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Ab initio approach to cohesive properties of GdN
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We apply ab initio quantum-chemical methods to calculate correlation effects on cohesive properties of
GdN, thereby extending the recently proposed incremental method to rare-earth compounds. Our calculated
values are in reasonable agreement with the experimental cohesive energy~86.0%! and the experimental lattice
constant~102.0%!. Furthermore, we calculate a bulk modulus of 140.3 GPa. Taking into account estimates for
the effect of a better basis both at the one-particle level and at the many-particle level, we even reach 98.5%
of the experimental cohesive energy and 101.3% of the experimental lattice constant. For this estimate, we
obtain a bulk modulus of 163.8 GPa.@S0163-1829~98!07304-4#
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I. INTRODUCTION

During the last decade, Hartree-Fock~HF! calculations
have become possible for infinite periodic systems such
polymers or solids including surfaces. An available progr
package isCRYSTAL.1–4 However, the problem of anab initio
treatment of electron correlations in these systems has
partially been solved.5 The incremental method6–15combines
HF calculations for periodic systems with correlation calc
lations on corresponding finite clusters. In a series of pap
this computational scheme has proven to be an accu
method for the computation of cohesive properties
semiconductors6–12 as well as ionic solids.13–15 It competes
with density-functional theory~DFT! or more precisely with
approximations of DFT like the local-density approximati
or improved versions employing generalized gradient
proximation corrections. However, improvement toward
exact results is not as straightforward in DFT as it is
wave-function-oriented approaches such as the increme
scheme. The improvement of wave-function-based calc
tions is done by improving the basis set at the one-
many-particle levels. The price is an increase in the com
tational effort. In DFT, improvement can be attained by ba
functional development aiming at a derivation of the ex
functional. Although not yet suitable for routine application
many promising approaches exist. Some of them can
found in Ref. 16.

The current work is the first application of the incremen
scheme to compounds containing 4f elements, to our know-
ledge. Among the 4f element compounds, gadolinium
nitride GdN is one of the favorable cases featuring a l
thanide ion with a half-filled 4f shell and an essentially fixe
valency. Still, an explicit treatment of the 4f shell causes
severe problems inab initio calculations.17 Assuming a fixed
Gd valency of three@Gd~III !#, a corelike treatment of thef
electrons becomes possible,18 e.g., similar to that recently
suggested in Ref. 19 within DFT. It is even possible to sim
late such a core by pseudopotentials.18 The reliability of
pseudopotential calculations, including the open 4f shells in
the core, has been demonstrated in numerous molec
570163-1829/98/57~4!/2127~7!/$15.00
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applications.17 The price we have to pay for this simplifica
tion evidently is that we can only calculate the cohes
properties for Gd in a 4f 7 subconfiguration which is aver
aged over all possible intraatomic and interatom
couplings—the magnetic coupling between the gadolini
ions in the solid which is also a very interesting issue
study is neglected. Work is underway in our laboratory
account for these missing effects.

The organization of this paper is as follows. In Sec. II, w
briefly describe the incremental scheme, the pseudopo
tials, and the one-particle basis sets. The results are discu
in Sec. III, along with comments on the convergence of o
expansion of the correlation energy. The conclusions
given in Sec. IV.

II. METHOD

In this section we describe the method and computatio
details. Our approach relies on two separate steps: first
calculate the Hartree-Fock~HF! total energy using the peri
odic HF program packageCRYSTAL.1–4 In a second indepen
dent step we use the general framework of the increme
method6–15 in connection with the size-extensive couple
cluster method up to double excitations. We expand the c
relation energy of the crystal into local energy increme
which are evaluated in cluster calculations using theMOLPRO

ab initio program system.20–22 First, we briefly sketch the
general features of this scheme. Afterwards, we give a
tailed account of the used clusters, pseudopotentials and
particle basis sets. Of course, all the basis sets and pse
potentials are available from the authors upon request.

