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Fluctuation-induced non-Fermi-liquid behavior near a quantum phase transition
in itinerant electron systems

Suresh G. Mishra and P. A. Sreeram
Institute of Physics, Bhubaneswar 751005, India

~Received 16 May 1997!

The signature for a non-Fermi-liquid behavior near a quantum phase transition has been observed in thermal
and transport properties of many metallic systems at low temperatures. In the present work we consider specific
examples of an itinerant ferromagnet as well as an antiferromagnet in the limit of vanishing transition tem-
perature. The temperature variation of spin susceptibility, electrical resistivity, specific heat, and NMR relax-
ation rates at low temperatures is calculated in the limit of infinite exchange enhancement within the frame-
work of a self-consistent spin fluctuation theory. The resulting non-Fermi-liquid behavior is due to the presence
of the low-lying critically damped spin fluctuations in these systems. The theory presented here gives the
leading low-temperature behavior, as it turns out that the fluctuation correlation term is always smaller than the
mean fluctuation field term in three as well as in two space dimensions. A comparison with illustrative
experimental results of these properties in some typical systems has been done. Finally, we make some remarks
on the effect of disorder in these systems.@S0163-1829~98!08703-7#
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I. INTRODUCTION

The description of the electronic contribution to the lo
temperature behavior of metals in terms of Fermi liquids
been highly successful.1 The low-lying excitations of the
Fermi liquid manifest themselves in various thermodynam
and transport properties, such as the specific heat varyin
Cv5gT, a temperature-independent~Pauli! spin susceptibil-
ity x52mBN(eF), whereN(eF) is the density of states at th
Fermi energy, a temperature-dependent electrical resist
varying asDr;AT2, and a linearly temperature-depende
NMR relaxation rateT1

21;T ~Korringa!. The values of co-
efficients such asg andA, however, are material dependen
For some transition metals these are about one order of m
nitude larger than in normal metals and in some compou
containing a large concentration of rare-earth or actinide
ements such as Ce, Yb, or U these values are about 1
times larger, particularly the value ofg and the zero-
temperature susceptibility.2

The normal Fermi-liquid behavior as mentioned above
understood within the Landau phenomenological theo
where the effect of an interaction in a Fermi system is
pressed in terms of a few parameters that renormalize
physical quantities with respect to their free-Fermi-gas v
ues. For example, the modifications in specific heat, s
susceptibility, and isothermal compressibility are given
Cv /Cv

05m* /m511(F1
s/3), x/x05(m* /m)/(11F0

a), and
ks /ks

05(m* /m)/(11F0
s), respectively.~The superscript 0

denotes the free-Fermi-gas values and other notations
standard.1! The basic reason for the success of the Lan
theory is the largeness of quasiparticle lifetime near
Fermi surface, i.e.,t21;ueu2!e, where e5(E2EF)/EF .
From these relations it is clear that for certain values of
Landau parameters~i.e., F0 and F1), the corresponding
quantities become very large, which in turn may indicate
neighborhood of a certain phase transition. For exam
F0

a→21 implies magnetic instability andF0
s→` a conden-
570163-1829/98/57~4!/2188~9!/$15.00
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sation. In the present work we consider the Fermi system
the vicinity of such a transition and seek an explanation
the non-Fermi-liquid behavior of certain substances in t
regime.3 It seems as though the Fermi-liquid theory gives
indication of the incoming electronic phase transition as
coupling constant changes, but it does not consider the e
of incipient fluctuations in a self-consistent manner.

There are many examples of electronic phase transit
where the coupling constant tunes the transition. These
known as the quantum phase transition. For example
2UN(eF).0 gives instability towards ferromagnetism,
2Ux(Q).0 gives antiferromagnetic instability correspon
ing to a wave vectorQ, and n1/3aH.0.26 describes the
metal-insulator transition due to Coulomb correlation as s
gested by Mott. These are essentially zero-temperature t
sitions; however, in general,Tc!TF , whereTF is the Fermi
temperature of the system. In contrast, the classical ph
transition occurs at finite temperature and is described by
balance in the energy needed~loss! to create disorder with a
gain in entropy due to disorder such that the free energF
5U2TS is reduced. One more difference is that the stat
and dynamics become correlated in quantum ph
transition.4,5 This is principally due to the noncommutativit
of various terms in the Hamiltonian. For example, consid
the Hubbard model

H5(
k

eknk1U(
i

ni↑ni↓ ~1!

