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Kohn-Sham equations for multicomponent systems:
The exchange and correlation energy functional
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Kohn-Sham equations for multicomponent systems are derived in a rigorous way that permits the precise
definition and discussion of the exchange and correlation energy, of the system as a functional of the densities
of the components. In the case of a two-component electron-ion systemnwith the electron and ion
densities, the exchange and correlation energy of the sySigm,,n,] is composed oE,J n.] the electron-
electron exchange and correlation ener@k'é[n,] the ion-ion exchange and correlation energy, E@iﬂne ]
the electron-ion correlation enerdy,J n.] is exactly the functional encountered in the Kohn-Sham theory of
electronic systems. The behaviorEijc[n,] is investigated in the limit of a large ion mass and its relation with
E,d ne], for ng=n,, is discussed. The structure Eﬁ'[ne,n,] is analyzed in the adiabatic approximation. In
the special case of perfectly localized ion densitiEéﬂ[m] results in a self-interaction correction while
Eﬁ'[ne ,n,] vanishes[S0163-182@08)07203-9

I. INTRODUCTION ticles of different components. To make the presentation

simple, we focus on a two-component fermion system, nam-

The theory of Kohn and ShaifiKS) establishes a corre- ing the components electrons and ions. The generalization of
spondence between an interacting electronic system andtBe formulation to systems with more components is trivial.
noninteracting one with the same ground-state energy and In the following section, the necessary definitions of the
single-particle density.The difficulty of course is that the various functionals are given, the basic KS theorem is
noninteracting system lies in a different density-dependenproved, and finally the KS equations are derived. In the next

external potential that has to be approximated. Traditionallynd final section, the exchange and correlation energy of the

the KS scheme is founded on the Hohenberg-K¢HK) electron-ion system, is split naturally in the electron-electron

theoren? i.e., the 1-1 mapping between the ground-stateeXChange and correlation energy, the_ ion-ion ex_change and
orrelation energy, and the electron-ion correlation energy.

density of the interacting electronic system and the extern he electron-electron exchande and correlation enerav is im-
potential wherein it lies, a mapping also established for the g gy

. Mmediately seen to coincide with the exchange and correlation
tlme_-dependent caseThe HK theqrem has been exten(jed tofunctional encountered in the KS theory for electronic sys-
multicomponent systems establishing the 1-1 mapping bet

h £ 1h densiti dt 'ems. Restricting then the attention to systems where the
tween thevectorof the _component_ ensities an or  mass of the ions is indeed much larger than the mass of the
of the external potentials wherein the components*ife.

. A _ _ electrons, we analyze the structure and discuss the properties
Upon reflection, this implies, first, that the existence of anys ihe remaining two functionals.

external potential is necessary, and second and less impor- Finally, it is noted that the method can provide an alter-
tant, that the different Components of the SyStem Shouldmative to the adiabatic or Born-OppenheinﬁBO) approxi_
strictly speaking, lie in different potentials. A constrained mation, which applies for a full quantum-mechanical treat-
search® formulation of density-functional theory for multi- ment of a system, when we can distinguish its components as
component systems, which followéd:!improved things, as  “heavy” and “light” or “slow” and “fast.” In the adia-

