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Tetragonal states from epitaxial strain on metal films
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The tetragonal states produced by isotropic pseudomorphic epitaxial strain in the~001! plane on a tetragonal
phase of a crystal are calculated for V, Ti, Rb, Li, K, and Sr from first-principles electronic theory. It is shown
that each metal has two tetragonal phases corresponding to minima of the total energy with respect to tetrag-
onal deformations~and hence are equilibrium phases! and that the equilibrium phases are separated by a region
of inherent instability. The equilibrium phase for any strained tetragonal state can thus be uniquely identified.
Lattice constants and relative energies of the two phases and the saddle point between them are tabulated, as
well as the tetragonal elastic constants of each phase.@S0163-1829~97!04944-8#
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I. INTRODUCTION

Metal crystals in the body-centered-tetragonal struct
are known to have two total-energy minima as functions
tetragonal lattice constantsa and c.1–3 The minima are ap-
propriately called equilibrium metallic phases since they p
sist without applied stress and are stable under small tet
onal deformations. Previous work by the authors4 defined
and discussed epitaxial Bain paths~EBP’s!, which are se-
quences of tetragonal states that include the equilibrium
tragonal phases. These paths give the strained tetrag
states produced by isotropic epitaxial strain, i.e., isotro
two-dimensional biaxial or in-plane strain, imposed on t
~001! planes of the equilibrium phases. In the previous wo
the EBP’s for V, Co, and Cu were found using firs
principles total-energy calculations and the EBP’s were co
pared with the paths produced byuniaxial stress on the
phases, which were called in that work uniaxial Bain pat

The EBP’s were shown to be directly useful in interpr
ing the bulk structure of epitaxial films determined, for e
ample, by quantitative low-energy electron diffractio
~QLEED!. A comparison of the measured structure of a fi
with the states on the EBP’s identifies the phase from wh
the film is produced by the epitaxial strain. Thus a film of C
on Cu~001! was shown to be strained fcc Co, but a film
Co on Fe~001! was shown to be strained body-centere
tetragonal~bct! Co, a metastable phase of Co, whereas
Co was shown to be unstable.

In the tetragonal plane, whose coordinates are tetrag
lattice constants, the EBP is a continuous path that pa
through the two phase points at the energy minima
through the saddle point of energy between the two minim
It was shown that between the minima a segment of the E
exists that includes the saddle point, but not the minim
which consists of inherently unstable states. More genera
strained states of each phase, not just those on the EBP,
shown to be separated by a region of inherently unsta
tetragonal states, so that an observed strained tetragonal
has a connection to just one equilibrium phase through st
but constrained states.
570163-1829/98/57~3!/1971~5!/$15.00
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The present work gives the EBP’s for six metals based
the published first-principles calculations for tetragon
structures by Sliwko, Mohn, Schwarz, and Blaha.3 The cal-
culation procedures for finding the EBP, the contours of c
stant energy, and the unstable region are described in Se
The results are described in Sec. III with two tables and f
figures. Section IV discusses why the EBP is useful,
significance of the unstable region, and notes defects
generalizations of these calculations.

II. CALCULATION PROCEDURES

The calculations of total energyE as a function of the
tetragonal lattice parametersa, the side of the square cros
section, andc, the height of the unit cell, used the powe
series expansions given in Ref. 3, whereas the calculation
Ref. 4 used the full-potential augmented plane-wave p
gramWIEN95 directly. The power-series expansions were
ted in Ref. 3 to extensive first-principles calculations in t
local-density approximation~LDA ! with WIEN95. The expan-
sions giveE within specified ranges ofc/a and volume per
atomV5ca2/2 that include the minima and saddle point a
have the form

E5(
i 50

n

(
j 50

m

Ai j ~c/a! iVj . ~1!

The coefficientsAi j are tabulated in Ref. 3 to eight signifi
cant figures and are available in electronic form from t
authors. In Eq.~1! n is 5 or 6,m is 3, andE is obtained in the
specified ranges to an accuracy stated to be better than
mRy.5 Some comments on this stated accuracy are mad
Sec. IV. A useful feature of formula~1! is that analytical
formulas for the first and second derivatives ofE may be
readily derived.

