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Diffraction from diffusion-barrier-induced mound structures in epitaxial growth fronts
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We construct models for the characteristic functions describing the mound structures induced by a surface
diffusion barrier in epitaxial growth fronts. These characteristic functions, including the height-height correla-
tion functions, are used to calculate the angular distribution of diffraction intensity. We compare in detail the
characteristics of the reciprocal space structure for diffusion-barrier-induced and noise-induced roughening of
epitaxial growth fronts. It is shown that except near the out-of-pltasé-Bragg diffraction condition, the
reciprocal space structure of the diffusion-barrier-induced growth front contains splittiggand broadening
characteristics that are dramatically different from that obtained from a scale invariant growth front caused by
random noises that exist during growth. This result allows us to differentiate unambiguously, using diffraction
techniques, the two mechanisms that can cause the roughening of expitaxial growth fronts.
[S0163-182698)01403-9

[. INTRODUCTION powerful in identifying the nature of the roughenindpif-
fraction techniqué,on the other hand, is very powerful in

Study of epitaxial growth of a material onto a crystalline obtaining the statistical values of the growth parameters over
substrate in vacuum is one of the most intriguing ventures large area in a short time.
for researchers in the last few decades from both a basic Recent calculations for the self-affine surface indicated
science and a technological point of view. The lattice conthat in the scaling regime, the diffraction beam obtained at
stant of the depositing material and the substrate may ndhe out-of-phase, or anti-Bragg condition, is a single broad-
always be the same. Homoepitaxy refers to the class of syened peak.This profile looks very similar to that obtained
tems where the depositing material and substrate are tfeom a mound surface caused by the SB effect as the inter-
same so that there is no lattice mismatch between thenfiace width grows sufficiently largg® The well established
Therefore, in principle one would expect the growth front towavelength selection in the mound formation unfortunately
be perfectly smooth and free of defects provided that theloes not result in beam splitting in diffraction under the out-
surface of the substrate is defect-free to begin with. Thiof-phase diffraction condition when the interface width be-
indeed can happen. Within a certain temperature regime, theomes sufficiently large. The similarity in the diffraction pro-
growth is layer-by-layer in which the incoming atoms would files obtained from the self-affine and mound surfaces causes
diffuse on the surface and would completely cover the surdifficulty in the distinction of the two mechanisms and also,
face before they start the next layerowever, this does not prevents one to obtain quantitative information of the growth
happen all the time. In fact, the growth front can be rough infront.
that multilayer step structures can occur during grofvth. In this paper, we show that if one moves away from the

Two mechanisms have been proposed to explain theut-of-phase diffraction condition, the general reciprocal
roughening of the growth front in homoepitaxy. The first space structure obtained from a self-affine rough surface is
mechanism is related to the asymmetric diffusion barriedramatically different from that obtained from a rough
(Schwoebel barrigrthat exists at surface steps, which inhibit mound surface caused by the SB effect. Specifically at the
a down-hill flow of atoms during growth. As a result, large near in-phase diffraction condition, the SB effect always
structures in the form of “mounds” are created due to thisgives a clear ring diffraction structure for the mound forma-
Schwoebel barrietSB) mechanisni. The other mechanism tion. Quantitative information such as average mound sepa-
has to do with the random noise that exists during gréWah. ration, lateral correlation length, and the interface width can
fractal-like (self-affing structure is created that possesses &e extracted from the reciprocal space structure. This ring
scaling in space and time. Imaging techniques such as scastructure does not exist in the case of the self-affine rough
ning tunneling microscopy with atomic resolutidgeo that surface. We also include a discussion of specific models that
the step structure can be observdths been particularly lead to the characteristic height-height correlation functions
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for both noise-induced and SB-induced rough growth fronts.

The organization of the paper is as follows: in Sec. Il
we describe the different characteristics of surface morphol-
ogy for both the noise-induced mechanism and the
Schwoebel barrier effect through the solution of continuous
Langevin equations. To catch the essence of those solutions
and to simplify the diffraction calculations, we propose some
model functions to differentiate the surfaces caused by these
two mechanisms in Sec. Ill, along with their properties. In
Sec. IV we present the detailed reciprocal space structures
for the proposed characteristic functions. We end the paper
with a comparison of our model with a mound surface, dis-
cussions, and conclusion remarks.

(a) ¢=1

Power Spectrum (arb. units)

II. MODELS FOR GROWTH FRONT ROUGHENING

In order to compare the reciprocal space structures for
different roughening mechanisms, we need to understand the
main features of rough surfaces in real space. This can be
achieved by studying the characteristic functions of the sur- g (arb. units)
faces. Different characteristic functions, such as height-
height correlation functiorH(r), autocorrelation function
R(r), and power spectrum(q), have been used to describe
the rough surfaces. These three functions are related, a
their definitions and relations are given by

FIG. 1. The power spectrum of a noise-induced roughening
front determined by Eq(7). (a) «/v ratio-dependentlet t=1);
r%) time-dependentlet k/v=1).