A. Incremental scheme

Given a setS of occupied one-electron orbitals, e.g., a s
of localized orbitals obtained from a Hartree-Fock wa
function, it is usually possible to partition this set such th
electron correlations between different subsets are sm
Making use of this feature, the incremental scheme is ba
on an expansion of the correlation energy in one-, tw
2127 © 1998 The American Physical Society
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2128 57KALVODA, DOLG, FLAD, FULDE, AND STOLL
three-, . . . body increments according to the number of su
sets~bodies! treated. In the present investigation the subs
refer to different ionic sites~Gd31 or N32!, but they can also
refer to different bonds in covalent solids or other partitio
instead. A first approximation to the correlation energy oS
is then the sum of all one-body increments, i.e., the corr
tion energies« i of the single subsets:

Ecorr,S
~1! 5(

i eS
« i . ~1!

The nonadditive part of the two-body correlation energy« i j ,
with subsetsi and j simultaneously correlated, is simply

D« i j 5« i j 2« i2« j . ~2!

Summation of the two-body increments gives the seco
order contribution to the correlation energy ofS according to

Ecorr,S
~2! 5 (

i , j eS
D« i j . ~3!

The third-order contribution turns out to be

Ecorr,S
~3! 5 (

i , j ,keS
D« i jk , ~4!

with

D« i jk5« i jk2D« i j 2D« ik2D« jk2« i2« j2«k , ~5!

and so on. The exact correlation energy ofS is

Ecorr,S5Ecorr,S
~1! 1Ecorr,S

~2! 1Ecorr,S
~3! 1••• . ~6!

The assumption that correlations between the different s
sets ofS are small ensures the rapid convergence with
spect to the number of bodies. Still, each term in the inc
mental expansion of the correlation energy per unit c
involves an infinite sum with the sole exception of the on
body contribution.

Since electron correlations are a local effect in nonmet
localized orbitals centered at different ions~or bonds in co-
valent crystals! are well suited as subsets for a rapidly co
verging series. Also, this justifies the use of finite clust
instead of the periodic solid to calculate the required ma
elements. Still, the transferability of individual incremen
from correlated cluster calculations to the crystal must
checked by calculating the increments in different chem
environments.

Concluding, one must ensure the convergence with
spect to the number of centers and with respect to the
tance between the centers. Last but not least, one must
guarantee the transferability of the increments between
different clusters and thereby from the clusters to the so

B. Computational details

Throughout this work we use energy-consistent sca
relativisticab initio pseudopotentials to reduce the compu
tional effort and to incorporate the most important relativis
effects. The N51 pseudopotential for nitrogen is the one pr
posed by Bergneret al.23 ~with 1s2 in the core!. For gado-
linium we use two sets of pseudopotentials, i.e., a Gd111
-
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pseudopotential and a Gd31 pseudopotential. The Gd111

pseudopotential employed in theCRYSTAL HF calculations
and for the central finite cluster in the correlation calcu
tions includes the@Kr#4d104 f 7 subconfiguration in the core
This leads to an atomic valence configuration
5s25p66s25d1 as derived by Dolget al.18 In order to model
gadolinium atoms in the embedding region of the cen
clusters in correlation calculations, we additionally genera
a Gd31 pseudopotential with a@Kr#4d104 f 75s25p6 core.

Corresponding primitive unpolarized Gaussian valen
basis sets were generated using the atomic HF prog
ATMSCF.24 The quality of the basis sets was verified by
comparison with numerical finite difference HF calculatio
for the atoms done with the programMCHF ~Ref. 25! ~repre-
senting the HF basis set limit!. We also derived polarization
correlation functions and natural-orbital contractions
atomic calculations using the configuration interaction~CI!
method with single and double excitations~CISD! with the
molecular CI programMOLPRO.20–22Details will be given in
the following two subsections.

