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Kinetic theory of high-field transport in semiconductors
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The paper deals with electron transport in a semiconductor of arbitrary band structure and electron-phonon
interaction, subjected to a high, but not necessarily homogeneous, electric field. The Boltzmann transport
equation is simplified under the assumption that the occupation of momentum space is almost isotropic, as is
the case for a drifting, not ballistic, electron. A closed-form equation for the electron energy distribution
ensues: the equation is of the multivariate Fokker-Planck type in four-dimensional energy-position space. The
typical relative departure between the Boltzmann and Fokker-Planck transport equations is the ratio of the
hard-phonon energy to the average electron energy. Previous electron-transport equations in solids and gases
are recovered as instantiations of ours. The hierarchies of scales underlying the derivation of the Fokker-Planck
equation are those used in the lucky-drift mod&0163-1828)04204-(

I. PURPOSE AND SCOPE explicit position dependence, not accountable for within the
dependence of field with position. Again the Boltzmann and
The interest of an analytical description of high-field Fokker-Planck predictions agreed with each other in the ex-
transport in semiconductors is obvious. It has been remarkea@mple considered. In the present article, we want to establish
that a good understanding of semiclassical transport shouldie mathematical link between both master equations and its
be achieved prior to handling quantum effet@emiclassi- physical meaning. Section Il develops the Boltzmann kinetic
cal transport is contained in Boltzmann’s kinetic equation inequation in the case of drifting particles, whereby the
which a realistic band structure should be used, and the conf=okker-Planck equation is derived, and Sec. Il briefly re-
plexity of the problem has led to the use of Monte Carloviews the links with early and recent works and discloses
solution techniques. A comparison of Monte Carlo simula-their common background in physical terms.
tions in Si in homogeneous electric fields has disclésed

“significant, often vast difference even between models Il. KINETIC THEORY OF DRIFTING PARTICLES
which would at first appear to be similar.” It was later
showr? that two models yielding identical predictions in ho- A. The problem

mogeneous fields may exhibit considerable discrepancy in The particle’s motion is semiclassically pictured as a se-

inhomogeneous fields. In view of these findings, it is desirquence of unscattered flights controlled by the crystal poten-

able to devise a theoretical tool as analytical as possible ifig| and the applied electric foragF (q denotes the charge of

order to achieve better physical insight and simplicity ofthe particle, separated by collisions making the crystal mo-

computation in transport problems. Statistical mechanics haﬁentump change abruptly and at random, at a rate

always afforded a simpler approach than kinetic theory, and

this has led us to set up a Fokker-Planck description of

transportt While the former considers the momentum-space Ur(p)= J J J W, ,rd3p’/h3

occupation functionf(p), the latter is concerned with the

energy-space occupatiég(E). The Fokker-Planck equation (taking a unit volume of material WhereWp,prd3p’/h3 is

is a simpler master equation which is used as an approximahe probability per unit time that an electron with crystal

tion to the actual one, i.e., Boltzmann’s. In Ref. 4, on themomentump be scattered to the momentum-space volume

basis of van Kampen’s general schemee wrote that the d3p’ aboutp’, andh is Planck’s constant. For definiteness,

approximate equation could in principle be derived from thescattering with lattice vibrations is considered herein, but all

actual one through an expansion in powers o&(E,) % nearly elastic scatterings may be lumped togethéwjy, ,

and is accurate to ordef o/ E,,) %, wherefiw is the typical  while deeply inelastic mechanisms such as hole-electron pair

phonon energyoptical and zone-edge acoustic phonons, colcreation are waived.

lectively termed hard phonohsandE,, is the average elec- The crystal potential determines the spectrum of station-

tron energy. ary states£(p) and the group velocity,= JE/dp (the band
Comparison between Fokker-Planck and Monte Carldndex is omitted for simpler notationif r is the position of

predictions in homogeneous fields demonstrfatkdt simple  the particle, the unscattered motion obeys

convergence of the Fokker-Planck distribution towards the

exact one always holds as the fi€éld- +, and brought out dr/dt=v4(p), (23

the condition for uniform convergence over the entire energy

range. Recently, we showkthat the Fokker-Planck machin- and the superimposed effect Bfresults in

ery has the inborn capacity to take up transport in inhomo-

geneous fields as well, where the energy distribution exhibits dp/dt=qF(r,t). (2b)