for correlated electrons. Here the kinetic energy and theU
terms do not commute.~Otherwise the model will be trivial
to solve.! Technically, this means that one should introdu
‘‘time’’ and the Feynman time ordering in the functiona
integral for the partition function. The order-parameter fie
becomes ‘‘time dependent.’’ The time variable thus acts
an extra dimension. This leads to a change in the crit
behavior.4 At first glance it seems that the critical behavi
would be the same as that of a (D11)-dimensional classica
2188 © 1998 The American Physical Society
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57 2189FLUCTUATION-INDUCED NON-FERMI-LIQUID . . .
system. However, detailed analysis shows that the crit
behavior ~or the upper critical dimension! depends on the
dispersion and damping of the order-parameter fluctuatio
The reason is that the spin susceptibility for a ferromag
aboveTc is given by6

x~q,v1!'
N~eF!

@12UN~eF!#1dq22
ipgv

2q

. ~2!

For the free-electron gasg51/2 and d51/12. At Tc , 1
2UN(eF)→0 and therefore v'q3 gives the order-
parameter dispersion. In the case of antiferromagnetism
staggered spin susceptibility is given by7

x~Q1q,v1!'
x0~Q!

12Ux0~Q!1dq22 igv
. ~3!

In this case,v'q2 at the critical point. A dynamical expo
nent z is introduced, which reflects the change in the sta
critical behavior. In particular the scaling dimension of t
quartic interaction is given bye542(d1z) with z53 for
ferromagnets andz52 for antiferromagnets.4 In field theory
z51 sincev and q are linearly related and have the sam
scaling form. At present the application of the renormaliz
tion group to quantum critical phenomena, in particular
correlation of the static and dynamic behavior, is a subjec
intense activity. We refer the reader to Refs. 4, 5, 8, and 9
detailed discussion. To summarize, the vicinity to the ph
transition point and the fermionic nature of a correlated el
tronic system undergoing a phase transition change the
ture of the phase transition itself as well as the Fermi-liq
behavior expected in this system. The reason for this beh
ior is the smallness of the transition temperatureTc com-
pared to the Fermi temperatureTF . This aspect is reveale
more clearly asTc→0.

To calculate various physical properties, we take spec
examples of ferromagnetic and antiferromagnetic transiti
in an itinerant electron system in two as well as three dim
sions in the limit of vanishing transition temperature near
transition temperature. These two examples represent
different types of quantum critical behavior. The basic re
son is that in the ferromagnet the order parameter is a c
served quantity, while in the antiferromagnet it is not. Th
difference is reflected in the dispersion of their respect
order parameter fluctuations as shown in Eqs.~2! and ~3!.
The microscopic calculation is done within the se
consistent spin fluctuation theory developed earlier by
makrishnan and one of us10–13 among many others.14–16 For
details of the spin fluctuation theory we refer the reader
the monograph by Moriya.17 A brief review is given in Ref.
18. We first briefly review the spin fluctuation theory an
then write expressions for spin susceptibility, resistivity, s
cific heat, and nuclear magnetic relaxation rate. Similar
pressions for staggered susceptibility and other quantitie
antiferromagnets are also written. These quantities are
calculated in the limit of large exchange enhancement@i.e.,
in the limit of xPx(T50)21[a(0)→0#. Though Tc50,
fluctuation effects are observable well aboveTc . The tem-
perature dependence need not be Fermi-liquid-like beca
of the low-lying fluctuation~bosonic! degrees of freedom.
al
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II. SPIN FLUCTUATION THEORY

The basic motivation for constructing the spin fluctuati
theory is the largeness of the susceptibility~Stoner! enhance-
ment factor 1/a(0). In such a case a highly paramagne
system at low temperature can be considered to be in
vicinity of a magnetic transition. The temperature variati
of various physical quantities is therefore governed by tra
verse and longitudinal spin fluctuations. Even though the
der parameter vanishes above the transition, the effec
fluctuations is observable well above the transition. There
many equivalent formulations of this idea available.17,18 We
briefly summarize our approach and then compile results
some physical properties.

Consider the Landau expansion for the free ene
F(M ,T) in powers of the order parameterM , viz.,

F~M ,T!5F~0,T!1
1

2
A~T!M21

1

4
BM42HM , ~4!

whereH is the field conjugate toM . The temperature depen
dence of various quantities in this theory arises due toA(T)
andB. For example, the spin susceptibility for the parama
netic phase is given by

x21~T!5A~T!. ~5!

