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Diffraction from diffusion-barrier-induced mound structures in epitaxial growth fronts
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We construct models for the characteristic functions describing the mound structures induced by a surface
diffusion barrier in epitaxial growth fronts. These characteristic functions, including the height-height correla-
tion functions, are used to calculate the angular distribution of diffraction intensity. We compare in detail the
characteristics of the reciprocal space structure for diffusion-barrier-induced and noise-induced roughening of
epitaxial growth fronts. It is shown that except near the out-of-phase~anti-Bragg! diffraction condition, the
reciprocal space structure of the diffusion-barrier-induced growth front contains splitting~ring! and broadening
characteristics that are dramatically different from that obtained from a scale invariant growth front caused by
random noises that exist during growth. This result allows us to differentiate unambiguously, using diffraction
techniques, the two mechanisms that can cause the roughening of expitaxial growth fronts.
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I. INTRODUCTION

Study of epitaxial growth of a material onto a crystallin
substrate in vacuum is one of the most intriguing ventu
for researchers in the last few decades from both a b
science and a technological point of view. The lattice co
stant of the depositing material and the substrate may
always be the same. Homoepitaxy refers to the class of
tems where the depositing material and substrate are
same so that there is no lattice mismatch between th
Therefore, in principle one would expect the growth front
be perfectly smooth and free of defects provided that
surface of the substrate is defect-free to begin with. T
indeed can happen. Within a certain temperature regime
growth is layer-by-layer in which the incoming atoms wou
diffuse on the surface and would completely cover the s
face before they start the next layer.1 However, this does no
happen all the time. In fact, the growth front can be rough
that multilayer step structures can occur during growth.2–4

Two mechanisms have been proposed to explain
roughening of the growth front in homoepitaxy. The fir
mechanism is related to the asymmetric diffusion bar
~Schwoebel barrier! that exists at surface steps, which inhib
a down-hill flow of atoms during growth. As a result, larg
structures in the form of ‘‘mounds’’ are created due to th
Schwoebel barrier~SB! mechanism.3 The other mechanism
has to do with the random noise that exists during growth.4 A
fractal-like ~self-affine! structure is created that possesse
scaling in space and time. Imaging techniques such as s
ning tunneling microscopy with atomic resolution~so that
the step structure can be observed! has been particularly
570163-1829/98/57~3!/1922~13!/$15.00
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powerful in identifying the nature of the roughening.5 Dif-
fraction technique,6 on the other hand, is very powerful i
obtaining the statistical values of the growth parameters o
a large area in a short time.

Recent calculations for the self-affine surface indica
that in the scaling regime, the diffraction beam obtained
the out-of-phase, or anti-Bragg condition, is a single bro
ened peak.7 This profile looks very similar to that obtaine
from a mound surface caused by the SB effect as the in
face width grows sufficiently large.8,9 The well established
wavelength selection in the mound formation unfortunat
does not result in beam splitting in diffraction under the o
of-phase diffraction condition when the interface width b
comes sufficiently large. The similarity in the diffraction pro
files obtained from the self-affine and mound surfaces cau
difficulty in the distinction of the two mechanisms and als
prevents one to obtain quantitative information of the grow
front.

In this paper, we show that if one moves away from t
out-of-phase diffraction condition, the general reciproc
space structure obtained from a self-affine rough surfac
dramatically different from that obtained from a roug
mound surface caused by the SB effect. Specifically at
near in-phase diffraction condition, the SB effect alwa
gives a clear ring diffraction structure for the mound form
tion. Quantitative information such as average mound se
ration, lateral correlation length, and the interface width c
be extracted from the reciprocal space structure. This r
structure does not exist in the case of the self-affine ro
surface. We also include a discussion of specific models
lead to the characteristic height-height correlation functio
1922 © 1998 The American Physical Society
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57 1923DIFFRACTION FROM DIFFUSION-BARRIER-INDUCED . . .
for both noise-induced and SB-induced rough growth fron
The organization of the paper is as follows: in Sec.

we describe the different characteristics of surface morp
ogy for both the noise-induced mechanism and
Schwoebel barrier effect through the solution of continuo
Langevin equations. To catch the essence of those solu
and to simplify the diffraction calculations, we propose so
model functions to differentiate the surfaces caused by th
two mechanisms in Sec. III, along with their properties.
Sec. IV we present the detailed reciprocal space struct
for the proposed characteristic functions. We end the pa
with a comparison of our model with a mound surface, d
cussions, and conclusion remarks.

II. MODELS FOR GROWTH FRONT ROUGHENING

In order to compare the reciprocal space structures
different roughening mechanisms, we need to understand
main features of rough surfaces in real space. This can
achieved by studying the characteristic functions of the s
faces. Different characteristic functions, such as heig
height correlation functionH(r ), autocorrelation function
R(r ), and power spectrumP(q), have been used to describ
the rough surfaces. These three functions are related,
their definitions and relations are given by

R~r !5^h~r !h~0!&, ~1a!

H~r !5^@h~r !2h~0!#2&52@w22R~r !#, ~1b!

P~q!5
1

~2p!d/2 E R~r !e2 iq•rdr . ~1c!

