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Fluctuation-induced non-Fermi-liquid behavior near a quantum phase transition
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The signature for a non-Fermi-liquid behavior near a quantum phase transition has been observed in thermal
and transport properties of many metallic systems at low temperatures. In the present work we consider specific
examples of an itinerant ferromagnet as well as an antiferromagnet in the limit of vanishing transition tem-
perature. The temperature variation of spin susceptibility, electrical resistivity, specific heat, and NMR relax-
ation rates at low temperatures is calculated in the limit of infinite exchange enhancement within the frame-
work of a self-consistent spin fluctuation theory. The resulting non-Fermi-liquid behavior is due to the presence
of the low-lying critically damped spin fluctuations in these systems. The theory presented here gives the
leading low-temperature behavior, as it turns out that the fluctuation correlation term is always smaller than the
mean fluctuation field term in three as well as in two space dimensions. A comparison with illustrative
experimental results of these properties in some typical systems has been done. Finally, we make some remarks
on the effect of disorder in these systerf$80163-182¢08)08703-1

I. INTRODUCTION sation. In the present work we consider the Fermi system in
the vicinity of such a transition and seek an explanation of
The description of the electronic contribution to the low- the non-Fermi-liquid behavior of certain substances in this
temperature behavior of metals in terms of Fermi liquids hagegime® It seems as though the Fermi-liquid theory gives an
been highly successflilThe low-lying excitations of the indication of the incoming electronic phase transition as the
Fermi liquid manifest themselves in various thermodynamiccoupling constant changes, but it does not consider the effect
and transport properties, such as the specific heat varying & incipient fluctuations in a self-consistent manner.
C, =T, a temperature-independei®aul) spin susceptibil- There are many examples of electronic phase transitions
ity x=2usN(er), whereN(eg) is the density of states at the where the coupling constant tunes thg_tran5|t|on. These are
Fermi energy, a temperature-dependent electrical resistivitbnown as the quantum phase transition. For example, 1

: ; =UN(eg)>0 gives instability towards ferromagnetism, 1
varying asAp~AT?, and a linearly temperature-dependent F ; ) S . i
NMR relaxation rateT; *~T (Korringa). The values of co- U x(Q)>0 gives antiferromagnetic instability correspond

ffici h dA h I dependent, N9 to @ wave vectoQ, and n'a,;>0.26 describes the
efficients such ay andA, however, are material dependent. o5 insylator transition due to Coulomb correlation as sug-

For some transition metals these are about one order of Magagiaq by Mott. These are essentially zero-temperature tran-
nitude larger than in normal metals and in some compound

-~ . L itions; however, in generdl,.<Tg, whereTg is the Fermi
containing a large concentration of rare-earth or actinide elfemperature of the system. In contrast, the classical phase
ements such as Ce, Yb, or U these values are about 104f}nsjtion occurs at finite temperature and is described by the
times larger, particularly the value of and the zero- pajance in the energy needédss to create disorder with a

temperature suscept_ipilif)_/. , ) . gain in entropy due to disorder such that the free enérgy
The normal Fermi-liquid behavior as mentioned above is_ ; _ 155 requced. One more difference is that the statics

understood within the Landau phenomenological theoryand dynamics become correlated in quantum phase

where the effect of an interaction in a Fermi system iS eXy.angition®® This is principally due to the noncommutativity
pres;ed In terms of a few parameters that renormal|ze St various terms in the Hamiltonian. For example, consider
physical quantities with respect to their free-Fermi-gas Va"the Hubbard model

ues. For example, the maodifications in specific heat, spin

susceptibility, and isothermal compressibility are given by

C,/CO0=m*/m=1+(F$/3), x/x°=(m*/m)/(1+F2), and H=2 anct U2 nymy, (1)
KS/K2=(m*/m)/(1+ F3), respectively.(The superscript 0 '

denotes the free-Fermi-gas values and other notations afer correlated electrons. Here the kinetic energy andUhe
standard) The basic reason for the success of the Landaterms do not commutéOtherwise the model will be trivial
theory is the largeness of quasiparticle lifetime near theo solve) Technically, this means that one should introduce
Fermi surface, i.e.7” 1~|e|?><e, where e=(E—Eg)/Eg. “time” and the Feynman time ordering in the functional
From these relations it is clear that for certain values of thantegral for the partition function. The order-parameter field
Landau parametersi.e., Fq and F;), the corresponding becomes “time dependent.” The time variable thus acts as
guantities become very large, which in turn may indicate thean extra dimension. This leads to a change in the critical
neighborhood of a certain phase transition. For examplehehavior* At first glance it seems that the critical behavior
Fi— —1 implies magnetic instability anB§—c a conden- would be the same as that of B {- 1)-dimensional classical
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system. However, detailed analysis shows that the critical Il. SPIN FLUCTUATION THEORY
behavior (or the upper critical dimensigndepends on the
dispersion and damping of the order-parameter fluctuation
The reason is that the spin susceptibility for a ferromagne
aboveT, is given by

