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Surface critical behavior of bcc binary alloys

R. Leidl and H. W. Diehl
Fachbereich Physik, Universita¨t-Gesamthochschule Essen, D-45117 Essen, Federal Republic of Germany

~Received 28 July 1997!

The surface critical behavior of bcc binary alloys undergoing a continuousB2-A2 order-disorder transition
in the bulk is investigated in the mean-field~MF! approximation, employing a semi-infinite lattice model
equivalent to an Ising antiferromagnet in an external field. Our main aim is to present clear evidence for the
fact that surfaces thatbreak the two-sublattice symmetrygenerically display the critical behavior of thenormal
transition, whereas symmetry-preserving surfaces exhibit the behavior of the ordinary transition. To this end,
the lattice MF equations for both symmetry-breaking~100! and symmetry-preserving~110! surfaces are cast in
the form of nonlinear symplectic maps, the associated Hamiltonian flows are analyzed, and the length scales
involved are computed. Careful examination of the continuum limit yields the appropriate semi-infinite
Ginzburg-Landau model for the~100! surface and reveals subtleties overlooked in previous work. The con-
tinuum model involves an ‘‘effective’’ordering surface field g1Þ0, which depends on the parameters of the
lattice model. The singular behavior predicted by the Ginzburg-Landau model is shown to agree quantitatively
with the solutions of the lattice MF equations.@S0163-1829~98!06603-X#
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I. INTRODUCTION

Experiments on binary (AB) alloys that undergo an order
disorder transition in the bulk have yielded a wealth of
formation on surface critical phenomena in semi-infin
matter.1 In these systems one inevitably has to cope with
influence ofsurface segregation, i.e., the enrichment of one
component at the surface. Surface segregation occurs,
due to different interaction energies or sizes of the two s
cies. Theoretically, the variation of the local compositi
near the surface may necessitate the introduction of ‘‘non
dering’’ densities, which are given by linear combinations
the local concentrations ofA and B atoms on the various
sublattices. In the case of surface critical phenomena atfirst-
order bulk transitions, such as surface-induced disorderin
fcc binary alloys, nonordering densities strongly influen
the asymptotic behavior.2 In this paper we are concerne
with bcc alloys that exhibit acontinuous~second-order! bulk
transition and are thus promising candidates for testing
rent theories of surface critical behavior at bulk critic
points.3–5

The continuousB2-A2 transition occurring in FeAl or
FeCo has been investigated previously by Schmid.6 She stud-
ied a semi-infinite lattice model equivalent to a bcc Isi
antiferromagnet both by Monte Carlo simulation and with
the mean-field~MF! approximation, and made the importa
observation that the orientation of the surface in general m
ters. Her conclusions can be summarized as follows:~a! A
nonvanishing order parameter~OP! profile occurs for T
>Tc , the bulk critical temperature, provided that~i! the sur-
face breaks the two-sublattice symmetry~see below!, and~ii !
one component is enriched at the surface.~b8) The observ-
able surface critical behavior should be representative of
ordinary universality class even if the above conditions~i!
and ~ii ! are met.

While we agree with~a!, we find that ~b8) should be
replaced by~b!: If conditions ~i! and ~ii ! are satisfied, the
surface critical behavior generically is characteristic of
570163-1829/98/57~3!/1908~14!/$15.00
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normal transition, which belongs to the same universal
class as theextraordinarytransition.7

In a foregoing paper8 by Drewitz, Leidl, Burkhardt, and
Diehl, exact transfer matrix calculations were employed
conjunction with conformal invariance to present clear e
dence for~a! and~b! in bulk dimensiond52. Here we gen-
eralize these results to arbitraryd using MF theory and a
mapping onto a Ginzburg-Landau model.

