E. BRINGUIER
At steady state the problem is solved~see, e.g., Moll’s
textbook17! if the right-hand side is cast in the relaxatio
time form 2 f 1(p)/tc(p). It occurs in the models dealt with
in Ref. 6, wheretc is the familiar relaxation time involving
the persistence ratio of velocity. Thegeneralsolution can be
obtained18 by introducing the vector mean free pathl(p),
defined by the auxiliary integral equation

l~p!2t~p!E E
E

l~p8!Tp8,pdSp8 /uvg8uh
35vg~p!t~p!.

~11!

Performing the scalar product of Eq.~11! and (] f 0 /]r )
1qF(] f 0 /]E) shows that

f 1~p,r ,t !52l~p!•@~] f 0 /]r !1qF~] f 0 /]E!# ~12!

satisfies Eq.~10! if the time dependence is dropped. In ca
of isotropic scattering@i.e., Tp,p8 only depends onE(p)#,
l(p) is just vg(p)t(p); and in case a persistence ratio
velocity can be defined,l(p)5vg(p)tc(p). Otherwisel(p)
is in general not parallel to the velocity, and can be obtain
from a variational principle.18

The neglect of the time dependence (] f 0 /]t) in obtaining
f 1 ~which in vanishing fields entails the conventional dri
diffusion equation17! deserves discussion. Genera
speaking,19 energy, and thence the energy occupationf 0 ,
vary over the energy-relaxation timetE , whereas momen
tum, and thence the momentum occupation, specified bf 1
over a constant-E surface, change over the momentum
relaxation timetc , which is of the order of the scatterin
time t unlesspolar scattering prevails, in which case the dr
condition presumed here would be invalid. Now under
very same condition,tE /t'Eav/\v@1, wherefore the
‘‘fast’’ function f 1 follows in time the ‘‘slow’’ function f 0 ,
the time derivative of which may consistently be disregard
in obtaining f 1 . This is in keeping with our statistical
mechanical approach to high-field transport,4 where terms of
order (\v/Eav)

1/2'vd /vg are retained while terms of orde
\v/Eav are dropped.

C. Fokker-Planck equation

Once f 1 is known, the particle current densityj is ob-
tained as

j5E E E vg~p! f 1~p,r ,t !d3p/h3 ~13!

~f 0 is even inp while vg is odd!, and the spectral curren
density, denoted byJ, is obtained by picking out the contri
bution from the energy shell@E,E1dE#, that is,

j5E
0

1`

JdE, ~14a!

J5N~E!@vg~p! f 1~p,r ,t !#E . ~14b!

Substituting Eq.~12! for f 1 yields, in Cartesian coordinate
@r5(x1,x2,x3)# and using Einstein’s summation conventio

Ji52N~E!$vg
i ~p!l j~p!@~] f 0 /]xj !1qFj~]F0 /]E!#%E ,

~15!
d

-

e

d

,

In the first term involvingf 0 the spatial derivative and en
ergy average may be interchanged, whence

Ji52
]

]xj @Di j ~E!n~E,r ,t !#2qFjN~E!Di j ~E!~] f 0 /]E!,

~16!

where we have defined

Di j ~E![@vg
i ~p!l j~p!#E , ~17!

and

n~E,r ,t ![N~E! f 0~E,r ,t ! ~18!

is the spectral carrier density. Introducing a total derivat
in the last term of Eq.~16! yields

Ji52
]

]xj @Di j ~E!n~E,r ,t !#2qFj

]

]E
@Di j ~E!n~E,r ,t !#

1qFjm
i j ~E!n~E,r ,t !, ~19!

where, by definition,

N~E!m i j ~E![
]

]E
@N~E!Di j ~E!#. ~20!

~The mobility so defined20 is the ratio of a velocity to an
applied force qF.! The current density describes how th
particle flows in real space; in order to describe its behav
in energy space, we introduce the coordinatex05E and the
corresponding componentJ0 of the spectral current density

~J0!F5qF•J, ~21!

where the subscriptF means that only the energy exchan
with the field is accounted for in the motion along thex0

axis. Sincex0 andx1, x2, x3 have different physical dimen
sions, the four-dimensional continuum (E,r ) is not metric,
and ordinary~i.e., contravariant! components should not b
identified with covariant ones. From the foregoing~Latin in-
dicesi , j running from 1 to 3!,

~J0!F52qFi

]

]xj @Di j ~E!n~E,r ,t !#

2qFiqFj

]

]E
@Di j ~E!n~E,r ,t !#

1qFiqFjm
i j ~E!n~E,r ,t !. ~22!

