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Numerical investigation of electron localization in polymer chains

Magnus Paulsson* and Sven Stafstro¨m†

Department of Physics and Measurement Technology, IFM, Linko¨ping University, S-581 83, Linko¨ping, Sweden
~Received 26 March 1997!

Using finite-size scaling, we have calculated the localization-delocalization phase diagrams for electronic
wave functions in different disordered polymeric systems. The disorder considered here simulates finite poly-
mer chain lengths, breaks in the conjugation, and disorder in an external potential. It is shown that a system of
interacting chains, even at rather weak interchain interactions, allows for enough flexibility for the scattered
waves to avoid dephasing and localization. Localization and the metal-insulator transition in highly conducting
polymers are discussed in view of these results.@S0163-1829~98!03604-2#
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I. INTRODUCTION

During the past two decades, conjugated polymers h
been studied in great detail. From the point of view of phy
cal properties, most interest has concerned their electr
electronic, and optoelectronic properties. All these proper
are based on the process of charge transport in the polym
material. In particular, as concerns the studies of hea
doped highly conducting polymer samples, the still una
swered question is how these systems can reach a me
state ~high conductivity in the low-temperature limit! and
why the conductivity is so high in this state. The metal
state of the conducting polymer is thought to be close to
metal-insulator transition1 ~MIT !. Understanding of the MIT
in heavily doped conjugated polymeric systems is thus
portant in order to reach an understanding of how disord
electron-electron interactions, etc., affect the transport
these systems. Moreover, the weakly interacting chains
the polymeric systems are highly anisotropic. Such syste
are also of interest from a more fundamental point of view
an intermediary between the very well studied cases of
and three dimensions.

There are several different conjugated polymers that
be doped to high levels of conductivity. The most well stu
ied is trans-polyacetylene~PA! that upon doping with iodine
can reach conductivities up to 105 S/cm, comparable to cop
per. This high conductivity can only be reached in very pu
and carefully prepared samples2,3 and at high doping levels
At these high doping levels, PA shows intrinsic metallic b
havior with a nonzero density of states at the Fermi level
a finite resistance in the low-temperature limit.4 At low and
intermediate doping levels (,7%) the conductivity of PA is
high at room temperature, but decreases to zero in the
temperature limit. The charge transport is thermally activa
and the material is semiconducting with an energy g
around the Fermi level. In this article we focus on t
heavily doped samples and on the disorder driven MIT. T
type of study relates closely to experimental studies t
show that degradation of the samples as a result of expo
to, for instance, air5,3 results in the loss of metallic prope
ties.

Disorder in a conducting polymer can be of several d
ferent types, e.g., interruption of the chains, variations
torsion angles along the chains, and disorder in the pote
570163-1829/98/57~4!/2197~6!/$15.00
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from the dopant ions and in the interchain interacti
strength. There are different models of structural disorde
heavily doped conjugated polymers. The samples are vie
either as consisting of highly conducting metallic islan
with regions of large disorder in between6 or as an essen
tially uniform distribution of the disorder.1 In both these
models, the mean free path has to be large, several hun
angstroms or more, in order to explain the large conductiv
in the material.

Theoretically, in order to compare with these experime
tal observations we would like to study the effect of t
disorder on the~Anderson! localization of the electronic
wave functions. One parameter scaling theory has predi
localization for one- and two-dimensional disordered lattic
In three-dimensional lattices there is a mobility edge t
separates localized and extended states in the energy
trum. Most of the studies of the Anderson model have be
numerical7–10 on cubic lattices with isotropic hopping an
randomly chosen on-site energies, but more recently so
studies of different anisotropic Hamiltonians11,12 have been
published.

The aim of this study is to get an understanding of t
Anderson MIT in an anisotropic model and to understand
effect of disorder on the localization properties of the ele
tronic states at different energies. The studies are perfor
at different interchain interaction strengths, thereby model
different degrees of anisotropy. The role of the dimension
ity of the sample has been very clearly illustrated by Reg
et al.,13 who showed that it is possible to tune the conduct
polymer through the MIT into the metallic regime by appl
ing pressure. The increased interaction between the chain
the polymer with increasing pressure leads to a transi
into the metallic state.