@
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An important feature of the spectrum is the density of stategor its direction, the memory of which is lost the absence
per unit energy of polar scattering, so that the random motion overwhelms
the average one. The contrast between the streaming and
drifting states may be envisioned differently. Callhe mean
free path. The typical energyossiblygained from the field
) ] ] ] . between two scattering eventsg&\, coming about for an
Given the dispersion relatidf(p) and the scattering law, glectron moving downfield, while the typical eneragtually
the goal of kinetic theory is to determine the momentum-gained ish«w, since on the average it should balance the loss.
space occupation functiof{p,r,t) at locationr at timet. It |f qFEA>%w, energy balance prevents the electron from pro-
is the solution of the Boltzmanfor Lorent?) transport equa-  ceeding along the electric-field line, and the trajectory is
tion “folded” so that the average directiolnilscosine of the instan-
_ taneous trajectory with the field line“tsvy/v~# w/qFA\.
(9F/at) +vg(p)- (dt/9r) +aF(r.1)- (91/9p) =S{f}, (4) [Momentum balance and the constancy of gffective nmass
whereS{f} is the scattering integral entail mvyg=qF(\vg), whence the typical energy,,
~mui~(qF\)%/ho, andfie/qFA~(fho/E4)"% which is
_ , B 31 /13 the parameter expected to be small.
S{f}_f f f [Worp f(p",1, 1) =Wy p f(p.1, 1) ]d"p" /1% In the drifting state, Baraff's theory reproduces Wolff’s,
(5 which assume$f,|<f, from the outset, but allows for col-
o . lision anisotropy. Then a collision does not randomize the
The electron energy dlstrlbgtlon IS detern_1|neq by theeIectron’s motion any more, but just lengthens or shortens
energy-space occupation functidg(E,r.t), which is the  yhe mean free patdefined as the mean distance traveled
mean value, denoted Hy--)e of f(p,r,t) over a constant- pefore the direction of motion is randomizedhereby en-

N(E)Efff5[E—E(p)]d3p/h3- )

energy surfacé(p)=E, hancing or reducing,,. While the anisotropy renormalizes
L the mean free path’ the drift condition keeps the same, viz.,
fo(E,r,t)=[f(p,r,t)]e. 68 E_>tfw: the scattering inelasticity should be small. The
A function of cardinal interest is the deviatidn of f from  link between the small inelasticity andy<v, is indeed
fo, ubiquitous, and has been noticed in the case of electrons in

neutral gasé$ as well as in solids.
fi(p,r,t)y=f(p,r,t)—fo[E(p),r,t], (6b) We shall henceforth consider drifting particles and de-
velop the Boltzmann transport equation under the condition
|f1|<fo. In the remainder of this subsection, an equation is
derived relatingf, to fy, and Sec. Il C gives a closed-form

since the average drift velocityy, defined as the-space
average ofvgy, is given by

equation onf.
fff vg(p)fl(p,r,t)d?’p There are many published works dealing with the rela-
4= ' (7)  tionship between the “isotropic’in the sense of constant-
fff fo(p,r,)d3p energy averageand “anisotropic” (deviation from the av-
v erage parts off. Regarding electron transport in gases, they

are reviewed in Huxley and Crompton’s bobkwhile in

semiconductors the relationship has been derived in the spa-

, ) tially uniform case by the present authofollowing
B. The idea of drift Shockley'® In the right-hand side of Eq(5), sincetiw<E

If |f,|<f,, the momenta corresponding to a given energythe transition probabilitiesV, ,, connect states lying ap-

are almost evenly distributed, and the drift velocity is  proximately on the same energy surfde@)=E, so that

much less than the instantaneous veloggy This is what is

usually meant bydrift, the opposite notion being that of a Wy o =Tp o SE(P)—E(p")], 8

streamingparticle whose average velocitgirected along

the field in an isotropic or cubic materjab of the order of

the instantaneous velocity. In Wannier's worda, drifting S{f}=—f1(p)/r(p)+f J f1(p" )Ty pdSy / |vé|h3,

particle stores large amounts of energy gained in the field in E

the form of random motion, not visible in the drift motion. ©)