@A(T) anda(T) have qualitatively the same temperature d
pendence and differ only by some numerical factors, e
A(T)5a(T)/2N(eF) for ferromagnets, which we ignore an
identify A(T) with a(T) now onward.# Similarly, the mag-
netization in the ordered phase is

M2~T!52
a~T!

B
~6!

and the equation of state is given by

H

M
5a~T!1BM2. ~7!

The expansion coefficientsa(T) andB have been calculated
in various approximation schemes. In the Ginzburg-Land
theory for classical phase transition,a(T) is taken asT
2Tc andB as independent of temperature. This leads to
Curie-Weiss law for the susceptibility and the well-know
mean-field critical exponents. In the mean-field theory
itinerant ferromagnets

aMF~T!512UN~eF! ~8!

and B is again a constant. In this case the temperature
pendence of physical quantities nearTc comes from that of
the integral over the density of states through a Sommer
expansion. It is weak, of the order ofT2/TF

2 , and therefore it
does not give a Curie-Weiss form for the spin susceptibil
This issue is tackled in the spin fluctuation theory, whe
a(T) is given by,11,12

aSF~T!5a~0!1u4~2DT13DL!. ~9!

Herea(0) is the susceptibility enhancement factor atT50.
This includes the mean-field partaMF(T) and the zero-
temperature part of the fluctuation self-energy whose fin
temperature part comprises the second term. HereDT andDL
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are transverse and longitudinal spin fluctuation amplitu
obtained by the internal frequency summation in the d
grams shown in Figs. 1~a!–1~c!. The main contribution to the
temperature variation of various physical quantities is g
erned by these amplitudes. The factoru4 in the second term
is a dimensionless short-range four-fluctuation coupling c
stant obtained after integration over fast fermionic degree
freedom.

The above result has been derived microscopically, wit
the functional integral scheme on a model of interacting e
trons. We consider the Hubbard model as applied to itine
ferromagnets and for brevity consider only spin degrees
freedom. Applying the Stratanovich-Hubbard functional
tegral transformation, the partition function can be written

Z5trE )
q,m

djq,m

p
expF2(

q,m
ujq,mu22E

0

b

duH(
k

eknk,s,u

2S U

b D 1/2

(
q,m

@jq,m* Sq,mexp~zmu!1H.c.#J G , ~10!

wherejq,m is the spin fluctuation field of wave vectorq and
frequencyzm (52p im/b), ek is the kinetic energy of the
electrons, andU denotes a short-range interatomic repulsio
Integrating over the electronic degrees of freedom, we h
the free-energy functionalF(jq,m) for interacting spin fluc-
tuations, that is,

Z5E )
q,m

djq,m

p
exp@2bF~jq,m!#. ~11!

Parameters of this model, e.g., the fluctuation spectrum
fluctuation coupling vertices, are determined by properties
the underlying fermion system. Since these parameters~e.g.,
the Stoner enhancement factor for ferromagnets or the s
gered susceptibility for antiferromagnets! are such that spin
fluctuations are low-lying excitations, this transformation
especially helpful for an analysis of temperature-depend

FIG. 1. Self-energy diagrams for the spin fluctuation propagat
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properties of weak itinerant electron ferromagnets and a
ferromagnets. The free-energy functionalF(jqm) then ex-
panded in powers of these fluctuation fields up to a qua
term and a self-consistent mean fluctuation field approxim
tion ~quasiharmonic approximation or the self-consiste
renormalization scheme of Moriya! can be generated. Th
mean fluctuation field approximation corresponds to the d
grams in Figs. 1~a!–1~c! and shown in a compact manner
Fig. 2, where the double wiggle represents the dressed pr
gatorD(q). The details are given in earlier papers.11,12 One
can also estimate corrections due to higher-order fluctua
terms. Figures 1~d!–1~f! represent typical higher-order fluc
tuation correlated terms.

III. PHYSICAL PROPERTIES NEAR THE QUANTUM
CRITICAL POINT

A. Spin susceptibility

The self-consistent equation for the temperature dep
dence ofa(T) is given by Eq.~9! which is written explicitly
as

a~T!5a~0!1l(
q
E dv n~v!Imx~q,v1!, ~12!

where l is related tou4, n(v)5(ev/T21)21 is the Bose
distribution function, and

x~q,v1!5
N~eF!

a~T!1dq22ı
pvg

2q

~13!

is spin susceptibility for the ferromagnetic case. (v andT are
written in units ofeF and q in units of kF . We have set\
51 andkB51.! Performing the frequency integral,

a~T!5a~0!1
l

p(
q

qH ln~y!2
1

2y
2c~y!J , ~14!

where

.