The studies are performed using a simple anisotro
tight-binding Hamiltonian. To simulate the interruption o
chains we considered the following two models:~i! the on-
site energy was raised on randomly chosen sites to crea
potential barrier or~ii ! the hopping between sites in the cha
was decreased. A third type of disorder has also been s
ied. This disorder has also been studied by several o
authors,11,12 which makes a direct comparison with our r
sults possible:~iii ! a random on-site energy. Section II of th
article introduces the methodology and some numerical
tails of the model. Results and discussion are presente
2197 © 1998 The American Physical Society
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Sec. III and a summary of our results and conclusions
given in Sec. IV.

II. METHODOLOGY

Conducting polymers are built up from nearly on
dimensional chains packed into a three-dimensional crys
line structure. This type of system can be represented b
anisotropic tight-binding Hamiltonian with larger hopping
the chain direction (t i) than in the perpendicular directio
(t'). We note in passing that all types of chain structures
be represented by a model of this type. In particular, m
complicated polymeric structures than PA can be map
onto a one-dimensional chain by a renormalizat
argument.14

If we consider only the 2pz orbitals of the polymer chain
we get the one-electron tight-binding Hamiltonian wi
nearest-neighbor hopping

H5 (
k,l ,m

uk,l ,m&ek,l ,m^k,l ,mu1uk,l ,m&tk,l ,m
i ^k11,l ,mu

1uk,l ,m&tk,l ,m
' ^k,l 11,mu1uk,l ,m&tk,l ,m

'

3^k,l ,m11u1H.c. ~1!

The sum is to be taken over a three-dimensional~anisotropic!
cubic lattice anduk,l ,m& denote the orbitals at the sites alon
the chains (k) and in a plane perpendicular to the chain a
( l ,m). The energy scale is specified by choosing the hopp
strength in thek direction tot i521 and by setting the on
site energies toe50. Hopping in the direction perpendicula
to the chaint' is taken to be small, reflecting the anisotrop
nature of polymers. Similar types of models have been u
in both one-dimensional15,16 problems and a three
dimensional lattice17 to describe PA and it is also relevant
other types of polymers as mentioned above. It has also b
studied in the context of localization in the layered struct
of high-TC superconductors with on-site disorder by Pana
otideset al.11 and Zambetakiet al.12 The values of the hop
ping chosen to model PA aret i522.5 eV and t'

520.1 eV.1 In units of t i we get t'50.04, which is an
idealized but realistic approximation for thep-electron band.
In order to study the influence of the interchain interact
strength on the localization properties of the wave functio
we have also performed calculations fort'50.1. This value
is much to high to describe the polymeric system, but n
ertheless gives information about the sensitivity of the s
tem to changes in the interchain interaction strength.

The main drawback of the simple one-particle Ham
tonian in Eq.~1! is that it does not take electron-electro
interactions into account, which certainly also are of imp
tance for localization.18 We also neglect effects of deviation
from uniform bond distances. Such deviations are most
tainly present even in the highly doped systems and resu
pseudogaps around the Fermi energy.19,20The effects of such
deviations are briefly discussed below, but since the m
focus of this work is on the role of the dimensionality, w
leave the details of the effects caused by more subtle st
tural parameters to a future study.21

The disorder present in heavily doped conducting po
mers can be of various types~see above!. Here we focus
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mostly on the the effect of chain interruptions, includin
both the effects ofsp3-like defects and the finite length o
the chains. Two different types of interruptions have be
considered. One is a binary alloy type of disorder in whi
we set the on-site energy on random sites to a high value
510 ~in units of t i). These sites create a potential barrier f
electrons and thus cause an interruption in the chain.
have also studied interruptions in the chain by setting
hopping along the chaint i to a small value~0.04! between
randomly chosen sites. A third type of disorder is a b
distributed on-site disorder with widthW where the on-site
energiesek,l ,m are randomly assigned betweenW/2 and
2W/2. This type of disorder has been studied extensively
other types of systems and is included here merely as a
erence, even though it has some similarities to disor
caused by irregularities in the potential caused by the dop
ions.