The reason for the appearance of normal critical beha
is a subtle interplay between the symmetry with respec
sublattice ordering and broken translational invariance du
the free surface. Consider first a finite system withperiodic
boundary conditions. The precise form of the Hamiltoni
H$s i% does not matter here and will be given in Sec. II. T
spin variables i51 (s i521) represents anA (B) atom on
lattice sitei. The statistical weight of a configuration$s i% is
given by the finite-volume Gibbs measure,

r~$s i%!5
1

Z
e2bH$s i%, b[1/~kBT!, ~1!

whereT is the temperature andkB denotes Boltzmann’s con
stant. The normalization factorZ is the grand-canonical par
tition function. The local concentrationci of A atoms at site
i can be expressed in terms of the mean magnetization^s i&
asci5(11^s i&)/2. The Gibbs measure~1! is translationally
invariant,

r~$s i%!5r~$s i8%!, s i8[s i1t , ~2!

where t may be chosen arbitrarily from the setT of all bcc
lattice vectors. Due tospontaneous symmetry breaking, the
thermodynamic states that are obtained by calculating ex
tation values with the measure~1! and taking the infinite-
volume limit neednot be translationally invariant.~Formally,
one introduces a symmetry-breaking ‘‘staggered’’ field th
is sent to zeroafter the thermodynamic limit has been pe
1908 © 1998 The American Physical Society
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57 1909SURFACE CRITICAL BEHAVIOR OF bcc BINARY ALLOYS
formed.! In the ordered phase belowTc , one has^s i&
Þ^s i1t& for all translationst5tab that mapa to b sites~Fig.
1!.

Surfaces are introduced by imposingfree boundary con-
ditions along one direction while retaining periodic bounda
conditions in the other directions. Then the measure~1! is
invariant under the subsetT 8,T of translationsparallel to
the surface. We call the surfacesymmetry preservingif T 8
contains a ‘‘sublattice-exchanging’’ translationtab , and
symmetry breakingotherwise. In the case of the bcc lattic
considered here, symmetry-breaking surfaces are chara
ized by the alternation ofa andb planes along the direction
normal to the surface. Let us assume that no spontan
symmetry breaking takes place aboveTc , which would re-
quire supercritically enhanced surface couplings, so
^s i&5^s i1t& for T>Tc and tPT 8.

Thus for symmetry-preserving surfaces andT>Tc , the
OP profile vanishes, as it is characteristic of theordinary
transition. Nonetheless one obtains an inhomogeneous m
netization~or concentration! profile due to surface segrega
tion. Specifically for the~110! orientation, segregation of on
component leads to an alternation ofA- and B-rich lattice
planes since the interactions favor the occupation of nea
neighbor~NN! sites by different species. Within MF theor
this profile decays exponentially even atT5Tc ~Sec. III A!.
Derivation of a suitable Ginzburg-Landau model9 reveals
that the segregation profile actually plays the same role
the energy density in generalized Ginzburg-Land
functionals.10 Beyond MF theory, the segregation profi
thus shows a power-law decay.10

Symmetry-breaking surfaces, like the~100! surface, de-
stroy the two-sublattice symmetry. Surface segregation a
leads to an inhomogeneous concentration profile
T>Tc , which is now equivalent to anonvanishing OP pro-
file since adjacent lattice planes belong to different sub
tices. The OP profile decays on the scale of the bulk co
lation length, whichdivergesfor T→Tc ~Sec. III A!. Such a
persistence of surface order forT>Tc has been confirmed in
recent experiments on FeCo~100!.11

FIG. 1. Examples of ~a! symmetry-preserving, and~b!
symmetry-breaking surfaces. Sites of sublatticesa and b corre-
spond to open and full circles, respectively. In theA2 phase, the
concentration of either component is the same on all sites, whe
the two sublattices are preferentially occupied byA and B atoms,
respectively, in the orderedB2 phase.
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According to the experimental results of Ref. 11, sup
critical enhancement of the surface couplings can be ru
out. Thus it is natural to attribute the persistence of surf
order to anordering surface field g1Þ0. This field causes
the system to display thenormal transition. However, for the
binary alloys considered here an ordering field correspo
to a local chemical potential acting differently on the tw
sublattices~staggered field in magnetic language!. There is
no natural source for such a field on the microscopic lev
The challenge is to demonstrate in an unequivocal fash
that a nonzerog1 nevertheless emerges in a continuu
~coarse-grained! description, i.e., in the context of
Ginzburg-Landau model, and to derive a MF expression
g1 in terms of the lattice model parameters. Of course,
comparing theory and experimental or simulation data, o
should keep in mind thatg1 may be small, so that the cross
over to normal critical behavior occurs only close toTc .12