FIG. 2. Self-energy in the mean fluctuation field approximation
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y5
q

p2gT
@a~T!1dq2#. ~15!

An interpolation formula for

f~y![H ln~y!2
1

2y
2c~y!J .

1

2y112y2
, ~16!

which is valid for small as well as largey, is useful in cal-
culating the momentum integral. For three dimensions,

a~T!5a~0!1
l

2p3E q3dq

2y112y2
. ~17!

A finite a(0) introduces two regions of temperatures11

For T,a(0) one gets the standard paramagnon theory
sults and fora(0),T,1 one gets the classical Curie-Wei
susceptibility

x5xP /a~T!.mB
2/@aa~0!1T#, ~18!

which is similar to the susceptibility of a collection of cla
sical spins. This feature is revealed more clearly if we
a(0)50 in the expression forx(T) and solve the equation
self-consistently. In this case the paramagnon regime@T
<a(0)# shrinks to zero and a classical behavior is expec
down toT50. One is then essentially calculating the susc
tibility of a ferromagnet withTc50. Sincea(0) is taken to
be zero and there is only one region of temperatureT,1. In
this case, typicallyy<1, the limiting form is obtained using
the formf(y)'(1/2y) ~valid for y!1). We then find that

a~T!5
T

d FqT2S a~T!

d D 1/2

arctanS qT

d

a~T! D
1/2G , ~19!

whereqT is a thermal cutoff such thatyqT
'1. For the form

of y given by Eq. ~15!, the estimate of the cutoff isqT
3

'Tg/d or qT'T1/3. The dominating contribution toa(T)
comes from the first term, which is given byT4/3. However,
sinced is small, the thermal cutoffqT is high,'qc ~the spin
fluctuation energy rises only slowly withq). Thusa(T) rises
nearly linearly withT. This is the classical spin fluctuatio
behavior, first pointed out for itinerant ferromagnets by M
rata and Doniach.14 Note that we have assumedT,1, i.e.,
the system is degenerate. Even so, since the characte
fluctuation energya(0) is zero, the system behaves clas
cally with regard to spin fluctuations. An estimate of the s
of the second term is obtained by settinga(T)'T4/3. We
then find it to be of orderT1/3 relative to the first term. Since
T1/3 is not very small, it is essential to do a self-consiste
calculation, particularly in the classical regime that is of
terest in the present calculation.

We have calculateda(T) and other properties in two di
mensions also. For this we consider the same approxim
form of the spin susceptibility or the fluctuation propaga
as in three dimensions and the effect of dimensionality
considered only through the phase space in the momen
integration. The assumption regarding the form of the s
ceptibility function in two dimensions is in doubt. It is we
known19 that the Lindhardt function from which this func
tional form has been derived has a different analytic form
e-
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two dimensions. As far as the low-momentum behavior
concerned, the assumption is closer to reality ifd is consid-
ered to be far smaller than its value in three dimensions.
the sake of comparison, we assume the same value ofd in
three as well as in two dimensions. Following the same p
cedure as in three dimensions, we find in two dimension
logarithmic temperature dependence

a~T!5
T

2d
lnS dqc

2

a~T!
D . ~20!

Because of the Bose factor 1/@exp(v/T)21#, the number
of thermal ~classical! fluctuations becomes smaller an
smaller asT→0 ~i.e., as theTc approaches!. This reduces the
phase space for the fluctuation correlations. In
renormalization-group analysis of Hertz4 and others5 this re-
quires the introduction of a suitably scaled ‘‘energy’’ var
able as a degree of freedom in addition to the three mom
tum variables. In effect, the dimensionality increases and
behavior becomes mean-field-like. We see this explicitly
our procedure of calculating the fluctuation correlation c
rection perturbatively. The terms involving two or more i
ternal thermal spin fluctuations are shown in Fig. 2. The
have been calculated in detail earlier.11 It turns out that apart
from a numerical factor, the two internal thermal spin flu
tuation term has the same temperature dependence a
mean fluctuation field term. However, the three internal th
mal spin fluctuation term is approximately equal
T2ln@1/3a(T)# in three-dimensional~3D! ferromagnets. We
see that this term is of the order ofT lnT relative to the
simplest nonvanishing contribution. The perturbation exp
sion therefore converges.