it did not require any more a vector of external potentials.batic approximation the wave function of the system is par-
The existence of an external potential however, which woulditioned as a product of an electronic wave function depend-
bind the center of mass of the system, is still useful as weng parametrically on the ionic positions, multiplied by an
shall see in the next section. KS equations for multicompoionic wave function. The electronic wave function is chosen
nent systems have been proposedyen in the time- to be the ground state of the electronic part of the total
dependent cas®,based again on the HK theorem. In this Hamiltonian, and it must be calculated for any possible ionic
work, the derivation is based instead on the constrainedonfiguration, which becomes computationally forbidding
search formulation of density-functional theory for multi- when the number of ions increases. The theory that we de-
component systems, following an analogous rigorous derivavelop, in principle, could be applied to calculations requiring
tion of the KS scheme for electronic systetis$n the result-  accuracy beyond the adiabatic approximation, provided that
ing scheme, the difference between the exact energy and tleecurate enough functionals were available. Presently, the
energy of the noninteracting system give the exchange ananalysis of the electron-ion correlation functional is entirely
correlation energy of the multicomponent system as a funcwithin the adiabatic approximation. Still, the method can be
tional of the component densities. This functional is made ugparticularly useful for systems where the number of heavy
of exchange and correlation terms between identical particlegarticles(ions) is not very small and the application of the
(of the same componérand correlation terms between par- BO approximation is computationally difficult.
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Il. THE KOHN-SHAM SCHEME ciple differ, but it may not be set to zero without consider-
. L ation, because then, the center of mass) of the physical
.LEI us consider, _fo_r simplicity, a twc_J—componeN,fer- system will not be bound, leading to conceptualpdi)lificulties
mion system, containing andN—S particles of each.com- regarding whether our functional§n particular, the KS
ponent. Havmg n rr_und a syst.em of electrons and ions, Wefunctiona) are bound and well defined or not. One can argue
shall call the first kind of particles electrons and the otherhat in nature multicomponent systems, usually, do not need
ions. Electrons will be denoted with lower-case letters, an he presence of an external potentialyto bind'them and it

lons with upper-case letters. We further suppress the SPould be preferable to formulate the theory in the absence of
variables. It is understood that the formulas are mtegrategn external field. This problem is present in any kind of

over the spin var|.ables throughout. calculation of such systems, and what one usually does is to
For anyN-particle state¥, that represents such a sys- factor away the cm of the system and deal with the particles
tem, we shall say that'e;—(ne.n), when that correspond to the remaining relative coordinates. As a
result, the wave function becomes complicated with respect

ne(r)zsf f dRN"Sdr,- - -drg to its symmetry properties under exchange of the particles. In

an electron-ion system, where the mass of the ions is much

X|We(r,fp, ... rs;Ry, ... ,Ry_g)|? (1) larger than the mass of the electrons, the cm of the system

coincides with the cm of the ions and, in many cases, the

S problem of symmetry can be ignored, as exchange effects in
n,(R)=(N—S)f J dr¥dR;- - -dRy-s ions are often not important. In these cases, one can still use,
unchanged, the present formalism. | should remark, with re-

X|Wei(ry, ... FsiRRz, ... Ry-9)l>, (@ spect to my criticism in the Introduction, that factoring away

the cm coordinate can also resolve the situation in the

or in second quantization, . i .
g equivalent formulation of the theory that is based on the HK

ne(r):<‘yellIJIT(r)l/’(r)|q}el>! thgorem. To conclud'e, in order not to complicate the formu-
lation with the question of the symmetry of the wave func-
n(r)=(¥g|¥T(NPY(r)|¥,), tion and, in order to obtain a general method, | prefer to

. keep, in the derivation of the KS equations, a common ex-
t t
where &'(r), ¢(r), ¥'(r), andW¥(r) are electron and ion ternal potential.

creation and annihilation field operators. : - ; .
The Hamiltonian that describes the system in second We next define the following functionals:

guantization is
G[ne,n|]: mll’l <‘I’|Te+T|+Vee+V||+Ve||\Ir>,

H:Te+T|+Vee+V|| +Ve|+ U, |‘I’>*>(ne,n|)
where )
1 . .
Te=—§f dryT(nV2y(r), Go[Ne,M 1= min (Q|T,|Q)+ min (0|TJe), (@)
|Q>"nl “‘O"ne
i t 2
Ti=— 5| dr¥i(n)Vaw(r), where the minimization if& is over all states’ which yield
2M . S .
(ne,n,;), while the minimizations inG, are overS and (N
, , — S)-particle Slater determinanfgoninteracting stateghat
t t
Veezlf J drdr’ p g ()l )l’/’(r), yield ng andn,. The first functionalG[ng,n;] is the basic
2 [r—r’| functional introduced by Capitani, Nalewajski, and Panr
the constrained search formulation of density-functional
theory of molecular systems. The minima in E(®.and(4)
z? Y)W T(r )W (r')w(r) should be rigorously defined as infima; we assume, however,
V||=?f fdrdr’ ] : that minimizing states exist and that they are in fact minima.
r=r Let us denote the minimizing states ¥, ,{y, @, . Then
v :—Zf J drapr L OPOTTEOT()
¢l |I’—I”| ' G[nevnl]:<q,ne,n||Te+Tl+Vee+VII+Vel|q,ne,n|>!
(5
u:f drz/ﬁ(r)df(r)U(r)JrJ' dr¥T(nw(r)u(r).
We have used atomic units, settifg=m=e=1, where Gol Ne M 1=(Qy I T\ |0 )+ (@ | Te g ). (6)

—e,m are the charge and mass of the electron. The charge

and mass of an ion, in atomic units areM. U(r) is the
external potential of the system. In the formulation it is cho-We further define the exchange and correlation energy func-

sen to be common for the two components. It may in prin-tional,
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E,d Ne.n 1=G[Nng,n]1— Go[Ne, Ny ] the orbitals{¢;} and{®;}. Assuming that they are the mini-
mizing orbitals, and by varying the orbitafgp;} and{®;}
, (r)n (r") independently, we obtain the KS equations for the multicom-
__f j drdr |r—r | ponent system:
2 ) V2 n,(r’
2 [ MO [_Tuu)ﬂxc[nw,ng](rHj ar Pl
2 r—r'| r=r'|
/ no(r’)
+ZJ fdrdr’M; ) —ZJ df’|rﬂ r,|]¢i(r)=ei¢i(r), 9
[r=r’| B
and finally the KS functional, V2 Na(r’")
—W+U(r)+vxc[nw,nQ](r)+sz dr’' ——
EL0,0]=(Q(o|Te+ T, + Ul)| Q) =
n,(r’)
JJ'd dr’ “’(r)nw(r ) _ZJ dr’ ; CDJ(I’)=EJCDJ(I’), (10)
[r—r | r=r'|
where
ffdd , Na(Nng(r")
_ OB, Ne,n;] SE,d ne,n]
r=r'| ch[ne,nl]:XCTil and ch[nevnﬂzchTl’
, Nu(NNg(r’)
‘Zf fd o PEdNenal: nu(N=2%4] (NI,
and

n, and ng in an obvious notation mean thabt—n,,
Q—ng. The last functionalE is not a functional of the nQ(r)zEN’ls|<I>-(r)|2

densities but a functional of the noninteractiBgand (N ! ’

— S)-particle statego and (). The last functional will estab- Observe that taking=1, Z=-1 we can regard the
lish the mapping of the ground state of the interacting two-above equations as the unrestricted KS equations for an
component system to a noninteracting two-component sysy-electron system witls,N — S spin-up and spin-down elec-

tem, represented by the prodyeio)|{2o), where|wo) and  trons in the absence of a magnetic field.
|Q0) minimize E[w,Q2]. We are now in a position to show

the basic theorem.

Theorem (1) E[w,Q]=E, and further if ¢,,nq)
#(Neg,Njo), then E[w,Q]>E,, whereE, is the ground-
state energy of the system, ang,n,, are the ground-state We proceed to analyze the structure of the exchange and
electron and ion densitieg2) NoninteractingS and (N correlation energy functional. We can splg, naturally:

— S)-particle statesoy and ), exist for which the KS func-  Go=GS+ Gy, with Golnel=miny,_n(w[Tdw) and Goln,]
tional E attains its m|n|munlE[wo,Qo]=Eo. For thesewq :min\sz>ﬂnl<Q|Tl|Q>- Then G&Nel=(wn |Tedw, ) and
and(},, we have, (lwo,nﬂo)—(neo,nm). G'o[rh]:(ﬂ 10, e e
. : n n/e
Proof. Using Egs.(5), (6), and(7) the KS functional can We further introduce the functionals: G[n,]