In the next section, we shall reformulate the lattice M
equations for the semi-infinite alloy with free~100! and
~110! surfaces as a problem in discrete dynamics, i.e.,
iteration of nonlinear symplectic maps.13 From the linearized
maps the characteristic length scales of both the concen
tion and OP profiles away fromTc will be calculated~Sec.
III A !. The full nonlinear maps will be analyzed in Sec. III B
After introducing the Ginzburg-Landau model for the~100!
surface orientation in Sec. IV A we shall compare the p
dictions of the continuum theory with the numerical sol
tions of the lattice MF equations. Whereas normal critic
behavior is found generically~Sec. IV B!, the singularities of
the ordinary transition may be recovered by tuning the
rameters so thatg1 vanishes atT5Tc ~Sec. IV C!. We will
summarize our main results in Sec. V. Appendix A brie
discusses the bulk MF equations, while Appendices B an
contain the derivation of the Ginzburg-Landau model.

II. MF EQUATIONS AS NONLINEAR MAPS

We consider the lattice-gas model of a binary (AB) alloy
on a bcc lattice. Each atomic configuration is characteri
by the values of the occupation variablespi

A , pi
B , wherepi

n

51 if site i is occupied by an atom of typenP$A,B% and
pi

n50 otherwise. Within the grand-canonical ensemble,
configurational energy reads

E$pi
A ,pi

B%5
1

2(iÞ j
(
n,t

e ij
ntpi

npj
t2(

n
mn(

i
pi

n , ~3!

where e ij
nt5e ij

tn is the interaction energy betweenn and t
atoms at sitesi andj, andmA andmB are chemical potentials
for A and B atoms, respectively. We neglect vacancies,
that pi

A1pi
B51, and rewrite the occupation variables

terms of Ising spinss i561 as

pi
A5 1

2 ~11s i!, pi
B5 1

2 ~12s i!. ~4!

Then Eq.~3! takes the form of an Ising Hamiltonian,

H$s i%52
1

2(iÞ j
Jijs is j2(

i
H is i , ~5!

where a spin-independent term has been dropped and

as
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1910 57R. LEIDL AND H. W. DIEHL
Jij5
1
4 ~2e ij

AB2e ij
AA2e ij

BB!, ~5a!

H i5
1
4 (

j ~Þ i!
~e ij

BB2e ij
AA!1 1

2 ~mA2mB!. ~5b!

In the following we only consider NN interactionseAA, eAB,
and eBB. Moreover, we do not allow for enhanced surfa
interactions. For anB2-A2 order-disorder transition to exis
the Ising couplingJ5(2eAB2eAA2eBB)/4 must beantifer-
romagnetic(J,0). For semi-infinite systems with~100! or
~110! surfaces the local field~5b! differs from its bulk value
only in the first layer,

H i5H H1H1 if iP surface,

H otherwise,
~6!

where

H5
z

4
~eBB2eAA!1 1

2 ~mA2mB!, ~6a!

H15
zs2z

4
~eBB2eAA!. ~6b!

Here, z and zs are the coordination numbers of bulk an
surface spins, i.e.,z58, while zs54 andzs56 for the~100!
and ~110! surface, respectively.

Some remarks about the role of the surface fieldH1 are in
order here. The fieldH1 favors one component at the surfa
and thus accounts for surface segregation~see Sec. I!. Be-
cause of different interaction energieseAAÞeBB it is nonzero
generically. More generally,H1 also models other effect
such as different sizes of the two constituents. F
symmetry-preserving orientations,H1 acts uniformly ona
andb sites at the surface and must not be confused with
ordering ~staggered! field. For symmetry-breaking surface
spins ona and b sites in the first two layers experienc
differentfieldsH1H1 andH. HenceH1 should contribute to
an ‘‘effective’’ staggered surface fieldg1Þ0. However, even
if H150 ~but HÞ0) one obtains an inhomogeneous~oscil-
lating! magnetization profile equivalent to a nonzero loc
order parameter, and an ordering surface fieldg1Þ0 should
again emerge in a coarse-grained description.

The MF or Bragg-Williams approximation is conve
niently formulated in terms of a variational principle.14 The
free-energy functional reads

FMFA$^s i&%5H$^s i&%2TSMFA$^s i&%, ~7!

with the MF entropy

SMFA$^s i&%52kB(
i
E

0

^s i&
dx tanh21x. ~8!

Variation of FMFA$^s i&% yields the MF equations

^s i&5tanhF 1

kBTS H i1(
jÞ i

Jij^s j& D G . ~9!