The basic motivation for constructing the spin fluctuation
heory is the largeness of the susceptibi(iBtoney enhance-
ment factor 1«(0). In such a case a highly paramagnetic
system at low temperature can be considered to be in the

N(ep) vicinity of a magnetic transition. The temperature variation
F

x(Q ot~ : ) 2) of various physical quantities is therefore governed by trans-
[1—UN(ep)]+ 892 — | Tyw verse and longitudinal spin fluctuations. Even though the or-
F 2q der parameter vanishes above the transition, the effect of

fluctuations is observable well above the transition. There are
many equivalent formulations of this idea availabig®we
briefly summarize our approach and then compile results on
heme physical properties.

Consider the Landau expansion for the free energy
F(M,T) in powers of the order parametit, viz.,

For the free-electron gag=1/2 and 6=1/12. At T, 1
—UN(eg)—0 and therefore w~q® gives the order-
parameter dispersion. In the case of antiferromagnetism, t
staggered spin susceptibility is given’by

X°(Q)
1-UxX%Q)+ 802 —iyo

x(Q+qg,0")~ )

F(M,T)=F(0,T)+ %A(T)M2+ %BM“—HM, 4
In this casew=~q? at the critical point. A dynamical expo-
nentz is introduced, which reflects the change in the statidvhereH is the field conjugate tM. The temperature depen-
critical behavior. In particular the scaling dimension of thedence of various quantities in this theory arises dué(fo)
quartic interaction is given by=4—(d+z) with z=3 for ~andB. For example, the spin susceptibility for the paramag-
ferromagnets and=2 for antiferromagnet$.n field theory ~ netic phase is given by
z=1 sincew andq are linearly related and have the same EPPE
scaling form. At present the application of the renormaliza- x H(M=A). ®)
tion group to quantum critical phenomena, in particular thg A(T) and«(T) have qualitatively the same temperature de-
correlation of the static and dynamic behavior, is a subject opendence and differ only by some numerical factors, e.g.,
intense activity. We refer the reader to Refs. 4, 5, 8, and 9 fop(T) = «(T)/2N(eg) for ferromagnets, which we ignore and
detailed discussion. To summarize, the vicinity to the phasgdentify A(T) with a(T) now onward] Similarly, the mag-
transition point and the fermionic nature of a correlated elecnetization in the ordered phase is
tronic system undergoing a phase transition change the na-
ture of the phase transition itself as well as the Fermi-liquid
behavior expected in this system. The reason for this behav-
ior is the smallness of the transition temperatiigecom- . .
pared to the Fermi temperatufe . This aspect is revealed and the equation of state is given by
more clearly asl;—0. H

To calculate various physical properties, we take specific —=qa(T)+BM?. (7)
examples of ferromagnetic and antiferromagnetic transitions M
in an itinerant electron system in two as well as three dimenThe expansion coefficients(T) andB have been calculated
sions in the limit of vanishing transition temperature near then various approximation schemes. In the Ginzburg-Landau
transition temperature. These two examples represent tWeory for classical phase transition(T) is taken asT
different types of quantum critical behavior. The basic rea-—T_ andB as independent of temperature. This leads to the
son is that in the ferromagnet the order parameter is a Corgurie-Weiss law for the susceptibility and the well-known

served quantity, while in the antiferromagnet it is not. Thismean-field critical exponents. In the mean-field theory of
difference is reflected in the dispersion of their respectivatinerant ferromagnets

order parameter fluctuations as shown in E@.and (3).
The microscopic calculation is done within the self- apme(T)=1—UN(ep) (8)

consistent spin fluctuation theory developed earlier by Ra- . . .
makrishnan and one of #53among many otheré-16 For and B is again a constant. In this case the temperature de-

details of the spin fluctuation theory we refer the reader t endence of physical quantities nelar comes from that of
the monograph by Moriy¥ A brief review is given in Ref. he integral over the density of states through a Sommerfeld

