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Monte Carlo study of the successive phase transitions in §5eQ, and K,SO, crystals
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Monte Carlo calculations at different temperatures have been performed to study the sequence of order-
disorder phase transitions: hexagonB6g/mm¢g = orthorhombic Pnam = incommensurate= ortho-
rhombic (Pna2,) in K,SeQ and hexagonalR6;/mmaq = orthorhombic Pnam) = monoclinic(P2/n) in
K,SG,. In the model, theB X, group has four equilibrium orientations in a disordered hexagonal phase. The
interaction constants between the orderd)y, groups are calculated within the framework of the electrostatic
model and are a sum of direct octupole-octupole and indirect octupole-dipole forces. The polarizabilities of two
structural nonequivalent potassium ions are fitted to the structure of the low-temperature phase. The interaction
constants are calculated within 19 coordination spheres and it is shown that there is competition between them.
Monte Carlo simulations are carried out on thex NXN1 hexagonal three-dimensional lattichl= 16,
N1=24 andN=24, N1=48). Two types of boundary conditions are used: the periodic one and one with
phantom “spins.” The simulations yield the experimentally observed sequence of phase transitions in
K,SeQ,. There is good agreement with the experimentally observed transition temperatures and behavior of
the thermodynamical properties . In the case 98Ky, the model confirms the observed phase transition from
the hexagonal phase to the orthorhombic one, and predicts one more transition to the low-temperature mono-
clinic phase[S0163-182807)05446-3

. INTRODUCTION K,SeQ, undergoes four successive phase transitiokisove
745 K it takesa-K ,SOy structure and has two formula units
Potassium selenate and potassium sulphate belong toj@the hexagonal unit cell. Below 745 K it transforms to the
large class of compounds with the general chemical formulgs-K ,SQ, structure and has four formula units in the ortho-
ACBX,;, whereA andC are alkali metals an@X, are the  rhombic unit cell(space grougPnam). At 130 K it trans-
tetrahedral group SQ) SeQy, CrOy4, ZnCly, etc. Many com-  forms to an incommensurate structure with the modulation
pounds of this family undergo a phase transition or a cascadgector q=(1— 8)* ¢i/3, wherecy is the first reciprocal-
of several phase transitions at lower temperature. Some Conyttice vector along the pseudohexagonal direction. As the
pounds in a certain temperature range transform into i”CC”Tb_rystal is cooled furthers decreases and vanishes at 93 K
mensurate modulated phases. There are numerous exp&fjhen the system locks into a ferroelectric commensurate
mental |_nvest|gat|0ns of these compoun(_js and mformaﬂorbhase E phase, space groupna2,;) whose pseudohexago-
concerning the crystal structures, phase diagrams, and behgyy) axis is triple that of the room-temperature phase. When
ior of the physical propertigs near the phase transitions cagygled further, KSeQ, undergoes another transition at 56 K
be found in review papers: . to a monoclinic phase, the space group of which is still not
It is important to emphasize here that all known crystalgiear, These phase transitions have attracted extensive ex-
structures of these compounds have a common featur%'erimental efforts(see the review in Refs. 1-3 and refer-
namely, they can be considered as slight distortions of thgces there
prototype a-K ,SO, structure ofDg;, (P6;/mmg symme- K ,SO, has a hexagonal phase above 860 K. Below this
try. The difference between the structures of different crystemperature it transforms into the same orthorhombic phase
tals is caused by the orientations of tetrahedra relative t®nam The results of the study of §SO, behavior with a
each other as well as to the crystallographic axes. For reatemperature decrease are contradictive. A phase transition at
ization of the hexagonal phaﬁbg‘h in these crystals several 56 K was observed by Gest al.” and was suggested to be
equilibrium positions of the tetrahedr&X, groups are neither incommensurate nor ferroelectric. In Ref. 8 it was
needed. The observed variety of structural phase transitiorgiggested that KSO, underwent the phase transitions at 140
in this family is associated with the different ordering of the K into a ferroelectric phase. On the other hand, the structure
BX, groups accompanied by slight ionic displacements. Itof this compound was investigated at low temperatures in
should be noted that the distortions of all known low- Ref. 9 and it was shown that 460, had the paraelectric
symmetrical phases in the crystals of the family under conphase with space groupnamup to 15 K.
sideration are determined mainly by tB&, orientations:~ There are few theoretical studies in which the phase tran-
Of all crystals of theACBX, family potassium sulphate sitions in K,SeQ, were considered from the phenomenologi-
and potassium selenate are its rare representatives in whiclal as well as microscopical points of view. A simulation
the hexagonal phase is observed experimentally at hightudy of the static structure for both tifeandF phases, the
temperature$® With a temperature decrease there are somelynamical states of KSeQ, at various temperatures in the
remarkable differences in the behavior of these crystalsPnam phase, and the transition from tfephase to thd=
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FIG. 2. Four positions of th&X, tetrahedra in the hexagonal
phase. Their projection viewed down tf@01] plane which crossed
the tetrahedra center. The solid and dashed lines indicate the tetra-
hedra apex abové,,2) and below(3,4) the plane, respectively. The
same orientation is denoted both by a number and arrow since for
'y the sake of convenience we used the numbers in the text but the
* arrows in Table Il and the caption to Fig. 8.