1. Hartree-Fock calculation

Reliable HF calculations are a necessary precursor to
discussion of electron correlations in solids. We perform
HF ground-state calculations for GdN using the progr
package CRYSTAL.1 Our basis sets are
(5s5p4d)/@4s4p2d# set for gadolinium and a
(5s5p1d)/@3s3p1d# set for nitrogen. Unfortunately,f func-
tions are at present not implemented in the code. In orde
account for polarization of the Gd-N bond a singles function
has been placed at the middle of each bond, and optim
for the solid. Another problem of the computer code a
convergence difficulties when diffuse exponents are
cluded. For the atomic basis sets causing a divergence
CRYSTAL, we simply fixed the outermost exponent to th
smallest possible value and reoptimized the remaining ex
nents. For Gd,s, p, andd, the smallest possible expone
was 0.11, whereas for nitrogen no fixing was necessary
outermost exponents were 0.1806 and 0.1852 fors and p,
respectively. We optimized the nitrogend exponent inCRYS-

TAL HF calculations for the solid~0.9!.

FIG. 1. Gd6N cluster and GdN6 cluster.

FIG. 2. Gd4N4 cluster.
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57 2129AB INITIO APPROACH TO COHESIVE PROPERTIES OF GdN
2. Correlation calculation

Since electron correlations are mainly a local effect,
correlation-energy increments should not depend very m
on the surroundings. We use this property to derive the
crements from finite-cluster calculations. The various cl
ters considered are shown in Figs. 1–5. In each case,
the explicitly treated ions of the central clusters, mode
with Gd111 pseudopotentials and N51 pseudopotentials, ar
depicted. These central clusters are surrounded by one
of Gd31 pseudopotentials and point charges23 at the nitro-
gen sites. The use of Gd31 pseudopotentials to model th
environment of explicitly treated nitrogen sites prevents
electrons of the latter ions from artificially collapsing towa
the positive charge of the former ones. Each cluster and
first surrounding layer are embedded in at least four layer
point charges63. Only for the octahedral clusters~see Fig.
1!, we had to fit an array of point charges to correctly rep
duce the Madelung potential, because these clusters ar
electrically neutral.

To allow a small electron transfer from the central clus
to the environment, a singles contraction has been placed
the site of every Gd31 pseudopotential. The basis sets we
generated using the atomic HF programATMSCF ~Ref. 24!
with diffuse/polarization functions optimized in atomic ca
culations at the CISD level. The uncontracted basis sets
(7s6p5d3 f 2g) for gadolinium and (6s6p3d2 f ) for nitro-
gen. The exponents of nitrogend and f functions were taken
from Dunning and co-workers augmented polarized corre
tion consistent valence triplez basis26,27 set.

The contraction of these basis sets was obtained from
atomic natural orbitals at the CISD level in the same way
described in Ref. 28. This generalized contraction sche
was used to reduce the size of the basis sets while stil
taining a reasonable accuracy. Following this construct
we are lead to three different basis sets—A, B, andC, or-
dered in decreasing size. Every set is contained in the la
sets. The contractions are@4s4p3d2 f 1g# for Gd and
@3s3p2d1 f # for N ~basis setA!, @3s3p2d1 f # for Gd and
@2s2p1d# for N ~basis setB!, and@3s2p2d1 f # for Gd and
@2s2p1d# for N ~basis setC!. For nitrogen the contraction
B andC are identical. With the exception of the octahed
clusters~see Fig. 1!, in which we also calculated the one-si
increment of the central ion with basis setA and its neigh-
bors with basis setB, we used one type of basis set for a
the atoms in a cluster~given in Table I!.

We localized the canonical HF orbitals according to t
Foster-Boys scheme. The correlation calculations were d
at the coupled-cluster level with single and double exc
tions ~CCSD! with basis setB/C, and for the one-site incre

FIG. 4. Gd4N4 chain.

FIG. 3. Gd6N6 cluster.
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ments, also with basis setA. For testing purposes and t
estimate the change to the better basis setA and to a better
correlation treatment, we also calculated the one-site in
ments and the Gd-N two-site increment at the coupl
cluster level with single and double excitations augmen
by a fourth-order perturbative estimate of the contribution
connected triple excitations@CCSD(T)# with basis setsA
andB for an embedded GdN primitive cell. For the correl
tion calculations themselves, the test increments were
used because of the bad transferability from such a sm
cluster to the solid.

III. RESULTS AND DISCUSSION

In this section, we will first comment on the accuracy
the present approach via test calculations and estimates.
will be followed by a comparison of our results with expe
mental values and other theoretical approaches.