Hereh(r ) is the surface height at positionr on the surface,
w5A^@h(r )2h̄#2& is called the interface width, andh̄ is the
average surface height. The difference betweenH(r )/2 and
R(r ) is only a constant, whileP(q) and R(r ) are Fourier
transform pairs. Using any of these three functions to
scribe a surface should give an equivalent result. In this s
tion, we shall obtain the power spectra analytically fro
some simplified Langevin equations. More generally, in
next section, we shall give all three forms of the charac
istic functions.

A. Noise-induced growth

In this model, the roughening is caused by the comp
tion between the inherent thermal noise in the growth sys
and the smoothing effect by a condensation/evaporation
cess on the surface. Sometimes the capillary effect, i.e., M
lins diffusion, is also included. A simple linear Langev
equation including all these effects is given by4

]h~r ,t !

]t
5n¹2h2k¹4h1h~r ,t !, ~2!

wheren is the surface tension, andk is the Mullins diffusion
coefficient.h(r ,t) is a Gaussian white noise, satisfying

^h~r ,t !&50,

^h~r ,t !h~r 8,t8!&52Dd~r2r 8!d~ t2t8!. ~3!
.
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The solution for Eq. ~2! is simple and straightforward
through a spatial Fourier transformation, given by the f
lowing expression:

h~r ,t !5S 1

2p D d/2E dq eiq•rE
0

t

dt Q~q,t!e2~kq41nq2!~ t2t!,

~4!

whereQ(q,t) is the spatial Fourier transformation ofh(r ,t),

Q~q,t !5S 1

2p D d/2E dr h~r ,t !e2 iq•r ~5!

and

^Q~q,t !&50,

^Q~q,t !Q~q8,t8!&52Dd~q1q8!d~ t2t8!. ~6!

The power spectrum is given by

P~q!54D
12e22~kq41nq2!t

kq41nq2 . ~7!

A plot of the power spectrum with differentk/n ratios and
growth time t is shown in Fig. 1. The full width at half
maximum~FWHM! of the power spectrum is determined b
both thek/n ratio and deposition timet, and is a reflection
of the lateral correlation lengthj. The interface widthw and
local slopem can be calculated from the power spectru
according to the following relations:10

w25E P~q!dq, ~8!

m25E q2P~q!dq, ~9!

FIG. 1. The power spectrum of a noise-induced roughen
front determined by Eq.~7!. ~a! k/n ratio-dependent~let t51!;
~b! time-dependent~let k/n51!.
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1924 57Y.-P. ZHAO, H.-N. YANG, G.-C. WANG, AND T.-M. LU
respectively. The numerical integration of interfacew2 and
local slopem2 for differentk/n ratios are shown in Fig. 2 fo
111 and 211 dimensions. We letw;tb. As the Laplacian
term is also a smoothing effect, theb value @(22d)/4<b
<(42d)/8# is between that of the Edward-Willkinso
model, (22d)/4, and Mullins diffusion model, (42d)/8.
The local slopem is also a power law of time,m;tn. The
value of n for 211 dimension shown in Fig. 2~b! is very
small compared with then for 111 dimension shown in Fig
2~a!.

B. Schwoebel barrier effect

In this growth model, the step barrier~Schwoebel barrier!
prevents adatoms to hop down the step edge, which ge
ates an uphill diffusion current.3,5,11There are two importan
features in this kind of growth: ~i! The surface is consiste
of regular mound structures, having a wavelength select

FIG. 2. Time evolution of the interface widthw2 and local slope
m2 of the noise-induced rough growth front.~a! 111 dimension,
and ~b! 211 dimension.
er-

n.

During growth, mounds coarsen, and the average mo
separationl grows as a power lawl}td, with d ranging
from 0.16 to 0.26;5,11 ~ii ! the slope of mounds remains e
sentially constant after an initial transient, known as t
slope selection. The selected slope is usually very small~less
than 1.0!.3,5,11This growth mechanism can be described b
nonlinear Langevin equation proposed by Johnsonet al.3

]h~r ,t !

]t
52n¹

¹h

11~¹h!22k¹4h1h~r ,t !, ~10!

where bothn andk are positive. The first term on the righ
hand side represents the uphill growth due to the Schwo
barrier effect, and the second term is due to the surface
fusion ~capillary effect!. The up/down symmetry is still pre
served for this equation although it is nonlinear. At the init
stage, asu¹hu is small, Eq.~10! can be expanded as

]h~r ,t !

]t
52n¹2h2k¹4h1h~r ,t !. ~11!

And h(r ,t) is a random Gaussian process.
Equation~11! actually looks very similar to Eq.~2! for the

noise-induced rough surface except that the first term on
right-hand side has a negative coefficient, which implies t
the solution for Eq.~11! is unstable. The coefficientn here
refers to the adatom diffuse process~the Schwoebel barrie
effect!, whereas the same coefficient in Eq.~2! stands for the
effect of surface tension, or the evaporation/condensa
process. Despite the different physical origins of Eq.~2! and
Eq. ~11!, the solutions for the power spectrum are simil
except the negative sign in front ofn,

P~q!54D
12e22~kq42nq2!t

kq42nq2 . ~12!

Equation ~12! always has a maximum atq05A(n/2k),
which implies that the power spectrumP(q) has a ring struc-
ture ~in the 211 dimension!, and the peak position of the
ring q0 reflects the wavelength selection~average mound
separation! l52p/q0 of the growth mechanism as shown
Fig. 3. This ring structure is the main difference between
two mechanisms we discussed above.