(b) ACBX, family. The thermodynamical properties of the
model are calculated by the Monte Carlo method. Two types
of boundary conditions are used: the periodic boundary con-
ditions and the boundary conditions with “phantom spins.”

/ v It is shown that the model reproduced the experimentally

observed sequence of phase transitions including the transi-
tion into the modulated phase in,&eQ,. The temperature
FIG. 1. The crystal structure of the high-temperature phase ofjependence of the modulation vector inside the modulated

ACBYX, (a) and its projection viewed dowf®01] (b). The triangles  hhase in this compound is also calculated. Since no structural

represent th&X, molecular ions. The andC metals are shown a4 have been given in the literature on the low-temperature

by open and solid circles. . e .

phase in KSO,, except some conflicting suggestions about
Q}e space-group symmetry, our theoretical study could be
important in resolving the issue.

AY
BX,(I) \\

By ¥

phase and to a monoclinic phase at lower temperature usi
the intra- and intermolecular interactions taken framinitio ) 4 :
quantum-chemistry calculations was made quite successfulle{1 This paper is organized as follows: In Sec. Il we present
by Lu and Hardy'? The other molecular-dynamics study of the model, the method of calculation of the interaction con-
K ,SeO, (Ref. 11 using the interatomic potential with fitting Stants, and the results of these calculations. Section Ill gives
parameters has been rather successful in reproducing tfige results of the Monte Carlo simulations. A discussion of
main features of the hexagonal-orthorhombic and parathe results obtained and the comparison with the experimen-
ferroelectric phase transitions. These previous studies havél data can be found in Sec. IV. Section V concludes the
stressed the lattice dynamics of this compound and the fagtaper.

that the dynamical matrix of the system in tR@am phase

has the negative eigenvalues. However, in Refs. 10 and 11 a

structure of the phase, the phase transitiéh=1=F and II. MODEL AND CALCULATION OF THE EFFECTIVE

behavior of the thermodynamical properties 0f3€Q, near INTERACTION CONSTANTS

the phase transitions are not discussed.

In the present work for investigation of the phase transi- K2S0O; and K,SeQ, have hexagonal symmetry with the
tions in K,SeQ and K,SO, the order-disorder model is space groug, and with two molecules in a unit cell at
used. In this model &X, tetrahedron has four equilibrium high temperature. The structure ACBX, and its projection
positions in the hexagonal pha@gg. 1). viewed down 001] are shown in Fig. 1. The unit cell param-

The effective constants of the interaction between the oreters of both crystals ar@=5.94 A, c=8.61 A in K,S0O,
deredBX, tetrahedra are calculated in the framework of thea=6.14 A,c=8.90 A in K,SeQ,.
electrostatic model where the polarizabilities of two struc- For calculation of theBX,-BX, interactions and phase
tural nonequivalent potassium ions are the empirical modetliagrams the model proposed in Ref. 12 is used. We take a
parameters. These parameters were fitted using the symme®ByX, group as a rigid unit which has only the octupole mo-
of the low-temperature phases. It will be shown that there ignent and four equilibrium orientations in the disordered hex-
a competition between the constants. We believe that suchagonal phasdFig. 2). The BX;-BX, interaction constants
simple approach enables us to idealize the system under co¥y;(R) were calculated from the electrostatic motfef®
sideration, stressing the basic features of the real crystal§he model used does not explicitly include any displacement
namely, the delicate balance between the interaction coref the ions. The effect of these displacements on the energy
stants, which leads to the complex phase diagrams and tf the BX;-BX, interactions is included implicitly through
remarkable differences among the different members of théhe electrostatic dipole interactions of the various sites. The
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dipoles are produced by electronic polarizabilities and byof the different potassium ions in the unit cell are not simply
displacements of the meta#sandC and whole polarizabil- related to one another, and hence the polarizability values for
ities of the metal ions are fitted parameters in the modelthe different ions are not expected to be the same. The
Also, the displacements, from the basic hexagonal structurdfamiltonian of the model is