A. Accuracy of the present approach

In the first subsection, we will discuss the errors in our H
treatment. The second subsection deals with errors and
mates at the correlated level.

1. Test of the Hartree-Fock treatment

Because we chose very stringent criteria for the integ
tolerances and convergence parameters of theCRYSTAL pro-
gram, the only type of error remaining at the HF level can
connected to basis set errors. As mentioned before, theCRYS-

TAL basis set lacks diffuse functions when applied to
separated atoms. In case of GdN, that is especially obv
for the Gd atom in its 4f 75d16s2 9D ground state~see Table
II !, where the insufficient basis set leads to a bad descrip
of the diffuse 6s orbital and to an atomic energy 3.1 e
above the HF limit. The corresponding error of 0.1 eV for
in the 2s22p3 4S ground state is almost negligible. Howeve
it is often claimed that in a solid the basis functions at oth
centers will take over the role of diffuse functions at a giv
center. Consequently a large basis set superposition e
will lead to a too large cohesive energy if it is evaluated w
respect to the atoms in the bare atomicCRYSTAL basis sets,
i.e., we obtain 10.77 eV as an upper limit to the HF cohes
energy. Taking the HF limit for the energies of the free
oms yields a lower limit of 7.56 eV. In order to estimate t
correct atomic energy of Gd and N, we performed a
quence of test calculations for the atoms~see Table II!. Add-
ing to the basis set of the central atom the nearest-neigh
basis sets as well as the bond-midpoint functions result
an upper limit of the cohesive energy of 9.52 eV. Addi

FIG. 5. Gd5N5 double chain.
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TABLE I. Correlation energy increments in a.u. determined at the CCSD level for a Gd-N bond len
a/252.5 Å; all distances are given in units ofa/2; the distances for the three-site increments are orde
according to the rule:1-2-3→r 12,r 23,r 31.

Type Cluster Weight factor Distance Increment Basis se
One-site increments

Gd GdN6 1 — 20.116 262 B
N Gd6N 1 — 20.214 382 B

Two-site increments

Gd-N Gd4N4 6 1 20.009 416 B
Gd4N4 8 ) 20.000 321 B
Gd6N6 24 A5 20.000 103 B

Gd4N4 Chain 30 3 20.000 035 C
N-N Gd4N4 6 & 20.003 875 B

GdN6 3 2 20.001 101 B
Gd6N6 12 A6 20.000 149 C

Gd5N5 double chain 6 2& 20.000 049 C
Gd-Gd Gd4N4 6 & 20.000 389 B

Gd6N 3 2 20.000 094 B

Three-site increments

N-N-N Gd4N4 8 &, &, & 0.000 153 B
GdN6 12 &, &, 2 0.000 105 B
Gd6N6 24 &, 2, A6 0.000 007 C

N-N-Gd Gd4N4 12 &, 1, 1 0.000 222 B
Gd4N4 24 &, 1,) 0.000 028 B

N-Gd-Gd Gd4N4 12 1,&, 1 0.000 043 B
Gd-Gd-Gd Gd4N4 8 &, &, & 0.000 005 B
th
ci
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e
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ec-
furthermore the most important diffuse basis functions on
next-nearest- and third-nearest-neighbor sites, i.e., pla
the atom of interest with the full basis set in the center o
33 cluster and providing the most important basis functio
on all 3321 surrounding dummy sites, yields 7.86 eV as
e
ng
a
s

upper limit to the HF cohesive energy. Alternatively, au
menting theCRYSTAL basis set by diffuse functions for th
atomic calculations, we obtain 7.78 eV as an estimate for
actual HF cohesive energy, i.e., a value in good accord w
the lower and upper bounds of 7.56 and 7.86 eV, resp
t
TABLE II. Ground-state energies of the free atoms in a.u.~atomic units! with different basis sets a
different theoretical levels.