Ill. THE EXCHANGE-CORRELATION ENERGY
FUNCTIONAL

be written = min‘g,,>ﬂne<:,b1Te+VeJ ), G'[n]= min‘\l,>ﬂnl<\lf|T,+V,,|\If>.
Elw,Q]=(Vn n [HIVq )+ (0|Tew)+(Q[T[Q) The minimizations are over all(interacting S and

¢ ¢ (N—S)-particle states, that yield, andn,. G n.] is the
—<wnw|Te|wnw)—(QnQ|T,|an). (8)  extension of the HK functional introduced by Lévin the

constrained search formulation of density-functional theory
Therefore, E[w,Q]=(¥, o [H|[V, o, )=Eo. When for electronic systems, an@'[n,] is its equivalent for ionic
(N, ,Ng)#(Ngo,Njo) then, ¥, nﬂq&\IIO:\I}n oo and Systems. Finally, | define the electron-electron, ion-ion ex-
w’ e0’

E[w,Q])E,. This completes the proof of the first part of the change and correlation, and the electron-ion correlation en-
theorem. Consider now the ground-state density (n,o) of 19y functionals as
the system. Minimizing noninteracting state,s.eo,(lnlo exist

for Gg[neg,njp] and the KS functional takes the value Exc[ne]:Ge[ne]—GS[ne]—%J fdrdr’
E[w”eo’ﬂnm]:<\P”e0'”|o|H|‘P”e0'”|o>: E,, which completes
the second part of the theorem.

The noninteracting states»,{) in the definition of
E[w,Q], areSand (- S)-particle Slater determinants built !l 1= G/[n,]- Gl[n,]~ f fd dr’ ,(r)n|(r )
on the orbitals{¢;} and{®;}: w=def¢, ...,ps] andQ X lr—r |
=def{d,, ..., Py_g]- E[w,Q] s, therefore, a functional of 12

Ne(r)Ng(r")
=l
11
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Egl[ne-nl]:G[neanl]_Ge[ne]_Gl[nl] One can show that the function&@'[\,n] is continuous
with respect tan for fixed densityn. It is reasonable then to

, e(r) (r’) assume that the minimizing staie) and the external poten-

+Zf f drar | 13 g U} are continuous with respect }oas well. We further

assume thaW}, is differentiable with respect ta, i.e., if X
The exchange-correlation energy functional of the multicom-+ ¢ s a nelghborlng value of the parameter, wétg\, we
ponent system is their sunEg ne,n1=E,{ne]+Exdn]  can expand
+ Eﬁ'[ne,n,]. E,d n] is the exchange and correlation energy
of the electronic subsystem, which appears in the usual for- VAT E=Wh+ W)
mulation of the KS equations for electron systems. It is ith
functional of the electron density onI)E J4n] is the ex-
change and correlation energy of the ionic subsystem. It is a<q,rmq,3>:0, <‘1"3|T|‘I"ﬁ><°°, <‘P'Q|Vu|‘1"ﬁ><°°-
functional of the ion density onlEE'[n,,n,] is the electron- 17)
ion correlation energy and it is a functional of both the elec-
tron and ion densities. Approximations in the literature areRequiring that¥ € and W} both have the same density, we
abundant for the electron-electron exchange-correlatiofave
functional. In the rest of the paper, restricting ourselves to et N
the case where the mass of the ions is indeed much larger (VRN W (n)|wy)+c.c=0. (18)
than the mass of the electrons, we shall try to analyze th
structure and discuss the properties of the last two function
als.

ft we multiply Eq. (16) on the left by(W'}| and use Egs.
"17) and(18), we get

(W ANT+V, ¥+ c.c=0. (19
A. The ion-ion exchange-correlation energy functional
Using Eq.(19), the derivative ofG'[\,n] with respect tox