It is also interesting to note that the selected wavelengt
only determined by the coefficientsk and n, which corre-
spond to the relative effect of surface diffusion a
Schwoebel barrier. The ratiok/n plays a very important role
for the growth mechanism. Ifk/n@1, which suggests tha
either Schwoebel barrier is small or surface diffusion is fa
the selected wavelength is too long for a technique~both real
space imaging and diffraction techniques! to detect. In this
case, the dominated roughening mechanism will still be
noise-induced dynamic roughening. In fact, as shown in F
3~a!, as thek/n ratio increases, the satellite ring intensi
reduces and the ring radius shrinks. For a sufficiently la
k/n ~the curve fork/n520 as shown in Fig. 3!, one can
hardly tell whether there exists a satellite ring or not. In th
case only the capillary effect dominates, and the grow
mechanism should be governed by Mullins diffusion, whi
givesb50.25.

Figure 3~b! shows a semilogarithmic plot of the time evo
lution of a power spectrum for selectedk/n ratios. For a
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57 1925DIFFRACTION FROM DIFFUSION-BARRIER-INDUCED . . .
FIG. 4. The autocorrelation functions normalized byw2 for
k/n50.2 at different growth times. Note that the first zero cross
positions are different for different times.

FIG. 3. The power spectrum of the zeroth-order solution
growth front roughening caused by Schwoebel barrier.~a! k/n
ratio-dependent fort51; ~b! time-dependent fork/n520, 1, and
0.2.
large k/n ratio (520), and after a long time depositio
(t53), there is only a tiny ring appeared in the power sp
trum, which may not be able to detect in an experime
However, for a mediumk/n ratio ~51, crossover region!, at
the very beginning, the ring structure is still not observab
But for a sufficient long time, a clear satellite ring wou
appear. For a smallk/n ratio, which means the Schwoeb
barrier dominates, even at the initial stage, the ring struc
is obvious in the power spectrum. Another interesting po
is that the FWHM of the satellite ring~or the power spectrum
for largek/n ratio! is a function of both the timet and ratio
k/n. As the growth time becomes longer, the satellite ri
becomes more obvious and sharper, which means that

g

FIG. 5. Time evolution of the interface widthw2 and local slope
m2 of the zero-order solution for Schwoebel barrier induced grow
front roughening: ~a! 111 dimension and~b! 211 dimension.
The insets are the plots ofw2/m2 vs growth timet.
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1926 57Y.-P. ZHAO, H.-N. YANG, G.-C. WANG, AND T.-M. LU
local surface height fluctuation becomes more correla
~correlation length increases!. Only when the local heigh
fluctuation has a correlation length compatible to or lar
than the average mound separation, can mounds dom
the morphology of the surface. This suggests that in orde
describe a mound surface, one needs at least two relat
independent lateral lengths, one for describing the wa

FIG. 6. Characteristic functions for self-affine surfaces in 211
dimension: ~a! height-height correlation functionH(r ); ~b! auto-
correlation functionR(r ); and ~c! power spectrumP(q).

FIG. 7. Characteristic functions for mound surfaces in 211
dimension: ~a! height-height correlation functionH(r ); ~b! auto-
correlation functionR(r ); and ~c! power spectrumP(q).
d
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length selection, and the other for describing the local rou
ness correlation. The relative weighting of these two late
length scales determines the final morphology of the surfa
Details will be presented in Sec. III.

Another point worth mentioning is that the location of th
first zero crossing in the autocorrelation function is usua
used as a measure of the average mound separation.9,11,13

However, this is not entirely accurate. Figure 4 shows
autocorrelation functions fork/n50.2 at different growth
times. From the discussion above, the average mound s
ration l is determined only by thek/n ratio, and different
times should give the same mound separation value. H
ever, as shown in Fig. 4, the autocorrelation functions
different times have different zero crossing positions, i.e.,
shorter the growth time, the longer the first zero positio
This is due to the effect of a competition between the t
lateral lengths. Therefore, for a realistic growth system, b
lateral lengths could change with the growth time, and
use of the first zero crossing position in the autocorrelat
function as a sole measure of the average mound separ
may be misleading.

For surfaces in both 111 and 211 dimensions, at the
initial stage of growth the interface widthw would grow as a
power law of timet, w}tb, with b. 3

8 for 111 dimension,
and with b. 1

4 for 211 dimension~Fig. 5!. For a longer
time, w increases exponentially witht, and the unstable La
placian term dominates the growth@which may not satisfy
the small slope approximation assumed for Eq.~11!, and the
nonlinearity of Eq.~10! should be included#. The local slope
m has a similar behavior, i.e.,m}tn at initial stage, andm
}ect for longer times. As thek/n ratio is fixed, the average
mound separationl is also fixed. However, at the initia
stage the powern is much less thanb, which suggests tha
local slopem is not inversely proportional to the averag
mound separationl. We plot thew2/m2 ratio vs growth time
t as the inset fork/n50.4. Only for longer growth times, the
w2/m2 ratio reaches a constant. We conclude again that
average mound separationl is not the only lateral paramete
that determines the morphology of the growth front. We w
demonstrate this later in our simple model in Sec. III.