The solution for Eq.(2) is simple and straightforward
R(r)=(h(r)h(0)), (13 ;thrqugh a spat!al .Founer transformation, given by the fol-
owing expression:

H(r)=([h(r)—h(0)]?)=2[w*~R(r)], (1b) di2 ¢
h(r,t):(ﬂ) f dq eiq-rf dr @(q’T)e_(Kq4+yq2)(t—T)’
0

1 )
P(Q):W f R(r)e™'9"dr. (10 (4)

Hereh(r) is the surface height at positionon the surface, where®(q,t) is the spatial Fourier transformation gfr,t),

w={[h(r)—h]?) is called the interface width, arfdis the 1
average surface height. The difference betwklén)/2 and (q,t)=(z
R(r) is only a constant, whild°(q) and R(r) are Fourier

transform pairs. Using any of these three functions to degng

scribe a surface should give an equivalent result. In this sec-

tion, we shall obtain the power spectra analytically from (©(q,1))=0,

some simplified Langevin equations. More generally, in the

next section, we shall give all three forms of the character- (0(q,1)0(q',t"))=2Ds(q+q’)d(t—t"). (6)
istic functions.

dr2

fdr p(r,t)e 19’ )

The power spectrum is given by

A. Noise-induced growth 4 2
1_e—2(Kq +vg)t

In this model, the roughening is caused by the competi- P(q)=4D ————. 7
tion between the inherent thermal noise in the growth system kg +vq
and the smoothing effect by a condensation/evaporation pr plot of the power spectrum with different/ v ratios and
cess on the surface. Sometimes the capillary effect, i.e., M”'rowth timet is shown in Fig. 1. The full width at half
lins diffusion, is also included. A simple linear Langevin .

S ) Uk maximum(FWHM) of the power spectrum is determined b
equation including all these effects is given'by ( ) P P Y

both thex/v ratio and deposition timg, and is a reflection
of the lateral correlation length The interface widtlw and

oh(r.v) =pV?h—kV*h+ 5(r,1), 2) local slopem can be calculated from the power spectrum
at according to the following relation’:
wherev is the surface tension, andis the Mullins diffusion
coefficient. 5(r,t) is a Gaussian white noise, satisfying szf P(q)dg, @)
(n(r,1))=0,
2__ 2
(n(rm(r' t)=2D51—r)8t-1). (3 = [ @P(adq ©
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FIG. 2. Time evolution of the interface width? and local slope
m? of the noise-induced rough growth frorfe) 1+ 1 dimension,
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and(b) 2+ 1 dimension.

respectively. The numerical integration of interfagé and
local slopem? for different «/ v ratios are shown in Fig. 2 for
1+1 and 2+ 1 dimensions. We letv~t#. As the Laplacian
term is also a smoothing effect, thgvalue[(2—d)/4<p
<(4-d)/8] is between that of the Edward-Willkinson
model, (2-d)/4, and Mullins diffusion model, (4 d)/8.
The local slopem is also a power law of timen~t". The
value ofn for 2+1 dimension shown in Fig.(B) is very
small compared with the for 1+ 1 dimension shown in Fig.

2(a).

In this growth model, the step barrié@chwoebel barrigr

B. Schwoebel barrier effect

10

During growth, mounds coarsen, and the average mound
separation\ grows as a power law=t°, with & ranging
from 0.16 to 0.26*!! (ii) the slope of mounds remains es-
sentially constant after an initial transient, known as the
slope selection. The selected slope is usually very stiesis
than 1.0.351This growth mechanism can be described by a
nonlinear Langevin equation proposed by Johnebal 3

oh(rt) vh

_ I 71
pm v 1+ (Vh)2 kV*h+ n(r,t),

(10)
where bothv and « are positive. The first term on the right-
hand side represents the uphill growth due to the Schwoebel
barrier effect, and the second term is due to the surface dif-
fusion (capillary effecj. The up/down symmetry is still pre-
served for this equation although it is nonlinear. At the initial
stage, a$Vh| is small, Eq.(10) can be expanded as

dh(r,t)
ot

=—vV2h—kV*h+ (1 t). (11
And h(r,t) is a random Gaussian process.

Equation(11) actually looks very similar to Eq2) for the
noise-induced rough surface except that the first term on the
right-hand side has a negative coefficient, which implies that
the solution for Eq(11) is unstable. The coefficient here
refers to the adatom diffuse procegkse Schwoebel barrier
effect), whereas the same coefficient in E) stands for the
effect of surface tension, or the evaporation/condensation
process. Despite the different physical origins of E).and
Eqg. (112), the solutions for the power spectrum are similar,
except the negative sign in front of

1— e~ 2(xq*~vg")t

P(q)=4D (12)

kq*—vQg?
Equation (12) always has a maximum afjy=/(v/2«),
which implies that the power spectrug{q) has a ring struc-
ture (in the 2+1 dimension, and the peak position of the
ring qq reflects the wavelength selectigaverage mound
separation\ = 27/q, of the growth mechanism as shown in
Fig. 3. This ring structure is the main difference between the
two mechanisms we discussed above.