H=—%E Vi r—r’)Ci'(r)C}(r’)—%E Vi (r=r")Cl(nCj(r')— > Vea(r—r")Ci(r)C} (r')
+ ) FACr=r)CHnda(r)+ X FLS(r—r)Cl(nde(r’)+ > Fir—r)Cl (nda(r’)
INc 2 1 ’ 1 2 1 2 1 A "\ AA Al
+ 2 Foa (r=1")C (r)d(r >+27A2 dA<r>+EE d3(r)+ 52 Dos(r—r)da(r)da(r’)

1
+ 52 DSs(r—r)dS(nd§(r)+ X DAS(r—r")dh(nd§(r), (1)

where
W(@)=2) {Ih5(a)Is(a)
c!''=1 if the BX, group occupies the position
—[Dﬁ%(q)]ngfc}‘l{E [Fon(@1,0)F n(w2,0)
Cc"=0 in the opposite case,

_ + Flam(02,0)Fgn(w1,0)1D55(0)
and the fact that a unit cell of the hexagonal phase has two

nonequivalent molecules is taken into accofireind Il relate —Fh(@1,0)Flamn(02,0)355(a)/ éc
to the sublattices indicated in Fig).1

VE(r—r’) is an octupole-octupole interaction matrix, _an(wl,q)pgm(wz,q)\jgﬁ(q)/&}_ 3)
da c a dipole moment of metal& andC which have polar-

izabilities @, and ac. As was mentioned above in the J'i‘bc(q):Eaﬂ_F én CDQ’BC(Q), E.p IS @ unit matrix, andw;
present calculationa, andac are parameters of the theory are the Euler angles. The interaction matrivés V', and
because they have both electronic and ionic contributibns. /LIl haye four independent terms due to the symmetry of the

and Fq are, respectively, dipole-dipole and dipole-octupolehexagonal phase and the equilibrium orientati@es Figs. 1
interaction matrices. In the electrostatic approximation whichynq 2:

we used here there is no need to know the magnititudes of

the dipole moments of the metal ions, since after elimination Vi1 Vi Viz Vi

of da ¢ from Eq. (1) by standard techniqd&*® we find that, Voo Voo Voo V

the effectiveBX,-BX, interaction is a sum of the direct y=| # 8 T s )
octupole-octupole interaction and the indirect interaction Viz Via Vi Voo

through the polarizable metal ions, Vis Vis Vi Vi

1 1 The interaction tetrahedroBX, with five nearest metals of
Hep= — 52 Vi (r=r")Ci(ncj(r')— 52 vit(r the C type and six nearest metals of thetype is taken into
account in the calculations of matricégy in Egs.(3). The
o 0 " o . matricesD in Egs.(3) are calculated by the Ewald method.
—r)cl(nclr) =X Vi'tr—r")citmcilr), Integration inq space was performed by the Gauss method.
For K,SeQ the values of polarizabilities were fitted using
2 the symmetry of the ferroelectric low-temperature phase and

the region of existence of the incommensurate phase:
where

ap=0.60 A ac.=024 A.

ap.C
VI =V +EEW(T),  Enc=—"5", It should be noted that the use of the values of the elec-
do tronic polarizabilities of potassium ofy=ac=0.80 A3
(Ref. 17 leads to a poor agreement with the experi-
1 ) mental potassium selenate phase diagram
W(r)=—f f fW(q)exFX—|q-r)d3q, , 745D 512K 280K
Yo (Den — Dap — I — Cy).



214 V. I. ZINENKO AND N. G. ZAMKOVA

As was mentioned above the symmetry of the low- TABLE |. Effective interaction constants, #5eQ.