FIG. 8. The FWHM of the satellite peak is plotted as a functi
of system correlation lengthz for 211 dimension.
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57 1927DIFFRACTION FROM DIFFUSION-BARRIER-INDUCED . . .
III. GENERAL CHARACTERISTIC FUNCTIONS

In Sec. II we compare the power spectra between
different surface roughening mechanisms: the Schwoe
barrier effect and the noise-induced roughening. The m
difference is that there is a characteristic ring structure in
power spectrum of a mound surface, while for a self-affi
surface there is no ring structure. In order to use diffract
technique to differentiate these two kinds of surfaces, es
cially for a sufficiently large interface width, we need
know the characteristic function of the surface@height-height
correlation functionH(r ), or autocorrelation functionR(r ),
or power spectrumP(q)#. As demonstrated above, in som
special cases the Langevin equations can be used to des
the surface growth and can be solved analytically. Howe
there are other models that cannot be solv
analytically3,8,9,13but can be solved numerically.

In general, for noise-induced growth models, the heig
height correlation function can be written as:4 H(r ,t)
52w2(t) f (r /j), where the scaling functionf (x)51 for x
@1, and f (x)5x2a for x!1. In this formula,w;tb is the
interface width,j is the lateral correlation length, anda is
the roughness exponent describing how wiggly the local s
face is. The value ofa ranges from 0 to 1.

In order to clearly illustrate the physics in the diffractio
we shall use phenomenological models to characterize
height-height correlation functions for different surfaces.

A. Height-height correlation H „r … for noise-induced
growth fronts

For a self-affine and isotropic surface, we use the heig
height correlation functionH(r ) proposed by Sinha an
co-workers12

H~r !52w2@12e2~r /j!2a
#. ~13!

Three parameters are used to describe the morphology o
surface, i.e., interface widthw, lateral correlation lengthj,
and roughness exponenta. This function works for both the
111 dimension and the 211 dimension, and is well known
for describing self-affine surfaces. The corresponding au
correlation functionR(r ) is given by
m
h
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R~r !5w2e2~r /j!2a
. ~14!

Whena51, the 111 dimensional surface can be consider
as a linear system with an independent Gaussian noise i
h(t). The system response functionY(t) is a Gaussian func-
tion with a correlation lengthj. This correlation length de-
termines the lateral correlation length of the output. The o
put signal is a convolution ofY(t) and h(t), i.e.,
*Y(t)h(t2t)dt. The corresponding power spectrum tak
the following form:

P~q!5
w2j

&
e2q2j2/4. ~15!

In Fig. 6 we plot some examples of these characteristic fu
tions with a51. It is clear to see that for a self-affine su
face, both the height-height correlation functionH(r ) and
autocorrelation functionR(r ) do not have an oscillatory be
havior along ther axis, which captures the behavior of nois
induced surfaces discussed in Sec. II. The power spect
has only a single peak at the center, and the FWHM of
peak is inversely proportional to the lateral correlation len
j. The local slope for this kind of surface is determined
~only applied toa51 case!10

m25^~¹h!2&

55 2
d2R~r !

dr2 U
r 50

52
w2

j2 for 111 dimension

22
]2R~r !

]x2 U
r 50

54
w2

j2 for 211 dimension,

~16!

i.e., the local slope is only determined by the interface wid
w and lateral correlation lengthj. ~Note that the average
slope^¹h& is zero.!

B. Height-height correlation H „r … for mound surfaces

For a mound surface, we propose the following form f
the height-height correlation function:
H~r !5H 2w2F12e2~r /z!2a
cosS 2pr

l D G for 111 dimension

2w2F12e2~r /z!2a
J0S 2pr

l D G for 211 dimension,

~17!
whereJ0(x) is the zeroth-order Bessel function. Four para
eters are used to describe the surface, i.e., interface widtw,
system correlation lengthz, roughness exponenta, and av-
erage mound separationl. For a mound surface it is know
that the local slope is quite smooth anda51.3,5,11 The cor-
responding autocorrelation functions are
-

R~r !5H w2e2~r /z!2a
cosS 2pr

l D for 111 dimension

w2e2~r /z!2a
J0S 2pr

l D for 211 dimension.

~18!
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The lateral correlation lengthj can be defined through th
autocorrelation function asR(j)5w2/e, and is a function of
both z and l. For example, in the 211 dimension, letz
5l, thenj50.27l. In fact, for the case of the 111 dimen-
sion, the surface can also be considered as a linear sy
with the input as a product of an independent Gaussian n
h(t) and a sinusoidal function sin(2pt/l). The output signal
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is *Y(t2t)sin@(2p/l)t#h(t)dt, where the response of th

systemY(t) is a Gaussian function with a system correlati
lengthz. In fact, the system correlation lengthz determines
how randomly the mounds are distributed on the surfa
The smaller thez, the more random the distribution.

The corresponding power spectra are given by
P~q!55
w2z

2&
@e2~q22p/l!2z2/41e2~q12p/l!2z2/4# for 111 dimension

w2z2

2
expS 2

4p21q2l2

4l2 z2D I 0S pqz2

l D for 211 dimension, ~19b!

