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Numerical investigation of electron localization in polymer chains

Magnus Paulssdnand Sven Stafstro’
Department of Physics and Measurement Technology, IFM,” pingoUniversity, S-581 83, Linking, Sweden
(Received 26 March 1997

Using finite-size scaling, we have calculated the localization-delocalization phase diagrams for electronic
wave functions in different disordered polymeric systems. The disorder considered here simulates finite poly-
mer chain lengths, breaks in the conjugation, and disorder in an external potential. It is shown that a system of
interacting chains, even at rather weak interchain interactions, allows for enough flexibility for the scattered
waves to avoid dephasing and localization. Localization and the metal-insulator transition in highly conducting
polymers are discussed in view of these res(iB©163-18208)03604-2

I. INTRODUCTION from the dopant ions and in the interchain interaction
strength. There are different models of structural disorder in
During the past two decades, conjugated polymers havheavily doped conjugated polymers. The samples are viewed
been studied in great detail. From the point of view of physi-either as consisting of highly conducting metallic islands
cal properties, most interest has concerned their electricalith regions of large disorder in betwéear as an essen-
electronic, and optoelectronic properties. All these propertiesially uniform distribution of the disorder.In both these
are based on the process of charge transport in the polymenmodels, the mean free path has to be large, several hundred
material. In particular, as concerns the studies of heavilyangstroms or more, in order to explain the large conductivity
doped highly conducting polymer samples, the still unandin the material.
swered question is how these systems can reach a metallic Theoretically, in order to compare with these experimen-
state (high conductivity in the low-temperature limiand tal observations we would like to study the effect of the
why the conductivity is so high in this state. The metallic disorder on the(Anderson localization of the electronic
state of the conducting polymer is thought to be close to thevave functions. One parameter scaling theory has predicted
metal-insulator transitidn(MIT). Understanding of the MIT  localization for one- and two-dimensional disordered lattices.
in heavily doped conjugated polymeric systems is thus imin three-dimensional lattices there is a mobility edge that
portant in order to reach an understanding of how disorderseparates localized and extended states in the energy spec-
electron-electron interactions, etc., affect the transport irrum. Most of the studies of the Anderson model have been
these systems. Moreover, the weakly interacting chains afiumerical~2° on cubic lattices with isotropic hopping and
the polymeric systems are highly anisotropic. Such systemsandomly chosen on-site energies, but more recently some
are also of interest from a more fundamental point of view astudies of different anisotropic Hamiltonidh$? have been
an intermediary between the very well studied cases of onpublished.
and three dimensions. The aim of this study is to get an understanding of the
There are several different conjugated polymers that cadnderson MIT in an anisotropic model and to understand the
be doped to high levels of conductivity. The most well stud-effect of disorder on the localization properties of the elec-
ied is trans-polyacetylen@A) that upon doping with iodine tronic states at different energies. The studies are performed
can reach conductivities up to 31G5/cm, comparable to cop- at different interchain interaction strengths, thereby modeling
per. This high conductivity can only be reached in very puredifferent degrees of anisotropy. The role of the dimensional-
and carefully prepared sampfésand at high doping levels. ity of the sample has been very clearly illustrated by Reghu
At these high doping levels, PA shows intrinsic metallic be-et al,*®> who showed that it is possible to tune the conducting
havior with a nonzero density of states at the Fermi level angbolymer through the MIT into the metallic regime by apply-
a finite resistance in the low-temperature lithit low and  ing pressure. The increased interaction between the chains of
intermediate doping levels(7%) the conductivity of PAis the polymer with increasing pressure leads to a transition
high at room temperature, but decreases to zero in the lownto the metallic state.
temperature limit. The charge transport is thermally activated The studies are performed using a simple anisotropic
and the material is semiconducting with an energy gagight-binding Hamiltonian. To simulate the interruption of
around the Fermi level. In this article we focus on thechains we considered the following two modeig:the on-
heavily doped samples and on the disorder driven MIT. Thissite energy was raised on randomly chosen sites to create a
type of study relates closely to experimental studies thapotential barrier ofii) the hopping between sites in the chain
show that degradation of the samples as a result of exposuweas decreased. A third type of disorder has also been stud-
to, for instance, arr® results in the loss of metallic proper- ied. This disorder has also been studied by several other
ties. authorst™*2 which makes a direct comparison with our re-
Disorder in a conducting polymer can be of several dif-sults possible(iii) a random on-site energy. Section Il of this
ferent types, e.g., interruption of the chains, variations inarticle introduces the methodology and some numerical de-
torsion angles along the chains, and disorder in the potentidhils of the model. Results and discussion are presented in
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Sec. Il and a summary of our results and conclusions arenostly on the the effect of chain interruptions, including
given in Sec. IV. both the effects obp®-like defects and the finite length of
the chains. Two different types of interruptions have been
Il. METHODOLOGY considered. One is a binary alloy type of disorder in which
we set the on-site energy on random sites to a high value
Conducting polymers are built up from nearly one- =10 (in units oft). These sites create a potential barrier for
dimensional chains packed into a three-dimensional crystaklectrons and thus cause an interruption in the chain. We
line structure. This type of system can be represented by aave also studied interruptions in the chain by setting the
anisotropic tight-binding Hamiltonian with larger hopping in hopping along the chaitl to a small valug0.04) between
the chain direction t{) than in the perpendicular direction randomly chosen sites. A third type of disorder is a box
(t"). We note in passing that all types of chain structures camjistributed on-site disorder with widttV where the on-site
be represented by a model of this type. In particular, Morenergiese, | , are randomly assigned betwe&w2 and
complicated polymeric structures than PA can be mapped w2, This type of disorder has been studied extensively in
onto a ?ne-d|men3|onal chain by a renormalizationgther types of systems and is included here merely as a ref-
argument: erence, even though it has some similarities to disorder

