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Tetragonal states from epitaxial strain on metal films
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The tetragonal states produced by isotropic pseudomorphic epitaxial strain(@0®elane on a tetragonal
phase of a crystal are calculated for V, Ti, Rb, Li, K, and Sr from first-principles electronic theory. It is shown
that each metal has two tetragonal phases corresponding to minima of the total energy with respect to tetrag-
onal deformationgand hence are equilibrium phagesd that the equilibrium phases are separated by a region
of inherent instability. The equilibrium phase for any strained tetragonal state can thus be uniquely identified.
Lattice constants and relative energies of the two phases and the saddle point between them are tabulated, as
well as the tetragonal elastic constants of each pH&§H.63-182007)04944-§

[. INTRODUCTION The present work gives the EBP’s for six metals based on
the published first-principles calculations for tetragonal
Metal crystals in the body-centered-tetragonal structuretructures by Sliwko, Mohn, Schwarz, and Blatighe cal-
are known to have two total-energy minima as functions ofculation procedures for finding the EBP, the contours of con-
tetragonal lattice constants andc.>~2 The minima are ap- Stant energy, and the unstable region are described in Sec. II.
propriate|y Ca"ed equi”brium meta”ic phases since they per:ll—he reSU|tS a!‘e descriped in Sec. Il W|th two tab|eS and four
sist without applied stress and are stable under small tetradigures. Section IV discusses why the EBP is useful, the
onal deformations. Previous work by the autfodefined significance of the unstable region, and notes defects and
and discussed epitaxial Bain patt&BP’s), which are se- generalizations of these calculations.
guences of tetragonal states that include the equilibrium te-
tragonal phases. These paths give the strained tetragonal Il. CALCULATION PROCEDURES
states produced by isotropic epitaxial strain, i.e., isotropic i ,
two-dimensional biaxial or in-plane strain, imposed on the | N€ calculations of total energ as a function of the
(001) planes of the equilibrium phases. In the previous worki€tragonal lattice parametess the side of the square cross
the EBP's for V, Co, and Cu were found using first- secyon, and:,_the h.elght. of the unit cell, used the power-
principles total-energy calculations and the EBP’s were comS€/€s expansions given in Ref. 3, whereas the calculations in

pared with the paths produced mpiaxial stress on the Ref. 4 used 'ghe full-potential augmented pla_ne-wave pro-
phases, which were called in that work uniaxial Bain paths Ir@mWIENOS directly. The power-series expansions were fit-

The EBP’s were shown to be directly useful in interpret-ted in Ref.. 3to extensivg first-prin.ciples calculations in the
ing the bulk structure of epitaxial films determined, for ex- local-density approximatiofLDA) with WiEN9s. The expan-
ample, by quantitative low-energy electron diffraction S1ONS g|veEZW|th|n specified ranges af/a and volume per
(QLEED). A comparison of the measured structure of a filmatomV=ca/2 that include the minima and saddle point and
with the states on the EBP’s identifies the phase from whict{ave the form
the film is produced by the epitaxial strain. Thus a film of Co
on Cu001) was shown to be strained fcc Co, but a film of
Co on F€001) was shown to be strained body-centered-
tetragonal(bct) Co, a metastable phase of Co, whereas bcc
Co was shown to be unstable. The coefficientsA;; are tabulated in Ref. 3 to eight signifi-

In the tetragonal plane, whose coordinates are tetragongpnt figures and are available in electronic form from the
lattice constants, the EBP is a continuous path that pass@githors. In Eq(1) nis 5 or 6,mis 3, andE is obtained in the
through the two phase points at the energy minima an@pecified ranges to an accuracy stated to be better than 0.01
through the saddle point of energy between the two minimamRy.> Some comments on this stated accuracy are made in
It was shown that between the minima a segment of the EBBec. IV. A useful feature of formulél) is that analytical
exists that includes the saddle point, but not the minimaformulas for the first and second derivatives Bfmay be
which consists of inherently unstable states. More generallyreadily derived.
strained states of each phase, not just those on the EBP, wereThe EBP for each metal is found by calculatirtg
shown to be separated by a region of inherently unstablédE/dc),, and @E/da). as a function ot at constana and
tetragonal states, so that an observed strained tetragonal st&eating thec value for whichE has a minimum or, equiva-
has a connection to just one equilibrium phase through stablently, locating the zero of{E/dc),. The minimum corre-
but constrained states. sponds to the epitaxial film condition of zero normal stress