Disordered systems of the type discussed here have
cessfully been studied by using the transfer matrix metho9

For a single chain~one-dimensional system!, the time-
independent Schro¨dinger equation in the tight-binding ap
proximation can be writtentnan111(en2E)an1tn21an21
50, whereE is the energy eigenvalue,tn is the hopping
strength between sites,en is the on-site energy, andan is the
amplitude of the wave function at the siten. By iterating this
equation we obtain a relation between the amplitudes of
wave function on different sites of the lattice

S an11

an
D 5TS a1

a0
D ,

whereT5) i 51
n Ti and

Ti5S E2e i

t i

2t i 21

t i

1 0
D .

By generalizing this method to a system of coupled cha
we consider a bar with a quadratic cross sectionM3M ,
whereM is the number of chains in each direction perpe
dicular to the chain axis. For this system of coupled cha
we get a transfer matrix that connects the wave function
slice of the bar with its value on the nearest-neighbor sli
in the following way:

Tk5S tk
i21 0

0 I
D S E2Hk 2I

I 0 D S I 0

O tk21
i D , ~2!

where tk
i is the hopping matrix between slicek and k

11, Hk is the two-dimensional Hamiltonian of slicek, and
E is the energy eigenvalue. The product of transfer matri
gives a connection between the wave function at the
ends of the bar. From this result the transmittance, refl
tance, and conductance of the bar can, in principle, be ca
lated using, e.g., the Landauer formula.22 However, since the
bar is restricted in size in the directions perpendicular to
chain axis, it constitutes effectively a one-dimensional s
tem. When disorder is introduced in such a systems the tr
mittance is always exponentially decreasing with the len
of the bar.23 The numerical instability given by the expone
tially increasing/decreasing eigenvalues of the transfer
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57 2199NUMERICAL INVESTIGATION OF ELECTRON . . .
trix makes it almost impossible to get correct numerical
sults for this type of system. To overcome this numeri
difficulty we have calculated the Lyapunov characteristic
ponents~LCE’s! using an orthogonalization procedure d
scribed by Benettin and Galgani.24,9 Still, great care has to be
taken to ensure that the results are free from numerical p
lems. Here we carefully monitor the number of steps
tween orthogonalization to ensure numerical accuracy.
estimation of the errors in the calculated LCE’s was obtain
from the standard deviation. This estimate was also use
determine when the LCE’s had the required accuracy
check was made to verify that the pairs of LCE’s were eq
with opposite sign within three standard deviations. Sin
this method of calculating the LCE’s yields higher accura
for longer bars, the method can produce results of arbitr
high precision. In practice, however, the accuracy is limi
by the computation time and the upper limit is determined
the computational power available.

The localization lengths of the electronic wave functio
were calculated as a function of energy and type and stre
of the disorder for different widths of the bar fromM54 up
to M510, in some cases up toM516 ~see below!. Periodic
boundary conditions in the perpendicular direction to the
were used in all calculations. As discussed above, sinceM is
finite the calculations will result in finite localization length
when the system was disordered. To determine whethe
not the wave functions were localized in the thermodynam
limit a finite-size scaling argument was used. The locali
tion length lM and the renormalized localization leng
LM5lM /M in a bar of cross sectionM3M can be calcu-
lated from the inverse of the smallest LCE greater than o7

The finite-size scaling behavior of the renormalized locali
tion length was studied as a function of the width of the b
If LM decreases with increasingM , then the wave functions
are localized.7 Correspondingly, the wave functions are e
tended ifLM increases with increasingM . The slope of the
renormalized localization length vsM was obtained by a
least-squares fit of the results ofLM at each value of the
energy and disorder.