For a spatially homogeneous bulk system, the local mag
tizations^s i& are the same on each sublattice, and Eqs.~7!
and ~9! simplify accordingly~Appendix A!. Generally, the
r

n

l

e-

magnetization densities of the two sublattices vary in
direction perpendicular to the surface. For the~100! surface
one may thus write

^s i&5mn for iP lattice planen, ~10!

where mn is the magnetization density of lattice planen.
Likewise one has, for the~110! orientation,

^s i&5H mn,a for iP plane n, sublatticea,

mn,b for iP plane n, sublattice b.
~11!

It is convenient to introduce the reduced quantities

K[
4uJu
kBT

, h[
H

4uJu
, h1[

H1

4uJu
. ~12!

Then the MF equations read, for the~100! surface,

1

K
tanh21mn5h2mn212mn11 ~13!

for n.1, and

1

K
tanh21m15h1h12m2 . ~14!

For the~110! orientation, one has

1

K
tanh21mn,a5h2mn,b2

mn21,b1mn11,b

2
, ~15a!

1

K
tanh21mn,b5h2mn,a2

mn21,a1mn11,a

2
~15b!

for n.1, and

1

K
tanh21m1,a5h1h12m1,b2 1

2 m2,b , ~16a!

1

K
tanh21m1,b5h1h12m1,a2 1

2 m2,a . ~16b!

We now combine the magnetization densities of two nei
boring planes into single points inR2 andR4, respectively,

vn[~mn21 ,mn!T, ~17!

wn[~mn21,a ,mn21,b ,mn,a ,mn,b!T, ~18!

where ‘‘T’’ denotes the transpose. Then Eqs.~13! and ~15!
are equivalent to the recursion equations

vn115F~vn!, ~19!

wn115G~wn!, ~20!

where the nonlinear mapsF andG are defined by

F:S x

yD→S y

h2x2
1

K
tanh21yD , ~21!

and
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57 1911SURFACE CRITICAL BEHAVIOR OF bcc BINARY ALLOYS
G:S x1

x2

x3

x4

D→S x3

x4

2h2x122x32
2

K
tanh21x4

2h2x222x42
2

K
tanh21x3

D . ~22!

One advantage of rewriting the MF equations in terms of
discrete dynamics~19! and ~20! is that one may gain an
overview ofall solutions by iterating arbitrary starting poin
v1 and w1. In this way one obtains trajectoriesv1 ,v2 , . . .
and w1 ,w2 , . . . in a two-dimensional~2D! and 4D phase
space, respectively. The mapsF andG are bothsymplectic,
i.e., their differentialsDF andDG are symplectic matrices
and thus generate a discreteHamiltoniandynamics on these
phase spaces. Note that any symplectic map is volume
serving, in particular. The theory of nonlinear dynamics
fers convenient tools to understand the discrete dynam
generated by such maps.15

The MF equations~14! and ~16! take the same form a
Eqs. ~13! and ~15! if fictitious zeroth layer magnetization
m052h1 andm0,a5m0,b522h1 are introduced, i.e.,

v25F~v1!, ~23!

w25G~w1!, ~24!

wherev1 andw1 satisfy the boundary conditions

v15~2h1 ,m1!T, ~25!

w15~22h1 ,22h1 ,m1,a ,m1,b!T. ~26!

Moreover we require that the sublattice magnetization d
sities approach their bulk values forn→`,

m2n21→ma , m2n→mb , ~27!

mn,a→ma , mn,b→mb , ~28!

where ma ,mb are the solutions of the bulk MF equation
@Eqs.~A2!#. As will be discussed in the next section, the bu
solutions correspond to fixed points of the mapsF and G.
Then Eqs.~27! and~28! imply that the trajectories converg
to these fixed points. The task of solving the MF equatio
for the semi-infinite system~for given values ofK, h, and
h1) thus translates into finding the intersections of thestable
manifold of the corresponding fixed point with the surfa
boundary conditions~25! and ~26! ~see Sec. III B!.

We finally quote an importantsymmetry propertyof the
above maps. The MF equations~13! and~15! are symmetric
with respect to interchanging the layer magnetizations of
planesn21 andn11. Thus one has

FS mn11

mn
D 5S mn

mn21
D , ~29!

and an analogous relation forG. It follows that both maps
are invertible and that their inversesF21 andG21 are given
by

F215R+F+R, ~30!
e

re-
-
cs

-

s

e

G215S+G+S, ~31!

where

R:~x,y!T→~y,x!T, ~32!