Ezzo EO Ajj(cla)Vi. (1)
i=0 j=
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on the(001) surface. Asa ranges over the structures between The slope of the EBP at the phase points can be expressed
the phase points, the EBP is traced by these minima af  directly in terms of the elastic constants of each tetragonal or
eacha. SinceE and (JE/dc), are evaluated easily, a dense cubic phase, volum¥,=cqa3/2,

grid of ¢ values permits simple interpolation to four signifi-

cant figures foc, E, and (E/Ja), at the minimum of for (d(V/Vo) & _ 2%

any a. d(c/a) /gp  Co (C33tCi3) Co (Cazt2Ciy)

The two phase points and the saddle point correspond to (5)
stationary points foE and hence are located by interpolating
on the EBP itself to find points where)f/da). vanishes
along with (9E/dc),. Two of the three stationary points are
always cubic points, since at a cubic point ifH/Jc),=0 (d(V/VO)

ap (25— C13) 285 (Ca3—Cpa)

If the phase point has cubic symmetry, E§) simplifies,
since thernc,;=cs3, c1,=Cq3 and

23 (C1—C1p)  2ap1-2v

then also gE/da).=0. The contours of constaht are simi-

larly found by interpolating the desirel in a tabulation of d(c/a) EBP Co (C11+2C1)) Co 1tv
E(c) at values ofa over a range oé that covers the desired ©)
contour. wherev is the Poisson ratio of the cubic phase c,/(cq;
_ Tetragonal elastic constants at aayandc may be de- 1¢,.). In the figuresV, is chosen as the volume of the
fined by equilibrium phase of loweE, hence Eq(5) or (6) applied to
2 g the other equilibrium phase has a factor of the ratio of\the
C= a — =2(C11+Cy)), of the other phase t¥, on the right-hand sides of Eq)
V da and (6) to get the slope of the plotted EBP.
Equations(5) and (6) relate the linear elastic approxima-
— _ac 9°E tion to the EBP of a phase directly to the elastic constants for
€135V Jage 2C13, 2 4 tetragonal noncubic phase or a cubic phase, respectively. If
the elastic constants of the phase are known from experiment
R or theory, the equations give the linear approximation to the
Ca3= YV o2 =Cs3. EBP. Then the measured bulk structure of a strained epitax-

ial film can be compared with the linear EBP to identify the

Thec_ij differ from the usual elastic stiffness coefficieuts e_quilibrium phase of that fil_m. This identification is espe-
because the;; correspond to tetragonal deformations thatcially interesting for noncubic tetragonal phases, which are
maintain the square symmetay=a,.® To separate, from  Predicted to exist for all transition elementSbut are always
c,, requires breaking tetragonal symmetry, but is not posmetastable. Hence they_cannot be made mgcroscopically, but
sible if E is known only from the power serigs). However, ~May be stabilized by epitaxy, as was done in the case of bct
when the phase has cubic symmetsy= 43 andc,, can be  C0." A comparison of Eq(5) with Eq. (6) shows that Eq(5)
evaluated. In factc,, can be evaluated in two ways, i.e., defines an effective Poisson ratio for tetragonal phases.
from c,; andcs; on the one hand and fromy; on the other.
The correspondence of the two values is then a test of the . RESULTS
?g;:éj(;ai(r:]yso;ct.hﬁ/.power-serles representatioit ohs will be The results of calcu!ation_s with the procedures and for-

A strained tetragonal state will in general be maintaine iu:frsésmlfgc' |gtatrheegllzvgg,s'no];0$/r q_gi;u;e: dag? ;Y(\;cr’\ tavt\)llifhs '
by applied in-plane and out-of-plane stresses determined be/ogntours of cgnstanE on the c/a-\,//V, tetragonal plgéme
the derivatives {E/9a), and (E/c), . However, stability whereV, is the volume per atom of tk?e more stable hélse
depends also on a condition on the second derivativés of 0 P b

) ) . o point; the positions of the two phase points and the saddle
\F/Jv:sui:t?vztaitgs ttr;]z;the second-order differentiakab always point are marked. The composite Fig. 4 plots the EBP’s of