temperature phase for4§0, is not clear and in this case the

values of the polarizabilities were fitted using the condition Vi'(R) (K)
that the paraelectric phasiﬁ) exists in a wide temperature
region: R Vll V12 Vl3 Vl4
=12 K, ac=014 A (a2/3+c2/4)¥2 7115 763.8  —10183  —966.1
The octupole moment values of the Se@nd SQ
groups,l 3, were f|t4ted usl|6ng the experimental values of the(4a(2)/3+c(2)/4)1/2 95.9 82.8 65.1 52.0
phase transition@g,— D5;) temperatures:
13(SOy)=51.5<10"3* esu cni, (7a2/3+c4)2 813 79.0 52.8 50.6
13(SeQ)=51.1x10"** esu cm.
(13a3/3+c3/4)2 —26.6  —20.2 -30.9 —24.4
The effective interaction constantg;'(R)= V" (R) and
Vii(R) were calculated within 19 coordination spheres upto A
R= 2¢, and their values are presented in Tables | and II. Ad@0/3+9¢o/4) 86.1 79.3 14.7 78
one can see from these tables, the sign and the magnitude of
the interaction constants oscillate as a function of the dis-, ., 2, \1/2
tance, so that there is a strong competition between the p{16ag/3+cg/4)® 430 347 —41.0 ~326
teractions. The result of calculations of the energy &t in
the finite system (1816x24) for the phases with the dif- (45234 9c2/4)12 —7.0 ~3.0 —248 ~208
ferent uniform and nonuniform orderings is shown in Table
1I. It is seen from the table that there are several phases with
the close values of the energies both in3€Q, and in  (193/3+c3/4)*? —16.4  —18.9 —4.8 -7.4
K,SO,. However, there is a difference between them: The
phases with the sam{potassium sulfate, the phaseandj)
and different(potassium selenate, the phasesc, andh)  (7a@/3+9cy/4)'” —142 181 —-18.0 —-21.9
multiplications of a unit cell have the closest energies. It is
this peculiarity of the interactions in §SeQ, that is appar- VI(R) = VM (R) (K)
ently responsible for the presence of an incommensurate 1 i
phase at finite temperature.
R Vll V12 V13 Vl4
Ill. CALCULATION OF THE THERMODYNAMICAL
PROPERTIES
ao 571.8 603.9 —489.9  —457.8
The Monte Carlo technique, which is applicable to the
Ising-like lattice model$®!°is used in the present study. The
only change relates to the presence of four equilibrium posie, -11.7 —-4.4 53.0 60.3
tions of theBX, groups(instead of two positions in the
Ising-like model$.
The process of determining the thermodynamical valuegov3 16.8 16.5 —-135 -13.7
begins with the choice of an initial “spin” configuration for
a system as a whole. Two initial spin configurati¢osdered 2 2ap
and disorderedare used for starting Monte Carlo procedure(ao+co) 134 28 475 36.9
at low temperature and the procedure starts with the last spin
configuration generated in the preceding the calculation f{’?ao 39 36 77 79
the increasing temperature. The program then proceeds
through the lattice considering each sgin ordep as the
reference spin for trial of turning. One of three positions for(3a2+ ¢2)2 3.7 3.4 ~12 ~15
turning is chosen randomly. The relative probability of the
two states is consideréd:
(4a3+c3)? 1.4 1.4 -1.0 -1.0
p,u,V:p,u/pV:eXF[_(E/.L_EV)/kBT]- (5)
Equation(5) describes the probability of producing thth ag\7 29 27 21 1.6
state from theuth one. If p,,>1, the reference spin is
turned; otherwise a random numlbreis chosen from a set of
random numbers generated uniformly in the interval from 02¢, 8.6 7.4 —27.2 —284

to 1 and compared with,,,. If r<p,,,,, the reference spin is
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TABLE Il. Effective interaction constants, 5O,.

Vi'(R) (K)
R Vi1 Vi Vi3 Via
(a3/3+c2/4)Y? 793.5 839.4 —1126.7 —1080.9
(4a2/3+c3/4)Y?  89.2 83.3 147.0 141.1
(7@3/3+c24)Y?  90.1 66.8 93.2 70.0
(13a3/3+c3/4)? —31.1  —26.5 —425 —-37.9
(a3/3+9c3/4)Y?  147.8 144.7 10.6 75
(16a3/3+c3/4)? —50.0 —45.6 —-60.6 —56.3
(4a3/3+9c3/4)? 3.7 5.6 -18.1 -16.1
(19a3/3+c3/4)Y2 —225  —14.9 —-5.4 2.3
(7a3/3+9c3/4)¥? —141  -13.4 —-14.2 —13.6
VH(R)=Vi" (R)(K)

R Vi1 Vi, Vi3 Via

ao 623.4 622.6 —575.2 —576.0
Co 32.3 39.3 103.4 110.4
ag\3 15.7 14.9 -10.9 -11.7
(a3+c3)Y? 28.0 11.5 135.7 119.2
2a, -0.7 -0.9 -8.1 -8.2
(3a3+c3)? 4.4 3.9 3.2 2.8
(4a2+c3)Y? 0.9 0.9 0.7 0.8
ag\7 —-4.0 —-4.6 2.8 22
2¢, 3.9 2.9 -61.0 -62.0

turned.E,, andE, in Eq. (5) are energies of the statgsand

v. In the present work two types of boundary conditions are
used: the periodic conditions and the boundary conditions
with “phantom spins.” The latter were recently proposed in
Ref. 20 for investigation of systems with competing interac-
tions. In Ref. 20 the two-dimension&lY model was studied

by the Monte Carlo method. In the present work the bound-
ary conditions with phantoms are somewhat modified in
comparison with those in Ref. 20 since here a discrete pseu-
dospin, instead of the continuous one in X&' model, oc-
cupies each lattice site. The changes concern the configura-
tion of the phantom spins surrounding the main spins. The
number of the phantoms is determined by the number of the
interacting coordination spheres, and their configuration after
each Monte Carlo step is set according to the obtained con-
figuration of the main lattice.