If we consider only the @, orbitals of the polymer chain, caused by irregularities in the potential caused by the dopant
we get the one-electron tight-binding Hamiltonian with jons.

nearest-neighbor hopping Disordered systems of the type discussed here have suc-
cessfully been studied by using the transfer matrix method.
H= K.1.m K.1.ml+|k.I,m il K+1), _For a single cha!n(one-dimensional systen the time-
k;m | )€ict.md [+ Pt m independent Schdinger equation in the tight-binding ap-
proximation can be writtenn,a,,1+(e,—E)a,+t,_1a,_1
kLMt (kT 1m[+ [k, m)t =0, whereE is the energy eigenvalue, is the hopping
X (k,1,m+ 1|+ H.c. 1) strength between sites, is the on-site energy, aray, is the

amplitude of the wave function at the site By iterating this
The sum is to be taken over a three-dimensigaaisotropi¢ ~ equation we obtain a relation between the amplitudes of the
cubic lattice andk,l,m) denote the orbitals at the sites along wave function on different sites of the lattice
the chains k) and in a plane perpendicular to the chain axis

(I,m). The energy scale is specified by choosing the hopping @n+1) (&
strength in thek direction tot!=—1 and by setting the on- a, | \ag)’
site energies t@=0. Hopping in the direction perpendicular n

to the chairt" is taken to be small, reflecting the anisotropic WNereT=1Ili-;T; and

nature of polymers. Similar types of models have been used Eee —t

in both one-dimension&® problems and a three- €i i1
dimensional lattic¥ to describe PA and it is also relevant to Ti= ti b
other types of polymers as mentioned above. It has also been 1 0

studied in the context of localization in the layered structure

of high-T: superconductors with on-site disorder by Panagi- By generalizing this method to a system of coupled chains
otideset al! and Zambetaket al!? The values of the hop- we consider a bar with a quadratic cross sectidx M,
ping chosen to model PA ar¢l=—25 ev andt-  whereM is the number of chains in each direction perpen-
=-0.1 eV?! In units of t we gett' =0.04, which is an dicular to the chain axis. For this system of coupled chains
idealized but realistic approximation for taeelectron band. we get a transfer matrix that connects the wave function in a
In order to study the influence of the interchain interactionslice of the bar with its value on the nearest-neighbor slices
strength on the localization properties of the wave functionsn the following way:

we have also performed calculations for=0.1. This value

is much to high to describe the polymeric system, but nev- it O\[E-H¢ —I|(1 O

ertheless gives information about the sensitivity of the sys- Tie= 0 | I o/\o t\l\(_l ' (2)

tem to changes in the interchain interaction strength.

The main drawback of the simple one-particle Hamil-where tl is the hopping matrix between slice and k
tonian in Eq.(1) is that it does not take electron-electron +1, Hy is the two-dimensional Hamiltonian of sliée and
interactions into account, which certainly also are of impor-E is the energy eigenvalue. The product of transfer matrices
tance for localizatiort® We also neglect effects of deviations gives a connection between the wave function at the two
from uniform bond distances. Such deviations are most cerends of the bar. From this result the transmittance, reflec-
tainly present even in the highly doped systems and result itance, and conductance of the bar can, in principle, be calcu-
pseudogaps around the Fermi enely$f The effects of such lated using, e.g., the Landauer forméfadowever, since the
deviations are briefly discussed below, but since the maibar is restricted in size in the directions perpendicular to the
focus of this work is on the role of the dimensionality, we chain axis, it constitutes effectively a one-dimensional sys-
leave the details of the effects caused by more subtle struéem. When disorder is introduced in such a systems the trans-
tural parameters to a future stutly. mittance is always exponentially decreasing with the length

The disorder present in heavily doped conducting poly-of the bar?® The numerical instability given by the exponen-
mers can be of various typdsee above Here we focus tially increasing/decreasing eigenvalues of the transfer ma-
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trix makes it almost impossible to get correct numerical re- W

sults for this type of system. To overcome this numerical S SRS S S
difficulty we have calculated the Lyapunov characteristic ex- 5 6l . _ _ @@ @ @ @ @ @
ponents(LCE’s) using an orthogonalization procedure de- C .

scribed by Benettin and Galgaffi® Still, great care has to be 2.4
taken to ensure that the results are free from numerical prob-

lems. Here we carefully monitor the number of steps be- 2.2
tween orthogonalization to ensure numerical accuracy. An
estimation of the errors in the calculated LCE’s was obtained
from the standard deviation. This estimate was also used to
determine when the LCE’s had the required accuracy. A N N
check was made to verify that the pairs of LCE’s were equal ¢ 05 1 1.5 2 2.5 3

Wi_th opposite sign Within three stand_ard de_viations. Sincé [, 1. Phase diagrath =0.04, energy E) vs disorder strength
this method of calculating the LCE'’s yields higher accuracy(yy) for box distributed on-site disorder. The dots indicate points
for longer bars, the method can produce results of arbitraryhat have been calculated. In order to guide the eye, the unshaded
high precision. In practice, however, the accuracy is limitedarea(small dotg shows the parameter space of delocalized states
by the computation time and the upper limit is determined byand the shaded arékarge dots the localized states.

the computational power available.