Rearranging terms so as to introduce total derivatives yie

~J0!F52
]

]xj @qFiD
i j ~E!n~E,r ,t !#

2
]

]E
@qFiqFjD

i j ~E!n~E,r ,t !#1FqFiqFjm
i j ~E!

1Di j ~E!
]~qFi !

]xj Gn~E,r ,t !. ~23!

The contribution (J0)ph from the phonon bath does not ap
pear here since the small scattering inelasticity has b
dropped out in Eq.~9!. If only terms of first order in\v
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57 2283KINETIC THEORY OF HIGH-FIELD TRANSPORT IN . . .
are retained,4 then (J0)ph is the average rate of energ
loss to phonons, Wph(E)n(E,r ,t), where Wph(E)
52@\v(p2p8)/t(p8)#E for phonon emission@\v~p! is the
phonon dispersion relation#. In the semiclassical picture
phonon scattering is instantaneous and does not shift the
ticle in real space, thus does not contribute toJi . Adding up
(J0)ph and (J0)F ,

J05FqFiqFjm
i j ~E!1Di j ~E!

]~qFi !

]xj 1Wph~E!Gn~E,r ,t !

2
]

]x0 @qFiqFjD
i j ~E!n~E,r ,t !#

2
]

]xj @qFiD
i j ~E!n~E,r ,t !#, ~24a!

Ji5qFjm
i j ~E!n~E,r ,t !2

]

]x0 @qFjD
i j ~E!n~E,r ,t !#

2
]

]xj @Di j ~E!n~E,r ,t !#. ~24b!

The latter equations are drift-diffusion equationsin (E,r )
spaceand yield a multivariate Fokker-Planck equation on
combined with the continuity equation

Jb5vd
b~E,r ,t !n~E,r ,t !2

]

]xa @Dba~E,r ,t !n~E,r ,t !#,

~25a!

]n

]t
1

]Jb

]xb 50, ~25b!

where

vd
0~E,r ,t ![qFi~r ,t !qFj~r ,t !m i j ~E!1Di j ~E!

]~qFi !

]xj

1Wph~E!, ~26a!

vd
i ~E,r ,t ![qFj~r ,t !m i j ~E!, ~26b!

D00~E,r ,t ![qFi~r ,t !qFj~r ,t !Di j ~E!, ~26c!

D0i~E,r ,t ![Di0~E,r ,t ![qFj~r ,t !Di j ~E!, ~26d!

and Greek indices run from 0 to 3. The vector (vd
b) is a local

drift velocity in (E,r ) space, and describes the instantane
motion of the centroid of a sharply peaked distributionn,
while the tensor (Dab) describes the spreading ofn in (E,r )
space. Equations~25a! and ~25b! are the three-dimensiona
version of the multivariate Fokker-Planck equation est
lished earlier7 from a statistical-mechanical standpoint b
passing kinetic theory. The kinetic-theoretical derivati
rests on the assumptions of drift~u f 1u! f 0 , or vd!vg! and of
small inelasticity (\v!Eav), which are related to each othe
through (\v/Eav)

1/2'vd /vg . The equations so derived ar
valid up to order (\v/Eav)

1/2, and the typical error is of
order\v/Eav.

Integration of Eq.~25b! over E gives the familiar, three-
dimensional continuity equation. Integration of Eq.~25a!
ar-

s

-

over E gives a drift-diffusion expression for the three
dimensional current densityj , in which the mobility and dif-
fusion coefficient depend on position7 throughn(E,r ,t). Ap-
plications of such high-field transport equations are defer
to a future paper.

D. Boundary conditions

Partial-differential equations require boundary conditio
In the present problem, we needn(x0,x1,x2,x3,t50) and the
four-dimensional current density on the boundaries. Re
space boundaries determine the three-dimensionalJ accord-
ing to their physical features. Energy-space boundaries
such5 that J050 at x050 and1`.