The EBP for each metal is found by calculatingE,
(]E/]c)a , and (]E/]a)c as a function ofc at constanta and
locating thec value for whichE has a minimum or, equiva
lently, locating the zero of (]E/]c)a . The minimum corre-
sponds to the epitaxial film condition of zero normal stre
1971 © 1998 The American Physical Society
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1972 57P. M. MARCUS AND P. ALIPPI
on the~001! surface. Asa ranges over the structures betwe
the phase points, the EBP is traced by these minima ofE at
eacha. SinceE and (]E/]c)a are evaluated easily, a dens
grid of c values permits simple interpolation to four signi
cant figures forc, E, and (]E/]a)c at the minimum ofE for
any a.

The two phase points and the saddle point correspon
stationary points forE and hence are located by interpolatin
on the EBP itself to find points where (]E/]a)c vanishes
along with (]E/]c)a . Two of the three stationary points ar
always cubic points, since at a cubic point if (]E/]c)a50
then also (]E/]a)c50. The contours of constantE are simi-
larly found by interpolating the desiredE in a tabulation of
E(c) at values ofa over a range ofa that covers the desire
contour.

Tetragonal elastic constants at anya and c may be de-
fined by

c̄11[
a2

V

]2E

]a2 52~c111c12!,

c̄13[
ac

V

]2E

]a]c
52c13, ~2!

c̄33[
c2

V

]2E

]c2 5c33.

The c̄i j differ from the usual elastic stiffness coefficientsci j
because thec̄i j correspond to tetragonal deformations th
maintain the square symmetrya15a2 .6 To separatec11 from
c12 requires breaking tetragonal symmetry, but is not p
sible if E is known only from the power series~1!. However,
when the phase has cubic symmetryc115c33 andc12 can be
evaluated. In fact,c12 can be evaluated in two ways, i.e
from c̄11 and c̄33 on the one hand and fromc̄13 on the other.
The correspondence of the two values is then a test of
accuracy of the power-series representation ofE, as will be
noted in Sec. IV.

A strained tetragonal state will in general be maintain
by applied in-plane and out-of-plane stresses determine
the derivatives (]E/]a)c and (]E/]c)a . However, stability
depends also on a condition on the second derivatives oE,
which states that the second-order differential ofE is always
positive, i.e., that

d2E5VF1

2
c̄11S da

a D 2

1 c̄13

da

a

dc

c
1

1

2
c̄33S dc

c D 2G ~3!

is greater than zero for all deformationsda anddc. Other-
wise the structure would have a tetragonal deformation
lowers the energy, so that the structure cannot be mainta
by applied stresses. The conditiond2E.0 is then a condi-
tion on thec̄i j , namely,

D[ c̄11c̄332 c̄13
2.0. ~4!

The lines along whichD50 can be calculated readily b
finding the c/a at which D50 for the functionE(c/a) at
constantV and using a range ofV to follow the line; the
analytical power series for the second derivatives ofE ob-
tained from Eq.~1! are convenient for the calculation.
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The slope of the EBP at the phase points can be expre
directly in terms of the elastic constants of each tetragona
cubic phase, volumeV05c0a0

2/2,

S d~V/V0!

d~c/a! D
EBP

52
a0

c0

~2c̄332 c̄13!

~ c̄331 c̄13!
52

2a0

c0

~c332c13!

~c3312c13!
.

~5!

If the phase point has cubic symmetry, Eq.~5! simplifies,
since thenc115c33, c125c13 and

S d~V/V0!

d~c/a! D
EBP

52
2a0

c0

~c112c12!

~c1112c12!
52

2a0

c0

122v
11v

,

~6!

wheren is the Poisson ratio of the cubic phasen5c12/(c11
1c12). In the figuresV0 is chosen as the volume of th
equilibrium phase of lowerE, hence Eq.~5! or ~6! applied to
the other equilibrium phase has a factor of the ratio of theV
of the other phase toV0 on the right-hand sides of Eqs.~5!
and ~6! to get the slope of the plotted EBP.

Equations~5! and ~6! relate the linear elastic approxima
tion to the EBP of a phase directly to the elastic constants
a tetragonal noncubic phase or a cubic phase, respective
the elastic constants of the phase are known from experim
or theory, the equations give the linear approximation to
EBP. Then the measured bulk structure of a strained epi
ial film can be compared with the linear EBP to identify th
equilibrium phase of that film. This identification is esp
cially interesting for noncubic tetragonal phases, which
predicted to exist for all transition elements,1,3 but are always
metastable. Hence they cannot be made macroscopically
may be stabilized by epitaxy, as was done in the case of
Co.4 A comparison of Eq.~5! with Eq. ~6! shows that Eq.~5!
defines an effective Poisson ratio for tetragonal phases.