The localization lengths of the electronic wave functionsthe order of 18 sites and, as shown below, the localization
were calculated as a function of energy and type and strenglangths are up to around 400 sites. The size of the system
of the disorder for different widths of the bar froi=4 up  perpendicular to the chains is, however, much smaller and
to M=10, in some cases up ¥ =16 (see below Periodic  thus appears to be more critical in this context. Our calcu-
boundary conditions in the perpendicular direction to the bafated values of the localization lengéiong the chain direc-
were used in all calculations. As discussed above, dihée  tion at an interchain hopping strength=0.04 are 510
finite the calculations will result in finite localization lengths (depending on the type of disordédimes as large as the size
when the system was disordered. To determine whether @f the barperpendicular to the chain axifor energies and
not the wave functions were localized in the thermodynamiaisorder strengths that correspond to states that are on the
limit a finite-size scaling argument was used. The localizabrink of being delocalized. However, the effect of the disor-
tion length A\, and the renormalized localization length der is relative to the size of the hopping, so we expect that
Ay=An/M in a bar of cross sectioM XM can be calcu- the localization length in the perpendicular direction should
lated from the inverse of the smallest LCE greater than’onebe a lot smaller. From numerical calculations in the case of
The finite-size scaling behavior of the renormalized localiza-anisotropic planes with on-site disorder at the center of the
tion length was studied as a function of the width of the barband Zambetaket all? have suggested that the following
If Ay decreases with increasing, then the wave functions relations holds between the critical renormalized localization
are localized. Correspondingly, the wave functions are ex- lengths parallel and perpendicular to the chain axis;
tended ifAy increases with increasinigl. The slope of the =t~ AL . In our case, the localization length perpendicular to
renormalized localization length V8! was obtained by a the chain directions scales down to values that are smaller
least-squares fit of the results dfy, at each value of the thanM, i.e., the critical renormalized localization length in
energy and disorder. the perpendicular direction is smaller than one. This indi-

Calculations were performed on bars with up t8 B0  cates that we can extrapolate to the thermodynamic limit and
slices (each slice containingd XM number of sites The  correctly decide whether or not the wave functions are local-
accuracy of the LCE increases with the length of the bar angzed. In order to test the effect of using periodic boundary
the calculations were terminated when the standard deviatiogonditions we have performed some calculations with
of the results at each point in the energy vs disorder phasehard” boundary conditions perpendicular to the bar. No
diagram was less than 2%. In some cases the maximuighange in the behavior of the localization length as compared
length of the bar was reached before the accuracy hagh the calculations with periodic boundary conditions was
reached 2%, thus producing results with a lower accuracyebserved. This further justifies the use of finite-size scaling
However, in all these cases the localization length was large this case.
and well into the region of delocalized states. Therefore, we
are confident that these less accurate results will not affect IIl. RESULTS AND DISCUSSION
the conclusions.

The key assumption behind finite-size scaling is that the The localization-delocalization phase diagram for the an-
localization length of a localized system asymptoticallyisotropic three-dimension&BD) case with on-site disorder is
reaches a limiting value as the width of the bar increasespresented in Fig. 1 for"=0.04 and in Fig. 2 fot' =0.10.
while in the delocalized system the localization length in-For t*=0.04 a disorder of approximateWV=2 is needed
creases linearly with the number of chains in the bar. If thebefore the wave functions inside the band start to localize
extension of the wave function is smaller than the size of theind localization of all states in the band occurs at a disorder
bar, the boundary conditions and the finite size of the bastrengthW of about 2.5-2.6. Decreasing the anisotropy in
should not affect the result when the wave functions are lothe system td*=0.10 results in an increase in the the criti-
calized. This is indeed the case along the chain directiowcal disorder to 3.754.0. The increase ih* corresponds to
where we have the possibility to treat lengths of the bar ofan increase in the unperturbed bandwidth from 4.32 to 4.8,
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FIG. 4. Phase diagram fdt =0.04, energy ) vs probability
of interruption of chains R), interruption of chains modeled by

. . . - . setting the hopping between sites in the chains to Qr4nits of
thus a relatively small increase showing that it is the hopplnq”) g PPINg 0

strength rather than the total band width that controls the
localization properties of the system.