It should be noted that we tried the free boundary condi-
tions, but in the our case, even at low temperatures, the sys-
tem very rapidly slid into a metastable state and remained in
it with a reasonable number of Monte Carlo steps. This is
associated with the fact that, even for a lattice of quite large
size, too many spins remain free because there is a great
number of interactions and the competition between them
makes the system very unstable.

The calculations are carried out on the< NXN1 hex-
agonal three-dimensional lattice. Two sizes of lattice
(N=16,N1=24 andN=24,N1=48) are treated here. As is
seen from Figs. 3 and 4 the results of the Monte Carlo cal-
culations are close to each other for different lattice sizes and
below we will discuss the results of the calculations only for
the lattice withN=24 andN1=48.

The thermodynamical quantities were calculated in the
usual way'®1°

N 18
U= 2 Vi(s.m),
m=1s=1

N2
C=—(AU)?
sz( )
N2
Xi=ier (Am)?, (6)

whereU is the internal energ\C is the heat capacityy; are
the order parameters which will be determined belgyis
susceptibility, and £A)?=(A2)—(A)2,

One Monte CarldMC) step per spin wall X NX N1 spin
turning trials. The first 500—1000 MC steps were discarded
and not used in computing averages. Averaging was carried
out in two steps: Aftep MC steps subaverages were deter-
mined for the group of statdsisuallyp=>50), and then after
a number of subaveragéssually 85 the final averages were
computed. The calculations were repeated at another tem-
perature and so on.

The program, written inFORTRAN, required about 0.2
msec per spin on a Pentium/60 computer.

The structures of the ordered phases which resulted from
Monte Carlo simulations at low temperature have the follow-
ing occupation number&; corresponds to the orientation
of a tetrahedron in Fig.)2
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TABLE lll. Energies and structures of the ordered low-temperature phases. The directions of arrows
correspond to the orientations of tlX, tetrahedron in Fig. 2. The digit in the second line indicates the
number of the layer along the pseudohexagonal axis. The phasterroelectric one in KSeQ
[C3,(z=12)], and the phasg low-temperature phase in 80, [C5,(z=16)].

Structures of the ordered phases Eneligy
1 2 3 4 5 6 KSe KS
e
b - = | 1 Tl L7 — = = —1083 —-867
c [ S [ S [ S —1206 —863
[ Lol [ A
= < | | L R S - = = =
e L S L S L I S —1146 —829
L R L S L I S
f N T — l N T — l — T — i —1148 —-913
e e e T e
1 2 3
g — = = — = = = — = = —1208 —899
4 5 6
1 2 3
L R ol L I
h — = = P e ST —1150 —948
4 5 6
Lol L R S Lol
1 2 3
[ I Ll = = T 1T = <
i - = | ! — — 1 1 - 1 —1185 —949
4 5 6
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FIG. 3. The temperature dependence of internal enéggnd
specific heatb) for K,SeQ. The open and solid circles: the results

for the lattices 24 24X 48 and 16< 16X 24, respectively.
For K,SeQ,
ni(Ro)=n3(R1)=n1(Ry)=n5 (Re) =1,

ni(Ry) =n4(R3)=nj(Rg)=nj(Rg) =1,

Na(R4) =ny(Rs) =n3(Ryg) =Nz (Ryp) =1,
where
Ry=(0,0,0, R 1 ,, 20 %
= 1y 1 = — —=4a 1 A 1A |
0 6 2\/§ 0 2 2
V3 do 1 Co
Rl: 7a01_710 1 R7: ﬁaOIaOI? l
R,=(0,0c,), R . 3C°)
= 1 YC 1 = __a 1 1 A |
2 0 8 2\/§ 0 2 2
V3 a, 1 3co
Rs= 7301_7100 ,  Rg= an,aO'T )
R,=(0,0,%,), R 1, %0 3%
= 1 1 H = _a 1 l_ H]
4 0 10 2\/§ 0 2 2
V3 ag 1 5¢o
R5: 730,_?,2C0 y R11: ﬁao,ao,T
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FIG. 4. The temperature dependences of order parameters
and 7, (&) and susceptibilityb) for K,SeG. The notation is the
same as in Fig. 3.