Calculations were performed on bars with up to 33105

slices ~each slice containingM3M number of sites!. The
accuracy of the LCE increases with the length of the bar
the calculations were terminated when the standard devia
of the results at each point in the energy vs disorder ph
diagram was less than 2%. In some cases the maxim
length of the bar was reached before the accuracy
reached 2%, thus producing results with a lower accura
However, in all these cases the localization length was la
and well into the region of delocalized states. Therefore,
are confident that these less accurate results will not af
the conclusions.

The key assumption behind finite-size scaling is that
localization length of a localized system asymptotica
reaches a limiting value as the width of the bar increas
while in the delocalized system the localization length
creases linearly with the number of chains in the bar. If
extension of the wave function is smaller than the size of
bar, the boundary conditions and the finite size of the
should not affect the result when the wave functions are
calized. This is indeed the case along the chain direc
where we have the possibility to treat lengths of the bar
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the order of 105 sites and, as shown below, the localizati
lengths are up to around 400 sites. The size of the sys
perpendicular to the chains is, however, much smaller
thus appears to be more critical in this context. Our cal
lated values of the localization lengthalong the chain direc-
tion at an interchain hopping strengtht'50.04 are 5210
~depending on the type of disorder! times as large as the siz
of the barperpendicular to the chain axisfor energies and
disorder strengths that correspond to states that are on
brink of being delocalized. However, the effect of the diso
der is relative to the size of the hopping, so we expect t
the localization length in the perpendicular direction sho
be a lot smaller. From numerical calculations in the case
anisotropic planes with on-site disorder at the center of
band Zambetakiet al.12 have suggested that the followin
relations holds between the critical renormalized localizat
lengths parallel and perpendicular to the chain axis:LC

'

5t'LC
i . In our case, the localization length perpendicular

the chain directions scales down to values that are sma
than M , i.e., the critical renormalized localization length
the perpendicular direction is smaller than one. This in
cates that we can extrapolate to the thermodynamic limit
correctly decide whether or not the wave functions are loc
ized. In order to test the effect of using periodic bounda
conditions we have performed some calculations w
‘‘hard’’ boundary conditions perpendicular to the bar. N
change in the behavior of the localization length as compa
to the calculations with periodic boundary conditions w
observed. This further justifies the use of finite-size scal
in this case.

III. RESULTS AND DISCUSSION

The localization-delocalization phase diagram for the
isotropic three-dimensional~3D! case with on-site disorder i
presented in Fig. 1 fort'50.04 and in Fig. 2 fort'50.10.
For t'50.04 a disorder of approximatelyW52 is needed
before the wave functions inside the band start to loca
and localization of all states in the band occurs at a disor
strengthW of about 2.522.6. Decreasing the anisotropy i
the system tot'50.10 results in an increase in the the cri
cal disorder to 3.7524.0. The increase int' corresponds to
an increase in the unperturbed bandwidth from 4.32 to 4

FIG. 1. Phase diagramt'50.04, energy (E) vs disorder strength
(W) for box distributed on-site disorder. The dots indicate poi
that have been calculated. In order to guide the eye, the unsh
area~small dots! shows the parameter space of delocalized sta
and the shaded area~large dots! the localized states.
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thus a relatively small increase showing that it is the hopp
strength rather than the total band width that controls
localization properties of the system.

Panagiotideset al.11 derived a relation between the crit
cal disorder~box type! and t'. Extrapolating this relation to
the values oft' used here, we get a critical disorder of 2.9
the case oft'50.04 and 4.0 in the case oft'50.10, both
results in very close agreement with our data.

Our data show clearly the existence of a mobility edge
the anisotropic system with an anisotropy corresponding
that of highly doped conjugated polymers. Thus, from
point of view of transport, the weak hopping that exists b
tween the chains is enough to produce delocalized st
even in the presence of relatively strong disorder. The crit
disorder for localization of all the wave functions in the ba
increases with increasing interchain hopping, which is c
sistent with earlier studies of the same type of system as
as experimental observation of an insulator-to-metal tra
tion driven by applying pressure to the system.13 For the
isotropic systemt'51 the critical disorder is 16.58 at an
unperturbed bandwidth of 12.0. The behavior of the mobi
edge in the anisotropic systems is very similar to the beh
ior for the isotropic 3D case~see Ref. 10!, except that the
critical disorder is a lot smaller than in that case.

