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Kohn-Sham equations for multicomponent systems:
The exchange and correlation energy functional
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Kohn-Sham equations for multicomponent systems are derived in a rigorous way that permits the precise
definition and discussion of the exchange and correlation energy, of the system as a functional of the densities
of the components. In the case of a two-component electron-ion system, withne ,nI the electron and ion
densities, the exchange and correlation energy of the systemExc@ne ,nI # is composed ofExc@ne# the electron-
electron exchange and correlation energy,Exc

II @nI # the ion-ion exchange and correlation energy, andEc
eI@ne ,nI #

the electron-ion correlation energy.Exc@ne# is exactly the functional encountered in the Kohn-Sham theory of
electronic systems. The behavior ofExc

II @nI # is investigated in the limit of a large ion mass and its relation with
Exc@ne#, for ne5nI , is discussed. The structure ofEc

eI@ne ,nI # is analyzed in the adiabatic approximation. In
the special case of perfectly localized ion densities,Exc

II @nI # results in a self-interaction correction while
Ec

eI@ne ,nI # vanishes.@S0163-1829~98!07203-8#
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I. INTRODUCTION

The theory of Kohn and Sham~KS! establishes a corre
spondence between an interacting electronic system a
noninteracting one with the same ground-state energy
single-particle density.1 The difficulty of course is that the
noninteracting system lies in a different density-depend
external potential that has to be approximated. Traditiona
the KS scheme is founded on the Hohenberg-Kohn~HK!
theorem,2 i.e., the 1-1 mapping between the ground-st
density of the interacting electronic system and the exte
potential wherein it lies, a mapping also established for
time-dependent case.3 The HK theorem has been extended
multicomponent systems establishing the 1-1 mapping
tween thevector of the component densities and thevector
of the external potentials wherein the components lie4–6

Upon reflection, this implies, first, that the existence of
external potential is necessary, and second and less im
tant, that the different components of the system sho
strictly speaking, lie in different potentials. A constrain
search7,8 formulation of density-functional theory for multi
component systems, which followed,9–11 improved things, as
it did not require any more a vector of external potentia
The existence of an external potential however, which wo
bind the center of mass of the system, is still useful as
shall see in the next section. KS equations for multicom
nent systems have been proposed,5 even in the time-
dependent case,12 based again on the HK theorem. In th
work, the derivation is based instead on the constrai
search formulation of density-functional theory for mul
component systems, following an analogous rigorous der
tion of the KS scheme for electronic systems.13 In the result-
ing scheme, the difference between the exact energy and
energy of the noninteracting system give the exchange
correlation energy of the multicomponent system as a fu
tional of the component densities. This functional is made
of exchange and correlation terms between identical parti
~of the same component! and correlation terms between pa
570163-1829/98/57~4!/2146~7!/$15.00
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ticles of different components. To make the presentat
simple, we focus on a two-component fermion system, na
ing the components electrons and ions. The generalizatio
the formulation to systems with more components is trivi

In the following section, the necessary definitions of t
various functionals are given, the basic KS theorem
proved, and finally the KS equations are derived. In the n
and final section, the exchange and correlation energy of
electron-ion system, is split naturally in the electron-electr
exchange and correlation energy, the ion-ion exchange
correlation energy, and the electron-ion correlation ener
The electron-electron exchange and correlation energy is
mediately seen to coincide with the exchange and correla
functional encountered in the KS theory for electronic s
tems. Restricting then the attention to systems where
mass of the ions is indeed much larger than the mass of
electrons, we analyze the structure and discuss the prope
of the remaining two functionals.

Finally, it is noted that the method can provide an alt
native to the adiabatic or Born-Oppenheimer~BO! approxi-
mation, which applies for a full quantum-mechanical tre
ment of a system, when we can distinguish its component
‘‘heavy’’ and ‘‘light’’ or ‘‘slow’’ and ‘‘fast.’’ In the adia-
batic approximation the wave function of the system is p
titioned as a product of an electronic wave function depe
ing parametrically on the ionic positions, multiplied by a
ionic wave function. The electronic wave function is chos
to be the ground state of the electronic part of the to
Hamiltonian, and it must be calculated for any possible io
configuration, which becomes computationally forbiddi
when the number of ions increases. The theory that we
velop, in principle, could be applied to calculations requiri
accuracy beyond the adiabatic approximation, provided
accurate enough functionals were available. Presently,
analysis of the electron-ion correlation functional is entire
within the adiabatic approximation. Still, the method can
particularly useful for systems where the number of hea
particles~ions! is not very small and the application of th
BO approximation is computationally difficult.
2146 © 1998 The American Physical Society
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II. THE KOHN-SHAM SCHEME