The condition for electron transport to exhibit that feature of, ;
. ) wheredS,, is the surface element aboptt. In the left-hand
drift can be understood from Baraff's wdfkwhere the pas- side of Eq.(4), f is replaced byf,. Proceeding likewise in

sage from streaming to drifting elec_trons IS as_sc_)mated WI”fhe spatially nonuniform case yields an integral equation on
the average enerdy,, largely exceeding the collisional loss, f, involving fo:

namely, a constant optical-phonon enefigy. If E,, is about 1 o
hw, the electron’s energy almost vanishes after the collision
and so too does the velocitfhe subsequent acceleration
gives rise to a velocity essentially directed along the electric

force, that is, the electrons stream down field, apds of = _fl(p)/T(p)"'f f f1(p")Tpr pdSy / |vglh®.

the order ofv. In contradistinction, ifE,, largely exceeds E

fiw, the velocity after the collision is little changeéxcept (10

owing to E(—p)=E(p).

(afglat)+vy(p)-(dfo/ar)+qF-(afq/ap)
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At steady state the problem is solvédee, e.g., Moll's In the first term involvingf, the spatial derivative and en-
textbook ") if the right-hand side is cast in the relaxation- ergy average may be interchanged, whence

time form —f,(p)/7.(p). It occurs in the models dealt with 5
in Ref. 6, wherer, is the familiar relaxation time involving i ij CaE ij

the persistence ratio of velocity. Tlgeneralsolution can be J ax! [DU(EIN(E,r,D]=aFNE)DHE) (9T /IB),
obtained® by introducing the vector mean free paxlip), (16)

defined by the auxiliary integral equation where we have defined

xww—ﬁmj_&Mpwmwﬂ%Jwam=vgmﬁp» DI(E)=[vy(PM(p)]e. 17
(11 and

Performing the scalar product of Eqll) and (@fy/dr) n(E,r,t)=N(E)fo(E,r,t) (18)

+qF(dfy/JE) shows that . . . . R
is the spectral carrier density. Introducing a total derivative

fi(p,r,t)=—N(p)-[(dfg/dr)+qF(afy/dE)] (12  in the last term of Eq(16) yields

satisfies Eq(10) if the time dependence is dropped. In case 9 -~ 9
of isotropic scatterindi.e., T, only depends orE(p)], I=——F[DYENE-D]-aF; =
A(p) is justvy(p)7(p); and in case a persistence ratio of B
velocity can be definedy(p) =v4(p) 7¢(p). Otherwise\(p) +gF;u" (E)n(E,r,1), (19
is in general not parallel to the velocity, and can be obtained _—
from a variational principlé® where, by definition,

The neglect of the time dependencd {/dt) in obtaining ) P )
f1 (which in vanishing fields entails the conventional drift- N(E)u"(E)=—[N(E)D"(E)]. (20
diffusion equatioh’) deserves discussion. Generally JE
speaking’® energy, and thence the energy occupatfign  (The mobility so define® is the ratio of a velocity to an
vary over the energy-relaxation timg:, whereas momen- applied force qF.) The current density describes how the
tum, and thence the momentum occupation, specified;by particle flows in real space; in order to describe its behavior
over a constanE surface, change over the momentum-in energy space, we introduce the coordingte: E and the

relaxation timer, which is of the order of the scattering corresponding componed?f of the spectral current density,
time 7 unlesspolar scattering prevails, in which case the drift

condition presumed here would be invalid. Now under the (3% e=qF-J, (21
very same condition,7g/7~E,/fiw>1, wherefore the
“fast” function f, follows in time the “slow” function fg,
the time derivative of which may consistently be disregarde
in obtaining f;. This is in keeping with our statistical-
mechanical approach to high-field transgbwthere terms of
order (iw/E,)?~v4/v,4 are retained while terms of order
hw/E,, are dropped.