It is also interesting to note that the selected wavelength is
only determined by the coefficients and v, which corre-
spond to the relative effect of surface diffusion and
Schwoebel barrier. The ratie/ v plays a very important role
for the growth mechanism. lk/v>1, which suggests that
either Schwoebel barrier is small or surface diffusion is fast,
the selected wavelength is too long for a technithah real
space imaging and diffraction techniqués detect. In this
case, the dominated roughening mechanism will still be the
noise-induced dynamic roughening. In fact, as shown in Fig.
3(a), as thex/v ratio increases, the satellite ring intensity
reduces and the ring radius shrinks. For a sufficiently large
xlv (the curve forx/v=20 as shown in Fig. )3 one can
hardly tell whether there exists a satellite ring or not. In this
case only the capillary effect dominates, and the growth

prevents adatoms to hop down the step edge, which genemechanism should be governed by Mullins diffusion, which
ates an uphill diffusion currefi"!! There are two important gives 8=0.25.

features in this kind of growth: (i) The surface is consisted

Figure 3b) shows a semilogarithmic plot of the time evo-

of regular mound structures, having a wavelength selectiorlution of a power spectrum for selectedv ratios. For a
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FIG. 3. The power spectrum of the zeroth-order solution for
growth front roughening caused by Schwoebel barrigy. /v
ratio-dependent fot=1; (b) time-dependent fok/v=20, 1, and

0.2.
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FIG. 4. The autocorrelation functions normalized Wy for
«/v=0.2 at different growth times. Note that the first zero crossingfront roughening: (a) 1+1 dimension andb) 2+ 1 dimension.
positions are different for different times.
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large /v ratio (=20), and after a long time deposition
(t=3), there is only a tiny ring appeared in the power spec-
trum, which may not be able to detect in an experiment.
However, for a mediunx/v ratio (=1, crossover region at

the very beginning, the ring structure is still not observable.
But for a sufficient long time, a clear satellite ring would
appear. For a smaklt/v ratio, which means the Schwoebel
barrier dominates, even at the initial stage, the ring structure
is obvious in the power spectrum. Another interesting point
is that the FWHM of the satellite rin@r the power spectrum
for large «/ v ratio) is a function of both the timé and ratio
xlv. As the growth time becomes longer, the satellite ring
becomes more obvious and sharper, which means that the
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FIG. 5. Time evolution of the interface width? and local slope
m? of the zero-order solution for Schwoebel barrier induced growth

The insets are the plots @f%/m? vs growth timet.
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length selection, and the other for describing the local rough-
ness correlation. The relative weighting of these two lateral
length scales determines the final morphology of the surface.
- Details will be presented in Sec. lIl.
F . Another point worth mentioning is that the location of the
102 107! 10° 10! first zero crossing in the autocorrelation function is usually
r (arb. units) used as a measure of the average mound separafidh.
However, this is not entirely accurate. Figure 4 shows the
autocorrelation functions fok/v=0.2 at different growth
times. From the discussion above, the average mound sepa-
ration A is determined only by the/v ratio, and different
R I times should give the same mound separation value. How-
10” 10! b IOO't 10f ever, as shown in Fig. 4, the autocorrelation functions at
_ r (arb. units) different times have different zero crossing positions, i.e., the
F© shorter the growth time, the longer the first zero position.
) This is due to the effect of a competition between the two
lateral lengths. Therefore, for a realistic growth system, both
lateral lengths could change with the growth time, and the
e, use of the first zero crossing position in the autocorrelation
g (arb. units) function as a sole measure of the average mound separation
may be misleading.
For surfaces in both 1 and 2+1 dimensions, at the
FIG. 6. Characteristic functions for self-affine surfaces in2  initial stage of growth the interface width would grow as a
dimension: (&) height-height correlation functioH (r); (b) auto-  power law of timet, wect?, with 8>3 for 1+ 1 dimension,
correlation functiorR(r); and(c) power spectrunP(q). and with 8>3 for 2+ 1 dimension(Fig. 5. For a longer
time, w increases exponentially with and the unstable La-
local surface height fluctuation becomes more correlateghlacian term dominates the growfiwhich may not satisfy
(correlation length increasesOnly when the local height the small slope approximation assumed for Bd), and the
fluctuation has a correlation length compatible to or largemonlinearity of Eq.(10) should be included The local slope
than the average mound separation, can mounds dominatg has a similar behavior, i.emoct™ at initial stage, andn

the m_orphology of the surface. This suggests that in orde_r t:ect for longer times. As thex/ v ratio is fixed, the average
describe a mound surface, one needs at least two relatively,ond separation is also fixed. However, at the initial

independent lateral lengths, one for describing the WaVestage the powen is much less tham, which suggests that

local slopem is not inversely proportional to the average

H(r) (arb. units)

R(r) (arb. units)

P(g) (arb. units)

'
IS

g £ () ' mound separatioh. We plot thew?/m? ratio vs growth time
3 [ “gacan t as the inset fox/v=0.4. Only for longer growth times, the
g —q=10 w?/m? ratio reaches a constant. We conclude again that the
Pl 5 S gm0z average mound separatiaris not the only lateral parameter
X et that determines the morphology of the growth front. We will
10 10! 10? demonstrate this later in our simple model in Sec. Ill.
)
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FIG. 7. Characteristic functions for mound surfaces it 2
dimension: (a) height-height correlation functioH(r); (b) auto- FIG. 8. The FWHM of the satellite peak is plotted as a function
correlation functiorR(r); and(c) power spectruniP(q). of system correlation lengttifor 2+ 1 dimension.
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Ill. GENERAL CHARACTERISTIC FUNCTIONS R(r) :er_(r/@za. (14)