For a finite-Tc ferromagnet the mean fluctuation fie
theory is valid outside the critical regime. As the critic
regime approaches higher-order fluctuation correlations
come comparable to the mean fluctuation term. In the pre
case, in contrast, the mean fluctuation field term gives
leading critical behavior. The reason is the following. Su
pose fora(0)50, a(T);Tl. Then the quantum regionT
!a(T) meansT12l!1 and it occurs only ifl<1. This is
not possible and so one always has the other classical~Curie-
Weiss! region. Here the fluctuation correlation term is of th
form T2ln@1/a(T)#;T2ln(1/T)l!Tl. If l;1, the correla-
tion term never becomes more important than the mean fl
tuation field term.

In the case of antiferromagnets, the formalism is identic
One replaces the Pauli susceptibility with the staggered
ceptibility for a noninteracting electron systemx0(Q); for
brevity, we retain the same notation for the enhancem
factor, which is defined in the present case asa(0)
5x0(Q)/x(Q). The expansion of the dynamic stagger
susceptibilityx0(Q1q,v) for small q and smallv around
the static staggered susceptibility is also written in the for7

x~Q1q,v1!5
x0~Q!

a~T!1dq22ıgv
. ~21!

Making similar transformations as for the ferromagne
case, we get
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a~T!5a~0!1
l

2(q

1

2z112z2
, ~22!

where

z5
a~T!1dq2

2pgT
. ~23!

Thus, for 3D antiferromagnets,

a~T!5a~0!1
l

2pE q2dq

2z112z2
. ~24!

The result turns out to be identical to the ferromagnetic c
once we consider onlyz,1, where the corresponding mo
mentum cutoff turns out to beT1/2,

a~T!5
T

dFqc2Aa~T!

d
arctanSA d

a~T!
qcD G , ~25!

and in two dimensions there is again a logarithmic behav

a~T!5
T

2d
lnS dqc

2

a~T!
D . ~26!

B. Resistivity

The electrical resistivity for pure transition and rare ea
metals is usually calculated within a two-band mode20

where the ‘‘conducting’’ electrons come from ans band
while thed electrons contribute to magnetism. Thed band is
assumed to be narrow and thed electrons are assumed to b
heavy. The conductings electrons scatter from the spin fluc
tuations corresponding tod electrons. The temperature
dependent part of the resistivity due to this mechanism fo
3D ferromagnet is given by21–23

r~T!}
1

TE q3dqE Imx~q,v1!vn~v!@11n~v!#dv.

~27!

The frequency integral can be performed by first using
identity

1

T2
vn~v!@11n~v!#5

]

]T
n~v!, ~28!

leading to

r~T!'TE dq q3E dv
dn~v!

dT

qv

q2@a~T!1dq2#21v2

'E dq q4yf8~y!, ~29!

wheref8(y)5df(y)/dy andf(y) andy are given by Eqs.
~16! and~15!, respectively. In the limity,1 the momentum
integral gives

r~T!5
T

2dFqc
22

a~T!

d
lnS a~T!1dqc

2

a~T!
D G . ~30!
e

r

a

e

With qc;T1/3 we recover the well-known resultDr;T5/3.22

However, the self-consistenct correction changes the po
of temperature. Similarly, for two dimensions,

r~T!5
T

dFqc2Aa~T!

d
arctanSA d

a~T!
qcD G . ~31!

The case of 3D antiferromagnets formalism is simil
except for the power ofq in the momentum integral. This is
due to the fact that the small momentum expansion is
done aroundq50 but aroundq5Q, the antiferromagnetic
wave vector. The result is7

r~T!}
1

TE q2dqE Imx~Q1q,v1!vn~v!@11n~v!#dv.

~32!

Following the same steps as for the ferromagnetic case
get

r~T!}TE q2dq
1112z

2z~116z!2
, ~33!

where z is given by Eq.~23!. The result in the limit ofz
,1 is

r~T!5
T

dFqc2Aa~T!

d
arctanSA d

a~T!
qcD G . ~34!

Similarly, for two dimensions,r(T)5(T/2d)ln@dqc
2/a(T)#.

C. Specific heat

The spin fluctuation contribution to the free energy with
the mean fluctuation field approximation~or quasiharmonic
approximation! is given by13

DV5
3T

2 (
q,m

lnH 12Uxqm
0 1lT (

q8,m8
Dq8m8J , ~35!

whereDq,m is the fluctuation propagator that is related to t
inverse dynamical susceptibility andxqm

0 is the free-Fermi-
gas~Lindhardt! response function. The argument of the log
rithm is related to inverse dynamic susceptibility. Consid
ing only the thermal part of the integral and ignoring t
zero-point part, we perform the frequency summation a
obtain

DV thermal5
3

p(
q
E

0

` dv

ev/T21
arctanH pv/4q

a~T!1dq2J .