(19a)
ults
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whereI 0(x) is the zeroth-order modifid Bessel function. Th
additional parameter, the average mound separationl, makes
the problem more complicated. In Fig. 7 we plot the char
teristic functions for variousz/l ratios in the 211 dimen-
sion. The behavior of the characteristic functions is de
mined mainly by thez/l ratio. If z/l>1, both the height-
height correlation functionH(r ) and the autocorrelation
function R(r ) have an oscillatory behavior, and the pow
spectrum shows a clear satellite ring. This is the essen
characteristic of the rough surface caused by the Schwo
barrier effect. In this case, thel value gives the same sate
lite ring, located atq052p/l. The FWHM of the satellite
ring decreases with the increasing system correlation lengz
for a fixedl.

In fact, the FWHM of the satellite ring is inversely pro
portional to z as shown in Fig. 8. When thez/l ratio is
reduced, the oscillatory amplitude in bothH(r ) and R(r )
decreases, and the ring position for the power spectrum
reduces even thoughl remains unchanged. In Fig. 9 w
show the change of the ring location as a function of thez/l
ratio. The solid curve representsq052p/l. Although the
ring position is still inversely proportional tol, the exact
value is much different. As thez/l ratio decreases further
the oscillatory behavior in bothH(r ) andR(r ) totally disap-
pears, and there is no longer a characteristic ring in
power spectrum.

The local slope can be calculated as

m25H 2w2S 1

z2 1
2p2

l2 D for 111 dimension

4w2S 1

z2 1
p2

l2 D for 211 dimension.

~20!

It is seen that the local slope is not only determined by
system correlation lengthz, but also by the average moun
separationl. Whenz/l@1, m2}w2/l2, i.e., the local slope
is determined only by the interface widthw and average
mound separationl. However, as long asz/l!1, thenm2

}w2/z2. The time-dependent behavior in Sec. II can be
derstood in terms of Eq.~20!. Therefore, the above form o
characteristic functions captures the essence of the rough
-
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face we discussed in Sec. II, and also other published res
from simulations and analytical work.13

IV. RECIPROCAL SPACE CHARACTERISTICS

One should keep in mind that the diffraction structu
factor of a surface is not a simple Fourier transform of t
surface morphology or the power spectrum. It is a Four
transform of a more complicated function:14

S~q,t !5E d2r C~q' ,r !eiqi•r, ~21!

whereq is the momentum transfer due to the diffraction, a
can be decomposed into two orthogonal components,
mentum transfer perpendicular to the surfaceq' , and mo-
mentum transfer parallel to the surface,qi . The height dif-
ference functionC(q' ,r )5^eiq'@h(r ,t)2h(0,t)#& has the form
of

FIG. 9. The position of the satellite ringq0 is plotted as a func-
tion of the average mound separationl for different z/l ratios for
211 dimension. The solid curve is the plot of relationq0

52p/l.
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FIG. 10. Reciprocal space characteristics of the self-affine surfaces~211 dimension!: ~a! diffuse profiles forw53 andj52.7p along
the rod;~b! the diffraction structure factor forw53 andj52.7p; ~c! diffuse profiles forw50.23 andj52.7p along the rod; and~d! the
diffraction structure factor forw50.23 andj52.7p. The shaded area between dotted curves in~b! and ~d! represents the FWHM of the
diffuse profile, and the central dark region refers to thed peak and its relative intensity. The profiles on the right-hand side are sele
diffraction profiles corresponding toF50.01p ~near in-phase! andF5p ~out-of-phase!.
n
d
.

ai

fo
l
e

i

e

tted
the
-
he
cal

n-

re

n-
e

C~q' ,r !'

(
N52`

1`

e2~1/2!H~r ,t !~F22np!2

(
N52`

1`
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for a Gaussian height distributed rough surface, a
C(q' ,r )5e2H(r ,t)(12cosF) for a Poisson height distribute
rough surface.15 HereF5q'c, andc is the lattice constant
In this paper, we assume a Poisson height distribution~the
use of a different height distribution does not alter the m
conclusion of the present work!.

A. Self-affine surfaces

The characteristics of the diffraction structure factor
the self-affine surface~a51, j52.7p! along the reciproca
‘‘rod’’ ~cross section! are shown in Fig. 10 for both a larg
interface widthw53, and a small interface widthw50.23,
respectively. The diffraction structure factors presented
d

n

r

n

Figs. 10~a! and 10~c! are only the diffuse profiles, and th
complete rod structures are illustrated in Figs. 10~b! and
10~d!, respectively. The shaded area between the do
curves represents the FWHM of the diffuse profile, and
central dark region refers to thed peak and its relative inten
sity. The d peak reflects the long-range correlation of t
surface height, and the diffuse profile is caused by the lo
roughness of the surface. The intensity of thed peak decays