The ion-ion exchange-correlation energy functionalig easily calculated:

E”c[n] has a similar form toE,{ n], the electron-electron

exchange-correlation energy functional, the main difference 5G'[\, n] _ G'[)\+e,n]—G'[)\,n] N N
being the parametex=1/M that appears in front of the SN 6 =(V|T|Wy).
kinetic-energy operator. We write, thereforeE Jn] f_’o
=EL'C[)\,n], where This is a version of the Hellman-Feynman theorem, which
| _ _ was not readily applicable because the minimization in the
ExdN.n]= min (W|AT+V [¥)—\ min (Q[T[Q) functional G'[\,n] is under the constraint of fixed density.
[¥)—n |€2)—n The ion-ion exchange-correlation functional can be written
n(r)n ")
_f J arar =] A9 Eln)= min (W]V, [ W)— Hd gr 2N
[w)—n [r=r'|

whereT is the kinetic-energy operator for fermions of unit \
massT,:)\T_. _ _ | +f de( WA T|T =N min (QT|Q). (20
We shall investigate the behavior Eic[)\,n] as we vary 0 |Q)—n

\. The techniques we are going to use can be equally applie .
to derive the coupling constant integration formtfl&> gy the mean value theorem, exists, 0<u <\ such that

which is the analogue of Eq20). They also resemble the

methods employed in the work of Badgand Bass/ E'T\,n]= min (¥|V,|¥)— f f drdr ,n(rn(r’)
Let the minimizing state of the functional [W)—n ! [r—r’|
G'[\,n]= min (¥|AT+V,|¥) (15) FN[(PAT|PE) — min (QT[Q)], (21
[¥)—n |Q)—n

be denoted bwﬁ. Under some mild assumptions it satisfies whereW# is the minimizing state o6'[u,n]. Foran<1 we

the Schrdinger equatiort>181° can regard the term proportional oas a small correction
only andE,; can be approximated by the first two terms of
the right-hand side Supposing we have the same number of
ions and electrons, one may ask the question, for the same

(16)  electron and ion density, how are the functionaIEXC[n]

andE, [ n] related? We can factor o@f from E},{n] intro-

ducingV, the repulsion energy operator for fermlons of unit

chargeV, =Z2V. Then

min (\If|V|lIf>——f fd dr ,n( n(r’)

[¥)—n [r—r’|

)\T+V,|+fdr\lﬁ(r)\lf(r)u7,§(r) | WM =ENW}),

where the local external potentihlﬁ appears as an infinite

number of Lagrange multipliers to satisfy the density
constraint:® It is also a function of the parametkr because

if we consider that\ is varied in some way, keeping the
density f|xedU" will correspondingly change, in such a way EII [\,n]=22
that the density oflf” will remain unchanged.
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NZ2 72 72 only in a self-interaction correction in agreement with Gross,
+f de(WR= [ T|W) Dobson, and Petersilk&.Note that the self-interaction cor-
0 rection does not depend on the density directly, but on the
arbitrary choice of the orbital§b;(r)|?, hence use of this
. form of EL'C implies that nondiagonal Lagrange multipliers
are necessary in E¢10) to ensure orthogonality dfd;}.
<72 L 2 2 | would like to remark that if the ionic density is approxi-
Whezre Wa IS the minimizing state Of{kZ°T+Z°V) * mated as a sum of Gaussian distributions, their width, fol-
=Z%(«T+V). The minimization is independent @ and |oing the discussion in Refs. 23 and 24, will be of the order
we write W% =y . We recognize the nonnegative differ- of A4 using the Bohr radius as a unit of length. Therefore,
ence( | kT|W ) — kming, (Q[T|Q) as the kinetic compo-  ionic localization is far from perfeét and the range of va-
nent of the exchange and correlation energy functionalidity of the approximation, in which the ions are assumed
Ty n] of a fermion system with particles of unit charge and perfectly localized, needs to be examined.
mass 1«. The ion-ion exchange and correlation energy func-