Let us consider, for simplicity, a two-component,N fer-
mion system, containingS andN2S particles of each com
ponent. Having in mind a system of electrons and ions,
shall call the first kind of particles electrons and the oth
ions. Electrons will be denoted with lower-case letters, a
ions with upper-case letters. We further suppress the
variables. It is understood that the formulas are integra
over the spin variables throughout.

For anyN-particle stateCeI that represents such a sy
tem, we shall say thatCeI→(ne ,nI), when

ne~r !5SE E dRN2Sdr2•••drS

3uCeI~r ,r2 , . . . ,rS ;R1 , . . . ,RN2S!u2, ~1!

nI~R!5~N2S!E E drSdR2•••dRN2S

3uCeI~r1 , . . . ,rS ;R,R2 , . . . ,RN2S!u2, ~2!

or in second quantization,

ne~r !5^CeIuc†~r !c~r !uCeI&,

nI~r !5^CeIuC†~r !C~r !uCeI&,

wherec†(r ), c(r ), C†(r ), and C(r ) are electron and ion
creation and annihilation field operators.

The Hamiltonian that describes the system in sec
quantization is

H5Te1TI1Vee1VII 1VeI1U,

where

Te52
1

2E drc†~r !¹2c~r !,

TI52
1

2ME drC†~r !¹2C~r !,

Vee5
1

2E E drdr 8
c†~r !c†~r 8!c~r 8!c~r !

ur2r 8u
,

VII 5
Z2

2 E E drdr 8
C†~r !C†~r 8!C~r 8!C~r !

ur2r 8u
,

VeI52ZE E drdr 8
c†~r !c~r !C†~r 8!C~r 8!

ur2r 8u
,

U5E drc†~r !c~r !U~r !1E drC†~r !C~r !U~r !.

We have used atomic units, setting\5m5e51, where
2e,m are the charge and mass of the electron. The cha
and mass of an ion, in atomic units areZ,M . U(r ) is the
external potential of the system. In the formulation it is ch
sen to be common for the two components. It may in pr
e
r
d
in
d

d

ge

-
-

ciple differ, but it may not be set to zero without conside
ation, because then, the center of mass~cm! of the physical
system will not be bound, leading to conceptual difficulti
regarding whether our functionals~in particular, the KS
functional! are bound and well defined or not. One can arg
that in nature multicomponent systems, usually, do not n
the presence of an external potential to bind them an
would be preferable to formulate the theory in the absenc
an external field. This problem is present in any kind
calculation of such systems, and what one usually does
factor away the cm of the system and deal with the partic
that correspond to the remaining relative coordinates. A
result, the wave function becomes complicated with resp
to its symmetry properties under exchange of the particles
an electron-ion system, where the mass of the ions is m
larger than the mass of the electrons, the cm of the sys
coincides with the cm of the ions and, in many cases,
problem of symmetry can be ignored, as exchange effect
ions are often not important. In these cases, one can still
unchanged, the present formalism. I should remark, with
spect to my criticism in the Introduction, that factoring aw
the cm coordinate can also resolve the situation in
equivalent formulation of the theory that is based on the H
theorem. To conclude, in order not to complicate the form
lation with the question of the symmetry of the wave fun
tion and, in order to obtain a general method, I prefer
keep, in the derivation of the KS equations, a common
ternal potential.

We next define the following functionals:

G@ne ,nI #5 min
uC&→~ne ,nI !

^CuTe1TI1Vee1VII 1VeIuC&,

~3!