III. RESULTS

The results of calculations with the procedures and f
mulas of Sec. II are given in four figures and two table
Figures 1–3 plot the EBP’s of V, Ti, and Sr along wi
contours of constantE on the c/a-V/V0 tetragonal plane,
whereV0 is the volume per atom of the more stable pha
point; the positions of the two phase points and the sad
point are marked. The composite Fig. 4 plots the EBP’s
Rb, Li, and K without the contour lines. The correspondi
coordinates and the energy at each point referred to a ze
the more stable phase are given in Table I. Plotted in F
1–3 are five contours of constant energy, i.e., two contour
dE above the two minima, the contours through the sad
point, and the contoursdE above and below the saddle-poi
energy. The values chosen fordE depend on the energ
scale for each metal. The unstable region whereD,0, which
includes the saddle point, is the region between the two li
of long dashes and is shown in all four figures. Table I a
gives the stationary points ofE for tetragonal Rb computed
by Milstein, Marschall, and Fang7 from an empirical poten-
tial fitted to experiment.

The tetragonal elastic stiffness constantsc̄11,c̄13,c̄33 are
given in Table II at the phase points and also the ela
stiffness constants found in Ref. 3 for the cubic phases
each metal. When the phase is cubic, the usual tetrag
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57 1973TETRAGONAL STATES FROM EPITAXIAL STRAIN ON . . .
elastic constantsc11 andc12 ~found in two ways! are given;
note that thenc115 c̄33.

By symmetry,E is stationary at the cubic points (c/a
51,&) on the EBP, i.e.,]E/]a5]E/]c50 at cubic points.
However, the cubic points can be saddle points as wel
minima. The possible configurations have been classifie
Ref. 7 in three cases, i.e., case 1, minimum at bcc (c/a
51), saddle point at 1,c/a,&, and minimum at fcc
(c/a5&); case 2, minimum at bct (c/a,1), saddle point
at bcc (c/a51), and minimum at fcc (c/a5&); and case 3,
minimum at bcc (c/a51), saddle point at fcc (c/a5&),
and minimum at bct (c/a.&). Then Rb, K, Li, and Sr are
case 1, Ti is case 2, and V is case 3.

FIG. 1. EBP for V on thec/a2V/V0 plane ~full line!, phase
point 1 bcc ~full circle!, volume V0584.8 bohr3, E50; saddle
point fcc ~marked3!, E520.8 mRy; phase point 2 bct~full circle!,
E510.0 mRy. Energy contours are drawn~short dashes! at dE
51 mRy above the minima, through the saddle point, and6dE
from the saddle point. The unstable region is between the line
long dashes and includes the saddle point. The coordinates fo
phase and saddle points are in Table I.

FIG. 2. EBP for Ti, stationary points, contour lines, and unsta
region marked as in Fig. 1. Phase point 1 is bct atE51.59 mRy;
the saddle point is bcc atE52.59 mRy; phase point 2 is fcc atE
50 mRy, V05108.1 bohr3, dE50.2 mRy. The measured straine
bulk structure of epitaxial film on Al~001! is marked by the open
square with error line~Ref. 8!.
s
in

The contour lines of constantE, which are vertically ori-
ented ellipses near each phase point, also appear in R
plotted on thec/a-V plane for each metal. The EBP an
contour lines forV are also in Ref. 4, where they are plotte
on thea/a0-V/V0 plane. On this plane the contours are tilte
and the bcc and fcc positions on the EBP are reversed.
contours on thec/a-V plane in terms of the deviations o
c/a andV from the values at the phase points are given

of
he

e

FIG. 3. EBP for Sr, stationary points, contour lines, and unsta
region marked as in Fig. 1, phase point 1 is bcc atE50 mRy; the
saddle point is bct atE50.383 mRy; phase point 2 is fcc atE
50.190 mRy,V05319.6 bohr3, dE50.07 mRy.