A
— =% min (Q|T|Q)
Z \Q}—»n

tional finally takes the form B. The electron-ion correlation energy functional
1 1 n(rn(r’) The electron-ion correlation energy functional remains
—ZEQC[”]: min (¥|V|¥)— _J J drdr’' ———~ which, to my knowledge has not been considered or defined
z |¥)—n 2 lr—r’| previously in the literature. It can be equivalently defined as
1mz2dk el
+J 7'|')’(<C[n]_ Ec [neynl]
0 .
_ _ = min (Ve |Tet T+ Veet Vi + Ve | Ve
PuttingM =Z2=1, we obtain the electron-electron exchange Vo= (ne.ny)
and correlation energy functional. The two functionals are .
i — Min (W Tet T+ Vet Vi + Ve )| 0).
related by yn
e
\VHI"”
1, 1odk_,
Exdnl=ZzEdnl+ [ 1 —Tdn] (22)  In the second term of the right-hand side the minimization is
MZz? over states that can be written as a product of an electronic

state that yield$, and an ionic state, which yields , and
hence electron-ion correlation in the expectation value is ig-
nored. The minimizing stat¥,, , of G[ne,n,] satisfies the

and we se&’E,Jn]>E}[n]. Equation(22) suggests that
we use an approximate form fd€,{n] and subtract the
kinetic-energy contributio, [ n] (approximating the inte- o _
gral by T,[n]), to obtain an approximation foE/[n]. ~ Schralinger equation,

Properly, one should usk,J n] functionals appropriate to

describe systems of localized electrons as in the Wigner[Te+T,+Vee+V|,+Ve|+f drygt(r)(rv, ()
crystal?®?l The kinetic component of an exchange- e
correlation functional for an electronic system can be easily

obtained after Levy and Perdéw,introducing the scaled +f dr\IfT(r)\If(r)Unl(r)}|\I'n ,n|>:En ,n,|‘1’n ’“|>'
densityn,(r) = y*n(yr), ° ° °

(23)
JExd N, ] . .
T, dn]=—En]+ o The external potenual&:ne andUnI appear again as Lagrange
LA multipliers to satisfy the density constraint. In the adiabatic
The natural approximation for the ionic densities is the,?r Bdo_ approximation the minimizing wave function is fac-
opposite of the uniform density, since the particles are local-0red:
|zed._ We will, theref_ore, investigate the form Bt.[n], in Vo (1, fs.Ri, ... Ryoo)
the limit where the ions are perfectly localized-¢0). In e
that case, _the zero-order term _of the exchange—correlation =¢go[Ry, ... Ry_sl(F1, ... g
functional[first two terms on the right-hand side of E§1)]
gives a self-interaction correction, XWeo(Ry, ... Ry-g), (24
N-S where the electronic statégg[{R}], 1<i<N-S, in a
) > |CI>J-(r)|2|<I>]-(r’)|2 mixed second quantization notation, is the ground state for
B Z_J’ f drdr’ j=1 fixed {R;} of the electronic HamiltonianHJJ{R;}]=T,
2 r—r'| * +Veet [dry'(r) (r){vn (1) = ZZ;1r—Ry[} with eigen-

value E[{Ri}]+fdrne(r)vne(r). The wave function

— . . 2 1
wheren, (r) = 2| ®;(r)|* Further, the expectation value of Teo({Ri}) is the ground state of the effective Hamiltonian

V,, for states that yield perfectly localized densities is fixed
and the minimization in Eq15) involves the kinetic-energy N-S 1 72 1

operator alone. Henpe the two terms in br_ackets in(Ed). Her=E[{R;}]+ Z _ W(VR.—iAj)ZJF 7.2./ =
cancel and the ion-ion exchange-correlation energy results i= i i7 | .J|
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1 restrict ourselves to investigating whether, in the limit of
+m(<VRj ¢Bo|VRj Ygo) —AD) + Un (R, perfectly localized ion densities, the electron-ion correlation
functional vanishes or gives a correction. In this limit, we