G0@ne ,nI #5 min
uV&→nI

^VuTI uV&1 min
uv&→ne

^vuTeuv&, ~4!

where the minimization inG is over all statesC which yield
(ne ,nI), while the minimizations inG0 are overS and (N
2S)-particle Slater determinants~noninteracting states! that
yield ne and nI . The first functionalG@ne ,ni # is the basic
functional introduced by Capitani, Nalewajski, and Parr9 in
the constrained search formulation of density-functio
theory of molecular systems. The minima in Eqs.~3! and~4!
should be rigorously defined as infima; we assume, howe
that minimizing states exist and that they are in fact minim
Let us denote the minimizing states byCne ,nI

,VnI
,vne

. Then

G@ne ,nI #5^Cne ,nI
uTe1TI1Vee1VII 1VeIuCne ,nI

&,
~5!

G0@ne ,nI #5^VnI
uTI uVnI

&1^vne
uTeuvne

&. ~6!

We further define the exchange and correlation energy fu
tional,
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Exc@ne ,nI #5G@ne ,nI #2G0@ne ,nI #

2
1

2E E drdr 8
ne~r !ne~r 8!

ur2r 8u

2
Z2

2 E E drdr 8
nI~r !nI~r 8!

ur2r 8u

1ZE E drdr 8
ne~r !nI~r 8!

ur2r 8u
; ~7!

and finally the KS functional,

E@v,V#5^Vu^vuTe1TI1Uuv&uV&

1
1

2E E drdr 8
nv~r !nv~r 8!

ur2r 8u

1
Z2

2 E E drdr 8
nV~r !nV~r 8!

ur2r 8u

2ZE E drdr 8
nv~r !nV~r 8!

ur2r 8u
1Exc@nv ,nV#.

nv and nV in an obvious notation mean thatv→nv ,
V→nV . The last functionalE is not a functional of the
densities but a functional of the noninteractingS and (N
2S)-particle statesv andV. The last functional will estab-
lish the mapping of the ground state of the interacting tw
component system to a noninteracting two-component
tem, represented by the productuv0&uV0&, whereuv0& and
uV0& minimize E@v,V#. We are now in a position to show
the basic theorem.

Theorem. ~1! E@v,V#>E0, and further if (nv ,nV)
Þ(ne0 ,nI0), then E@v,V#.E0, where E0 is the ground-
state energy of the system, andne0 ,nI0 are the ground-state
electron and ion densities.~2! NoninteractingS and (N
2S)-particle statesv0 andV0 exist for which the KS func-
tional E attains its minimum:E@v0 ,V0#5E0. For thesev0
andV0, we have, (nv0

,nV0
)5(ne0 ,nI0).

Proof. Using Eqs.~5!, ~6!, and~7! the KS functional can
be written

E@v,V#5^Cnv ,nV
uHuCnv ,nV

&1^vuTeuv&1^VuTI uV&

2^vnv
uTeuvnv

&2^VnV
uTI uVnV

&. ~8!

Therefore, E@v,V#>^Cnv ,nV
uHuCnv ,nV

&>E0. When

(nv ,nV)Þ(ne0 ,nI0) then, Cnv ,nV
ÞC05Cne0 ,nI0

and

E@v,V#&E0. This completes the proof of the first part of th
theorem. Consider now the ground-state density (ne0 ,nI0) of
the system. Minimizing noninteracting statesvne0

,VnI0
exist

for G0@ne0 ,nI0# and the KS functional takes the valu
E@vne0

,VnI0
#5^Cne0 ,nI0

uHuCne0 ,nI0
&5E0, which completes

the second part of the theorem.
The noninteracting statesv,V in the definition of

E@v,V#, areS and (N2S)-particle Slater determinants bui
on the orbitals$f i% and $F j%: v5det@f1 , . . . ,fS# and V
5det@F1 , . . . ,FN2S#. E@v,V# is, therefore, a functional o
-
s-

the orbitals$f i% and$F j%. Assuming that they are the mini
mizing orbitals, and by varying the orbitals$f i% and $F j%
independently, we obtain the KS equations for the multico
ponent system:

H 2
¹2

2
1U~r !1vxc@nv ,nV#~r !1E dr 8

nv~r 8!

ur2r 8u

2ZE dr 8
nV~r 8!

ur2r 8u
J f i~r !5e if i~r !, ~9!