In Sec. Il we compare the power spectra between tw
different surface roughening mechanisms: the Schwoeb

barrier effect and the noise-induced roughening. The mai h ¢ WD) is 2 G an f
difference is that there is a characteristic ring structure in théf(t)' The system response functi itt) is a aussian func-
tion with a correlation lengtlE. This correlation length de-

power spectrum of a mound surface, while for a self-affine ; :
surface there is no ring structure. In order to use diffractiofc"Mines the lateral correlation length of the output. The out-

technique to differentiate these two kinds of surfaces, espdUt Signal is a convolution ofY(t) and #(t), i.e.
cially for a sufficiently large interface width, we need to J Y(7) 7(t—7)d7. The corresponding power spectrum takes
know the characteristic function of the surfdbeight-height the following form:

correlation functiorH(r), or autocorrelation functioR(r), )

or power spectruniP(q)]. As demonstrated above, in some P(q)= W_f o474 (15)
special cases the Langevin equations can be used to describe )

the surface growth and can be solved analytically. However,

there are other models that cannot be
analytically*®°*3but can be solved numerically.

In general, for noise-induced growth models, the height
height correlation function can be written ‘AsH(r,t)
=2w?(t)f(r/&), where the scaling functiofi(x)=1 for x
>1, andf(x)=x2* for x<1. In this formula,w~t? is the
interface width,¢ is the lateral correlation length, andis
the roughness exponent describing how wiggly the local sur
face is. The value of ranges from O to 1.

In order to clearly illustrate the physics in the diffraction,
we shall use phenomenological models to characterize th
height-height correlation functions for different surfaces.

gﬁ\lhenaz 1, the 1+ 1 dimensional surface can be considered
as a linear system with an independent Gaussian noise input

SOIVeqn Fig. 6 we plot some examples of these characteristic func-
tions with a=1. It is clear to see that for a self-affine sur-
Tace, both the height-height correlation functiei{r) and
autocorrelation functio®(r) do not have an oscillatory be-
havior along the axis, which captures the behavior of noise-
induced surfaces discussed in Sec. Il. The power spectrum
has only a single peak at the center, and the FWHM of the
peak is inversely proportional to the lateral correlation length
& The local slope for this kind of surface is determined by
%)nly applied toa=1 casg'®

m?=((Vh)?)
A. Height-height correlation H(r) for noise-induced 2 2
d°R(r) W ] )
growth fronts BT :2? for 1+1 dimension
For a self-affine and isotropic surface, we use the height- _ r=0
height correlation functiorH(r) proposed by Sinha and 9*R(r) w? . .
co-workerd?2 23 =4§— for 2+1 dimension,
r=0

(16)

2w 1—e (9%
H(=2wTl-e 1 (13 i.e., the local slope is only determined by the interface width

) w and lateral correlation lengtlj. (Note that the average
Three parameters are used to describe the morphology of ﬂ%?ope(Vh) is zero) gt ( g

surface, i.e., interface widttv, lateral correlation lengtlg,
and roughness exponeat This function works for both the
1+1 dimension and the21 dimension, and is well known
for describing self-affine surfaces. The corresponding auto- For a mound surface, we propose the following form for
correlation functiorR(r) is given by the height-height correlation function:

B. Height-height correlation H (r) for mound surfaces

a 2mr . .
2w?| 1—e (10? cos(TW) for 1+1 dimension
H(r)= oot (17
w2 1_e—(r/g)2“JO(T” for 2+1 dimension,

whereJy(x) is the zeroth-order Bessel function. Four param- 2 (r1p2 24 ] .
eters are used to describe the surface, i.e., interface width w?e™ """ cog —|  for 1+1 dimension
system correlation lengtli, roughness exponemnt, and av- R(r)=

erage mound separation For a mound surf?g?lit is known er(r/ohJO( 27”) for 2+1 dimension.
that the local slope is quite smooth and=1.">""The cor- A

responding autocorrelation functions are (18
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The Iater:?ll correlqtion Iengt@cazn be defi_ned throqgh the is [Y(t— 7)sin(2a@/\)7]p(ndr, where the response of the
autocorrelation function a(¢) =w*/e, and is a function of gy stemy (1) is a Gaussian function with a system correlation

both ¢ and \. For example, in the 21 dimension, let{ . .
=\, thené=0.27\. In fact, for the case of the11 dimen- length . In fact, the system correlation lengthdetermines

sion, the surface can also be considered as a linear systépfW randomly the mounds are distributed on the surface.
with the input as a product of an independent Gaussian noisehe smaller the, the more random the distribution.

7(t) and a sinusoidal function sinf2/\). The output signal The corresponding power spectra are given by
|
w?¢ 2,2 2.2
— [e~(a727NIA o= (a+27/M%%4) - for 1+1 dimension (19a)
2v2
P(q): W2§2 4772+q2)\2 quz
e F<——4)\2 52)|0( N ) for 2+1 dimension, (19b

wherel ((x) is the zeroth-order modifid Bessel function. The face we discussed in Sec. I, and also other published results
additional parameter, the average mound separatiomkes  from simulations and analytical worg.

the problem more complicated. In Fig. 7 we plot the charac-

teristic functions for varioug/\ ratios in the 2-1 dimen-

sion. The behavior of the characteristic functions is deter- IV. RECIPROCAL SPACE CHARACTERISTICS

mined mainly by theZ/\ ratio. If {/A=1, both the height-

height correlation functionH(r) and the autocorrelation ~ One should keep in mind that the diffraction structure
function R(r) have an oscillatory behavior, and the power factor of a surface is not a simple Fourier transform of the
spectrum shows a clear satellite ring. This is the essentisurface morphology or the power spectrum. It is a Fourier
characteristic of the rough surface caused by the Schwoeb#nsform of a more complicated functidh:

barrier effect. In this case, thevalue gives the same satel-
lite ring, located aigy=2#/\. The FWHM of the satellite
ring decreases with the increasing system correlation lehgth
for a fixed\.