~36!

Integrating over frequency, we get

DV thermal53T(
q

F lnG~y!2S y2
1

2D ln~y!1y2
1

2
ln~2p!G ,

~37!

wherey is given by Eq.~15!. Once the free-energy correc
tion is known, the specific-heat correction is given by
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DCv

kB
52T

]2DV

]T2

523T2(
q

F S 2

T

]y

]T
1

]2y

]T2D f~y!1S ]y

]TD 2]f~y!

]y G
56E q2dqH f8~y!S q

p2g

]a~T!

]T
2yD 2

1Tf~y!
q

p2g

]2a~T!

]T2 J . ~38!

Making the small-y approximation and introducing the ap
propriate cutoff,

DCv

kB
'

1

2p2F S T2
]2a~T!

]T2
12T

]a~T!

]T D E
0

qc
dq

q2

a~T!1dq2

2T2S ]a~T!

]T D 2E
0

qc
dq

q2

@a~T!1dq2#2
2E

0

qc
dq q2G

52
1

dS T2
]2a~T!

]T2
12T

]a~T!

]T D
3Fqc2Aa~T!

d
arctanSA d

a~T!
qcD G

1
T2

2dS ]a~T!

]T D 2F 1

Aa~T!d
arctanSA d

a~T!
qcD

2
qc

a~T!1dqc
2G1

qc
3

3
. ~39!

The last result is obtained after the momentum integrat
Approximately, the terms can be arranged as

CV'
1

2p2Fqc
31T2S ]a~T!

]T D 2 1

Aa~T!

2S T2
]2a~T!

]T2
12T

]a~T!

]T D qcG . ~40!

The first term gives the classical result~for constant cutoff!,
the second dominant term gives leading temperature cor
tion, and the last term is about two orders of magnitu
smaller in the temperature range of interest. Similarly, in t
dimensions,

CV52
1

2dS T2
]2a~T!

]T2
12T

]a~T!

]T D lnS dqc
2

a~T!
D 1

T2

2da~T!

3S ]a~T!

]T D 2S 11
a~T!

dqc
2 D 21

1
qc

2

2
. ~41!

The calculation for antiferromagnets is identical except t
y is replaced byz in Eq. ~40! and the final equation in term
n.

c-
e
o

t

of a(T) turns out to be identical except that the temperat
dependence ofa(T) is different in an antiferromagnet.

D. Nuclear spin relaxation rate

The nuclear spin relaxation rate in metals is given by
Korringa relation24

1

T1T
'S DH

H D 2

, ~42!

which essentially tells that 1/T1 is proportional to the square
of the static spin susceptibility of metals, which in turn
independent of temperature for most normal metals. Ho
ever, it was pointed out by Moriya25 long ago that this rela-
tion is modified in the presence of electron correlations. T
nuclear spin lattice relaxation rate in metals is given by

1

T1T
;(

q

Imx21~q,v0
1!

v0
, ~43!

where v0 is the nuclear magnetic resonance frequen
which is taken to be very small (→0) in the problem of
nuclear spin relaxation rate. Substituting the expression
x21(q,v0

1) and taking the limit, we have

1

T1T
;(

q

1

q@a~T!1dq2#2
~44!

for a ferromagnet in three dimensions. After the moment
integration, the result is (T1T)21;a(T)21. For a normal
Fermi liquid a(T) is constant, but in the present case it va
ies asT4/3. This leads to a non-Fermi-liquid behavior aga
A similar calculation is done for antiferromagnets.

E. Effect of disorder

The effect of disorder can be included in the abov
mentioned formalism by modifying the propagators and v
tices in diagrams for the spin fluctuation self-energy. T
has been done in our earlier papers.26,27 In the presence of
disorder the electron moves randomly, getting scattered f
impurities repeatedly. This introduces a finite mean free p
for the electron and a finite lifetimet in the electron propa-
gator, which also modifies the free-particle–hole propaga
~diffuson!, the free-particle–particle propagator~cooperon!,
and the electron-spin fluctuation vertex. The correction
a(T) to leading order is given by,

a~T!5aSF~T!2ad~T!, ~45!

wheread(T) is the correction due to diffusive modes. It
given to the leading order in 1/eFt as

ad~T!;~12A2ptT!/~eFt!2 ~46!