S:~x1 ,x2 ,x3 ,x4!T→~x3 ,x4 ,x1 ,x2!T. ~33!

III. ANALYSIS OF NONLINEAR MAPS

A. Linearized MF equations and length scales

The bulk MF equations@Eqs. ~A2! of Appendix A# are
equivalent to the fixed point equations of the nonlinear m
G andF25F+F, the second iterate ofF. For TÞTc , linear-
ization of the maps about the fixed points yields t
asymptotic~exponential! decay of the sublattice magnetiza
tion profiles away from the surface. The decay lengths can
expressed by the eigenvalues of the linearized maps. In
case of the~100! surface onlyone length scale, proportiona
to the OP correlation length, governs the decay of both
sublattice magnetization and the OP profiles. An additio
length scale associated with the decay of the segregation
file appears for the~110! orientation, Within MF theory, this
decay remains exponential even atT5Tc ~cf. Sec. I!.

An analysis of the bulk MF equations is straightforwa
and may be found in Appendix A. The critical couplingKc
5(4uJu)/(kBTc) as a function of the uniform bulk fieldh is
determined by

1

2Kc~h!
512mc~h!2, ~34!

where mc5mc(h) is the uniform magnetization atT5Tc .
Using Eq.~A7! to eliminatemc in favor of Kc andh in Eq.
~34!, one obtains an expression for the critical line~Fig. 2!.16

The bulk sublattice magnetization densities may be w
ten

ma5m1f, mb5m2f, ~35!

where m and f are the mean magnetization and the O
respectively. In the region of the phase diagram where
A2 phase is thermodynamically stable, the bulk MF eq
tions have a unique solution~Appendix A!

m5mdis~K,h!, f50. ~36!

FIG. 2. MF phase diagram of the NN Ising antiferromagnet o
bcc lattice, showing a line of continuous transitions between
disordered (A2) and the ordered (B2) phase.
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1912 57R. LEIDL AND H. W. DIEHL
Thus the only fixed points ofF2 andG in this case are

vdis5~mdis,mdis!
T, ~37!

wdis5~mdis,mdis,mdis,mdis!
T. ~38!

The solution~36! becomes thermodynamically unstable
crossing the critical line~Fig. 3!. At the same time, two new
solutions describing the pureB2 phases emerge,

m5mord~K,h!, f56fb~K,h!Þ0, ~39!

corresponding to the fixed points

vord
1,25~mord7fb ,mord6fb!T, ~40!

word
1,25~mord6fb ,mord7fb ,mord6fb ,mord7fb!T.

~41!

Note that the fixed pointsvord
1 , vord

2 form a two cycle of the
mapF,

F~vord
1 !5vord

2 , F~vord
2 !5vord

1 . ~42!

Defining the reduced temperaturet by

t[
T2Tc

Tc
5

Kc2K

K
, ~43!

the OP vanishes asutub for t→02, with the usual MF expo-
nentb51/2 @Eq. ~A10!#. The mean magnetization densitym
is a ‘‘nonordering’’ ~or noncritical! density. Such quantities
typically couple to the energy densityE, which thus controls
their leading critical behavior. Since the scaling dimension
E is vE5(12a)/n ~as compared tovf5b/n of the OP!,10

they exhibit thermal singularities of the formutu12a, wherea
andn are standard bulk critical exponents. In MF theory th
behavior reduces to a discontinuity in the first temperat
derivative sincea50 @see Eqs.~A8! and ~A9!#.

The linearization ofF2 about any of the fixed pointsvdis

andvord
1,2 has the eigenvalues

l1,252112uaub62AuaubAuaub21 ~44!

and the associated eigenvectors

l1,25S 1,2
11l1,2

2ub
D T

, ~45!

FIG. 3. Temperature dependence of the bulk mean magne
tion density at fixed magnetic field. BelowTc , the disordered state
~dashed line! becomes thermodynamically unstable.
f

e

whereua andub are defined by Eq.~A3!. SinceF is sym-
plectic and thus area preserving~Sec. II!, one hasl1l251.
Likewise, the eigenvalues of the linearization ofG aboutwdis

or word
1,2 are

L1,252112Auaub62Auaub2Auaub, ~46a!