In fact, the FWHM of the satellite ring is inversely pro-
portional to / as shown in Fig. 8. When thé/\ ratio is
reduced, the oscillatory amplitude in bokh(r) and R(r) whereq is the momentum transfer due to the diffraction, and
decreases, and the ring position for the power spectrum alstan be decomposed into two orthogonal components, mo-
reduces even though remains unchanged. In Fig. 9 we mentum transfer perpendicular to the surfage, and mo-
show the change of the ring location as a function ofghe ~ mentum transfer parallel to the surfacg, The height dif-
ratio. The solid curve representg=2m/\. Although the ference functionC(q, ,r)=(e'9:[N"D=NOY has the form
ring position is still inversely proportional ta, the exact Of
value is much different. As thé/\ ratio decreases further,

S(q,t)=f d?r C(qy ,r)e'a, (21)

the oscillatory behavior in botA (r) andR(r) totally disap- —————
pears, and there is no longer a characteristic ring in the
power spectrum. N gr=04
The local slope can be calculated as g 1o oDy, slope=-1.0 e ga=05 ]
' [ O s ]
O T
5 g ga=4
1 27° . . = RSN
2w? ?+? for 1+1 dimension =
m?= 2 20 2
@ a
4w? ?+ F) for 2+1 dimension. £ o
E I
1 N,
It is seen that the local slope is not only determined by the 10 ; . iy
system correlation length, but also by the average mound TS —

separationh. WhenZ/A>1, m>«w?/\?, i.e., the local slope
is determined only by the interface width and average
mound separation. However, as long ag/\<1, thenm? FIG. 9. The position of the satellite rirgy, is plotted as a func-
«w?/{2. The time-dependent behavior in Sec. Il can be untion of the average mound separatiorior different ¢/x ratios for

derstood in terms of Eq20). Therefore, the above form of 2+1 dimension. The solid curve is the plot of relatiap,

characteristic functions captures the essence of the rough su£24/\.

A (arb. units)
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FIG. 10. Reciprocal space characteristics of the self-affine surfaee$ dimension: (a) diffuse profiles fow=3 and¢=2.77 along
the rod;(b) the diffraction structure factor fav=3 and&é=2.7#; (c) diffuse profiles forw=0.23 andé=2.77 along the rod; andd) the
diffraction structure factor fow=0.23 andé=2.77r. The shaded area between dotted curvejrand (d) represents the FWHM of the
diffuse profile, and the central dark region refers to ¢hpeak and its relative intensity. The profiles on the right-hand side are selected
diffraction profiles corresponding @® =0.017 (near in-phaseand ® = = (out-of-phasg

+oo Figs. 1Ga) and 1Qc) are only the diffuse profiles, and the
> e (WRHrH(@-2nm)? complete rod structures are illustrated in Figs(b}0and
C(qL,r)~N::: 10(d), respectively. The shaded area between_ the dotted
E o (V2H(r,0(20m)? curves represents the FWHM of the diffuse profile, and the
N central dark region refers to thepeak and its relative inten-

sity. The 6 peak reflects the long-range correlation of the
for a Gaussian height distributed rough surface, andgurface height, and the diffuse profile is caused by the local
C(qy ,r)=e 003D for a Poisson height distributed roughness of the surface. The intensity of thpeak decays
rough surfacé® Here®=q, ¢, andc is the lattice constant. ¢ o—2w?(1-cos®)
In this paper, we assume a Poisson height distribufiba '
use of a different height distribution does not alter the mainj _
conclusion of the present work

In the large interface width casev&3), for the near
phase condition wher@~2nw+¢ (n=0,=1,+2...) and
|e| <1, the diffraction structure factor contains a sharp cen-
_ tral peak(theoretically as peak and a broader diffuse profile
A. Self-affine surfaces as shown on the right panel in Fig. (b). At this condition,
The characteristics of the diffraction structure factor forthe inverse of the FWHM of the diffuse profile is a measure
the self-affine surfacéa=1, £&=2.77r) along the reciprocal of the lateral correlation lengtlh However, the intensity of
“rod” (cross sectionare shown in Fig. 10 for both a large the diffuse profile is very small. The FWHM remains un-
interface widthw=3, and a small interface widtw=0.23, changed for smalle|. As |¢| increases, the intensity of the
respectively. The diffraction structure factors presented irdiffuse profile increases until it reaches a maximumdat
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FIG. 11. Reciprocal space characteristics of the mound surfaee$ dimension: (a) diffuse profiles fow=3 and{=\ =107 along
the rod;(b) the diffraction structure factor fov=3 and{=\ = 10s; (c) diffuse profiles forw=0.23 and;=\ = 107 along the rod; andd)
the diffraction structure factor fav=0.23 and,=\ = 10x. The shaded area between dotted curvgdjirand(d) represents the FWHM of
the diffuse profiles and the central dark region refers to&hpeak and its relative intensity. The profiles on the right-hand side are the
selected diffraction profiles corresponding®o=0.017 (near in-phasg ®=0.27r, and® = = (out-of-phasg