18. We first briefly review the spin fluctuation theory and expansion. Itis weak, of the order of/ T, and therefore it

then write expressions for spin susceptibility, resistivity, spe-d9€S Not give a Curie-Weiss form for the spin susceptibility.

cific heat, and nuclear magnetic relaxation rate. Similar ex:rhIS ISSU€ 1S ta?'fllezd in the spin fluctuation theory, where
pressions for staggered susceptibility and other quantities iff(T) 1S given by, ™
antiferromagnets are also written. These quantities are then _ T L

calculated in the limit of large exchange enhancenteet, ase(T)=a(0)+uq(2D7+3D7). ©

in the limit of ypx(T=0)"'=a(0)—0]. ThoughT,=0, Here «(0) is the susceptibility enhancement factofat 0.
fluctuation effects are observable well abovg. The tem-  This includes the mean-field patty(T) and the zero-
perature dependence need not be Fermi-liquid-like becaugsemperature part of the fluctuation self-energy whose finite-

of the low-lying fluctuation(bosoni¢ degrees of freedom.  temperature part comprises the second term. BérandD"

M2(T)=— -
(T (6)
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FIG. 2. Self-energy in the mean fluctuation field approximation.

(f)

properties of weak itinerant electron ferromagnets and anti-
FIG. 1. Self-energy diagrams for the spin fluctuation propagator.ferromagnets. The free-energy functio&léqm) then ex-
panded in powers of these fluctuation fields up to a quartic
are transverse and longitudinal spin fluctuation amplitudet¢erm and a self-consistent mean fluctuation field approxima-
obtained by the internal frequency summation in the diation (quasiharmonic approximation or the self-consistent
grams shown in Figs.(#)—1(c). The main contribution to the renormalization scheme of Moriyaan be generated. The
temperature variation of various physical quantities is govimean fluctuation field approximation corresponds to the dia-
erned by these amplitudes. The factgrin the second term grams in Figs. (8-1(c) and shown in a compact manner in
is a dimensionless short-range four-fluctuation coupling conFig. 2, where the double wiggle represents the dressed propa-
stant obtained after integration over fast fermionic degree ogatorD(q). The details are given in earlier papéts? One
freedom. can also estimate corrections due to higher-order fluctuation
The above result has been derived microscopically, withirferms. Figures @M)—1(f) represent typical higher-order fluc-
the functional integral scheme on a model of interacting electuation correlated terms.
trons. We consider the Hubbard model as applied to itinerant
ferromagnets and for brevity consider only spin degrees of || pHysICAL PROPERTIES NEAR THE QUANTUM
freedom. Applying the Stratanovich-Hubbard functional in- CRITICAL POINT
tegral transformation, the partition function can be written as
A. Spin susceptibility

d B ; ;
Z—tr ql_r[n gq'meXF{—qu |§q’m|2_ fo du{Zk €Nio The self-consistent equation for the temperature depen-

™ dence ofa(T) is given by Eq.(9) which is written explicitly
as

B , (10

where¢,, m is the spin fluctuation field of wave vectgrand

frequencyz,, (=27im/B), € is the kirjetic energy of thg where \ is related tou,, n(w)=(e”T—1)"! is the Bose
electrons, and) denotes a short-range interatomic repulsion.gjstribution function, and

Integrating over the electronic degrees of freedom, we have

U 1/2
_<_) > [ggYqu'mexqzmu)JrH.c.]]
N a(T)=a(0)+1 X fdw n(w)imy(q,0*), (12
q

the free-energy functiond (¢, ) for interacting spin fluc- N(er)
tuations, that is, Y(gq,0)= F (13)
Tw
dg a(T)+5q2—|2—qy
z=| I1 = exd - BF(&qm]. (1D
qm 7T

is spin susceptibility for the ferromagnetic case.gdndT are

Parameters of this model, e.g., the fluctuation spectrum and@fritten in units ofer andq in units ofkg. We have seti
fluctuation coupling vertices, are determined by properties of* 1 andkg=1.) Performing the frequency integral,

the underlying fermion system. Since these paraméeegs,

the Stoner enhancement factor for ferromagnets or the stag-
gered susceptibility for antiferromagngtre such that spin
fluctuations are low-lying excitations, this transformation is
especially helpful for an analysis of temperature-dependenthere