ase22w2(12cosF).
In the large interface width case (w53), for the near

in-phase condition whereF'2np1« (n50,61,62...) and
u«u!1, the diffraction structure factor contains a sharp ce
tral peak~theoretically ad peak! and a broader diffuse profile
as shown on the right panel in Fig. 10~b!. At this condition,
the inverse of the FWHM of the diffuse profile is a measu
of the lateral correlation lengthj. However, the intensity of
the diffuse profile is very small. The FWHM remains u
changed for smallu«u. As u«u increases, the intensity of th
diffuse profile increases until it reaches a maximum atF
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FIG. 11. Reciprocal space characteristics of the mound surfaces~211 dimension!: ~a! diffuse profiles forw53 andz5l510p along
the rod;~b! the diffraction structure factor forw53 andz5l510p; ~c! diffuse profiles forw50.23 andz5l510p along the rod; and~d!
the diffraction structure factor forw50.23 andz5l510p. The shaded area between dotted curves in~b! and~d! represents the FWHM of
the diffuse profiles and the central dark region refers to thed peak and its relative intensity. The profiles on the right-hand side are
selected diffraction profiles corresponding toF50.01p ~near in-phase!, F50.2p, andF5p ~out-of-phase!.
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'0.4p. Then the intensity of the diffuse profile begins
decrease, and its shape begins to broaden while thed peak
begins to diminish. In fact, this is the requirement of t
conservation of energy, the total diffracted beam sho
equal the total incident beam. At the out-of-phase condit
whereF52np1p, only the diffuse profile can be seen an
its FWHM reaches the maximum value. At this condition t
FWHM of the profile is a measure of the average local slo
of the rough surface.14

In the small interface width case (w50.23), for both the
near in-phase condition and the out-of-phase condition,
diffraction structure factor always contains a sharp cen
peak ~theoretically ad peak! and a broader diffuse profile
@Fig. 10~d!#. In this case, the FWHM of the diffuse profil
along the rod is almost a constant, and actually is a mea
of the lateral correlation lengthj. The intensity of the diffuse
profile increases monotonically asu«u increases from near 0
to p. It is very clear that no splitting occurs along the rod f
both large and smallw cases.
d
n

e

e
l
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B. Mound surfaces

The reciprocal space structure of the diffraction profile
this surface~a51, z5l510p! is shown in Fig. 11 for both
a large interface widthw53, and a small interface widthw
50.23. In the large interface case, under the near in-ph
condition (u«u!1), there is a centrald peak and a clear
satellite ring around thed peak@see the diffraction profile a
F50.01p in Fig. 11~b!#. This profile is quite different from
the self-affine case shown in Fig. 10 where a broad cen
diffuse intensity exists in addition to thed peak. The satellite
peak positionq0 shown in Fig. 11 is a measure of the ave
age mound separationl, l'2p/q0 . With the increase of the
phase~u«u!, a central diffuse intensity gradually appears w
increasing intensity in addition to thed peak, and the FWHM
of the diffuse central intensity remains almost unchang
@see the diffraction profile atF50.2p in Fig. 11~b!#. After
reaching a maximum intensity~F'0.2p, depending on the
roughness parametersw, z, andl!, the split satellite intensity
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begins to decrease. The width of the central diffuse inten
continues to broaden. AtF'0.4p the satellite peak is buried
in the broadened central intensity. At this point virtually o
cannot tell the position of the satellite peak from the profi

At the out-of-phase condition, the profile becomes o
single broad peak very similar to that obtained from a s
affine rough surface@see the diffraction profile atF5p in
Fig. 10~b!#. Figure 12 shows the FWHM as a function
interface widthw and average mound separationl ~herez
5l! as compared to that of a self-affine surface at the ou
phase condition. It is shown that FWHM}w/l, i.e., the
FWHM of this peak is still a measure of the average lo
slope or the average mound slope. However, the FWHM
both the mound surface and self-affine surface is overlapp
on the same curve, which means that at the out-of-ph
condition one cannot tell from the diffraction profile wheth
the surface has mounds or not. The reason that near the
of-phase condition the profile is not sensitive to the wa
length selection, is that for a sufficiently largew the domi-
nant contribution in Eq.~21! is from the smallr regime due
to the exponential factor in theC(q' ,r ). The oscillatory
behavior in the height-height correlation is in the larger
regime and its contribution becomes small in the exponen
factor.

In the small interface width case (w50.23), the diffrac-
tion profiles are much different from those of the large int
face width case. The satellite ring and thed peak can be see
throughout the whole rod@Fig. 11~d!#. The FWHM of the
satellite ring remains almost the same, and is a reflectio
the system correlation length@Fig. 11~d!#. The intensity of
satellite ring increases monotonically asu«u increases from
near 0 top.

FIG. 12. A comparison of FWHM of the diffuse profile at th
out-of-phase condition for different surfaces~211 dimen-
sion!: ~a! as a function of lateral length~j, squares for a self-affine
surface; andl (5z), open circles for a mound surface!. The dia-
monds superposed on the open circles represent FWHM’s of a
affine surface after the rescaling of the lateral correlation lengtj;
and ~b! as a function of the interface widthw for a fixed j
(50.27l) andl (5z510p).
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It is also interesting to show the relationship between
diffraction profiles and thez/l ratio. In Fig. 13 we plot the
diffraction profiles for differentz/l ratios in the large inter-
face width case (w53). Compared with Figs. 11~a! and
11~b!, as thez/l ratio increases, the satellite ring at the ne
in-phase condition is much narrower, and the center diff
profile is well separated from the satellite ring. Howev
when thez/l ratio is small @as shown in Fig. 13~b!, z/l
50.2#, even at the near in-phase condition, one cannot
the position of the satellite ring, and the diffraction structu
is much like that of a self-affine surface@for example, Fig.
10~a!#. This behavior of diffraction structure factor is simila
to that of the power spectrum as shown in Fig. 7.