Basis Atom HF CCSD CCSD(T)

Numerical Gd 235.386 406
finite difference N 29.667 649

CRYSTAL Gd 235.272 303
N 29.663 838

1nearest-neighbor Gd 235.317 580
basis sets N 29.664 563

13321 Gd 235.378 309
neighbors N 29.664 641

CRYSTAL1diff. Gd 235.381 390
functions N 29.664 513

A Gd 235.381 253 235.663 663 235.675 911
N 29.663 998 29.784 041 29.786 708

B Gd 235.381 124 235.569 684 235.576 586
N 29.663 845 29.767 470 29.768 334
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57 2131AB INITIO APPROACH TO COHESIVE PROPERTIES OF GdN
tively. This indicates that the correct cohesive energy
closer to the value following the counter-poise method~7.86
eV!.

2. Test of the correlation treatment

The approximations at the correlated level mainly fall in
two classes, i.e., the incompleteness of the one-, and, p
as a consequence, the many-particle basis set, and the c
used in evaluation of the incremental expansion. At the c
related level we can estimate the error arising from the
completeness of the one-particle basis set. We obtain
estimate from the embedded GdN primitive cell. There
computed the ratio between the two-site Gd-N increme
obtained with the basis setsA andB. This ratio amounts to
1.37~see Table III!. We then multiplied by 1.37 the two- an
three-site increments obtained with basis setB in order to
obtain the estimate for these increments with basis seA.
The one-site increments were calculated with both basis
in the octahedral clusters. As a result, the improvemen
the basis set fromB to A is expected to account for a
increase of 1.17 eV~9.4%! of the cohesive energy and
concomitant decrease of 0.035 Å~0.7%! of the lattice con-
stant~see Table IV!. The reason to scale the two- and thre
site increments in addition to actually calculating the one-
increments with basis setA is that the one-site incremen
tend to increase the lattice constant in contrast to the t
and three-site increments. This can be seen in Table
Therefore, it would introduce a systematic error if the
groups of increments are treated with different one-part

TABLE III. Correlation energy increments in a.u. at the CCS
and CCSD(T) levels with different basis sets for a Gd-N bon
length of a/252.5 Å evaluated for an embedded GdN primitiv
cell.

Increment BasisB BasisA

CCSD CCSD(T) CCSD CCSD(T)
Gd 20.116 369 20.117 971 20.195 058 20.199 372
N 20.189 730 20.193 133 20.240 720 20.249 023
Gd-N 20.009 896 20.010 987 20.013 575 20.015 374
s

tly
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basis sets. Last but not least, the basis set superposition
amounted to 0.52 and 0.09 eV for basis setsB and A, re-
spectively, and was corrected by the counter-poise metho29

With respect to the many-electron basis set, the inclus
of triples in the coupled-cluster expansion leads to an
crease of approximately 0.37 eV~3.0%! in the cohesive en-
ergy for basis setA, and 0.2 eV~1.6%! for basis setB.
These numbers were estimated by calculating the one
increments at the CCSD(T) level in the octahedral clusters
and scaling the other increments by a common factor wh
only depends on the basis set. This factor~1.133 for basis set
A and 1.110 for basis setB! was obtained for the Gd-N
two-site increment calculated in the embedded GdN pri
tive cell at the CCSD and CCSD(T) levels in a similar way
as for the one-particle basis set scaling~see Table III!.
Higher-order contributions are expected to be significan
smaller.

Now we will comment on the cutoff of the increment
series. We chose an energetic cutoff, i.e., we neglected e
increment that contributed less than 0.03 eV, to the corr
tion energy, including its weight factor for a bond length
2.5 Å. In Table I the fast convergence with respect to
number of centers as well as to the distance between
centers can be seen. As a consequence, the error with re
to the cutoff should be of the order of 0.1 eV.

Finally, the transferability of the increments between t
different clusters has to be studied. As examples, we disc
the nitrogen one-site increment and the Gd-N near
neighbor two-site increment~both quantities evaluated usin
basisB and the almost identical basisC!. The nitrogen one-
site increment varies between25.168 eV in the octahedra
cluster with Gd in the middle~see Fig. 1!, and25.834 eV in
the octahedral cluster with N in the middle~see Fig. 2!
whereas the Gd-N nearest-neighbor two-site increment va
between20.223 eV in the single chain~see Fig. 4! and
20.269 eV in the double chain~see Fig. 5!. Of course, the
basis sets are slightly different because of the different s
rounding basis sets—the nitrogen has in the first case~small-
est value! only one Gd nearest-neighbor basis set, wherea
the second case it is surrounded by six Gd basis sets.
have always taken the increments from the best possible
GPa,
TABLE IV. Results for the cohesive energy in eV, the lattice constant in Å, and the bulk modulus in
the comparison with experiment is given in %.