~0.47r. Then the intensity of the diffuse profile begins to B. Mound surfaces

gecrease gnd |tshsh|ap? begl}f]]s to brr]oaden whllesqbee:‘k he The reciprocal space structure of the diffraction profile for
eglnsrvtcll rl]m|r]1|s n rn aith t tlst '? éhf?r re;:]lgrebmerr:]t Oht Ic}hls surfac6a=1, {=\=10) is shown in Fig. 11 for both

consetvation ot energy, the fota acted beam shou'd, large interface widthv=3, and a small interface widtw

equal the total incident beam. At the out-of-phase condition _0 23 In the larae interf nder the near in-oh
where® =2nx+ 7, only the diffuse profile can be seen and € large Interface case, under the nea phase
condition (&|<1), there is a central peak and a clear

its FWHM reaches the maximum value. At this condition the

FWHM of the profile is a measure of the average local S|Opesatelllte ring around thé peak[see the diffraction profile at
of the rough surfac’ ®=0.017 in Fig. 11(b)]. This profile is quite different from

In the small interface width casavi= 0.23), for both the the self-affine case shown in Fig. 10 where a broad central
near in-phase condition and the out-of-phase condition, thdiffuse intensity exists in addition to thi&peak. The satellite
diffraction structure factor always contains a sharp centrapeak positior, shown in Fig. 11 is a measure of the aver-
peak (theoretically as peak and a broader diffuse profile age mound separation A~ 2/dy. With the increase of the
[Fig. 10d)]. In this case, the FWHM of the diffuse profile phase(|e|), a central diffuse intensity gradually appears with
along the rod is almost a constant, and actually is a measuiacreasing intensity in addition to th&peak, and the FWHM
of the lateral correlation length The intensity of the diffuse of the diffuse central intensity remains almost unchanged
profile increases monotonically &g increases from near 0 [see the diffraction profile ab=0.27 in Fig. 11(b)]. After
to ar. It is very clear that no splitting occurs along the rod for reaching a maximum intensitp ~ 0.2z, depending on the
both large and smalilv cases. roughness parametens ¢, and\), the split satellite intensity
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out-of-phase condition for different surface+1 dimen-

sion): (a) as a function of lateral lengtt#, squares for a self-affine

surface; and\ (=¢), open circles for a mound surfagcd he dia- ) \\‘:\\‘3\‘3\‘3\\\\\ 1l I
monds superposed on the open circles represent FWHM's of a self- 3\\\“&\3&}}!&!&\“\m\\“\\““‘
affine surface after the rescaling of the lateral correlation leggth

and (b) as a function of the interface widtlv for a fixed & (b)
(=0.27\) and\ (=¢=107).

FIG. 13. Diffuse profiles along the rod for mound surfa¢2s

begins to decrease. The width of the central diffuse intensity 1 dimensiox (@ w=3 and {=4A=40m; (b) w=3 and ¢
continues to broaden. Ab~ 0.4 the satellite peak is buried -2 =27
in the broadened central intensity. At this point virtually one
cannot tell the position of the satellite peak from the profile. It is also interesting to show the relationship between the
At the out-of-phase condition, the profile becomes onediffraction profiles and the/\ ratio. In Fig. 13 we plot the
single broad peak very similar to that obtained from a selfdiffraction profiles for different/\ ratios in the large inter-
affine rough surfacgsee the diffraction profile ab= in  face width case W=3). Compared with Figs. 1& and
Fig. 10b)]. Figure 12 shows the FWHM as a function of 11(b), as thel/\ ratio increases, the satellite ring at the near
interface widthw and average mound separatidn(here ¢ in-phase condition is much narrower, and the center diffuse
= )\) as Compared to that of a self-affine surface at the Out_oprOfile is well SeparatEd from the satellite ring. However,
phase condition. It is shown that FWHMV/\, i.e., the When the/\ ratio is small[as shown in Fig. 1®), {/\
FWHM of this peak is still a measure of the average local=0.2], even at the near in-phase condition, one cannot tell
slope or the average mound slope. However, the FWHM fofhe position of the satellite ring, and the diffraction structure
both the mound surface and self-affine surface is overlappinty much like that of a self-affine surfagéor example, Fig.
on the same curve, which means that at the out-of-phaskd(@]. This behavior of diffraction structure factor is similar
condition one cannot tell from the diffraction profile whether to that of the power spectrum as shown in Fig. 7.
the surface has mounds or not. The reason that near the out- For a surface with Gaussian height distribution, some
of-phase condition the profile is not sensitive to the wave-guantitative changes are necessary at the out-of-phase condi-
length selection, is that for a sufficiently largethe domi-  tion, but no change is required at the near in-phase condition
nant contribution in Eq(21) is from the smalk regime due ©r for the small interface width casé’®
to the exponential factor in th€(q, ,r). The oscillatory

behawor |n'the helght—.helght correlation is in the lange . V. DISCUSSION AND CONCLUSION
regime and its contribution becomes small in the exponential
factor. It is seen from Sec. IV that the reciprocal space charac-