FIG. 4. EBP for Rb, Li, and K, stationary points, and unstab
region marked as in Fig. 1. Phase point 1 for Rb is bcc atE
50.135 mRy; the saddle point is bct atE50.157 mRy; phase poin
2 is fcc atE50 mRy, V05518.0 bohr3. Phase point 1 for Li is bcc
at E50.144 mRy; the saddle point is bct atE50.161 mRy; phase
point 2 is fcc atE50 mRy, V05127.7 bohr3. Phase point 1 for K is
bcc at E50.013 mRy; the saddle point is bct atE50.089 mRy,
V05430.4 bohr3.
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TABLE I. Tetragonal states stationary in energy. The parameter are (c/a) i , (V/V0) i , Ei , i 51,2,3, in the tetragonal plane for states
stationaryE; the stable phase point isi 51 or 3 and the metastable phase point is theni 53 or 1, respectively; the saddle point isi 52. Note
that the tetragonal lattice parameters can be found froma5@2V0(V/V0)/(c/a)#1/3 andc5a(c/a). V0 is the volume per atom of the mor
stable phase point in bohr3 andEi is the energy in mRy with respect to the energy of the more stable phase point.

Metal V0 (c/a)1 (V/V0)1 E1 (c/a)2 (V/V0)2 E2 (c/a)3 (V/V0)3 E3

V 84.9 1.00 1.00 0.00 1.43 1.04 20.8 1.78 1.02 10.0
Ti 107.9 0.85 0.99 1.59 1.05 0.99 2.59 1.40 1.00 0.0
Rba 518.0 0.99 0.999 0.135 1.10 1.001 0.157 1.39 1.00 0.0
Rbb 1.00 0.997 20.042 1.22 0.999 0.041 1.41 1.00 0.0
K 430.4 1.00 0.996 0.013 1.19 1.000 0.089 1.42 1.00 0.0
Li 127.7 0.99 1.003 0.144 1.10 1.003 0.161 1.41 1.00 0.0
Sr 319.6 1.00 1.000 0.000 1.21 1.009 0.383 1.42 1.014 0.1

aThis work.
bFrom Ref. 7.
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c/a D 2

1c2S dc/a

c/a D S dV

V D1c3S dV

V D 2

,

c1[~V/18!~ c̄1124c̄1314c̄33!,

c2[2~V/9!~ c̄112 c̄1322c̄33!, ~7!

c3[~V/18!~ c̄1112c̄131 c̄33!.

For cubic symmetryc2 vanishes; even for the bct phases
Ti and V,c2 is much smaller thanc1 andc3 , so the contours
are still nearly vertical. Formula~7! for the case of cubic
symmetry with coefficients in terms of theci j is given in
Ref. 2.

IV. DISCUSSION

The principal result found here is the EBP between
phase points, which shows the effects of isotropic epita
strain on equilibrium phases. The EBP provides a basic e
f

e
l
s-

tic response of a material in tetragonal structure to a part
lar strain, one that is available experimentally, including t
interesting case of negative strain in the plane. The EB
are found here from first principles in a well-defined appro
mation with errors of known magnitude and include nonl
ear effects. These EBP can then be compared directly w
the strained bulk structures determined by QLEED for e
taxial films. This comparison is illustrated for strained ep
taxial Ti films on Al~001!,8 where the QLEED point and its
error limits ~from the uncertainty in the bulk value ofc! are
shown in Fig. 2 to agree well with the calculated EBP. T
V0 used in evaluatingV/V0 for the QLEED point is the
measured hcp Ti valueV0

hcp5119.2 bohr3, which is close to
the fcc value.

The presence on the EBP of an inherently unstable sec
separating strained fcc Ti from strained bct Ti is an imp
tant result of the theory. Since the QLEED point within i
error limit lies on the fcc part of the EBP, the epitaxial film
must be strained fcc Ti. This result is particularly interesti
because fcc Ti does not appear on the usual press
nal
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TABLE II. Elastic constants of stable and metastable phases: The tetragonal elastic stiffness constantsc̄11,c̄13,c̄33 in Mbar for phase 1
at stationary point 1 of Table I and for phase 2 at stationary point 3 of Table I,c11,c12,c33 are the usual elastic constants for tetrago
structures. For cubic phasesc115c335 c̄33; hence, from Eq.~2!, c12 is found in two ways: c12

(1)5( c̄11/2)2 c̄33 andc12
(2)5 c̄13/2. Note that

1 mRy/bohr350.147 11 Mbar.