The ordered phase has the orthorhombic symmetry with

the polar space grouﬁgv and 12 molecules per unit cell.
For K,S0O,,

nll( Ro) = nI4(R1) = n!(Rs) = nu (Rg)=1,
ni(Ry)=ny(Rs)=n}(Ry)=n}(Rya) =1,

N5(R3) =nN5(Ry2) =N5(Ry0) =N3(Ryy) =1,

1y 1 1Yy ’

1 Co
RZZ(O,ao,O), RlO_ ﬁao,zao,E y

1 Co
R3=(0,2a45,0), Ry;= ﬁaoﬁao,? )
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Ry=(0,3a,0), RG:(_iaO,@,@)1
23 22
Ri= \/7530,?,0 , R14=< ZT/‘aO’SaO co)
Rgz(\/?gao,?,o ., Ris= —%ao,%’%)

1

716 R7R0%1R21R5

[ny(R)—nb(R)+ny(R)—ns(R)]

+ > [n}(R)—n3(R)+nj(R)—n4(R)]
R=Rg.R7.Rs.R13

+ > [ny(R)—n}(R)+n5(R)—ny(R)]
R=R3,R4,R12,Rg

+ > [n3(R)—nj(R)+n3(R)
R=R10,R11.R14.R15

ny(R)1¢, (12)

where the equivalence of unit cell parametagsand by in

the hexagonal phase is taken into account. The results of the
calculations of the thermodynamical quantities are presented
in Figs. 3—7. The typical error bars near the critical points
and far from the critical points are 10% and 3%, respectively.

The ordered phase has monoclinic symmetry with the There are three in KSeQ, and two in K,SO, successive

nonpolar space grouﬁ2h and 16 molecules per unit cell.

phase transitions. The first of them occurs in both crystals,

The values ohX i (R) were determined from the Monte Carlo when the temperature decreases and is caused by the partial

data at the temperatuﬂé’Tcl—O 08, whereT; is the tem-

ordering of theBX, tetrahedra. The partially ordered phase

perature of the hexagonal-orthorhombic phase transition. Ais described by the following occupation numbénrdhen 7,
lower temperatures the problem of metastable states arisésequal to 1
when the system cools from the disordered or modulated

phases. The order parameters,(7,,73) are written in

terms of the occupation numbenm$' as follows.
The order parameter common forb,&eQ and K,SO, is

1
WlZZ{[nll(Ro) +n2(Ro) ~N3(Ro) = Ny(Ro) +N3(Ry)

+ny(Ry) —ny(Ry) —N5(Ry) ]+ [N3(Re) +ny(Re)

_nl(Re) n(R6)+n (R7)+n( )—n3(R7)

—nj(R)]1}. 9
The order parametes, for K,Se0Q, is

1
2= > [n}(R)—nj(R)+n5(R)—ny(R)]

12| R=Ry ] .Ry.R3

+RE [n}(R)—n3(R)+n3(R)—nj(R)]

- 7

+ 2 [ny(R)—nj(R)+ny(R)—n(R)]

R=R4,Rs

+ > [n3(R)—n{(R)+n4(R)—n3(R)]}.

R=Rg,Rg,R10.R11

(10

The order parametes; for K,SO, is

n\(R=0)=nj(R=0)=nk(R=a,)=n}\(R=a,) = %

ny(R=0)=nj(R=0)=n}(R=ag)=njh(R=a,)=0,

n5(R=bg) =nj(R=bg) =n{(R=Cco) = nj(R=Co) =

n}(R=bg)=nj(R=bg) =n3(R=c,)=n4(R=cy)=0.
(12)

The symmetry of the partially ordered phase is ortho-
rhombic with the space group3® and with four molecules
in a unit cell. This phase transition is observed experimen-
tally at high temperatures in both crystals under
consideratiort:® The temperature dependences of the internal
energy, the order parametes, heat capacity, and suscepti-
bility x, at the phase transition from the hexagonal phase to
the orthorhombic one are shown in Figs. 3—6.

In the case of KSO, as the temperature decreases fur-
ther, the second phase transition caused by the full ordering
of the SO, groups occurs. This ordered phase is a mono-
clinic one with the space group;, and with 16 molecules in
the unit cell. The calculated temperature of this transition is
75 K. The behavior of the internal energy and the specific
heat at this transition is shown in Fig. 5. TiE>—C3,
phase transition is not observed experimentally isSKy,
but from the results of the specific heat measurements it was
suggestetthat K,SO, might undergo a phase transition at
56 K.

In the case of KSeQ as the crystal is cooled further, a
phase transition into the modulated phase occuigatl70
K. The experimental value off; is 130 K® Finally, at
T.»=115 K a lock-in transition into a ferroelectric ordered
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& oo FIG. 6. The temperature dependence of the specific heat for
! * ¢ K,SeQ (size of the lattice is 24 24X 48). The solid and open
O e . . . . .
1 e circles: the periodic boundary conditions and conditions with phan-
toms, respectively. The solid line represents the experimental data
of Ref. 6.
@
0 —e @ &0 T . .
0.00 0.25 050 075 1.00 1.25 1.50 the tetrahedra ordering in the layers for two temperatures
T, inside the modulated phase. The ordering inside the layers in