B )\2 1
a(M=a(0)+ 3 aflny) = 2o =9(y)[, (14
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two dimensions. As far as the low-momentum behavior is

y=——la(T)+ 59°]. (150  concerned, the assumption is closer to reality i consid-
moyT ered to be far smaller than its value in three dimensions. For
An interpolation formula for the sake of comparison, we assume the same valu®iof

three as well as in two dimensions. Following the same pro-
cedure as in three dimensions, we find in two dimensions a
(16 logarithmic temperature dependence

1
¢(y)5( In(y)— 2y w(y)] =

2y+12y%’
which is valid for small as well as largg, is useful in cal- T 692
culating the momentum integral. For three dimensions, a(T)= 2_5"‘ a(T)) (20
A q3dq
a(T)=a(0)+ =l T a7 Because of the Bose factor| &kp(w/T)—1], the number
2m) 2y+12 of thermal (classical fluctuations becomes smaller and

. . . smaller asT— 0 (i.e., as thel; approachés This reduces the
A finite «(0) introduces two regions of temperatufes. phase space for the fluctuation correlations. In the

For T<a(0) one gets the standard paramagnon theory re

. . ' "“renormalization-group analysis of Hetand othersthis re-
zﬂgzeﬂ%ﬁﬁy(okkl one gets the classical Curie-Weiss quires the introduction of a suitably scaled “energy” vari-

able as a degree of freedom in addition to the three momen-

_ 2 tum variables. In effect, the dimensionality increases and the
X=xpla(M=pellac(0)+T], (18 behavior becomes mean-field-like. We see this explicitly in
which is similar to the susceptibility of a collection of clas- our procedure of calculating the fluctuation correlation cor-
sical spins. This feature is revealed more clearly if we setection perturbatively. The terms involving two or more in-
a(0)=0 in the expression fox(T) and solve the equation ternal thermal spin fluctuations are shown in Fig. 2. These
self-consistently. In this case the paramagnon regjffie have been calculated in detail earftéit turns out that apart
< (0)] shrinks to zero and a classical behavior is expectedrom a numerical factor, the two internal thermal spin fluc-
down toT=0. One is then essentially calculating the susceptuation term has the same temperature dependence as the
tibility of a ferromagnet withT.=0. Sincea(0) is taken to  mean fluctuation field term. However, the three internal ther-
be zero and there is only one region of temperaliwel. In ~ mal spin fluctuation term is approximately equal to
this case, typically<1, the limiting form is obtained using T?IN[1/3a(T)] in three-dimensional3D) ferromagnets. We
the form ¢(y)~(1/2y) (valid for y<1). We then find that  see that this term is of the order afInT relative to the
simplest nonvanishing contribution. The perturbation expan-
sion therefore converges.

For a finiteT. ferromagnet the mean fluctuation field
theory is valid outside the critical regime. As the critical
whereqy is a thermal cutoff such that, ~1. For the form  regime approaches higher-order fluctuation correlations be-
of y given by Eq.(15), the estimate of the cutoff isﬁ come comparable to the mean fluctuation term. In the present
~Tylé or gqr=TY3. The dominating contribution tex(T) case, in contrast, the mean fluctuation field term gives the
comes from the first term, which is given BY". However, leading critical behavior. The reason is the following. Sup-
sinces is small, the thermal cutofi is high,~q_ (the spin ~ pose fora(0)=0, a(T)~T*. Then the quantum regiom
fluctuation energy rises only slowly witf). Thusa(T) rises ~ <a(T) meansT* *<1 and it occurs only ik<1. This is
nearly linearly withT. This is the classical spin fluctuation not possible and so one always has the other clas$icaie-
behavior, first pointed out for itinerant ferromagnets by Mu-Weiss region. Here the fluctuation correlation term is of the
rata and Doniach? Note that we have assumdd<1, i.e., form T?In[1/a(T)]~T?n(UT)*<T*. If A~1, the correla-
the system is degenerate. Even so, since the characteristien term never becomes more important than the mean fluc-
fluctuation energyx(0) is zero, the system behaves classi-tuation field term.
cally with regard to spin fluctuations. An estimate of the size In the case of antiferromagnets, the formalism is identical.
of the second term is obtained by settingT)~T#3 we  One replaces the Pauli susceptibility with the staggered sus-
then find it to be of ordeT relative to the first term. Since Ceptibility for a noninteracting electron systeg(Q); for
T3 is not very small, it is essential to do a self-consistentbrevity, we retain the same notation for the enhancement
calculation, particularly in the classical regime that is of in-factor, which is defined in the present case af0)
terest in the present calculation. =x0(Q)/x(Q). The expansion of the dynamic staggered