FIG. 3. Schematic diagram of the various temperature sc
involved in the disordered material.
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TABLE I. Summary of the temperature dependence of various thermal and transport properties near a quantum phase transition
each property results are displayed in three rows. The first row gives the non-self-consistent calculation scheme. For ferromagnets
cutoff for q is T1/3, while for antiferromagnets it isT1/2. The second row gives the self-consistent calculation scheme results. The
cutoff for q has been taken to be 1. The range of temperatures in which these exponents have been calculated isT51023–1022. The third
row gives the classical spin fluctuation results, i.e., the first row withqT as a constant.

Fermi liquid Ferromagnets~3D! Antiferromagnets~3D! Ferromagnets~2D! Antiferromagnets~2D!

T4/3 T3/2 T lnT T lnT
@x(T)#21 const T1.20 T1.44 T0.87 T

T T T T

T5/3 T3/2 T4/3 T lnT
r(T) T2 T1.56 T1.45 T1.24 T

T T T T

T T3/2 T2/3 T
Cv(T) T T0.74 T0.99 T0.52 T0.86

const const const const

T24/3 T23/4 (T lnT)23/2 (T lnT)21

(T1T)21 const T21.284 T20.72 T21.305 T21

T21 T21/2 T23/2 T21
in

o
n-

ef-
on-

i-
m-
nted

e
re-
for T!1/t and vanishes otherwise. Clearly, the disorder
troduces a new energy scale (1/t) in the lowest temperature
range, as shown schematically in Fig. 3. In the case of n
vanishinga(0), in thecase of ferromagnets in three dime
sions, the susceptibility inversea(T) behaves as;T1/2 for
T,1/t, as T2/a(0) for 1/t,T,a(0), and asT4/3 for
a(0),T,1. Similarly, the resistivity correctionDr(T) be-
haves as;T1/2 for T,1/t, asT2/Aa(0) for 1/t,T,a(0),
and asT5/3 for a(0),T,1. In the case of a zero-Tc system

FIG. 4. Plot of Cv /T as a function ofT2Tc for Sc3In. The
experimental points~Ref. 30! are represented by circles and th
solid line represents the theoretical fit.d51/12, g51/2, andTF

'1000 K.
-

n-

the quantum fluctuation regime@T,a(0)# vanishes and the
other two regimes merge. At the lowest temperature the
fect of the diffusive mode seems to give the dominant c
tribution, i.e.,a(T);T1/2 andDr(T);T1/2, but a more de-
tailed analysis is needed.

F. Summary

Table I summarizes our results. In the first column Ferm
liquid theory results are written and the other columns co
pile the fluctuation theory results. These results are prese

FIG. 5. Plot ofr(T) as a function ofT for MnSi. The experi-
mental points31 are represented by circles and the solid line rep
sents the theoretical fit.d51/12,g51/2, andTF'1000 K.
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in three rows for each property. The first row gives resu
from a non-self-consistent calculation, for example, wh
only the first term in Eq.~19! for a(T) is considered, but
with a proper momentum cutoff. This behavior is expected
the extreme low-temperature range. These results are in
eral known, but are presented here in a coherent form.
second row gives these results with the temperature de
dence ofa(T) taken in account and the integration pe
formed with the functional form forf(y) valid for all y but
approximated by Eq.~16!. The power of temperatures s
obtained depends slightly on the temperature regime con
ered ~i.e., whetherT is in the range 1023–1022 or other-
wise!. The third row gives the classical spin fluctuation r
sults, where the Bose factorn(v) is approximated asT/v
~effectively the first row with a constant cutoff!. The experi-
mental results are expected to lie between those give
rows 1 and 3.

IV. EXPERIMENTAL RESULTS

In this section we give examples of materials exhibiti
non-Fermi-liquid behavior at low temperatures and a
compare some results with a theory presented above.
most popular example of a system showing non-Fermi-liq
behavior is, of course, the high-temperature sup
conductors.28 It seems, however, that the effective low d
mensionality, the specific nature of the density of states,
the structural aspects of the Fermi surface~nesting, etc.! play
important roles in this system. We therefore want to consi
examples from three-dimensional correlated electronic s
tem in the neighborhood of an electronic phase transition