H 2
¹2

2M
1U~r !1Vxc@nv ,nV#~r !1Z2E dr 8

nV~r 8!

ur2r 8u

2ZE dr 8
nv~r 8!

ur2r 8u
J F j~r !5EjF j~r !, ~10!

where

vxc@ne ,nI #5
dExc@ne ,nI #

dne
and Vxc@ne ,nI #5

dExc@ne ,nI #

dnI
,

nv~r !5( i 51
S uf i~r !u2,

and

nV~r !5( j 51
N2SuF j~r !u2,

Observe that takingM51, Z521 we can regard the
above equations as the unrestricted KS equations for
N-electron system withS,N2S spin-up and spin-down elec
trons in the absence of a magnetic field.

III. THE EXCHANGE-CORRELATION ENERGY
FUNCTIONAL

We proceed to analyze the structure of the exchange
correlation energy functional. We can splitG0 naturally:
G05G0

e1G0
I , with G0

e@ne#5minuv&→nê
vuTeuv& and G0

I @nI #

5minuV&→nI
^VuTIuV&. Then G0

e@ne#5^vne
uTeuvne

& and

G0
I @nI #5^VnI

uTI uVnI
&.

We further introduce the functionals: Ge@ne#
5minuc&→nê

cuTe1Veeuc&, GI@nI #5minuC&→nI
^CuTI1VIIuC&.

The minimizations are over all~interacting! S and
(N2S)-particle states, that yieldne and nI . Ge@ne# is the
extension of the HK functional introduced by Levy7 in the
constrained search formulation of density-functional the
for electronic systems, andGI@nI # is its equivalent for ionic
systems. Finally, I define the electron-electron, ion-ion e
change and correlation, and the electron-ion correlation
ergy functionals as

Exc@ne#5Ge@ne#2G0
e@ne#2

1

2E E drdr 8
ne~r !ne~r 8!

ur2r 8u
,

~11!

Exc
II @nI #5GI@nI #2G0

I @nI #2
Z2

2 E E drdr 8
nI~r !nI~r 8!

ur2r 8u
,

~12!
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Ec
eI@ne ,nI #5G@ne ,nI #2Ge@ne#2GI@nI #

1ZE E drdr 8
ne~r !nI~r 8!

ur2r 8u
. ~13!

The exchange-correlation energy functional of the multico
ponent system is their sum:Exc

eI@ne ,nI #5Exc@ne#1Exc
II @nI #

1Ec
eI@ne ,nI #. Exc@n# is the exchange and correlation ener

of the electronic subsystem, which appears in the usual
mulation of the KS equations for electron systems. It is
functional of the electron density only.Exc

II @n# is the ex-
change and correlation energy of the ionic subsystem. It
functional of the ion density only.Ec

eI@ne ,nI # is the electron-
ion correlation energy and it is a functional of both the ele
tron and ion densities. Approximations in the literature a
abundant for the electron-electron exchange-correla
functional. In the rest of the paper, restricting ourselves
the case where the mass of the ions is indeed much la
than the mass of the electrons, we shall try to analyze
structure and discuss the properties of the last two funct
als.

A. The ion-ion exchange-correlation energy functional

The ion-ion exchange-correlation energy function
Exc

II @n# has a similar form toExc@n#, the electron-electron
exchange-correlation energy functional, the main differe
being the parameterl51/M that appears in front of the
kinetic-energy operator. We write, therefore,Exc

II @n#
5Exc

II @l,n#, where

Exc
II @l,n#5 min

uC&→n
^CulT1VII uC&2l min

uV&→n
^VuTuV&

2
Z2

2 E E drdr 8
n~r !n~r 8!

ur2r 8u
, ~14!

whereT is the kinetic-energy operator for fermions of un
massTI5lT.

We shall investigate the behavior ofExc
II @l,n# as we vary

l. The techniques we are going to use can be equally app
to derive the coupling constant integration formula,14,15

which is the analogue of Eq.~20!. They also resemble th
methods employed in the work of Bauer16 and Bass.17

Let the minimizing state of the functional

GI@l,n#5 min
uC&→n

^CulT1VII uC& ~15!

be denoted byCn
l . Under some mild assumptions it satisfi

the Schro¨dinger equation,13,18,19

HlT1VII 1E drC†~r !C~r !Un
l~r !J uCn

l&5En
luCn

l&,

~16!