Ballistic transport~in which electrons stream along th
field! is excluded and the Fokker-Planck set of equatio
should be applied in a region in (E,r ) space where electron
drift. Therefore ballistic effects should be accounted
through a boundary condition, as was demonstrated in
dimension in Ref. 7. We just give an outline of the method
three dimensions. Take, for simplicity, the steady-state c
@i.e., less than 1/tE ~microwave! frequencies#, and denote by
qV(x1,x2,x3) the electric potential energy. Consider th
cold electrons (E50) are injected on the equipotential su
faceV50. They first undergo a ballistic flight during whic
x02qV(x1,x2,x3) is constant50, and the Fokker-Planck
equations are not applicable. Define a curvilinear coordin
system (x80,x81,x82,x83) such that x805x0, x8152x0

1qV(x1,x2,x3), andx82, x83 locate a point on an equipo
tential surface~that is, constantx82 and x83 define an
electric-field line!. The obvious generalization of Eq.~25b!
involves the covariant divergence

DJ8b

Dx8b 50,

and the new initial condition involves the surface over whi
ballistic motion ceases and converts to drift motion, that
x8150. Afterwards,x81 ~the energy released by the electro
while drifting towards largerV’s! takes positive values. The
distributionn(x80,x8150,x82,x83) is determined by ballistic
motion starting from zero energy.

III. LINK WITH OTHER WORKS

A. Charged particles in gases

The motion of a free particle of massm in a neutral gas is
described byE5p2/2m, andWph(E) should be understood
as the rate of energy loss in collisions with the neutral g
atoms. If the particle’s mass is much smaller than the at
massM , scattering is almost elastic, and the average rate
loss is 22mE/M . Then scattering isotropy entailsl5vgt
and Di j (E)5(vg

i l j )E5D(E)d i j , with D(E)[vgl/3. The
mobility tensor m i j (E) is given by Eq. ~20! and equals
m(E)d i j , with

m~E!5
1

3
A 2

mE

d~El!

dE
. ~27!

Then,J0 of Eq. ~24a! reads, in one dimension~F along x1

5x!,
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2284 57E. BRINGUIER
J05vd
0~E,x,t !n~E,x,t !2

]

]x0 @D00~E,x,t !n~E,x,t !#

2
]

]x1 @D01~E,x,t !n~E,x,t !#, ~28a!

where

vd
0~E,x,t !5~qF!2m~E!1D~E!

]~qF!

]x
22

m

M
E,

~28b!

D00~E,x,t !5~qF!2D~E!, ~28c!

D01~E,x,t !5qFD~E!. ~28d!

Specializing further Eqs.~28a!–~28d! to a homogeneousF,
we obtain Druyvesteyn’s result@Eq. ~6! of Ref. 14#. More
general kinetic equations governing high-field electron tra
port in gases have been investigated and are reviewe
Huxley and Crompton’s book,15 and they are equivalent t
our Fokker-Planck equations. The fact that Boltzmann’s
netic equation combined with the assumption of d
(u f 1u! f 0) yields an equation of the Fokker-Planck type
energy space@or here, in v space,v5uvgu5(2E/m)1/2#
seems to have been first pointed out by Davydov21 and ap-
plied to solids.22 It was later worked out by Wannier23 who
found that no less than eleven integrations were needed.
pression~27! for m(E) appearsinter alia in articles dealing
with charged particle transport in Charpak’s wi
chambers,24 and is identical to Shockley’s formula in sem
conductor physics,25 written in terms oft5l/v. Energy-
independent t yields Drude’s formula m5t/m, while
energy-independentl leads to Townsend’s26 m(E)
52t(E)/3m.

B. Electrons in semiconductors

Analytical theories of electron transport in solids beari
relation to the present work are reviewed in Refs. 27, 28,
4. In recent years, two papers29,30have been published in th
mathematical literature overlapping ours. Technically spe
ing, diffusion scalingof the Boltzmann equation is per
formed, i.e., space and time scales are dilated accor
to29,30

r 85ar , ~29a!

t85a2t, ~29b!

f a~p,r 8,t8!5 f ~p,r ,t !, ~29c!

and a Hilbert expansion of the occupation function fora→0
is introduced,

f a5 f ~0!1a f ~1!1a2f ~2!1••• . ~30!

The scaling parametera is then taken to measure the inela
ticity of collisions,

a25\v/Eav, ~31!

in our notation,31 and the collision operatorS$ f % is expanded
in powers ofa2, yielding Eq.~9! as the zeroth-order~elastic!
-
in

i-
t

x-

d

k-

ng

term. At ordera0, it is found thatf (0) actually is a function
of E(p), that is, f (0) is our f 0 . At order a1, the integral
equation~11! is obtained and solved by introducing the ve
tor mean free pathl. @In Ref. 30, a possible dependence ofl
on r due to inhomogeneous ionized-impurity scattering
envisaged; then,Di j 5Di j (E,r ) and ourvd

0 should be written
qFiqFjm

i j (E)1]@qFiD
i j (E,r )#/]xj1Wph(E) instead of

Eq. ~26a!.# At order a2, a solvability condition is obtained
which entails an equation onf (0) that in essence is identica
to our Eq.~25b!.