Panagiotidest al!! derived a relation between the criti- o 1 and 0.2several energy regions appear in which the wave
cal disorder(box typg andt". Extrapolating this relation to functions localize separated by regions of extended wave
the values of' used here, we get a critical disorder of 2.9 in fynctions.
the case ot"=0.04 and 4.0 in the case 6f=0.10, both The corresponding phase diagram using the second model
results in very close agreement with our data. of chain interruptions with reduced valuestobetween cer-

Our data show clearly the existence of a mobility edge fortain randomly chosen sites is shown in Fig. 4. The concen-
the anisotropic system with an anisotropy corresponding t@ration of such interruptions corresponds directly to the con-
that of highly doped conjugated polymers. Thus, from thecentration of interruptions caused by raising the site energies.
point of view of transport, the weak hopping that exists be-yery interestingly, the two types of defects cause nearly
tween the chains is enough to produce delocalized statggentical phase diagrams. Since we believe that the second
even in the presence of relatively strong disorder. The criticanodel is the most realistic one to describe chain interruption
disorder for localization of all the wave functions in the bandin conjugated polymeric system we have performed a more
increases with increasing interchain hopping, which is congetailed study of the phase diagram in that case. The small
sistent with earlier studies of the same type of system as weflifferences between the results presented in Figs. 3 and 4 are
as experimental observation of an insulator-to-metal transicaused by the numerical values of the defects and differences
tion driven by applying pressure to the syst€hfor the  in the way these defects scatter the electronic wave function.
isotropic systemt*=1 the critical disorder is 16%at an  Our aim of this study is not to make a quantitative compari-
unperturbed bandwidth of 12.0. The behavior of the mobilityson between the two types of disorder. However, a rough
edge in the anisotropic systems is very similar to the behavestimate based on a comparison at a few points in the phase
ior for the isotropic 3D cas¢see Ref. 10 except that the diagram shows that the presently chosen valses Sec. Il
critical disorder is a lot smaller than in that case. above give very similar localization properties.

For the model of chain interruptions involving large on-  For the two types of disorder causing chain interruption it
site energies at certain randomly distributed sites we preseqy evident that the critical disorder for localization does not
a phase diagrartFig. 3) that shows the region of localized increase monotonically with the energy separation from the
and delocalized states for energies between 0 and 3yTheband edge; instead there are several mobility edges in this
axis shows the relative concentrations of sites with large oncase. The explanation for this phenomenon is that when the
site energies. As can be seen in Fig. 3, the simple behavior @fiterchain hopping is as low @5 =0.04 the chains are very
a single mobility edge that moves towards lower energiesyveakly coupled. The interruptions produce short chain seg-
with increasing disorder, as in the previous case, disappeargents of varying length. Since the interruptions are ran-
Instead, for a given concentration of defect sitbetween  domly generated, approximately half of the chain segments
will contain an odd number of sites. The distribution of en-
ergy levels for these chains is such that independent on the
0.2 st e length of segments, they all produce an energy eigenvalue at
o e zero energy in the limit of noninteracting chains. The accu-
mulated density of states, even in the case of weakly inter-
acting chains, is thus very large at zero enefgge Fig. 5.
Furthermore, when adding the energy eigenvalue distribution
of all chain segments, we get peaks in the DO&at+1,
+/2,+2cos(27/5)~0.62 . . ., simply indicating the den-

0 E sity of stategDOS) for chains with specific lengths. To see
’ ' how well the localization diagram corresponds to the DOS,

FIG. 3. Phase diagram fat =0.04, energy E) vs probability = we have calculated the DOS from the eigenvalues of the
of interruption of chains ), interruption modeled by setting the Hamiltonian matrix for a system with a length of 40 sites and
on-site energy to 10in units oftl). a 10x 10 cross section. The calculations were repeated 16

FIG. 2. Same as Fig. 1, but with =0.10.
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FIG. 5. DOS fort-=0.04: thick solid line, ordered case; solid 201
line, interruptions of chains with low values of hopping between 1150
sites (P=0.15); broken line, random on-site disord&V+€ 2.25).
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times for each type of disorder with different random seeds. M

The eigenvalues were then used to draw a histogram with . o S

int Is of | th 0.05: finally the hist G . FIG. 6. Renormalized localization length for two points in the