[DY(E)n(E,r,1)]

where the subscrigf means that only the energy exchange
Jvith the field is accounted for in the motion along tk&
axis. Sincex’ andx®, x?, x® have different physical dimen-
sions, the four-dimensional continuurk,f) is not metric,
and ordinary(i.e., contravariantcomponents should not be
identified with covariant ones. From the foregoitigtin in-
dicesi,j running from 1 to 3,

C. Fokker-Planck equation J

(Ie=—aFi 5 [DY(E)n(E,r,t)]

Once f, is known, the particle current densijyis ob-
tained as p
—aFaF; = [DU(E)N(E,r,t)]
i=[ [ [vonorodom  as
(fo is even inp while vy is odd, and the spectral current

density, denoted by, is obtained by picking out the contri-
bution from the energy shelE,E+dE], that is,

+qFigFr (E)n(E,r,1). (22)

Rearranging terms so as to introduce total derivatives yields

()=~ 2 [qRDIEMN(EN D]
ax! : Y

j:f;deE, (143 .
— g L[aFaF DY (E)n(E,r,.0]+| aFiqF;u’ (E)
J=N(BE)[vg(p)f1(p.r,t) Je (14b) Ry
Substituting Eq(12) for f, yields, in Cartesian coordinates +DU(E) — 7 |NED. (23)

[r=(x*x?x%] and using Einstein’s summation convention,

_ . ' . The contribution Qo)ph from the phonon bath does not ap-
J'==N(E){vg(p)N (p)[(dfo/x)) +qF;(dFo/IE)]}E, pear here since the small scattering inelasticity has been
(15  dropped out in Eq(9). If only terms of first order inkw
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are retained, then @%pn is the average rate of energy over E gives a drift-diffusion expression for the three-

loss to phonons, W,(E)n(E,r,t), where W,(E)
=—[hw(p—p’)/7(p’)]e for phonon emissiofiw(p) is the

dimensional current densify in which the mobility and dif-
fusion coefficient depend on positibthroughn(E,r,t). Ap-

phonon dispersion relatign In the semiclassical picture, plications of such high-field transport equations are deferred
phonon scattering is instantaneous and does not shift the pdf @ future paper.

ticle in real space, thus does not contributetoAdding up
(3%pn and @O,

d(qFy)
ox!

J°=|qgFiqF;u'(E)+D'(E) +W,n(E) [n(E,r,t)
0 .

~ 550 LAFiaF; DY (E)n(E,r,1)]
3 )

_Or)_xj'[quD”(E)n(E!r!t)]! (24@

) . J .
J'=qF;u""(E)n(E,r,t)— 0 [qF;D"Y(E)n(E,r,1)]

- ai, [DU(E)n(Er.1)]. (24b)

The latter equations are drift-diffusion equatioins (E,r)

D. Boundary conditions

Partial-differential equations require boundary conditions.
In the present problem, we nea@?, x*,x2,x3,t=0) and the
four-dimensional current density on the boundaries. Real-
space boundaries determine the three-dimensidbraaicord-
ing to their physical features. Energy-space boundaries are
such thatJ°=0 atx°=0 and+.

Ballistic transport(in which electrons stream along the
field) is excluded and the Fokker-Planck set of equations
should be applied in a region ifE(r) space where electrons
drift. Therefore ballistic effects should be accounted for
through a boundary condition, as was demonstrated in one
dimension in Ref. 7. We just give an outline of the method in
three dimensions. Take, for simplicity, the steady-state case
[i.e., less than X (microwave frequencie§ and denote by
qV(x*,x2,x3) the electric potential energy. Consider that
cold electrons E=0) are injected on the equipotential sur-

spaceand yield a multivariate Fokker-Planck equation oncefaceV=0. They first undergo a ballistic flight during which

combined with the continuity equation

JB=vBE,r,Hn(E,rt)— % [DPY(E,r,t)n(E,r,t)],

(253

AL
EJFW:O’ (25b)

where
VY(E.r.1) =GR, (10GF (0 () DI(E) o

+W,(E), (263
vy(E.rt)=qF(r,.tyul(E), (26b)
D%E,r,t)=qFi(r,HygF;(r,)D'(E), (260
DY(E,r,t)=D'%(E,r,t)=qF;(r,t)D'I(E), (260

and Greek indices run from 0 to 3. The vectof) is a local

x0—qV(x},x?,x%) is constant0, and the Fokker-Planck
equations are not applicable. Define a curvilinear coordinate
system &'%x'1x'?x'3) such thatx'°=x° x't=-x°
+qV(x,x%,x%), andx’?, x'3 locate a point on an equipo-
tential surface(that is, constantx’?> and x’3 define an
electric-field ling. The obvious generalization of ER5b)
involves the covariant divergence

DJ'A

_:0’

Dx'#

and the new initial condition involves the surface over which
ballistic motion ceases and converts to drift motion, that is,
x'1=0. Afterwards x'?! (the energy released by the electron
while drifting towards largel’s) takes positive values. The
distributionn(x'%,x’*=0x"2,x"3) is determined by ballistic
motion starting from zero energy.