Cohesive energy Lattice constant Bulk modulus

Hartree-Fock 7.865~63.4%! 5.114 ~102.6%! 130.6

Incremental expansion~CCSD!

BasisB/C 10.67 ~86.0%! 5.084 ~102.0%! 140.3
BasisA estimate 11.84~95.5%! 5.049 ~101.3%! 163.8

Incremental expansion@CCSD(T)#

BasisB/C estimate 10.87~87.7%!

BasisA estimate 12.21~98.5%!

Experiment~Refs. 30–34! 12.4060.26 ~100%! 4.986 ~100.0%! 192635

LSDA ~Refs. 19 and 37!
paramagnetic state 11.75~94.8%! 4.977 ~99.8%! 188.5
ferromagnetic state 11.91~96.0%! 4.977 ~99.8%! 188.5
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TABLE V. Energy contributions in a.u. as functions of the lattice constanta in Å; the basis sets used are given in parentheses;
extrapolated; es: estimated.

a 4.90 4.95 5.00 5.05 5.10 5.15

EHF ~CRYSTAL! 245.311 111ex 245.324 394ex 245.329 058 245.331 167 245.331 933 245.331 762
One site (B) 20.328 115 20.329 376 20.330 644 20.331 920 20.333 203 20.334 491
Two Site (B/C) 20.096 849 20.094 497 20.092 303 20.090 189 20.088 208 20.086 324
Three Site (B) 0.005 396 0.005 272 0.005 148 0.005 092 0.004 968 0.004 88
One site (A) 20.434 638 20.435 973 20.437 282 20.438 578 20.439 851 20.441 106
Two Sitees (A) 20.132 683 20.129 461 20.126 455 20.123 559 20.120 845 20.118 264
Three Sitees (A) 0.007 393 0.007 223 0.007 053 0.006 976 0.006 806 0.006 69
Ecorr (B/C) 20.419 568 20.418 601 20.417 799 20.417 017 20.416 443 20.415 927
Ecorr

es (A) 20.559 928 20.558 211 20.556 684 20.555 161 20.553 890 20.552 673
ETotal (B/C) 245.730 679ex 245.742 995ex 245.746 857 245.748 184 245.748 376 245.747 689
ETotal

es (A) 245.871 039ex 245.882 605ex 245.885 742 245.886 328 245.885 823 245.884 435
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bedding. Overall, we expect the transferability error betwe
our cluster calculations and the periodic system to be of
order of a few tenths of an eV.

B. Results and comparison with experiment

In order to optimize the geometry at the correlated lev
we calculated the total energy for six different lattice co
stants~see Table V!. Our final results are compared to e
perimental data in Table IV. In this table, one can also
the changes in the one- and many-electron basis sets.
obtained a lattice constant of 5.114 Å~12.6% larger than
the experimental result! at the HF level and 5.084 Å
(12.0%) at the CCSD level, with basis setB/C in reason-
able agreement with the experimental value@4.986 Å ~Refs.
30–33!#. The estimate for basis setA at the CCSD level
leads to 5.049 Å(11.3%). In addition, we calculated a bul
modulus of 140.3 GPa with basis setB/C, and estimated
163.8 GPa with basis setA ~the HF result amounts to 130.
GPa!. Almost all the values are in agreement with the expe
mental bulk modulus34 of 192635 GPa because of its larg
error bar. Therefore we do not provide the comparisons
percent. The experimental heat of decomposition at 298 K
GdN into Gdg and N2 @17466 kcal/mol ~Ref. 23!# was ex-
trapolated to 0 K using the experimental specific heat30 and
corrected for zero-point vibration using the Debye mo
@QD'400 K ~Ref. 30!#. To that, the experimental dissocia
tion energy of N2 ~Ref. 35! was added to give the experime
tal cohesive energy of 12.4060.26 eV per unit cell. The
computed cohesive energy, i.e., the total energy per unit
for the solid minus the sum of the total energies of the f
atoms, accounts for 63.4%~7.865 eV! of the experimental
cohesive energy at the HF level, increasing to 86.0%~10.67
eV! including electron correlations with basis setB at the
CCSD level, and again increasing to 95.5%~11.84 eV! for
the basis setA estimate at the CCSD level. The triples co
rection finally leads to 87.7%~10.87 eV! of the experimental
cohesive energy with basis setB/C and 98.5%~12.21 eV!
for the basis setA estimate. Taking into account the erro
which were summarized in Sec. III A, we attained excelle
albeit in the last case slightly fortituous, agreement with
periment.