The next example is that of phosphorus-doped silic

FIG. 6. Plot of (T1T)21 as a function ofT for Ni3Al. The
experimental points~Ref. 32! are represented by circles and th
solid line represents the theoretical fit.d51/12, g51/2, TF'1000
K.
s
n

n
n-
e
n-

id-

-

in

o
he
d
r-

d

r
s-

n

~Si:P!.29 This material goes through a Mott insulator to me
transition as the doping by P increases. Atnc;3.731018

atoms/cm3 of P there is a metallic state. The spin suscep
bility of Si:P gets enhanced and becomes strongly temp
ture dependent as the metal-insulator transition is approac
from the metallic side. TheT dependence observed does n
fit the 1/T behavior expected for weakly interacting localize
spins either. Moreover, the spin lattice relaxation times
barely metallic Si:P is strongly temperature dependent,T1

21

;T21/2, similar to the correction to the zero-T conductivity,
s;T1/2, in this material. There are theories that associ
these anomalies to spin fluctuations induced due to incip
localization. There is a subtle interplay of disorder and c
relation effects in this material. Only a spin fluctuation kin
of theory will not work.

Some transition metal~and also some actinide! interme-
tallic compounds show a low saturation moment p
transition-metal atom and a low magnetic transition tempe
ture Tc compared to conventional ferromagnetic materi
such as Fe, Co, and Ni. These compounds are known
weak itinerant electron ferromagnets. The prototype
amples are ZrZn2, Ni3Al, and Sc3In.18 Their low-temperature
properties have been discussed within spin fluctuation th
ries for a long time.17 Here we compare the specific-he
behavior of Sc3In aboveTc with our present calculation~Fig.
4!. The experimental curves are due to Ikeda30 and show a
good fit to the theory withDr(T);T and Cv(T)/T;(T
2Tc)

20.25.
The example of MnSi is interesting from the perspect

of the present work. The material has a transition tempe
ture around 30 K. As the hydrostatic pressure is applied

FIG. 7. Plot of Cv as a function ofT for CeCu5.7Au0.3 at a
pressure of 8.2 kbar. The experimental points~Ref. 34! are repre-
sented by circles and the solid line represents the theoretical fid
51/2p, g51, andTF'5 K.
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Tc decreases continuously and collapses towards abs
zero atpc514.6 kbar. This is an example where an approa
to a zero-temperature quantum phase transition can be
served as a function of pressure. This has been done
Pfleiderer, McMullan, and Lonzgrich.31 The deviation of the
resistivity curve from theT2 behavior becomes pronounce
aspc is approached. In Fig. 5 we have comparedDr/T2 with
a power-law temperature dependence, as suggested in
calculation.

We have compared the nuclear spin relaxation rate
27Al in Ni 3Al as a function of temperature.32 This material
has a transition temperature about 41 K and shows all o
characteristic properties of weak itinerant ferromagnet.33 The
low-field data fit to power lawT20.89 for (T1T)21, as shown
in Fig. 6.

The heavy fermion material CeCu6 is nonmagnetic. On
alloying with Au the lattice expands and an antiferroma
netic order is observed in CeCu62xAux above a critical con-
centrationxc'0.1. The Ne`el temperature of the antiferro
magnetic heavy-fermion alloy CeCu5.7Au0.3 can be
continuously tuned to zero with increasing hydrostatic pr
sure. At the critical pressure the specific heat has been fi
to theC/T; lnT0 /T curve.34 We analyze the data again an
fit the curve to our prediction (T0.58 corresponding to the
temperature range of interest! in Fig. 7.
W

-
B

od
te
h
b-
by

our

f

er

-

-
ed

V. CONCLUSION

We have calculated the temperature dependence of v
ous physical properties near the quantum phase trans
point. The results hold for electronic phase transitions wit
finite Tc also. This is clear, as the results from the first row
Table I match some well-known results in the literatu
However, they are pronounced and a clear non-Fermi-liq
behavior is obtained whenTc→0. Our results are perturba
tive, but as discussed in the text the fluctuation correlat
term is always smaller than the mean fluctuation field te
The behavior of these quantities is different in ferromagn
from the antiferromagnetic system. This is a reflection of
fact that the order-parameter fluctuations have a differ
form of dispersion in these systems. Finally, we made so
remarks about the inclusion of the effect of disorder n
quantum critical point within the spin fluctuation formalism
The present approach can be applied to other systems
One only needs an appropriate form of the order-param
correlation function to calculate various quantities. For e
ample, this approach can be applied to systems wit
pseudogap35 in the excitation spectrum and also wit
phononlike dispersion as it happens in short cohere
length superconductors. For example, in 2D short cohere
length superconductors it has been shown through Mo
Carlo simulations that the relaxation rate varies as the s
susceptibility36 @a(T)#21 of the system, which matches ou
result on 2D antiferromagnets.
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