For a surface with Gaussian height distribution, so
quantitative changes are necessary at the out-of-phase c
tion, but no change is required at the near in-phase condi
or for the small interface width case.14,15

V. DISCUSSION AND CONCLUSION

It is seen from Sec. IV that the reciprocal space char
teristics originated from the noise-induced surface or
mound surface are quite different for either the small int
face width case or the large interface width case at near
in-phase condition, but they are similar for the large interfa
width or at the out-of-phase condition. This can be und
stood from the following discussion.

The diffraction profile is determined by the Fourier tran
form of a height difference functionC(q' ,r ) in Eq. ~21!.

lf-

FIG. 13. Diffuse profiles along the rod for mound surfaces~2
11 dimension!: ~a! w53 and z54l540p; ~b! w53 and z
50.2l52p.
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For a Poisson height distribution,C(q' ,r ) can be rewritten
as

C~q' ,r !5e2V f ~r !, ~22!

where V52w2(12cosF) and f (r )5H(r )/2w2. We have
0< f (r )<a, wherea51 for a self-affine surface and 1<a
,2 for a mound surface. This means that the value oV
determines the asymptotic behavior ofC(q' ,r ), and there-
fore the behavior of the diffraction profile. Combining E
~22! with Eq. ~21!, in general, the diffraction profile can b
written as14

S~qi ,V!5E e2V f ~r !eiqi•rdr . ~23!

It can be broken into two parts

S~qi ,V!5Sd~qi ,V!1Sdiff~qi ,V!, ~24!

where

Sd~qi ,V!5E C~q' ,r→`!eiqi•rdr

5~2p!dC~q' ,r→`!d~qi!, ~25!

Sdiff~qi ,V!5E @C~q' ,r !2C~q' ,r→`!#eiqi•rdr ,

~26!

hered stands for the dimension,d51 for 111 dimension,
andd52 for 211 dimension. For both a self-affine surfac
and a mound surface, we have

C~q' ,r→`!5e2V. ~27!

Therefore the intensity ratio of thed peak to the total inte-
grated intensity can be calculated as

Rd5
**Sd~qi ,V!dqi

**S~qi ,V!dqi
}e2V5e22w2~12cosF!. ~28!

That is, the interface width can be determined through
intensity ratioRd , for both a self-affine surface and a moun
surface.

The diffuse profile can be written as

Sdiff~qi ,V!5e2VE ~eV@12 f ~r !#21!eiqi•rdr . ~29!

For V!1, we can expand the integral kernel in Eq.~29!
into a power series and only the first term will contribu
significantly in the integral, i.e.,

Sdiff~qi ,V!52~2p!d~12cosF!P~qi!. ~30!

Equation~30! does not depend on the specific surface m
phology as long as the conditionV!1 is satisfied. There-
fore, at the near in-phase condition or for a small interfa
width, where 2w2(12cosF)!1, the diffraction structure
factor without thed peak is actually identical to the powe
spectrumP(q,t), of a rough surface. For a self-affine surfa
with a51, the power spectrum has the form of a Gauss
function @Eq. ~15!# with the center atq050. The FWHM of
this diffuse profile is inversely proportional to the later
e

-

e

n

correlation lengthj, FWHM ;1/j. However, for a mound
surface, the power spectrum has the form of Eq. 19~b!. Un-
like the power spectrum of a self-affine surface, it has a p
located atq0'2p/l (z>l), which is a reflection of the
wavelength selection. This would provide a definitive way
differentiate the two mechanisms in a growth front. Also t
FWHM of the peak is inversely proportional to the syste
correlation lengthz.

When V increases, the higher order expansions in E
~29! will take effect. The picture will be clearer if we con
sider the 111 dimension case as an example. For the 111
dimension, Eq.~29! becomes

~31!

i.e.,Sdiff(qi ,V) will become the sum of a self-convolution o
the power spectrum, and the contribution of higher-ord
terms toSdiff(qi ,V) will become more important. The resu
of convolution is to distort the power spectrum and
broaden the whole profile. Therefore, for a self-affine s
face, the FWHM of the diffuse profile tends to broaden. B
for a mound surface, the splitted peaks will broaden and t
merge together. The separation of the peaks will become
obvious. A similar behavior would be expected for the
11 dimension although there is no simple convolution the
rem that can be applied as in the 111 dimension case.

For V@1, we can deduce an asymptotic behavior of t
diffraction profile. SinceV@1, C(q' ,r ) is clearly confined
to the short-range regime. For a self-affine surface anda
51, the short-range height difference function can be
pressed as

C~q' ,r !'expS 2
Vr 2

j2 D . ~32!

Then

Sdiff~qi ,V!'
2pj2

V
expS 2

qi
2j2

4V D . ~33!

It seems that Eq.~33! still preserves the form of the powe
spectrum. However, the argument for the Gaussian func
is totally different. It depends not only on the lateral corr
lation lengthj, but also onV. The FWHM has the following
relation

FWHM}
AV

j
}

w

j
5m, ~34!

that is, under this condition, FWHM is determined by t
local slope only.

For a mound surface, the short-range height differe
function can be expressed as

C~q' ,r !'expF2Vr 2S 1

z2 1
p2

l2 D G . ~35!
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If we define 1/j8251/z21p2/l2, then the diffraction profile
would have the same form as Eq.~33! by simply substituting
j by j8. The diffraction profile becomes a simple Gauss
shape, and the characteristics of a power spectrum are to
lost. The FWHM has the relation

FWHM}
AV

j8
}wS 1

z2 1
p2

l2 D 1/2

5m, ~36!

that is, the FWHM is also determined by the local slope. F
the SB growth mechanism, as the surface reaches its st
slope regime~slope selection!, the shape of a diffraction pro
file at the out-of-phase condition should not change.