The equivalence between the Fokker-Planck approach
the Hilbert expansion of the Boltzmann transport equat
just lies in the fact that both are based upona!1. In Ref. 4
dealing with uniform transport, it was stated that the Fokk
Planck equation is an approximate master equation whic
principle could be derived from the true one~i.e., Boltz-
mann’s! by means of van Kampen’sV expansion,5 and that
the master equation is of diffusion type~thereby allowing use
of a nonlinear Fokker-Plank equation!. That statement is
borne out by the kinetic-theoretical treatment of this arti
and the more explicitly systematic ones of Ref. 29@in the
case of isotropic scattering,l(p)5vg(p)t(p)# and 30@in the
general case,l~p! not collinear tovg(p)#. It turns out that
V21 is justa. @For completeness, we mention a study32 of a
completely different physical system governed by a line
Boltzmann equation~i.e., of the Lorentz type8! which can be
approximated by a Fokker-Planck equation far from equil
rium.#

The physical meaning of the time scalingt85a2t has to
do with the difference between the relaxation times of ene
and momentum19 tE and t which are related throughtE
'tEav/\v5a22t. Space scalingr 85ar has to do with the
difference between the length scales corresponding to timt,
over which the motion is ballistic~mean free pathl5vgt!,
and to timetE , over which the particle drifts~energy relax-
ation length19 lE5vdtE!. Since vg /vd is of the order of
(Eav/\v)1/2, thenlE'a21l. Thereby the device of diffu-
sion scaling rests upon the same ladder of sca
\v/qFl/Eav as that used in Ridley’s lucky-drift model.19 In
short, while the concept of drift meansvg@vd ~Sec. II B!,
the concept of lucky drift meanslE@l, and Ridley’s main
finding is that drift entails lucky drift at highEav where pho-
non scattering is nearly elastic. The Fokker-Planck appro
is an elaboration of the lucky-drift theory in the nonballist
regime:4 it yields the same typical values of the physic
quantities, but is more rigorous in handling the fluctuatio
about the average in terms of a diffusion coefficient. T
comes about because the fluctuation in position between
scattering events is typically6l and entails a large fluctua
tion in E, while the average variation in position isvdt
!vgt5l, and it is the rationale for the use of a diffusio
theory over times&tE , or lengths&lE , over which33 E
andp span the range allowed byf . It is also the reason for
the semantic overlap between the notions of drift and dif
sion.

IV. CONCLUSION

In this paper, high-field electron transport in semicondu
tors has been investigated on the basis of the Boltzm
kinetic equation assuming drift, and the upshot is a mu
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variate Fokker-Planck equation governing the particle d
sity in the energy-position continuum. The latter holds
average energies largely exceeding the phonon energies
cept in the presence of ballistic motion which should be s
sumed in appropriate boundary conditions. The equation
volves local drift velocities and diffusion coefficients endu
with direct physical meaning, and calculable from the ma
rial characteristics. The formalism encourages use of a r
istic band structure. If the material is covalent, the vec
mean free path is obtained straightforwardly. If polar scat
ing is significant at the typical energies of interest, an in
gral equation inl~p! is to be solved, e.g., by means of
variational principle. Great accuracy, however, is not need
since the tensor componentsDi j entering the transport equa
tion are integrals over constant-E surfaces. Once the diffu
sion tensor is known as a function ofE, the statistics of
transport are obtained by solving a set of partial-differen
equations linear inn(E,r ,t). The formalism has been illus
trated in a one-dimensional example and found7 to yield the
F
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exact~Monte Carlo! solution of Boltzmann’s transport equa
tion ~neglecting terms of order\v/Eav!. It can be applied to
hot-electron transport problems in short-channel transi
geometries as well. Inclusion of impact ionization events
planned for future work.

Mathematically speaking, the systematic expansion le
ing from the Boltzmann to the Fokker-Planck equation is
powers ofA\v. It involves diffusion scaling of the Boltz-
mann equation, and the underlying ladder of scales is
same as in Ridley’s lucky-drift model. It rests on the strong
diffusive nature of transport at energies high enough t
scattering can be considered as nearly elastic.
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