Rb, Li, and K without the contour lines. The corresponding
coordinates and the energy at each point referred to a zero at
(3)  the more stable phase are given in Table I. Plotted in Figs.
1-3 are five contours of constant energy, i.e., two contours at
S6E above the two minima, the contours through the saddle
aq_)oint, and the contour8E above and below the saddle-point
&eray. The values chosen f@E depend on the energy
scale for each metal. The unstable region whre0, which

1__(da

52E:V§Cll a +C13——+—C33

ac 2

2 saéc 1_ [ésc)\?
C

is greater than zero for all deformatioda and éc. Other-
wise the structure would have a tetragonal deformation th
lowers the energy, so that the structure cannot be maintain
by applied stresses. The conditiéRE>0 is then a condi-

tion on thec_ij, namely, includes the saddle point, is th_e region b_etween the two lines
of long dashes and is shown in all four figures. Table | also
D=Cy,Cas— C12>0. (4) gives the stationary points & for tetragonal Rb computed

by Milstein, Marschall, and Farigrom an empirical poten-
The lines along whiclD=0 can be calculated readily by tial fitted to experiment.
finding thec/a at whichD=0 for the functionE(c/a) at The tetragonal elastic stiffness constaotsg,c,3,C33 are
constantV and using a range d¥ to follow the line; the given in Table Il at the phase points and also the elastic
analytical power series for the second derivative€obb-  stiffness constants found in Ref. 3 for the cubic phases of
tained from Eq(1) are convenient for the calculation. each metal. When the phase is cubic, the usual tetragonal
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FIG. 1. EBP for V on thec/a—V/V, plane (full line), phase FIG. 3. EBP for Sr, stationary points, contour lines, and unstable
point 1 bece (full circle), volume Vy=84.8 bohf, E=0; saddle region marked as in Fig. 1, phase point 1 is bc&at0 mRy; the
point fcc (markedx), E=20.8 mRy; phase point 2 béfull circle), ~ saddle point is bct aE=0.383 mRy; phase point 2 is fcc &
E=10.0 mRy. Energy contours are dravishort dashesat SE  =0.190 mRy,V,=319.6 boht, SE=0.07 mRy.
=1 mRy above the minima, through the saddle point, anéE
from the saddle point. The unstable region is between the lines of

s } ) The contour lines of constaft, which are vertically ori-
long dashes and includes the saddle point. The coordinates for the . . .
; : ented ellipses near each phase point, also appear in Ref. 3
phase and saddle points are in Table I.

plotted on thec/a-V plane for each metal. The EBP and
; : - . contour lines foV are also in Ref. 4, where they are plotted
?;Z“fh;? ?ﬁé?élet—:'dclz (found in two ways are given; on thea/ay-V/V, plane. Qp this plane the contours are tilted
By symmetry,E is stationary at the cubic point/a and the bcc and fcc positions on the EBP are re_ve_rsed. The
—142) on the EBP, i.e.JE/da=JE/dc=0 at cubic points. contours on thec/a-V plane in terms of thg dewaﬂqns of
However, the cubic points can be saddle points as well ag/a andV from the values at the phase points are given by
minima. The possible configurations have been classified in
Ref. 7 in three cases, i.e., case 1, minimum at bof@ (
=1), saddle point at £c/a<v2, and minimum at fcc
(c/la=v2); case 2, minimum at bctc{a<1), saddle point VIV,
at bcc ¢/a=1), and minimum at fcc¢/a=v2); and case 3,
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minimum at bcc ¢/a=1), saddle point at fccqfa=v2), e R N T A N ]
and minimum at bct¢/a>v2). Then Rb, K, Li, and Sr are i ‘\\ ," ]
case 1, Tiis case 2, and V is case 3. - ; ;’ ]
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080 0% 100 110 1;,? 180 140150 180 FIG. 4. EBP for Rb, Li, and K, stationary points, and unstable

region marked as in Fig. 1. Phase point 1 for Rb is bcdEat
FIG. 2. EBP for Ti, stationary points, contour lines, and unstable=0.135 mRy; the saddle point is bctt 0.157 mRy; phase point
region marked as in Fig. 1. Phase point 1 is bcEat1.59 mRy; 2 is fcc atE=0 mRy, V,=518.0 boht. Phase point 1 for Li is bcc
the saddle point is bcc &=2.59 mRy; phase point 2 is fcc & at E=0.144 mRy; the saddle point is bct Bt=0.161 mRy; phase
=0 mRy, V,=108.1 boht, SE=0.2 mRy. The measured strained point 2 is fcc alE=0 mRy, V,=127.7 boht. Phase point 1 for K is
bulk structure of epitaxial film on A001) is marked by the open bcc atE=0.013 mRy; the saddle point is bct B=0.089 mRy,
square with error lingRef. 8. V,=430.4 boht.