L3,452122Auaub62Auaub1Auaub, ~46b!

with the corresponding eigenvectors

L1,25S 12Aua

ub
L1,22Aua

ub
L1,2D T

, ~47a!

L3,45S 1Aua

ub
L3,4Aua

ub
L3,4D T

. ~47b!

SinceG is symplectic, the eigenvalues come in pairs (L1,
L2) and (L3, L4) with L1L25L3L451. Repeated appli-
cation of the linearized map toL1,2 generates eigensolution
with opposite sublattice magnetization densities within ea
layer. Therefore,L1,2 represent ‘‘ordering’’ eigenmodes. Th
eigensolutions generated byL3,4 show an oscillating profile
of the magnetization density becauseL3,4,0. However, the
local magnetization is the same forall sites in a given lattice
plane parallel to the surface. Hence the OP profile vanis
and one may refer toL3,4 as ‘‘nonordering’’ eigenmodes.

The behavior of the eigenvalues in the complex plane
one crosses the critical line is shown schematically in Fig
The eigenvaluesl1, l2 collide at 11 and form a complex
conjugate pair on the unit circle in the ordered phase. T
the character of the fixed pointvdis changes from hyperbolic
to elliptic. At the same time, two new real eigenvalues c
responding to the hyperbolic fixed pointsvord

1,2 emerge.
Within the notions of nonlinear dynamics, the mapF under-
goes a period-doubling bifurcation. The eigenvaluesL1,L2

a-

FIG. 4. Behavior of the eigenvalues~44! and ~46! in the com-
plex plane as one crosses the critical line~cf. Fig. 2!. The super-
scripts ‘‘dis’’ and ‘‘ord’’ indicate the linearizations about the fixe
points of the disordered and ordered phase, respectively.
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57 1913SURFACE CRITICAL BEHAVIOR OF bcc BINARY ALLOYS
of the 4D mapG show an analogous behavior. However, t
fixed pointwdis remains unstable in the ordered phase si
L3 ,L4 stay real.

The solutions of the linearized MF equations satisfyi
the bulk boundary conditions~27! and ~28! read

v2n115v* 1a2l2
nl2 , ~48!

wn115w* 1A2L2
nL21A3L3

nL3 , ~49!

wherev* andw* stand for one of the fixed points~37!,~38!
and ~40!,~41!. The coefficientsa2, A2, andA3 are fixed by
the surface boundary conditions~25! and ~26!.

Thus for the~100! orientation we obtain

m2n115ma1ae2~2n11!/j, ~50a!

m2n5mb2be22n/j, ~50b!

with the decay length

j52u lnl2u21, ~51!

and the amplitudes

a5~h11mb!Aub

ua
, b5h11mb . ~52!

In the disordered phase, the amplitudes simplify to

a5b5h11mdis. ~528!

We define the local OPfn by

fn[
1

2
~21!n~mn112mn!, ~53!

where the power of21 ensures that one always subtracts
magnetization densities ofb planes from those ofa planes.17

Equations~50! imply a nonvanishing OP profile, which de
cays on the scale ofj. In fact, j may be identified, up to a
proportionality factor, with the bulk OP correlation lengt
To see this, one expandsuaub in Eq. ~44! in powers oft
using Eqs.~A8!–~A9!. This gives

j5j6utu21/21O~ t !, ~54!

where

j15j1~h!5
1

2A222Kc~h!mc~h!@h22mc~h!#
,

~54a!

j25j2~h!5
1

A2
j1~h!. ~54b!

The decay length displays autu2n singularity just as the bulk
correlation length, with the MF exponentn51/2. Asymptoti-
cally, j should thus be proportional to the correlation leng
Indeed, one hasj1(h)/j2(h)5A2, which is the MF value
of the universal amplitude ratio of the correlation lengt
above and belowTc .18 As t→0, the exponential decay o
the OP profile becomes a power law, whose precise fo
will be investigated in Sec. IV.
e

e

.

s

m

Likewise, the magnetization profiles for the~110! orien-
tation are

mn,a5ma1Ae2n/j81~21!nÃe2n/ j̃ , ~55a!

mn,b5mb2Be2n/j81~21!nB̃e2n/ j̃ , ~55b!

where nowtwo length scales appear,

j85u lnL2u21, j̃ 5u lnuL3uu21. ~56!