(29 have seen that the ions are uncorrelated. One could imagine,

where the vector potential is given by _however, th_at, in the adiab_atic approximation, some electron-
ion correlation could remain at least for the Berry phase cor-
Aj[{Ri}]:i<¢Bo[{Ri}]|VRj¢Bo[{Ri}]> rection. _ o
Let us consider an artificial parameterthat couples the
= —i(VRj ol {RiH|¥sol{Ri}]) electron-ion interaction only and varies in the intervat ©

) ) ) o ~ =<1. We can easily obtain a coupling constant integration
(since go[{Ri}] is normalized and has a vanishing curl if formula425for the electron-ion correlation:
¥sol{Ri}] can be chosen to be real, single valued and con-

tinuous with respect t¢R;}.2° The ions, therefore, are sub- el 1 N N

ject to the influence of the following termsi) The scalar Eclne,ni]= jo AR, Vel Wa, o)

potential E[{R;}], which is the ground-state energy of the

interacting electronic system in the presence of localized ne(r)ny(r’)

ions at positions{R;}. The expectation value of this term +Zf f drdr’W, (26)

gives the main contribution to the correlation energy after
subtracting Ge[ne]—Z[ fdrdr’(ne(r)ny(r')/[r=r'[). (i)  whereWw! _ is that multicomponent state that minimizes
The ion kinetic energy in the presence of the vector potentlaz et

: - KTt T+ VetV + V) under the constraint of fixed
Ai[{R}] and the ion repulsion energy. The vector pOtentIaIelectronic and ionic densities,,n,. Employing the adia-

has nonvanishing circulation around the points in the con; atic  approximation we  factor ¥\ ({r.}:{Ri})
figuration space of ion coordinates where the electroni PP n)?'nl ERLE

ground stateygo[{R;}] is degenerate. This term gives a = ¥sol {R}H({ri)¥ao({R;}), and sinceW¥y . —(ne,n))

Berry phase correction t6,[n,].%’ (iii) The small potential ~we havew},—n, and

energy (1/1&/I)((VRj¢//BO|VRj ¥so)—A?), which appears in

an analogous way to the centrifugal energy term in the equa- N=S[prr ) [2/ N , + A _

tions of motion of a classical system when one adopts AR W ao({RDIX (Ve {RHI (N A0l {Ri}HD)

rotating system of referené. (1) 27)
The complexity of the electron-ion correlation energy e

functional is evident. Both the scalar potential Taking the limit in which the ions are perfectly localized, in

E[R;,Ry, ... Ry-s] and the vector potential the positions, say;R?, ... R3_g, the ion density has the

Ajl[R1,Ry, ... Ry-s] represent Ki—S)-body interactions. form n (R)=32;8(R—R?). We have, therefore,

Further, the appearance of the vector potential suggests that,

in the case of the ionic subsystem, it might be more appro- 1

priate to use single-particle equations, formally similar to |WBO({R1})|2=W > I1 srR—RD),

those in current-density—functional thedfyin which the " permutations ofR;} 1=1

vector potential appears explicitly. It should be noted that thevhere the sum is over alN—S)! permutations of the coor-

vector potential appears only in the context of the adiabatigiinates {R;, ... Ry_s}. Using Eg. (27) we have

approximation and depends on the electron and ion densitieg,go[RO' . -Rafs]_’ne(r)- Substituting the above in the

It does not correspond to an external magnetic field andrst integral in Eq.(26), we see that it cancels with the sec-

therefore, current-density—functional theory is not appli-ond integral and hence the correlation energy vanishes ex-
cable. The question remains valid, however, and elsewhergetly.

we shall attempt to partially take into account the electron-

N-S

ion correlation by_ ir_1c|uding_ additionz_il potential terrfike ACKNOWLEDGMENTS
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