Therefore, for both self-affine and mound surfaces, ifV
@1, which corresponds to a large interface width and n
the out-of-phase diffraction condition, the diffraction profi
has exactly the same form, and the FWHM of the profile
proportional to the local slope. One cannot differentiate th
two surfaces at this condition.

At the out-of-phase diffraction condition, the diffractio
profile is very sensitive to a small roughness change du
the initial stage of growth.8,9,11,16However, as the interface
width grows, only the characteristics of the local structu
~such as the local slope! are reflected in the diffraction profile
under this condition. For other quantitative information su
as the interface width, the lateral correlation length, or

FIG. 14. The diffraction structure factor of the~00! beam mea-
sured from the Si/Si~111! surface grown at 275 °C at the later sta
of growth. There is no split satellite peaks in all the measu
profiles along the reciprocal rod. The profiles on the right cor
spond toF57.98p ~near in-phase! and F57.03p ~near out-of-
phase!. The d peaks represented by the filled rectangles along
~00! rod exist at and near in-phase conditions. Thed peak intensity
decreases rapidly when the diffraction condition moves away fr
the in-phase condition. The dotted curve represents the peak
tions of the diffuse profiles. The open squares represent the FW
of the diffuse profiles. The solid curves are fits using Eq.~21! with
Eq. ~13! as the height-height correlation function with the roug
ness parameters,w'4.0 Å, a'0.89, andj'60 Å.
n
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average mound separation, one has to measure the diffra
profiles at near in-phase condition.

To confirm the present analysis, we analyze the diffr
tion data of the rough growth front observed in o
Si/Si~111! homoepitaxy experiment at the near in-phase d
fraction condition. The growth was performed in a UH
chamber equipped with a high-resolution low-ener
electron-diffraction~HRLEED! system with an instrumen
resolution of 631023 Å 21 ~FWHM!. The growth was car-
ried out at a temperature of 27565 °C for 10 min, with a
rate of 861 bilayer/min. The detailed experimentation ca
be found in Refs. 16 and 17. The HRLEED diffraction pr
files were taken by varying the incident electron energy
order to span the reciprocal rod. Figure 14 shows a recipro
rod structure at the deposition timet510 min. The center
dotted curve indicates the peak positions of the diffuse p
files. The fluctuation is due to uncertainties in the profi
measurement and the fits of the decomposed diffuse profi
The open squares are the positions of the half maximum
the diffuse profiles. The solid curves are fits using Eq.~21!
with Eq. ~13! as the height-height correlation function wit
the roughness parameters,w'4.0 Å, a'0.89, and j
'60 Å. This structure along the rod is similar to that show
in Fig. 10~b!, and there is no splitting in the profiles alon
the rod at any deposition time. Therefore, this growth fron
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-

e

si-
M

FIG. 15. Simulated HRLEED diffuse profiles for Cu/Cu~100!
epitaxial growth: ~a! out-of-phase condition (F5p); and~b! near
in-phase condition (F50.1p).
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consistent with the noise-induced roughening rather than
mound formation caused by the SB effect.16

For the mound formation systems such complete dat
not available yet in the literature. Although a clear splitti
in the diffraction profile near the in-phase condition has be
observed from a quasiperiodic facetted surface by Falta
co-workers,18 the reciprocal space structure is totally diffe
ent: the splitting increases as one goes from the near
phase condition to the out-of-phase condition. But for
mound surface the splitting remains the same or even me
together near the out-of-phase condition. The splitting in
facetting surface does not directly reflect the periodicity
the surface, while the splitting in the mound surface gives
average mound separation. Here, we simulate the HRLE
profiles of Cu/Cu~100! growth by using our proposed mod
and the time-dependent interface width and mound sep
tion data from Ref. 11. In Fig. 15 we plot the time evolutio
of the HRLEED profiles at both the out-of-phase (F5p)
and in-phase (F50.1p) conditions. At the out-of-phase
condition, both simulated profiles and experimental da11

show that a satellite structure exists at the initial stages
growth. When the epitaxial layer reaches 100 ML a
higher, experimental data showed that the diffraction be
became one single broad profile, and no satellite ring w
s

a

ep

B.

h

n

v
.

he

is

n
nd

n-
e
es
e
f
e
D

a-

of

m
s

observed. This is also described by our simulations@the pro-
file at t5417.5 min andt57279 min in Fig. 15~a!#. How-
ever, at the near in-phase condition, although there was
experimental data, the simulated diffraction profile as a fu
tion of time always has the satellite ring, and the diamete
the ring keeps on shrinking, which reflects the coarsening
the mounds. This is where much quantitative informati
could be obtained if data were available.

In conclusion, we compared the characteristic functions
the self-affine rough surfaces and mound surfaces. Phen
enological characteristic functions are used to describe
difference. We show that if one moves away from the o
of-phase diffraction condition, the general reciprocal spa
structure obtained from a self-affine rough surface is d
matically different from that obtained from a rough surfa
caused by the SB effect. This provides a possible way
differentiate surface growth morphology induced by the
two mechanisms using diffraction techniques.
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