1974 P. M. MARCUS AND P. ALIPPI 57

TABLE |. Tetragonal states stationary in energy. The parametercdad;(, (V/Vy);, E;, i=1,2,3, in the tetragonal plane for states of
stationaryE; the stable phase pointis-1 or 3 and the metastable phase point is theB or 1, respectively; the saddle pointiis 2. Note
that the tetragonal lattice parameters can be found fem2V,(V/V,)/(c/a)]¥® andc=a(c/a). V, is the volume per atom of the more
stable phase point in bohandE; is the energy in mRy with respect to the energy of the more stable phase point.

Metal Vo (c/la),  (VIVy), E; (cla), (VIVy), E, (cla); (VIVy); Ej
\% 84.9 1.00 1.00 0.00 1.43 1.04 20.8 1.78 1.02 10.0
Ti 107.9 0.85 0.99 1.59 1.05 0.99 2.59 1.40 1.00 0.0
RK? 518.0 0.99 0.999 0.135 1.10 1.001 0.157 1.39 1.00 0.0
REP 1.00 0.997 —0.042 1.22 0.999 0.041 141 1.00 0.0
K 430.4 1.00 0.996 0.013 1.19 1.000 0.089 1.42 1.00 0.0
Li 127.7 0.99 1.003 0.144 1.10 1.003 0.161 141 1.00 0.0
Sr 319.6 1.00 1.000 0.000 1.21 1.009 0.383 1.42 1.014 0.109
&This work.
bFrom Ref. 7.
scla\? scla\ [ 8V SV 2 tic response of a material in tetragonal structure to a particu-
E—Emin=Ci| —7| TCo| = || ~|TC3| | > lar strain, one that is available experimentally, including the
cla cla/\V \% . X h R ;
interesting case of negative strain in the plane. The EBP’s
_ —_— = are found here from first principles in a well-defined approxi-
C1=(V/18)(C11~4C13+ 4Csy), mation with errors of known magnitude and include nonlin-
—_— = = ear effects. These EBP can then be compared directly with
Co=—(VI9)(cy1—C13—2C33), (7 ’ Y

the strained bulk structures determined by QLEED for epi-
taxial films. This comparison is illustrated for strained epi-
taxial Ti films on A001),2 where the QLEED point and its
For cubic symmetnc, Vanishes; even for the bct phases of error ||m|tS (.from the Uncertainty.in the bulk value Ob are
Ti and V, (o is much smaller thanl andc3, so the contours shown in F|g 2 to agree well with the calculated EBP. The
are still nearly vertical. Formul&7) for the case of cubic Vo used in evalgating\/ifvo for the QLEED point is the
symmetry with coefficients in terms of thg; is given in  measured hcp Ti valugg®=119.2 bohf, which is close to
Ref. 2. the fcc value.
The presence on the EBP of an inherently unstable section
IV. DISCUSSION separating strained fcc Ti from strained bct Ti is an impor-
tant result of the theory. Since the QLEED point within its
The principal result found here is the EBP between theerror limit lies on the fcc part of the EBP, the epitaxial film
phase points, which shows the effects of isotropic epitaxiamust be strained fcc Ti. This result is particularly interesting
strain on equilibrium phases. The EBP provides a basic elasecause fcc Ti does not appear on the usual pressure-

C3=(V/18)(Cy1+2C13+ C3).