We have calculated(T) and other properties in two di- Susceptibility xo(Q+q,w) for smallq and smallew around
mensions also. For this we consider the same approximatée static staggered susceptibility is also written in the form
form of the spin susceptibility or the fluctuation propagator

T

a(T) 12 S
a(T):E —_— arctaréqTﬁ

ar— 5

112
} . (19

as in three dimensions and the effect of dimensionality is °(Q)
considered only through the phase space in the momentum x(Q+q0h)= X 5 ) (21)
integration. The assumption regarding the form of the sus- a(T)+69°—1yw

ceptibility function in two dimensions is in doubt. It is well
known'® that the Lindhardt function from which this func- Making similar transformations as for the ferromagnetic
tional form has been derived has a different analytic form incase, we get
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With g.~ T3 we recover the well-known resukp~ T5322

A
a(T)=a(0)+ > (22 However, the self-consistenct correction changes the power

q 2z+127% of temperature. Similarly, for two dimensions,
where /
= T [a(T) ¢ o a1
B a(T)-I— 5q2 (23) P( )_ S Ac S arcta C((T)qc . ( )
2T T 2wy
. The case of 3D antiferromagnets formalism is similar,
Thus, for 3D antiferromagnets, except for the power of in the momentum integral. This is
2 due to the fact that the small momentum expansion is not
. A g-dq done aroundy=0 but aroundg=Q, the antiferromagnetic
a(T)=a(0)+ 5 5741272 (29 wave vector. The resultis

The result turns out to be identical to the ferromagnetic case 1 ) .
once we consider onlg<1, where the corresponding mo- P(T)“fj q dQI Imx(Q+d,0™)wn(w)[1+n(w)]dw.
mentum cutoff turns out to b&2, (32)

T a(T) S Following the same steps as for the ferromagnetic case, we
a(T)=5q.—\ —5arcta Vamd | (25  get

and in two dimensions there is again a logarithmic behavior 1+127
p(T)fo q’da——, (33

T 6q§ 2z2(1+62)

a(T)= —In(—). (26) o ) o
26\ a(T) wherez is given by Eq.(23). The result in the limit ofz
<1lis
B. Resistivity
The electrical resistivity for pure transition and rare earth p(T)= T Oe— /@arctar( \ /iqc) } (34)
metals is usually calculated within a two-band maddel, o o a(T)

where the “conducting” electrons come from anband
while thed electrons contribute to magnetism. Tehdvand is
assumed to be narrow and tteelectrons are assumed to be
heavy. The conducting electrons scatter from the spin fluc- C. Specific heat

tuations corresponding ta electrons. The temperature-  The gpin fluctuation contribution to the free energy within
dependent part of the resistivity due to this mechanism for ghe mean fluctuation field approximatigar quasiharmonic

Similarly, for two dimensionSp(T)=(T/25)In[5q§/a('l’)].

p(T)MEJ’ q3qu Imy(d, 0 ") on(w)[1+n(w)]do ST 0

T ’ - AQ=72 IN{ 1-Uxqn+AT X Dy}, (35
27) am a’m

The frequency integral can be performed by first using thevhereD , is the fluctuation propagator that is related to the

identity inverse dynamical susceptibility ar)@ﬁm is the free-Fermi-

gas(Lindhard) response function. The argument of the loga-

1 d rithm is related to inverse dynamic susceptibility. Consider-
.szwn(w)[1+”(w)]:3_T”(‘”)i (28 ing only the thermal part of the integral and ignoring the
zero-point part, we perform the frequency summation and
leading to obtain
dn(w) qo 3 > do Twl4q
T %Tf d fdw AQ =— arcta .
p( ) q q3 dT qz[a(T)+5q2]2+w2 thermal W% " ew/T—l O_’(T)+5q2

(36)
*f dg o'y’ (y), (29) Integrating over frequency, we get

where¢’ (y) =d¢(y)/dy and ¢(y) andy are given by Egs.
(16) and (15), respectively. In the limiy<1 the momentum  AQperma=3T
integral gives a