The amplitudes are given by

A52S 12Aub

ua
D h12

1

2S ma2Aub

ua
mbD , ~57a!

Ã52S 11Aub

ua
D h12

1

2S ma1Aub

ua
mbD , ~57b!

B5Aua

ub
A, B̃5Aua

ub
Ã. ~57c!

In the disordered phase aboveTc , they simplify to

A5B50, Ã5B̃522h12mdis. ~578!

In particular, the OP profile

fn[ 1
2 ~mn,a2mn,b! ~58!

vanishes forT>Tc , which is a consequence of the symm
try of the ~110! surface with respect to the two sublattic
and the fact that neither enhanced surface couplings n
staggered surface field are present. Asymptotically,j8 and j̃
behave as

j85
1

A2
j6utu21/21O~ t !, ~59!

j̃ 5u ln~322A2!u211O~ t !, ~60!

with j6 given in Eq. ~54! and u ln(322A2)u21.0.57. The
lengthj8 associated with the ordering eigenmodes diver
ast→0 and may again be identified with the bulk correlati
length,19 whereasj̃ stays on the order of the lattice constan
As will be seen in the next section,j̃ describes~within MF
theory! the decay of the mean magnetization profile forT
>Tc .

Note that for both surface orientations the layer magn
zations oscillate aboutmdis for T.Tc due to the antiferro-
magnetic coupling between adjacent lattice planes. Howe
only in the case of the~100! orientation does this oscillating
profile lead to a nonvanishing OP profile whose characte
tic length scale diverges ast→01. In view of the presumed
absence of enhanced surface couplings, such a beha
should be due to an ‘‘effective’’ordering surface field g1
5g1(K,h,h1). Away from Tc and in the disordered phase
such a field generates a linear response of the local OP w
decays exponentially into the bulk. A glance at Eqs.~50! and
~528) leads us to anticipate the form

g1~K,h,h1!5h11mdis~K,h!. ~61!
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We will derive a formula forg1 identical with the above
expression in Sec. IV, when we map the lattice model on
continuum theory. There it will become clear thatg1 is in-
deed a surface field coupling to the local OP that enters
a coarse-grained~Ginzburg-Landau! free-energy functional.

B. Solutions of the nonlinear recursive maps

The thermodynamically stable solutions of the bulk M
equations correspond to hyperbolic fixed points of the m
F2 andG ~cf. Sec. III A!. The stable~unstable! manifoldWs
(Wu) of a hyperbolic fixed point consists of all points th
converge to the fixed point under iteration of the map~in-
verse map!. In order to solve the MF equations for the sem
infinite system one must determine the intersections of
stable manifolds with the linear subspaces defined by
surface boundary conditions~25! and ~25!, i.e., the line
$(2h1 ,x)TuxPR% and the hyperplane$(22h1 ,22h1 ,
x,y)Tux,yPR%. The magnetization densities of the first lay
can be read off from the intersection pointsv15
(2h1 ,m1)T andw15(22h1 ,22h1 ,m1,a ,m1,b)T. The com-
plete magnetization profile follows from the trajectori
passing throughv1 andw1.20 Below Tc , infinitely many in-
tersections exist and one has to resort to the original va
tional principle to find the equilibrium profile minimizing th
free-energy functional~7!.

1. (100) surface, T>Tc

In the disordered phase, the only fixed point ofF2 ~as
well as ofF) is vdis5(mdis,mdis)

T @Eq. ~37!#. Figure 5 shows
a plot of the invariant manifolds for particular values ofK
and h. Figure 6 depicts the magnetization and OP profi
obtained from the intersection with the boundary condit
for h150.4. SinceR+F5F21+R @cf. Eq.~30!#, the stable and
unstable manifolds are mapped onto each other under re
tion at the linex5y.

The picture of the invariant manifolds does not chan
qualitatively as one varies the parametersK andh. From the
eigenvectorl2 @Eq. ~45!# one infers that the slope of th
stable manifold atvdis vanishes in the high-temperature lim
(K→0), whereas it approaches21 for K↑Kc (T↓Tc).

The upshot is that we find a unique intersection of
boundary condition with the stable manifold. In particula

FIG. 5. Stable and unstable manifolds of the hyperbolic fix
point vdis . The direction of the flow under iteration of the mapF is
indicated by arrows. The dashed line represents the boundary
dition for h150.4.
a

to

s

e
e

a-

s

c-

e

e
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we obtain a nonvanishing order parameter profile at any t
peratureT.Tc . This conforms with the idea that the O
profile is due to an ordering surface field.