) the ordered ferroelectric phase is shown in Fig. 8 for com-
FIG. 5. The temperature dependence of internal en@ggnd  parison. The long-wavelength modulation inside the incom-
specnflc_ he_a(b) for K,S0O,. The nota_ltlon is the same as in Fig. 3. ensurate phase depends on the temperature. This is espe-
The solid line represents the experimental data of Ref. 7. cially noticeable when phantom spins are used in the
boundary conditions. In this case the system itself selects the
phase with the space gro@?v and 12 molecules per unit modulation period. This dependence is less strong in the case
cell takes place. The pseudohexagonal axis is tripled comaf the periodic boundary conditions due to the fact that the
pared to that in the paraelectric phase, as is observed expedenditions impose a specific period on the system at all tem-
mentally atTS3"'=95 KS peratures. One can see from Fig. 8 that there is the short-
The phase transition temperatures in the crystals undevavelength modulation in addition to the long-wavelength
consideration, excluding the lock-in transition temperature irone inside the incommensurate phase. The period of this
potassium selenate, were determined from the peaks in thBodulation is 3<cy; i.e., it is the unit cell parameter of the
temperature dependence of the specific liE@s. 5 and &  ferroelectric phase. Here, there is a great difference in the
In the case of KSeQ, we have met the difficulties in deter- average magnitude of the orientations of the $¢€rahedra
mining the temperatur&, of the lock-in transition into the from layer to layer along with the different orientations in
commensurate ferroelectric phase from the Monte Carlo calthe layers.
culations of the specific heat in the case 0f3€0, due to To determine the temperature dependence of the modula-
the considerable scatter of the specific heat inside the incontion period we calculated the structure facgfiy) in terms
mensurate phas@ee Figs. 3 and)6The temperature of the of the correlation functiorG,;(R):
lock-in transition is estimated from the inflection in the tem-
perature dependence of the internal endfgyg. 3. It should
be noted that the values of the phase transition temperatures S(q)=2 G1i(R)expig-R),
Te1, Teo (for both crystaly andT; (for potassium selengte R
calculated with the boundary conditions with phantom spins
and with periodic boundary conditions are close. NXNXNg
Let us discuss the incommensurate phase j6¢Q,. The Gu(R)= > Cy(r)Ci(r,—R). (13
structure of this phase is spatially modulated along the =1
pseudohexagonal axis and the modulation depends on the
temperature. According to the Monte Carlo data the ordering he functionS(2,00,) for the different temperatures is dis-
of the SeQ tetrahedra in layers perpendicular to the played in Fig. 9. One can see that in the ferroelectric phase,
pseudohexagonal axis is uniform at all temperatures includin addition to the peak aj=0, there is a peak af=1/3. We
ing the region in which the modulated phase exists. Howwould like to note that the same peak appears at all 1/3-fold
ever, inside this phase the degree of the tetrahedra orderimgas well. Inside the modulated phase the position of this
changes from layer to layer. Figure 8 displays the degree gfeak varies slightly with the temperature, but with the tem-
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perature increase the intensity of the peak decreases strongly
and the peak vanishes when the system is in the paraelectric
phase.

For K,SO, the functionsS(q;) and S(q,) were calcu-
lated (Fig. 10. Here, in addition to the peak at=0, there

are peaks atj=3b} alongqg;=(q,0,0) andg=z;ag along
a,=((+/3/2)q,%q,0) in the low-temperature phase and posi-
tions of the peaks do not vary with temperature.

IV. DISCUSSION: COMPARISON WITH EXPERIMENT

The temperature dependences of the internal energy, the
specific heat, the order parameters, and susceptibilities, as
obtained from Monte Carlo data for two types of boundary
conditions, are shown in Figs. 3—7. The solid curve in Figs.
5 and 6 represents the experimental data on the specific heat
of potassium selenate and sulph&fdt is seen from these
figures that there is a satisfactory agreement between com-

FIG. 7. The temperature dependence of the spontaneous poldpUted and experimental dependences, excluding the region in
ization for K,SeQ. The notation is the same as in Fig. 6. The Which the modulated phase exists. In this region the Monte

experimental data

are from Ref. 21.

o o o o =
M R ® O
| I I I

Degree of ordering

o
=

T=172K

1
0 6 121

T T T T T T T T T T T I T T

8 24 30 36 42 48 54 60 66 72 78 84 90 96

Layer number

|

QIRQINGIAIGIA

QINOINO!
o T RAy
© 0.4 Lviav-viod
2 .v.yIv'v Dedebvbvivovoghy
002+ T=143K
0.0 T T T T T T T T T T T T T T T T
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Layer number
1.0
208
2 06
=]
S 0.4 4
[
5 0.2
5 N
8 T=126K
00 T T T T T T T T T T T T T T T T
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
(@) Layer number