It? er\éas % gnhg d h, flrz)ao);S 'el'h IS ogr?mfwas gussla hase diagram shown in Fig. 4. The solid and dashed lines corre-
roadene with a widt or0.u75. The resu ts for On's'tel OX'spond to the point marked with * and, respectively.

type disorder and the chain interruptions by a low valuél of

are shown in Fig. 5. For comparison, the DOS of the perfect

lattice calculated from the known energy relatiéf=e

+_2t“cos(kk)+2ti[cos(k|)+cos(km)] is also included N mean free paths despite the fact that the system contains a
Fig. 5. We also calculated the DOS of a disordered case withQ,pstantial amount of disord&t.

breaks in the chains modeled by raising the on-site energy. It apother striking feature of Figs. 1-4 is that, even in re-

shows the same qualitative features as the DOS for the digions of low DOS, the phase boundary towards localization
ordered case with interruptions modeled by lowering theappears at a rather high concentration of defects, much
hopping, except that it is not completely symmetric aroundyigher than what is expected in carefully prepared samples of
E=0 and additional levels appear at 8 units oftl) cor-  ¢onjugated polymers. This shows that the anisotropic system
responding to states localized to the defect sites. is quite robust and that the system can exhibit localization

Naturally, if the energy levels of two noninteracting chain |engths that are much longer than the regions of structural
segments are identical, the electronic states associated Wifder, This is an important result in connection with the
these levels will couple strongly when the interaction be-yransport properties of, e.g., conjugated polynfers.
tween the two chains is turned on. Thus, even though the |t should be noted that the situation in the case of conju-
interchain interaction strength is rather weak, the probabilitygated polymers is slightly different from that studied here.
for the electron delocalization is much larger in regions withThe pristine polymer is a Peierls insulator with a gap in the
a high DOS since the closer the energy levels of differengectronic spectrum around zero energy. Upon doping this
orb_|tals are the greater the che_mce the elect_ron has to .spreztgip is reduced, and in order for the polymer to exhibit me-
This means that we can explain the increasing transmittancgy|ic properties, the gap has to be closed. Since this study is
through the sample by having many closely spaced energyore focused on fundamental properties of the anisotropic
levels that in the system of interacting chains increase thgystems, we avoid effects related to specific models of the
probability of the electrons finding a path through the lattice,metallic state by simply modeling the polymer with uniform

thereby delocalizing in the thermodynamic limit. bond lengths along the polymer chain.
The values of the renormalized localization lengthg

calculated for various sizes of the cross section of the bars
(M) at two points in the phase diagram shown in Fig. 4 are
shown in Fig. 6. These two points are marked with an aster- It is a well known feature of one-dimensional systems that
isk and a plus, respectively, and indicate systems that are iall electronic wave functions become localized in the pres-
the localized asterisk and delocalized plus regimes, respeence of disorder. Using finite-size scaling, we have shown
tively. As is evident from the data shown in Fig. 8, is  here that a anisotropic system, even at rather weak interchain
much smaller in the localized regime and reduces with ininteractions, allows for enough flexibility for the scattered
creasingM. In the delocalized regime, howevék,, is large  waves to avoid dephasing and localization. In heavily doped
and increases with increasig. We recall from the discus- polymeric material, the Fermi energy lies near the middle of
sion in Sec. |l that this is exactly the signature of delocaliza-the band. The strength of the disorder that causes localization
tion. It is also interesting to note that even though the actuaht these energies is very large, e.g., in the case of0.04
system on which the calculation is performed is finite, thethe concentration of chain interruptions needed is around
localization length is as large as 400 sites for the bar with thd0% (see Fig. 4, which corresponds to an average chain
largest cross sectioM=16). The bar can be viewed as a length of ten CH units. This is clearly an unrealistically small
fibril in the polymeric system and the result presented her@stimate of the chain length. To explain the disorder-induced
thus gives an indication of the possibility to have very longMIT in heavily doped conjugated polymers one has to con-

IV. SUMMARY AND CONCLUSIONS
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