where the local external potentialUn
l appears as an infinite

number of Lagrange multipliers to satisfy the dens
constraint.13 It is also a function of the parameterl, because
if we consider thatl is varied in some way, keeping th
density fixed,Un

l will correspondingly change, in such a wa
that the density ofCn

l will remain unchanged.
-

r-
a

a

-
e
n
o
er
e

n-

l

e

ed

One can show that the functionalGI@l,n# is continuous
with respect tol for fixed densityn. It is reasonable then to
assume that the minimizing stateCn

l and the external poten
tial Un

l are continuous with respect tol as well. We further
assume thatCn

l is differentiable with respect tol, i.e., if l
1e is a neighboring value of the parameter, withe!l, we
can expand

Cn
l1e5Cn

l1eC8n
l

with

^C8n
luCn

l&50, ^C8n
luTuC8n

l&,`, ^C8n
luVII uC8n

l&,`.
~17!

Requiring thatCn
l1e andCn

l both have the same density, w
have

^C8n
luC†~r !C~r !uCn

l&1c.c.50. ~18!

If we multiply Eq. ~16! on the left by^C8n
lu and use Eqs.

~17! and ~18!, we get

^C8n
lulT1VII uCn

l&1 c.c.50. ~19!

Using Eq.~19!, the derivative ofGI@l,n# with respect tol
is easily calculated:

dGI@l,n#

dl
[ lim

e→0

GI@l1e,n#2GI@l,n#

e
5^Cn

luTuCn
l&.

This is a version of the Hellman-Feynman theorem, wh
was not readily applicable because the minimization in
functional GI@l,n# is under the constraint of fixed density
The ion-ion exchange-correlation functional can be writte

Exc
II @l,n#5 min

uC&→n
^CuVII uC&2

Z2

2 E E drdr 8
n~r !n~r 8!

ur2r 8u

1E
0

l

dk^Cn
kuTuCn

k&2l min
uV&→n

^VuTuV&. ~20!

By the mean value theorem,m exists, 0,m,l such that

Exc
II @l,n#5 min

uC&→n
^CuVII uC&2

Z2

2 E E drdr 8
n~r !n~r 8!

ur2r 8u

1l@^Cn
muTuCn

m&2 min
uV&→n

^VuTuV&#, ~21!

whereCn
m is the minimizing state ofGI@m,n#. For l!1 we

can regard the term proportional tol as a small correction
only andExc

II can be approximated by the first two terms
the right-hand side Supposing we have the same numbe
ions and electrons, one may ask the question, for the s
electron and ion densityn, how are the functionalsExc@n#
andExc

II @n# related? We can factor outZ2 from Exc
II @n# intro-

ducingV, the repulsion energy operator for fermions of un
charge,VII 5Z2V. Then

Exc
II @l,n#5Z2H min

uC&→n
^CuVuC&2

1

2E E drdr 8
n~r !n~r 8!

ur2r 8u
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1E
0

l/Z2

dk^Cn
kZ2

uTuCn
kZ2

&

2
l

Z2 min
uV&→n

^VuTuV&J ,

where Cn
kZ2

is the minimizing state of^kZ2T1Z2V&
5Z2^kT1V&. The minimization is independent ofZ2 and

we write Cn
kZ2

5cn
k . We recognize the nonnegative diffe

ence^cn
kukTuCn

k&2kminuV&→n^VuTuV& as the kinetic compo-
nent of the exchange and correlation energy functio
Txc

k @n# of a fermion system with particles of unit charge a
mass 1/k. The ion-ion exchange and correlation energy fun
tional finally takes the form

1

Z2 Exc
II @n#5 min

uC&→n
^CuVuC&2

1

2E E drdr 8
n~r !n~r 8!

ur2r 8u

1E
0

1/MZ2 dk

k
Txc

k @n#.

PuttingM5Z251, we obtain the electron-electron exchan
and correlation energy functional. The two functionals a
related by

Exc@n#5
1

Z2 Exc
II @n#1E 1

MZ2

1 dk

k
Txc

k @n# ~22!

and we seeZ2Exc@n#.Exc
II @n#. Equation~22! suggests tha

we use an approximate form forExc@n# and subtract the
kinetic-energy contributionTxc@n# ~approximating the inte-
gral by Txc@n#), to obtain an approximation forExc

II @n#.
Properly, one should useExc@n# functionals appropriate to
describe systems of localized electrons as in the Wig
crystal.20,21 The kinetic component of an exchang
correlation functional for an electronic system can be ea
obtained after Levy and Perdew,22 introducing the scaled
densityng(r )5g3n(gr ),

Txc@n#52Exc@n#1
]Exc@ng#

]g U
g51

.