For the model of chain interruptions involving large o
site energies at certain randomly distributed sites we pre
a phase diagram~Fig. 3! that shows the region of localize
and delocalized states for energies between 0 and 3. Ty
axis shows the relative concentrations of sites with large
site energies. As can be seen in Fig. 3, the simple behavio
a single mobility edge that moves towards lower energ
with increasing disorder, as in the previous case, disappe
Instead, for a given concentration of defect sites~between

FIG. 2. Same as Fig. 1, but witht'50.10.

FIG. 3. Phase diagram fort'50.04, energy (E) vs probability
of interruption of chains (P), interruption modeled by setting th
on-site energy to 10~in units of t i).
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0.1 and 0.2! several energy regions appear in which the wa
functions localize separated by regions of extended w
functions.

The corresponding phase diagram using the second m
of chain interruptions with reduced values oft i between cer-
tain randomly chosen sites is shown in Fig. 4. The conc
tration of such interruptions corresponds directly to the c
centration of interruptions caused by raising the site energ
Very interestingly, the two types of defects cause nea
identical phase diagrams. Since we believe that the sec
model is the most realistic one to describe chain interrupt
in conjugated polymeric system we have performed a m
detailed study of the phase diagram in that case. The s
differences between the results presented in Figs. 3 and 4
caused by the numerical values of the defects and differen
in the way these defects scatter the electronic wave funct
Our aim of this study is not to make a quantitative compa
son between the two types of disorder. However, a rou
estimate based on a comparison at a few points in the p
diagram shows that the presently chosen values~see Sec. II
above! give very similar localization properties.

For the two types of disorder causing chain interruption
is evident that the critical disorder for localization does n
increase monotonically with the energy separation from
band edge; instead there are several mobility edges in
case. The explanation for this phenomenon is that when
interchain hopping is as low ast'50.04 the chains are very
weakly coupled. The interruptions produce short chain s
ments of varying length. Since the interruptions are ra
domly generated, approximately half of the chain segme
will contain an odd number of sites. The distribution of e
ergy levels for these chains is such that independent on
length of segments, they all produce an energy eigenvalu
zero energy in the limit of noninteracting chains. The acc
mulated density of states, even in the case of weakly in
acting chains, is thus very large at zero energy~see Fig. 5!.
Furthermore, when adding the energy eigenvalue distribu
of all chain segments, we get peaks in the DOS atE561,
6A2,62cos(2p/5)'0.62 . . . , simply indicating the den-
sity of states~DOS! for chains with specific lengths. To se
how well the localization diagram corresponds to the DO
we have calculated the DOS from the eigenvalues of
Hamiltonian matrix for a system with a length of 40 sites a
a 10310 cross section. The calculations were repeated

FIG. 4. Phase diagram fort'50.04, energy (E) vs probability
of interruption of chains (P), interruption of chains modeled by
setting the hopping between sites in the chains to 0.04~in units of
t i).
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57 2201NUMERICAL INVESTIGATION OF ELECTRON . . .
times for each type of disorder with different random see
The eigenvalues were then used to draw a histogram
intervals of length 0.05; finally the histogram was Gauss
broadened with a width of 0.075. The results for on-site b
type disorder and the chain interruptions by a low value ot i

are shown in Fig. 5. For comparison, the DOS of the perf
lattice calculated from the known energy relationEk5e
12t icos(kk)12t'@cos(kl)1cos(km)# is also included in
Fig. 5. We also calculated the DOS of a disordered case
breaks in the chains modeled by raising the on-site energ
shows the same qualitative features as the DOS for the
ordered case with interruptions modeled by lowering
hopping, except that it is not completely symmetric arou
E50 and additional levels appear at 10~in units of t i) cor-
responding to states localized to the defect sites.