. LINK WITH OTHER WORKS
A. Charged particles in gases

The motion of a free particle of massin a neutral gas is

drift velocity in (E,r) space, and describes the instantaneouglescribed byE=p?2m, andW,(E) should be understood

motion of the centroid of a sharply peaked distribution
while the tensor D“#) describes the spreading ofin (E,r)

as the rate of energy loss in collisions with the neutral gas
atoms. If the particle’s mass is much smaller than the atom

space. Equationé253 and (250 are the three-dimensional MassM, scattering is almost elastic, and the average rate of
version of the multivariate Fokker-Planck equation establoss is —2mE/M. Then scattering isotropy entaik=vq7
lished earlief from a statistical-mechanical standpoint by- and D"(E)=(v'g)\_‘_)E=D(E) 8", with D(E)=v4\/3. The
passing kinetic theory. The kinetic-theoretical derivationmobility tensor u"(E) is given by Eg.(20) and equals

rests on the assumptions of drft,|<f,, orvy<vg) and of

small inelasticity ¢ w<E,,), which are related to each other
through (iw/E,y)*?~v4/vy. The equations so derived are

valid up to order fw/E,)Y? and the typical error is of
orderfi w/E,,.

Integration of Eq.(25b) over E gives the familiar, three-
dimensional continuity equation. Integration of E@53

w(E) 8", with

o1 [2 dEy
#ME=3 VinE dE -
Then, J° of Eq. (249 reads, in one dimensiofF alongx*
=X),

(27)
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J°=0v3(E,x,t)n(E,x,t)— &% [DOE,x,t)n(E,x,1)]

d
Y [DYE,x,t)n(E,x,t)], (2839
where
vJ(E,x,t)=(qF)?w(E)+D(E) a(ij) —23 E,
(28b)
DY(E,x,t)=(qF)?D(E), (280
DY(E,x,t)=qFD(E). (280)

Specializing further Eq928a—-(28d to a homogeneous,
we obtain Druyvesteyn’s resulEq. (6) of Ref. 14. More

E. BRINGUIER
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term. At ordera®, it is found thatf(®) actually is a function

of E(p), that is, f(®) is our f,. At order a!, the integral
equation(11) is obtained and solved by introducing the vec-
tor mean free path. [In Ref. 30, a possible dependencenof
on r due to inhomogeneous ionized-impurity scattering is
envisaged; therD'’ =D (E,r) and ourv§ should be written
qFiqFju" (E)+d[qFD"(E,r)]/ox)+ Wy(E) instead of
Eq. (269.] At order o, a solvability condition is obtained
which entails an equation oi{® that in essence is identical
to our Eq.(25b).

The equivalence between the Fokker-Planck approach and
the Hilbert expansion of the Boltzmann transport equation
just lies in the fact that both are based upe® 1. In Ref. 4
dealing with uniform transport, it was stated that the Fokker-
Planck equation is an approximate master equation which in
principle could be derived from the true oriee., Boltz-
mann’9 by means of van Kampen® expansior?, and that

general kinetic equations governing high-field electron transthe master equation is of diffusion tygiereby allowing use
port in gases have been investigated and are reviewed #f a nonlinear Fokker-Plank equatjonThat statement is
Huxley and Crompton’s boof and they are equivalent to borne out by the kinetic-theoretical treatment of this article
our Fokker-Planck equations. The fact that Boltzmann’s ki-and the more explicitly systematic ones of Ref. [29 the
netic equation combined with the assumption of driftcase of isotropic scattering(p)=v4(p) 7(p)] and 30in the
(If1]<fo) yields an equation of the Fokker-Planck type in general case\(p) not collinear tovy(p)]. It turns out that

energy spaceor here, inv space,v=|vg|=(2E/m)*?]
seems to have been first pointed out by Davyd@nd ap-
plied to solids?? It was later worked out by Wanni&rwho

Q~1is justa. [For completeness, we mention a stifdyf a
completely different physical system governed by a linear
Boltzmann equatiofi.e., of the Lorentz typ® which can be

found that no less than eleven integrations were needed. Egpproximated by a Fokker-Planck equation far from equilib-

pression(27) for w(E) appeardnter alia in articles dealing
with charged particle transport in

Charpak’s wire

rium.]
The physical meaning of the time scalibig= ¢t has to

chamber€? and is identical to Shockley’s formula in semi- do with the difference between the relaxation times of energy

conductor physic& written in terms of 7=\/v. Energy-
independent = yields Drude’s formula x=7/m, while
energy-independent\ leads to Townsend® u(E)
=27(E)/3m.