TABLE II. Elastic constants of stable and metastable phases: The tetragonal elastic stiffness cons@agtss; in Mbar for phase 1
at stationary point 1 of Table | and for phase 2 at stationary point 3 of Talalg J¢,,,C33 are the usual elastic constants for tetragonal
structures. For cubic phaseg;=cs3=Cg3; hence, from Eq(2), c,, is found in two ways: c{¥=(c;1/2)— 33 andc{2d =c,4/2. Note that
1 mRy/boh?=0.147 11 Mbar.

phase 1 phase 2
Metal c/a Cn C13 Ca ) c? cla 1 Ci3 Cas c{p c?
va 1.00 10.26 3.27 3.60 1.53 1.63 1.78  11.47 2.08 4,57
VP 2.88 1.36
Ti2 0.85 5.05 2.18 1.45 1.40 5.52 2.38 1.59 1.17 1.19
TiP 1.48 1.21
RE? 0.99 0.160 0.074 0.043 0.037 0.037 1.39 0.163 0.075 0.048 0.034 0.038
RKP 0.045  0.038 0.046  0.040
K2 1.00 0.220 0.100 0.059 0.051 0.048 1.42 0.214 0.097 0.062 0.046 0.049
KP 0.061  0.049 0.057  0.050
Li2 0.99 0.633 0296 0.165 0.151 0.148 1.41 0.636 0.280 0.178 0.140 0.140
Li® 0.170  0.147 0.169 0.143
SP 1.00 0.678 0283 0.194 0.145 0.141 1.42 0.698 0.295 0.202 0.147 0.147
SP 0.206  0.136 0.189  0.153

&This work.
bErom Ref. 3.
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temperature phase diagram. Note that the theory gives ddirect calculation finds the maximum eta=1, as it should
rectly the possible states of epitaxially strained fcc Ti, in-be; it also verifies the minimum of fcc-Ti &/a=1.40. The
cluding any nonlinear elastic behavior of the crystallinedeviation from symmetry at fcc Ti and all other cubic phases
phases. This comparison of measured structure with the thés thus no more than 1%, except for fcc Rb, where the de-
oretical EBP replaces the previous analysis, which assumegdation is 1.7%. In comparison to experiment, all the calcu-
constant elastic stiffness coefficients and attempted to estiated elastic stiffness coefficients are too large by at least
mate the elastic coefficients of the cubic phds&he use of 10% and the volumes per atom are too small by 5-10 %.
linear elastic relations for identification of the equilibrium These discrepancies from experiment are defects of the as-
phase is compared to the use of the EBP for that identificasumptions of the band calculations, i.e., of the LDA with
tion in the case of Co in Ref. 9, where tetragonal states andemirelativistic corrections.
the EBP are plotted on the-d plane, wherel is the layer Despite the deviations from experiment, which may be
spacing. reduced in subsequent calculations by more accurate formu-
These first-principles calculations, which do not use emidation of the electronic-structure equations, these results are
pirical information, have an advantage over empirical potenof immediate practical value in interpreting measured film
tials fitted to measurements since these calculations are asructures and of conceptual value in providing a sharp dis-
good for highly strained or even unstable states, which aréinction between, for example, a tetragonally strained bcc
not accessible to measurement, as they are for slightlphase and a tetragonally strained fcc phase. A generalization
strained equilibrium states. Thus they provide a test of calef the tetragonal results to other structures suggests a differ-
culations based on empirical potentials, such as the potentiant type of phase diagram in which the various equilibrium
used for Rb in Ref. 7. The comparison in Table | shows thaphases, stable and metastable, are points in a parameter space
the c/a values of the saddle point differ by 10%, that the that has structural parameters as coordinates. The present
minimum energy in Ref. 7 is at the bcc structure, rather thamesults suggest that each phase point is surrounded by a re-
the fcc structure found here, and that the energy separation gfon of strained states and the regions are embedded in and
the equilibrium phases in Ref. 7 has both a sign and a mageparated by a continuous matrix of inherently unstable
nitude different(smalley from what is calculated here. states that cannot be stabilized by applied stresses. Such a
The power-series representation of the tetragonal energiegeneralization for structures with considerable symmetry,
shows some defects, e.g., the cubic points deviate frttan  such as the tetragonal structure, seems calculable by present
=1 orv2 in Table | and the two values af;, do not agree codes.
well in some cases. These defects are in the representation of
the results of L_DA calgulatlc_)ns._The most serious defect is in ACKNOWLEDGMENTS
the saddle point of Ti, which is bcc, but the power series
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