1 1
lnF(y)—(y— 5)In<y>+y— 5|n(2w>},
@7

(30) wherey is given by Eq.(15). Once the free-energy correc-
tion is known, the specific-heat correction is given by

T, a(M [a(T)+da;
p(T)_2_5|:qC_ 5 ( a(T)




57 FLUCTUATION-INDUCED NON-FERMI-LIQUID ... 2193

AC P2AQ of a(T) turns out to be identical except that the temperature
K C=—T 2 dependence o&(T) is different in an antiferromagnet.
B J
ay ay 2(?¢(y) D. Nuclear spin relaxation rate
— 2
=37 E (T _T ‘?/’( )+ (aT) ay The nuclear spin relaxation rate in metals is given by the
Korringa relatiod*
2
q (9(1(T) 1 AH 2
=6 f 2d "W —— - — ~|
q q| o' (y 2y T y 7w (42)
q a(T) which essentially tells that T is proportional to the square
+To(Y)—— = (38)  of the static spin susceptibility of metals, which in turn is
& independent of temperature for most normal metals. How-
Making the smally approximation and introducing the ap- €Ver, it was pointed out by Moriyalong ago that this rela-
propriate cutoff tion is modified in the presence of electron correlations. The
’ nuclear spin lattice relaxation rate in metals is given by
AC, 1 [( Pa(T) aa(T)) % 9 ey o+
LIS T2 +2T f dg———— 1 Imy™"(9,@9)
ke 272 aT? T JJo = a(T)+ 692 TT 2 ey (43
2 2
_Tz(‘;a(T)) chd q —chdq ¢ where wq is the nuclear magnetic resonance frequency,
aT o [a(M+69%1% Jo which is taken to be very small-¢0) in the problem of

nuclear spin relaxation rate. Substituting the expression for
X~ T(g,wg) and taking the limit, we have

1) . 3%a(T) da(T)
2
( T g +2T—=

1 1

fa(T) R e (44)
Oc— %arctar( ” Tl %9 gle(T)+ 0072

for a ferromagnet in three dimensions. After the momentum

+_2((9Q(T)> 1 arctar{ [ o ) integration, the result isTT) *~a(T) 1. For a normal
258\ T a( B (T)q° Fermi liquid a(T) is constant, but in the present case it var-
ies asT*. This leads to a non-Fermi-liquid behavior again.
Qe qg A similar calculation is done for antiferromagnets.
-+ . (39
a(T)+sqz| 3

E. Effect of disorder
The last result is obtained after the momentum integration. The effect of disorder can be included in the above-

Approximately, the terms can be arranged as mentioned formalism by modifying the propagators and ver-
tices in diagrams for the spin fluctuation self-energy. This

1| 5 ,lda(M)® 1 has been done in our earlier pap&$’ In the presence of
Cv~ ﬁ qc+ T JT ﬁ disorder the electron moves randomly, getting scattered from
impurities repeatedly. This introduces a finite mean free path

+2T

g 0T (40 gator, which also modifies the free-particle—hole propagator

(diffuson), the free-particle—particle propagat@ooperon,
and the electron-spin fluctuation vertex. The correction to
&(T) to leading order is given by,

~ ( e da(T)

] for the electron and a finite lifetime in the electron propa-
C

The first term gives the classical res(fliir constant cutoff,

the second dominant term gives leading temperature corre
tion, and the last term is about two orders of magnitude
smaller in the temperature range of interest. Similarly, in two

dimensions, where ay4(T) is the correction due to diffusive modes. It is
given to the leading order in 47 as

a(T)=asp(T)— ay(T), (49

1 _,Pa(T)__da(T) (5q§) T2
Cv=o6 T o 2T o M e T 2earm ag(T)~ (1= 2T (€ 1) (46)
aa(T>)2 o\ "l — .
1 e 41 v &
(5l 5 @

The calculation for antiferromagnets is identical except that FIG. 3. Schematic diagram of the various temperature scales
y is replaced by in Eq. (40) and the final equation in terms involved in the disordered material.
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TABLE I. Summary of the temperature dependence of various thermal and transport properties near a quantum phase transition point. For
each property results are displayed in three rows. The first row gives the non-self-consistent calculation scheme. For ferromagnets the upper
cutoff for g is T3, while for antiferromagnets it i§*2 The second row gives the self-consistent calculation scheme results. The upper
cutoff for g has been taken to be 1. The range of temperatures in which these exponents have been cal€utdi@dis10 2. The third
row gives the classical spin fluctuation results, i.e., the first row gjtlas a constant.