In the small interface width casavi=0.23), the diffrac-  teristics originated from the noise-induced surface or SB
tion profiles are much different from those of the large inter-mound surface are quite different for either the small inter-
face width case. The satellite ring and thpeak can be seen face width case or the large interface width case at near the
throughout the whole rodlFig. 11(d)]. The FWHM of the in-phase condition, but they are similar for the large interface
satellite ring remains almost the same, and is a reflection oividth or at the out-of-phase condition. This can be under-
the system correlation lengfliFig. 11(d)]. The intensity of stood from the following discussion.
satellite ring increases monotonically k$ increases from The diffraction profile is determined by the Fourier trans-
near O tor. form of a height difference functio€(q, ,r) in Eq. (21).
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For a Poisson height distributiof,(q, ,r) can be rewritten correlation length¢, FWHM ~1/¢£. However, for a mound
as surface, the power spectrum has the form of EqbL9Un-
— ) like the power spectrum of a self-affine surface, it has a peak
C(q..r)=e , (22 |ocated atgy~2m/\ ({=\), which is a reflection of the
where Q=2w2(1—cos®) and f(r)=H(r)/2w?. We have Wavelength selection. This would provide a definitive way to
0<f(r)<a, wherea=1 for a self-affine surface and<la differentiate the two mechanisms in a growth front. Also the
<2 for a mound surface. This means that the valuglof FWHM of the peak is inversely proportional to the system

determines the asymptotic behavior®fq, ,r), and there- Ccorrelation lengtt. _ o
fore the behavior of the diffraction profile. Combining Eq. _ WWhen () increases, the higher order expansions in Eq.
(22) with Eg. (21), in general, the diffraction profile can be (29) will take effect. The picture will be clearer if we con-

written ag4 sider the 1+ 1 dimension case as an example. For thell

dimension, Eq(29) becomes
_ - o .
S(quQ)zf e QfNglairgr. (23 Sdiff(qll’Q)ze_ﬂf Zl F[l_J(‘(’.)]nelq"rdr
It can be broken into two parts P
! P B ‘”E 2"(1—cos ®)"
S(q;,Q)=Ss(q, Q)+ Sgigr () , ), (249 A n!
where XP(g)*P(qp* - *P(q)), (31
Sa(qH,Q)=f C(q, ,r—oe)e'drdr "
i.e., Syirr(qy , ) will become the sum of a self-convolution of
=(2m)9C(q, ,r—=)d(q), (25)  the power spectrum, and the contribution of higher-order

terms toSg (0 ,€2) will become more important. The result
_ of convolution is to distort the power spectrum and to
Sair(Qy ,Q):f [C(q..r)—C(q, ,r—o)le'9 dr, broaden the whole profile. Therefore, for a self-affine sur-
(26)  face, the FWHM of the diffuse profile tends to broaden. But
. . ) ) for a mound surface, the splitted peaks will broaden and then
hered stands for the dimensioml=1 for 1+1 dimension, merge together. The separation of the peaks will become less
andd=2 for 2+ 1 dimension. For both a self-affine surface gpvious. A similar behavior would be expected for the 2
and a mound surface, we have +1 dimension although there is no simple convolution theo-
Clq, 1) =g 0 @27 rem that can be applied as in the-1 dimension case.
Lo ' For >1, we can deduce an asymptotic behavior of the
Therefore the intensity ratio of thé peak to the total inte- diffraction profile. Since)>1, C(q, ,r) is clearly confined

grated intensity can be calculated as to the short-range regime. For a self-affine surface and
=1, the short-range height difference function can be ex-
R(S:ffsa(% ,()dq, e O 2ALcsh) (g pressed as
JJS(a;.Q)dgy 2
That is, the interface width can be determined through the C(aq, ,r)%ex;{ - ?) (32
intensity ratioR, for both a self-affine surface and a mound
surface. Then
The diffuse profile can be written as ) 2.2
27 aié
Sairl (A, )~ —5— &xf — 45| (33

Suire(Q ,Q):e_gf (eM-f—1)eldr'dr. (29
It seems that Eq(393) still preserves the form of the power
For Q<1, we can expand the integral kernel in Ea9)  SPectrum. However, the argument for the Gaussian function

significantly in the integral, i.e., lation length¢, but also orn(2. The FWHM has the following

relation
St (A, ) =2(2m)%(1—cos®)P(qy). (30 a

Equation(30) does not depend on the specific surface mor- FWHMe ?oc E= m, (34
phology as long as the conditidd <1 is satisfied. There-

fore, at the near in-phase condition or for a small interfacehat is, under this condition, FWHM is determined by the
width, where #?(1—cos®)<1, the diffraction structure local slope only.

factor without thed peak is actually identical to the power  For a mound surface, the short-range height difference
spectrumP(q,t), of a rough surface. For a self-affine surface function can be expressed as
with a=1, the power spectrum has the form of a Gaussian

function[Eq. (15)] with the center agy=0. The FWHM of C(q r)%exp{ Q2
this diffuse profile is inversely proportional to the lateral Lo

1 =
AN

} . (35

>
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sured from the Si/$111) surface grown at 275 °C at the later stage
of growth. There is no split satellite peaks in all the measured
profiles along the reciprocal rod. The profiles on the right corre-
spond to®=7.987 (near in-phaseand ®=7.037 (near out-of-

phasé. The § peaks represented by the filled rectangles along the

(00) rod exist at and near in-phase conditions. Brgeak intensity $ /\ /\

decreases rapidly when the diffraction condition moves away from 0 . 1 1 = lmin .