Metal

phase 1 phase 2

c/a c̄11 c̄13 c̄33 c12
(1) c12

(2) c/a c̄11 c̄13 c̄33 c12
(1) c12

(2)

Va 1.00 10.26 3.27 3.60 1.53 1.63 1.78 11.47 2.08 4.57
Vb 2.88 1.36
Tia 0.85 5.05 2.18 1.45 1.40 5.52 2.38 1.59 1.17 1.19
Tib 1.48 1.21
Rba 0.99 0.160 0.074 0.043 0.037 0.037 1.39 0.163 0.075 0.048 0.034 0.
Rbb 0.045 0.038 0.046 0.040
Ka 1.00 0.220 0.100 0.059 0.051 0.048 1.42 0.214 0.097 0.062 0.046 0.
Kb 0.061 0.049 0.057 0.050
Lia 0.99 0.633 0.296 0.165 0.151 0.148 1.41 0.636 0.280 0.178 0.140 0.
Lib 0.170 0.147 0.169 0.143
Sra 1.00 0.678 0.283 0.194 0.145 0.141 1.42 0.698 0.295 0.202 0.147 0.
Srb 0.206 0.136 0.189 0.153

aThis work.
bFrom Ref. 3.
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57 1975TETRAGONAL STATES FROM EPITAXIAL STRAIN ON . . .
temperature phase diagram. Note that the theory gives
rectly the possible states of epitaxially strained fcc Ti,
cluding any nonlinear elastic behavior of the crystalli
phases. This comparison of measured structure with the
oretical EBP replaces the previous analysis, which assu
constant elastic stiffness coefficients and attempted to
mate the elastic coefficients of the cubic phases.8 The use of
linear elastic relations for identification of the equilibriu
phase is compared to the use of the EBP for that identifi
tion in the case of Co in Ref. 9, where tetragonal states
the EBP are plotted on thea-d plane, whered is the layer
spacing.

These first-principles calculations, which do not use e
pirical information, have an advantage over empirical pot
tials fitted to measurements since these calculations ar
good for highly strained or even unstable states, which
not accessible to measurement, as they are for slig
strained equilibrium states. Thus they provide a test of c
culations based on empirical potentials, such as the pote
used for Rb in Ref. 7. The comparison in Table I shows t
the c/a values of the saddle point differ by 10%, that th
minimum energy in Ref. 7 is at the bcc structure, rather th
the fcc structure found here, and that the energy separatio
the equilibrium phases in Ref. 7 has both a sign and a m
nitude different~smaller! from what is calculated here.

The power-series representation of the tetragonal ener
shows some defects, e.g., the cubic points deviate fromc/a
51 or& in Table I and the two values ofc12 do not agree
well in some cases. These defects are in the representati
the results of LDA calculations. The most serious defect is
the saddle point of Ti, which is bcc, but the power ser
finds the saddle point atc/a51.05 rather than 1. A recalcu
lation of the energyE of Ti directly with WIEN95 finds that
the power series has missed an asymmetry inE around the
saddle point that shifts the position of the maximum. T
on

s

n

nts
g
f.
i-
-

e-
ed
ti-

a-
d

-
-
as

re
ly
l-
ial
t

n
of
g-

ies

of
n
s

e

direct calculation finds the maximum atc/a51, as it should
be; it also verifies the minimum of fcc-Ti atc/a51.40. The
deviation from symmetry at fcc Ti and all other cubic phas
is thus no more than 1%, except for fcc Rb, where the
viation is 1.7%. In comparison to experiment, all the calc
lated elastic stiffness coefficients are too large by at le
10% and the volumes per atom are too small by 5–10
These discrepancies from experiment are defects of the
sumptions of the band calculations, i.e., of the LDA wi
semirelativistic corrections.

Despite the deviations from experiment, which may
reduced in subsequent calculations by more accurate for
lation of the electronic-structure equations, these results
of immediate practical value in interpreting measured fi
structures and of conceptual value in providing a sharp
tinction between, for example, a tetragonally strained b
phase and a tetragonally strained fcc phase. A generaliza
of the tetragonal results to other structures suggests a di
ent type of phase diagram in which the various equilibriu
phases, stable and metastable, are points in a parameter
that has structural parameters as coordinates. The pre
results suggest that each phase point is surrounded by
gion of strained states and the regions are embedded in
separated by a continuous matrix of inherently unsta
states that cannot be stabilized by applied stresses. Su
generalization for structures with considerable symme
such as the tetragonal structure, seems calculable by pre
codes.
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