Carlo calculations give a considerable spread in the specific
heat, as was mentioned above, 3€Q is nonintrinsic ferro-
electric material and therefore the measured parameter is the
spontaneous polarizatiddg. In investigating the model we
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FIG. 8. The spatial dependence of the degree of order in layers f8e®. Open and solid circles, the orderingf 1/, | T/7; open
and solid triangles, the ordering ef — — «, +— —+«—; open squares, the ordering pof | 1, 7|1 /; open and solid triangles, the ordering
of «—+«—, -« —«. (a) Boundary conditions with phantom spir(¥) Periodic boundary conditions.



found that the ordering of the SgQetrahedra corresponded

FIG. 11. Structure factor as a function of the wave factor at
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to the polar groupC3, at low temperatures and due to this different temperaturegl—55 K, 2-70 K, and 3-90 Kin KSOy:
the spontaneous polarization could occur at the phase trand® alongag and(b) alongby .

tion into this phase as the secondary order parameter. The
absolute value oPg in the ferroelectric phase we could not

calculate, since the displacement of the metal atoms and dis- Ps=

tortion of the BX, tetrahedra in the low-symmetry phase
were not taken into account explicitly in the model. But the
temperature dependence Bf can be found. The parameter
P, defined in terms oh!"' as

1
7{N1(Ro) = n5(Ro) + ng(Ro) ~ny(Ro) + ni(Re)

- ng(Re) + ng(Rs) - nlz{(Re) + nlz( Ry — nIl(Rl)
+n}(Ry) —n5(Ry) +n3(Ry)—ni(Ry) +nj(Ry)
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—n3(Ry)}, (14)

transforms under the symmetry operation in the same man-
ner asP and thus it is proportional to the spontaneous po-
larization. The computed and experimental temperature de-
pendences of the polarization of potassium selenate are
shown in Fig. 7, and they are in good agreement.

The structure of the modulated phase of the potassium
selenate was determined in Refs. 22 and 23. It was found that
the modulation of the structure was determined mainly by
the nonuniform(in the direction of the pseudohexagonal
axig rotation of the SeQ tetrahedra, and it was of long-
wavelength character. The long-wavelength modulation
computed here agrees qualitatively with the experimental
one. But the short-wavelength modulation found here from
the Monte Carlo simulation was not observed experimen-
tally. The temperature dependence of the modulation vector
in the incommensurate phase 0f8eQ was found from the
temperature dependence of the x-ray reflection on the vector
(2,09,). The experimental and Monte Carlo values of the
x-ray reflection intensities at different temperatures inside

spins boundary conditiorand the points represent the experimental the modulated phase are shown in Fig. 9. Figure 11 displays
data from Ref. 23.

the temperature dependencesfAs one can see from these
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figures there is only a qualitative agreement between théability values. The results obtained show that the treatment
computed and experimental curves. The experimental curvef the model by the Monte Carlo method yields a correct
of the intensity is more narrow than the computed one, andescription of the sequence of the transitions in these crys-
the measured maximum value 6fis almost 3 times higher tals, including the intermediate modulated phase in potas-

than that obtained from the Monte Carlo data. sium selenate. The strong difference between the phase dia-
grams of the potassium selenate and potassium sulphate is
V. CONCLUSION caused by the delicate balance of the competing interaction

] . ) o constants. The reason for the difference in the fitted param-

We have applied the Monte Carlo method to study the orders;ppose that it is associated with the different sizes of the
disorder phase transitions in8eQ, and K,SO,. The effec- 50, and SeQ tetrahedra: Apparently, the elastic contribu-
tive constants of interactions between Se(0,) groups  tion into the polarizability of the potassium ion in,&0; is
were calculated in the framework of the electrostatic aphigher than that in KSeQ,, since the size of SQis less than
proximation, where the polarizabilities of potassium ions argnat of SeQ. The computed temperatursandT,, and the

taken as fitted parameters. The phase diagrams are sensitiyghayior of the thermodynamic parameters are in a satisfac-
to the values of the polarizabilities. As was mentioned abovqOry agreement with the experimental data.

the use of the calculated value for the electronic polarizabil-  The results of the investigation of the model allow us to
ity of K "[ax=0.8 A® (Ref. 17] leads to the poor agree- predict the group of symmetry of the low-temperature phase
ment between the calculated and experimental phase trang potassium sulphate and the existence of a short-

tion temperatures for SeQ, and to the difference between \yayelength modulation in the modulated phase of potassium

the calculated and experimental phase diagrams #8®.  selenate. It would be interesting to have experimental verifi-
Apparently it means that the role of the ionic contribution to cation of these predictions.

the K* polarizability is important for describing the phase

transition in the crystals. In our study the values of the po-

!arizabilities of the structural nonequi\(alent potassium ions ACKNOWLEDGMENT
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