Naturally, if the energy levels of two noninteracting cha
segments are identical, the electronic states associated
these levels will couple strongly when the interaction b
tween the two chains is turned on. Thus, even though
interchain interaction strength is rather weak, the probab
for the electron delocalization is much larger in regions w
a high DOS since the closer the energy levels of differ
orbitals are the greater the chance the electron has to sp
This means that we can explain the increasing transmitta
through the sample by having many closely spaced ene
levels that in the system of interacting chains increase
probability of the electrons finding a path through the latti
thereby delocalizing in the thermodynamic limit.

The values of the renormalized localization lengthsLM
calculated for various sizes of the cross section of the b
(M ) at two points in the phase diagram shown in Fig. 4
shown in Fig. 6. These two points are marked with an as
isk and a plus, respectively, and indicate systems that ar
the localized asterisk and delocalized plus regimes, res
tively. As is evident from the data shown in Fig. 6,LM is
much smaller in the localized regime and reduces with
creasingM . In the delocalized regime, however,LM is large
and increases with increasingM . We recall from the discus
sion in Sec. II that this is exactly the signature of delocali
tion. It is also interesting to note that even though the ac
system on which the calculation is performed is finite, t
localization length is as large as 400 sites for the bar with
largest cross section (M516). The bar can be viewed as
fibril in the polymeric system and the result presented h
thus gives an indication of the possibility to have very lo

FIG. 5. DOS fort'50.04: thick solid line, ordered case; sol
line, interruptions of chains with low values of hopping betwe
sites (P50.15); broken line, random on-site disorder (W52.25).
s.
th
n
-

ct

th
It

is-
e
d

ith
-
e
y

t
ad.
ce
gy
e
,

rs
e
r-
in
c-

-

-
al
e
e

e

mean free paths despite the fact that the system contai
substantial amount of disorder.25

Another striking feature of Figs. 1–4 is that, even in r
gions of low DOS, the phase boundary towards localizat
appears at a rather high concentration of defects, m
higher than what is expected in carefully prepared sample
conjugated polymers. This shows that the anisotropic sys
is quite robust and that the system can exhibit localizat
lengths that are much longer than the regions of struct
order. This is an important result in connection with t
transport properties of, e.g., conjugated polymers.6

It should be noted that the situation in the case of con
gated polymers is slightly different from that studied he
The pristine polymer is a Peierls insulator with a gap in t
electronic spectrum around zero energy. Upon doping
gap is reduced, and in order for the polymer to exhibit m
tallic properties, the gap has to be closed. Since this stud
more focused on fundamental properties of the anisotro
systems, we avoid effects related to specific models of
metallic state by simply modeling the polymer with unifor
bond lengths along the polymer chain.

IV. SUMMARY AND CONCLUSIONS

It is a well known feature of one-dimensional systems t
all electronic wave functions become localized in the pr
ence of disorder. Using finite-size scaling, we have sho
here that a anisotropic system, even at rather weak interc
interactions, allows for enough flexibility for the scattere
waves to avoid dephasing and localization. In heavily dop
polymeric material, the Fermi energy lies near the middle
the band. The strength of the disorder that causes localiza
at these energies is very large, e.g., in the case oft'50.04
the concentration of chain interruptions needed is aro
10% ~see Fig. 4!, which corresponds to an average cha
length of ten CH units. This is clearly an unrealistically sm
estimate of the chain length. To explain the disorder-indu
MIT in heavily doped conjugated polymers one has to co

FIG. 6. Renormalized localization length for two points in th
phase diagram shown in Fig. 4. The solid and dashed lines co
spond to the point marked with * and1, respectively.
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sider the effect of residual Peierls distortion~e.g., soliton
lattice! to get a more realistic electron structure. Furth
more, it is evident from the evolution of the localizatio
properties with increasing interchain interactions that in
der to optimize the transport properties of heavily doped c
ducting polymers, the interchain interaction is very imp
tant.
r-
n
r-
n-
r-
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