Fermi liquid Ferromagnet&3D) Antiferromagnetg3D) Ferromagnet$2D) Antiferromagnetg2D)

T43 T2 TInT TInT
[X(T)]fl const T1.20 T1.44 TO.87 T
T T T T
T5/3 T3/2 T4/3 TInT
p(T) TZ T1.56 Tl.45 Tl.24 T
T T T T
T T3/2 T2/3 T
C (T) T TO.74 T0.99 T0.52 T0.86
const const const const
T-43 T34 (T InT) 32 (TInT)?
(TlT)*l const T*1.284 T*0.72 T*l.305 T*l
T*l T*1/2 T*3/2 T*l

for T<1/7 and vanishes otherwise. Clearly, the disorder in-the quantum fluctuation regim& < «(0)] vanishes and the
troduces a new energy scale £)lin the lowest temperature other two regimes merge. At the lowest temperature the ef-
range, as shown schematically in Fig. 3. In the case of norfect of the diffusive mode seems to give the dominant con-
vanishinga(0), in thecase of ferromagnets in three dimen- tribution, i.e.,a(T)~TY2 and Ap(T)~ T2, but a more de-
sions, the susceptibility inverse(T) behaves as-T2 for  tailed analysis is needed.
T<1/7, as T?a(0) for 1/r<T<a(0), and asT*?® for
a(0)<T<1. Similarly, the resistivity correctiodp(T) be-
haves as- T2 for T<1/7, asT?/\Ja(0) for L/r<T<a(0),
and asT®® for «(0)<T<1. In the case of a zerd; system Table | summarizes our results. In the first column Fermi-
liquid theory results are written and the other columns com-

F. Summary

9.0 . pile the fluctuation theory results. These results are presented
8.0 B
0.25 1
L ]
70 - T 020 | .
Sy
v “
E 0.15 1
6.0 - i S
0.10 - _
50 - . ]
L)
L]
® *
0.05 - * ., .
40 . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0
TT. %000 10.0 20.0 30.0

T
FIG. 4. Plot of C,/T as a function ofT—T, for SgIn. The

experimental point§Ref. 30 are represented by circles and the  FIG. 5. Plot ofp(T) as a function ofT for MnSi. The experi-
solid line represents the theoretical fd=1/12, y=1/2, andTg mental pointd® are represented by circles and the solid line repre-
~1000 K. sents the theoretical fif=1/12, y=1/2, andT~ 1000 K.
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FIG. 6. Plot of (T;T) ! as a function ofT for NizAl. The

experimental pointgRef. 32 are represented by circles and the FIG. 7. f|38|02t kotf)Cv ?ﬁ a funcyon ?f'll' fo.r C$C;-7Au°-3 at a
solid line represents the theoretical #t=1/12, y=1/2, Te~1000 pressure ot . ar. 1he experimenta poifikef. 39 are repre-
K. sented by circles and the solid line represents the theoretica fit.

=1/2m, y=1, andTg~5 K.