the in-phase condition. The dotted curve represents the peak posi- - 0.0 0.1 02

tions of the diffuse profiles. The open squares represent the FWHM b) q (A-l)

of the diffuse profiles. The solid curves are fits using &) with

Eq. (13) as the height-height correlation function with the rough-  F|G. 15. Simulated HRLEED diffuse profiles for Cu/@00)

ness parametersj~4.0 A, a~0.89, andé~60 A. epitaxial growth: (a) out-of-phase conditiond = 7); and(b) near
in-phase condition®=0.17).

t=62.1 min

&
[38]
)

=g
—_

If we define 1£'2=1/:2+ 72/\?, then the diffraction profile

would have the same form as H§3) by simply substituting  average mound separation, one has to measure the diffraction
& by §'. The diffraction profile becomes a simple Gaussianprofiles at near in-phase condition.

shape, and the characteristics of a power spectrum are totally To confirm the present analysis, we analyze the diffrac-

lost. The FWHM has the relation tion data of the rough growth front observed in our
Si/Si(111) homoepitaxy experiment at the near in-phase dif-

JO 1 72\ fraction condition. The growth was performed in a UHV

FWHM“?“W ?J“F =m, (360  chamber equipped with a high-resolution low-energy

electron-diffraction(HRLEED) system with an instrument

that is, the FWHM is also determined by the local slope. Forresolution of 6<10 2 A~ (FWHM). The growth was car-
the SB growth mechanism, as the surface reaches its steatgd out at a temperature of 2% °C for 10 min, with a
slope regiméslope selection the shape of a diffraction pro- rate of 81 bilayer/min. The detailed experimentation can
file at the out-of-phase condition should not change. be found in Refs. 16 and 17. The HRLEED diffraction pro-

Therefore, for both self-affine and mound surfaceq)if files were taken by varying the incident electron energy in
> 1, which corresponds to a large interface width and neaprder to span the reciprocal rod. Figure 14 shows a reciprocal
the out-of-phase diffraction condition, the diffraction profile rod structure at the deposition time=10 min. The center
has exactly the same form, and the FWHM of the profile isdotted curve indicates the peak positions of the diffuse pro-
proportional to the local slope. One cannot differentiate theséiles. The fluctuation is due to uncertainties in the profile
two surfaces at this condition. measurement and the fits of the decomposed diffuse profiles.

At the out-of-phase diffraction condition, the diffraction The open squares are the positions of the half maximum of
profile is very sensitive to a small roughness change duringhe diffuse profiles. The solid curves are fits using E2{)
the initial stage of growtfi®>**'®However, as the interface with Eq. (13) as the height-height correlation function with
width grows, only the characteristics of the local structurethe roughness parametersy~4.0A, o~0.89, and &
(such as the local slopare reflected in the diffraction profile ~60 A. This structure along the rod is similar to that shown
under this condition. For other quantitative information suchin Fig. 10b), and there is no splitting in the profiles along
as the interface width, the lateral correlation length, or thethe rod at any deposition time. Therefore, this growth front is



1934 Y.-P. ZHAO, H.-N. YANG, G.-C. WANG, AND T.-M. LU 57

consistent with the noise-induced roughening rather than thebserved. This is also described by our simulatighe pro-
mound formation caused by the SB effétt. file at t=417.5 min andt=7279 min in Fig. 16a)]. How-

For the mound formation systems such complete data igver, at the near in-phase condition, although there was no
not available yet in the literature. Although a clear splitting experimental data, the simulated diffraction profile as a func-
in the diffraction profile near the in-phase condition has beefion of time always has the satellite ring, and the diameter of
observed from a quasiperiodic facetted surface by Falta anghe ring keeps on shrinking, which reflects the coarsening of
co-workers,” the reciprocal space structure is totally differ- the mounds. This is where much quantitative information
ent: the splitting increases as one goes from the near irnsquld be obtained if data were available.
phase condition to the out-of-phase condition. But for the |y conclusion, we compared the characteristic functions of
mound surface the splitting remains the same or even mergege self-affine rough surfaces and mound surfaces. Phenom-
together near the out-of-phase condition. The splitting in thenological characteristic functions are used to describe the
facetting surface does not directly reflect the periodicity ofgitference. We show that if one moves away from the out-
the surface, while the splitting in the mound surface gives theyfphase diffraction condition, the general reciprocal space
average mound separation. Here, we simulate the HRLEERtrycture obtained from a self-affine rough surface is dra-
profiles of Cu/Cy100) growth by using our proposed model matically different from that obtained from a rough surface
and the time-dependent interface width and mound separgyysed by the SB effect. This provides a possible way to
tion data from Ref. 11. In Fig. 15 we plot the time evolution differentiate surface growth morphology induced by these

of the HRLEED profiles at both the out-of-phas®@ € 7)  two mechanisms using diffraction techniques.
and in-phase ¢ =0.17) conditions. At the out-of-phase

condition, both simulated profiles and experimental Hata

show that a satellite structure exists at the initial stages of ACKNOWLEDGMENTS

growth. When the epitaxial layer reaches 100 ML and
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