B. Electrons in semiconductors

Analytical theories of electron transport in solids bearing
relation to the present work are reviewed in Refs. 27, 28, an
4. In recent years, two papéts®have been published in the
mathematical literature overlapping ours. Technically spea
ing, diffusion scalingof the Boltzmann equation is per-
formed, i.e., space and time scales are dilated accordi

t029'30

r'=ar, (29a

t'=a’t, (29b)

fo(pr' t")=1f(p,r,b), (290

and a Hilbert expansion of the occupation functiondex 0
is introduced,

fo=fO+afVa2f@ ... (30)

The scaling parameter is then taken to measure the inelas-

ticity of collisions,
a’=hwlE,,, (31

in our notatiort: and the collision operatd{f} is expanded
in powers ofa?, yielding Eq.(9) as the zeroth-ordéelastio

and momentu? 7= and  which are related throughg
~7E,/ho=a" 7. Space scaling’ = ar has to do with the
difference between the length scales corresponding totjme
over which the motion is ballistitmean free path =v47),
and to timerg, over which the particle driftsenergy relax-
ation length® \g=v47e). Since vglvg is of the order of
(Enp/fiw)Y2 then\g~a I\. Thereby the device of diffu-
ion scaling rests upon the same ladder of scales
w/qFN/E,, as that used in Ridley’s lucky-drift mod&l.In
short, while the concept of drift meang>uv4 (Sec. 1l B),
the concept of lucky drift meansgz>\, and Ridley’s main
finding is that drift entails lucky drift at higk,, where pho-
"Yon scattering is nearly elastic. The Fokker-Planck approach
is an elaboration of the lucky-drift theory in the nonballistic
regime? it yields the same typical values of the physical
quantities, but is more rigorous in handling the fluctuations
about the average in terms of a diffusion coefficient. This
comes about because the fluctuation in position between two
scattering events is typically A and entails a large fluctua-
tion in E, while the average variation in position ig7
<vgT=N\, and it is the rationale for the use of a diffusion
theory over timess< ¢, or lengths<\g, over which® E
andp span the range allowed Hy It is also the reason for
the semantic overlap between the notions of drift and diffu-
sion.

IV. CONCLUSION

In this paper, high-field electron transport in semiconduc-
tors has been investigated on the basis of the Boltzmann
kinetic equation assuming drift, and the upshot is a multi-



57 KINETIC THEORY OF HIGH-FIELD TRANSPORTN . .. 2285

variate Fokker-Planck equation governing the particle denexact(Monte Carlg solution of Boltzmann'’s transport equa-
sity in the energy-position continuum. The latter holds fortion (neglecting terms of ordeiw/E,,). It can be applied to
average energies largely exceeding the phonon energies, exet-electron transport problems in short-channel transistor
cept in the presence of ballistic motion which should be subgeometries as well. Inclusion of impact ionization events is
sumed in appropriate boundary conditions. The equation inplanned for future work.

volves local drift velocities and diffusion coefficients endued  Mmathematically speaking, the systematic expansion lead-
with direct physical meaning, and calculable from the mateing from the Boltzmann to the Fokker-Planck equation is in
rial characteristics. The formalism encourages use of a reabowers of Vhw. It involves diffusion scaling of the Boltz-
istic band structure. If the material is covalent, the vectofnann equation, and the underlying ladder of scales is the
mean free path is obtained straightforwardly. If polar scattersgme as in Ridley’s lucky-drift model. It rests on the strongly
ing is significant at the typical energies of interest, an intejffusive nature of transport at energies high enough that

gral equation ink(p) is to be solved, e.g., by means of a gcattering can be considered as nearly elastic.
variational principle. Great accuracy, however, is not needed,

since the tensor componeri entering the transport equa-

tion aremteg_rals over constank s_urfaces. Once t_he_ diffu- ACKNOWLEDGMENTS
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