in three rows for each property. The first row gives results

from a non-self-consistent calculation, for example, when(si:P).?° This material goes through a Mott insulator to metal
only the first term in Eq(19) for «(T) is considered, but transition as the doping by P increases. it-3.7x 10
with a proper momentum cutoff. This behavior is expected inatoms/cm of P there is a metallic state. The spin suscepti-
the extreme low-temperature range. These results are in gepility of Si:P gets enhanced and becomes strongly tempera-
eral known, but are presented here in a coherent form. Thgjre dependent as the metal-insulator transition is approached
second row gives these results with the temperature depefrom the metallic side. Th& dependence observed does not
dence of(T) taken in account and the integration per-fit the 1/T behavior expected for weakly interacting localized
formed with the functional form foes(y) valid for ally but  spins either. Moreover, the spin lattice relaxation times in
approximated by Eq(16). The power of temperatures so pharely metallic Si:P is strongly temperature depend&nt:
obtained depends slightly on the temperature regime consid=T-1/2 gjmjlar to the correction to the zefd-conductivity,
ered (i.e., whetherT is in the range 10°-10"2 or other-  ;_T12 in this material. There are theories that associate
wise). The third row gives the classical spin fluctuation re-these anomalies to spin fluctuations induced due to incipient
sults, where the Bose facto(w) is approximated a3/w |ocalization. There is a subtle interplay of disorder and cor-
(effectively the first row with a constant cutpffThe experi-  rejation effects in this material. Only a spin fluctuation kind
mental results are expected to lie between those given igf theory will not work.
rows 1 and 3. Some transition metaland also some actinigiénterme-
tallic compounds show a low saturation moment per
transition-metal atom and a low magnetic transition tempera-
ture T, compared to conventional ferromagnetic materials
In this section we give examples of materials exhibitingsuch as Fe, Co, and Ni. These compounds are known as
non-Fermi-liquid behavior at low temperatures and alsowveak itinerant electron ferromagnets. The prototype ex-
compare some results with a theory presented above. Tramples are ZrZs NizAl, and Sgin.'® Their low-temperature
most popular example of a system showing non-Fermi-liquidporoperties have been discussed within spin fluctuation theo-
behavior is, of course, the high-temperature supersies for a long time’ Here we compare the specific-heat
conductors® It seems, however, that the effective low di- behavior of Sgin aboveT with our present calculatiofFig.
mensionality, the specific nature of the density of states, and). The experimental curves are due to Ik&€dand show a
the structural aspects of the Fermi surféesting, etg.play  good fit to the theory withAp(T)~T and C,(T)/T~(T
important roles in this system. We therefore want to consider-T,) ~ %25
examples from three-dimensional correlated electronic sys- The example of MnSi is interesting from the perspective
tem in the neighborhood of an electronic phase transition. of the present work. The material has a transition tempera-
The next example is that of phosphorus-doped silicorture around 30 K. As the hydrostatic pressure is applied the

IV. EXPERIMENTAL RESULTS
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T. decreases continuously and collapses towards absolute V. CONCLUSION

zero atp.= 14.6 kbar. This is an example where an approach e have calculated the temperature dependence of vari-
to a zero-temperature quantum phase transition can be obus physical properties near the quantum phase transition
served as a function of pressure. This has been done tgoint. The results hold for electronic phase transitions with a
Pfleiderer, McMullan, and Lonzgric?Jr.The deviation of the finite T; also. This is clear, as the results from the first row in

resistivity curve from thel? behavior becomes pronounced Table | ma;]tch some well-kn(()jwn dresullts in the "tef?‘tl.“fe.- |
asp, is approached. In Fig. 5 we have compated/ T2 with _ However, they are pronounced and a clear non-Fermi-liqui

: havior is obtained wheh.— 0. Our results are perturba-
ialrz:%ﬁiirolr?w temperature dependence, as suggested in OEJ\?e, but as discussed in the text the fluctuation correlation

. . erm is always smaller than the mean fluctuation field term.
. We have compared the nuclear spin relaxation rate Ofpe pehavior of these quantities is different in ferromagnets
Al in NizAl as a function of temperaturg.This material  from the antiferromagnetic system. This is a reflection of the
has a transition temperature about 41 K and shows all othékct that the order-parameter fluctuations have a different
characteristic properties of weak itinerant ferromagfi@he  form of dispersion in these systems. Finally, we made some
low-field data fit to power lavil ~%8for (T,T) %, as shown remarks about the inclusion of the effect of disorder near
in Fig. 6. quantum critical point within the spi_n fluctuation formalism.
The heavy fermion material Cegis nonmagnetic. On 1he present approach can be applied to other systems also.
alloying with Au the lattice expands and an antiferromag-On€ only needs an appropriate form of the order-parameter
netic order is observed in CeguAu, above a critical con- correlation function to calculate various quantities. For ex-
trationx,~0.1. The Nel tem erxature of the antiferro- ample, this approach can be applied to systems with a
centrationXe=1. . . P pseudogalPy in the excitation spectrum and also with
magnetic heavy-fermion  alloy CegAugs can be  phononlike dispersion as it happens in short coherence
continuously tuned to zero with increasing hydrostatic prestength superconductors. For example, in 2D short coherence
sure. At the critical pressure the specific heat has been fitte@ngth superconductors it has been shown through Monte
to the C/T~InT,/T curve®* We analyze the data again and Carlo simulations that the relaxation rate varies as the spin

fit the curve to our predictionT%® corresponding to the
temperature range of inter¢st Fig. 7.

susceptibility® [ a(T)]~* of the system, which matches our
result on 2D antiferromagnets.
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