The natural approximation for the ionic densities is t
opposite of the uniform density, since the particles are loc
ized. We will, therefore, investigate the form ofExc

II @n#, in
the limit where the ions are perfectly localized (l→0). In
that case, the zero-order term of the exchange-correla
functional@first two terms on the right-hand side of Eq.~21!#
gives a self-interaction correction,

2
Z2

2 E E drdr 8
(
j 51

N2S

uF j~r !u2uF j~r 8!u2

ur2r 8u
,

wherenI(r )5( j uF j (r )u2. Further, the expectation value o
VII for states that yield perfectly localized densities is fix
and the minimization in Eq.~15! involves the kinetic-energy
operator alone. Hence the two terms in brackets in Eq.~21!
cancel and the ion-ion exchange-correlation energy res
l

-

e

er

ly

l-

on

lts

only in a self-interaction correction in agreement with Gro
Dobson, and Petersilka.12 Note that the self-interaction cor
rection does not depend on the density directly, but on
arbitrary choice of the orbitalsuF j (r )u2, hence use of this
form of Exc

II implies that nondiagonal Lagrange multiplie
are necessary in Eq.~10! to ensure orthogonality of$F j%.

I would like to remark that if the ionic density is approx
mated as a sum of Gaussian distributions, their width,
lowing the discussion in Refs. 23 and 24, will be of the ord
of l1/4, using the Bohr radius as a unit of length. Therefo
ionic localization is far from perfect25 and the range of va-
lidity of the approximation, in which the ions are assum
perfectly localized, needs to be examined.

B. The electron-ion correlation energy functional

The electron-ion correlation energy functional rema
which, to my knowledge has not been considered or defi
previously in the literature. It can be equivalently defined

Ec
eI@ne ,nI #

5 min
CeI→~ne ,nI !

^CeIuTe1TI1Vee1VII 1VeIuCeI&

2 min
c→ne
C→nI

^Cu^cuTe1TI1Vee1VII 1VeIuc&uC&.

In the second term of the right-hand side the minimization
over states that can be written as a product of an electr
state that yieldsne and an ionic state, which yieldsnI , and
hence electron-ion correlation in the expectation value is
nored. The minimizing stateCne ,nI

of G@ne ,nI # satisfies the
Schrödinger equation,

HTe1TI1Vee1VII 1VeI1E drc†~r !c~r !vne
~r !

1E drC†~r !C~r !UnI
~r !J uCne ,nI

&5Ene ,nI
uCne ,nI

&.

~23!

The external potentialsvne
andUnI

appear again as Lagrang
multipliers to satisfy the density constraint. In the adiaba
or BO approximation the minimizing wave function is fa
tored:

Cne ,nI
~r1 , . . . ,rS ,R1 , . . . ,RN2S!

5cBO@R1 , . . . ,RN2S#~r1 , . . . ,rS!

3CBO~R1 , . . . ,RN2S!, ~24!

where the electronic statecBO@$Ri%#, 1< i<N2S, in a
mixed second quantization notation, is the ground state
fixed $Ri% of the electronic HamiltonianHe@$Ri%#5Te
1Vee1*drc†(r )c(r )$vne

(r )2Z( j1/ur2Rj u% with eigen-

value E@$Ri%#1*drne(r )vne
(r ). The wave function

CBO($Ri%) is the ground state of the effective Hamiltonia

Heff5E@$Ri%#1 (
j 51

N2S H 2
1

2M
~“Rj

2 iA j !
21

Z2

2 (
i ,iÞ j

8
1

uRi j u
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1
1

2M
~^“Rj

cBOu“Rj
cBO&2Aj

2!1UnI
~Rj !J ,

~25!

where the vector potential is given by

A j@$Ri%#5 i ^cBO@$Ri%#u“Rj
cBO@$Ri%#&

52 i ^“Rj
cBO@$Ri%#ucBO@$Ri%#&

~sincecBO@$Ri%# is normalized! and has a vanishing curl i
cBO@$Ri%# can be chosen to be real, single valued and c
tinuous with respect to$Ri%.