Summing up, improving the one-particle basis set
creases the cohesive energy, reduces the lattice constan
n
e
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-

e
e
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in
of

l

ll
e

t,
-

-
and

increases the bulk modulus. Additionally, augmenting
coupled-cluster expansion increases the computed cohe
energy even more.

Finally, a comment on the ionicity of GdN appears
be in order. A qualitative measure of this ionicity are t
Mulliken charges fromCRYSTAL ~Ref. 1! HF calculations
assigned to the pseudopotential centers: 9.05 for Gd('12
valence) and 6.94 forN ('22 valence). Of course, for a
quantitative analysis of the ionicity of GdN, Mulliken’
analysis is inappropriate because of its strong basis set
pendence. However, we merely want to point out that GdN
considerably less ionic than the metal oxides MgO, CaO,
NiO, to which the incremental method has been appl
previously.13–15Therefore, computationally more demandin
cluster models had to be applied.

C. Comparison to related calculations

In this subsection we briefly comment on work
others.19,36,37 To our knowledge, the firstab initio calcula-
tions were the band-structure calculations of Hasegawa
Yanase.36 However, these authors did not optimize th
geometry and also did not compute the cohesive energy.
most recent calculations were done by Pethukov, Lambre
and Segall,19,37 who reached a very good agreement w
experiment using a density-functional approach. They ca
lated cohesive properties both for the ferromagnetic and
paramagnetic ground state within the local spin density
proximation~LSDA!. Similar to us they treated the 4f elec-
trons as atomic with a fixed occupancy. Their lattice const
amounted to 4.977 Å, only 0.2% below the experimen
value. For the cohesive energy they obtained 11.75 eV
the paramagnetic phase and 11.91 eV for the ferromagn
phase~94.8% and 96.0% of the experimental value!. In ad-
dition, they computed a bulk modulus of 188.47 GPa.

These numbers are in excellent agreement with exp
mental data as well as our estimated results. However,
calculated values with basis setB/C are not as close to ex
periment as theirs. It seems that the functional approxima
which is not required in our approach is a very good appro
mation for GdN. If we compare the result for basis setB/C
with the estimate for basis setA in our approach, the basi
set defect can be seen. On the other hand, increased
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puter power and further program development will make
tual calculations feasible, where at present only estimates
possible.

IV. CONCLUSION

In conclusion, we have shown that the incremen
scheme using quantum-chemical methods is capable of a
rately treating compounds containing rare-earth element
a fixed valency. We obtained~estimated! approximately
86.0%~98.5%! of the cohesive energy for the model syste
GdN. Our calculated~estimated! value for the lattice con-
stant overshoots the experimental lattice constant by 2
~1.3%!. We calculate~estimate! a bulk modulus of 140.3
GPa~163.8 GPa!, which is still considerably lower than th
m
re
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density-functional result of Ref. 19. Although much mo
cost efficient and still attaining very good results, densi
functional theory is not improvable in a straightforward wa
in contrast to our present wave-function-based approa
This is, to our opinion, and confirmed by the estimates
Sec. III, an advantage of our method. Also, it seems to
easier to interpret the results and analyze individual con
butions. Work is underway in our laboratory to explicit
calculate the interaction between thef electrons on different
gadolinium atoms in GdN.
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