26 The ions, therefore, are sub
ject to the influence of the following terms:~i! The scalar
potential E@$Ri%#, which is the ground-state energy of th
interacting electronic system in the presence of locali
ions at positions$Ri%. The expectation value of this term
gives the main contribution to the correlation energy af
subtracting Ge@ne#2Z**drdr 8(ne(r )nI(r 8)/ur2r 8u). ~ii !
The ion kinetic energy in the presence of the vector poten
A j@$Ri%# and the ion repulsion energy. The vector poten
has nonvanishing circulation around the points in the c
figuration space of ion coordinates where the electro
ground statecBO@$Ri%# is degenerate. This term gives
Berry phase correction toGI@nI #.

27 ~iii ! The small potential
energy (1/2M )(^“Rj

cBOu“Rj
cBO&2Aj

2), which appears in
an analogous way to the centrifugal energy term in the eq
tions of motion of a classical system when one adopt
rotating system of reference.23

The complexity of the electron-ion correlation ener
functional is evident. Both the scalar potenti
E@R1 ,R2 , . . . ,RN2S# and the vector potentia
A j@R1 ,R2 , . . . ,RN2S# represent (N2S)-body interactions.
Further, the appearance of the vector potential suggests
in the case of the ionic subsystem, it might be more app
priate to use single-particle equations, formally similar
those in current-density–functional theory,28 in which the
vector potential appears explicitly. It should be noted that
vector potential appears only in the context of the adiab
approximation and depends on the electron and ion dens
It does not correspond to an external magnetic field a
therefore, current-density–functional theory is not app
cable. The question remains valid, however, and elsewh
we shall attempt to partially take into account the electr
ion correlation by including additional potential terms~like
the vector potential! in the single-particle equations, so th
the correlation energy functional, remaining to be appro
mated, will be smaller.

Further analysis of the electron-ion correlation function
at this point is difficult. In the rest of the present work, w
-

d

r

al
l
-

ic

a-
a

at,
-

e
ic
s.

d,
-
re
-

i-

l

restrict ourselves to investigating whether, in the limit
perfectly localized ion densities, the electron-ion correlat
functional vanishes or gives a correction. In this limit, w
have seen that the ions are uncorrelated. One could imag
however, that, in the adiabatic approximation, some electr
ion correlation could remain at least for the Berry phase c
rection.

Let us consider an artificial parameterl that couples the
electron-ion interaction only and varies in the interval 0<l
<1. We can easily obtain a coupling constant integrat
formula14,15 for the electron-ion correlation:

Ec
eI@ne ,nI #5E

0

1

dl^Cne ,nI

l uVeIuCne ,nI

l &

1ZE E drdr 8
ne~r !nI~r 8!

ur2r 8u
, ~26!

where Cne ,nI

l is that multicomponent state that minimize

^Te1TI1Vee1VII 1lVeI& under the constraint of fixed
electronic and ionic densitiesne ,nI . Employing the adia-
batic approximation we factor Cne ,nI

l ($r i%;$Rj%)

5cBO
l @$Rj%#($r i%)CBO

l ($Rj%), and sinceCne ,nI

l →(ne ,nI)

we haveCBO
l →nI and

E dRN2SuCBO
l ~$Rj%!u2^cBO

l @$Rj%#uc†~r !c~r !ucBO
l @$Rj%#&

5ne~r !. ~27!

Taking the limit in which the ions are perfectly localized,
the positions, say,$R1

0 , . . . ,RN2S
0 %, the ion density has the

form nI(R)5( jd(R2Rj
0). We have, therefore,

uCBO~$Rj%!u25
1

~N2S!! (
permutations of$Rj %

)
i 51

N2S

d~Ri2Ri
0!,

where the sum is over all (N2S)! permutations of the coor-
dinates $R1 , . . . ,RN2S%. Using Eq. ~27! we have
cBO

l @R1
0 , . . . ,RN2S

0 #→ne(r ). Substituting the above in the
first integral in Eq.~26!, we see that it cancels with the se
ond integral and hence the correlation energy vanishes
actly.
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