An exceptional case occurs if the boundary condition
actly hits the fixed pointvdis, so thatmn[mdis andfn[0.
However, except in the caseh5h150, this can only be
achieved for a special temperatureT5T0 ~at fixedh andh1).
For TÞT0 the OP profile is still nonzero.

2. (110) surface, T>Tc

As we have seen in Sec. I, this type of surface is symm
try preserving and the Hamiltonian~5! is exactly symmetric
with respect to interchanginga and b sites. Since we pre-
cluded the possibility of supercritically enhanced surfa
bonds, a spontaneous breakdown of this symmetry is ru
out for T>Tc . Therefore, the solutions that minimize th
free energy in this temperature regime fulfillmn,a5mn,b
[mn , and G acts in a 2D subset$(x,x,y,y)Tux
PR,uyu,1% of R4. The picture of the invariant manifold
looks similar to Fig. 5. The magnetization profile at the bu
critical point K5Kc(h) ~for h51) is depicted in Fig. 7. As
in the case of the~100! orientation, the layer magnetizatio
densities oscillate about the bulk valuemdis due to the anti-
ferromagnetic coupling between neighboring planes. Wit
MF theory, the decay length remains on the order of
lattice constant even atT5Tc ~cf. Sec. III A!. The numerical
profile decays exponentially on a length scale that agr
well with the value~60!.

3. (100) surface, T<Tc

On crossing the critical line in the MF phase diagra
~Fig. 2!, the mapF undergoes a period-doubling bifurcatio
~Sec. III A!, and the picture of the invariant manifold
changes qualitatively. The fixed pointvdis becomes elliptic
and looses any stable and unstable manifolds. The st
~unstable! manifold of any one of the hyperbolic fixed poin
vord

1,2 cannot intersect itself but will generically intersect th
unstable~stable! manifolds of the same fixed point, as we
as the unstable~stable! manifolds of all other fixed points, a

d

n- FIG. 6. Magnetization and OP profiles for the~100! surface
aboveTc , as obtained from the intersectionS of Fig. 5. Planes with
odd and even indexn belong to sublatticea (L) and b (3),
respectively. Note thatmn oscillates about the bulk valuemdis

~dashed line!.
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an infinite number of so-called homoclinic and heteroclin
points.15 The invariant manifolds oscillate wildly in the vi
cinity of the fixed points~cf. Fig. 8!, giving rise to the phe-
nomenon of ‘‘chaotic entanglement.’’15 As a consequence
infinitely many solutions of the lattice MF equations for th
semi-infinite system exist, and one has to resort to the or
nal variational principle~cf. Sec. II! in order to decide which
solution corresponds to the true equilibrium profile. T
stable and unstable manifoldsWs andWu of vord

1 andvord
2 are

FIG. 7. Magnetization profile atT5Tc for the ~110! surface.
The dashed line represents the bulk valuemdis . The semilog plot of
the inset demonstrates the exponential decay of the profile.

straight line has slopej̃ 21 @Eq. ~ 60!#. Thus the decay length agree
well with the value obtained from the linearized MF equations.

FIG. 8. ~a! Part of the stable manifold of the fixed pointvord
2 .

The inset shows the first few loops in the vicinity ofvord
1 . ~b! Mag-

nification of the region marked in the inset of~a!. The dashed-
dotted line is the boundary condition forh150.39, which intersects
the stable manifold at an infinite number of pointsS1, S2, . . . . The
latter accumulate at the pointS` on the stable manifold ofvord

1

~dashed line!.
i-

determined uniquely given only one of them, sayWs(vord
1 ).

In fact, from the symmetry property~30! one concludes tha

Wu~vord
1 !5F+R„Ws~vord

1 !…, ~62a!

Ws~vord
2 !5F„Ws~vord

1 !…, ~62b!

Wu~vord
2 !5R„Ws~vord

1 !…. ~62c!

Typical minimum-free-energy profiles are shown in Fi
9~a!. The corresponding trajectories converge to the fix
point vord

1 describing the bulk phasefb.0. If one imposes
the bulk boundary conditionfn→2fb,0 (n→`), so that
the solutions converge tovord

2 , one obtains OP profiles ex
hibiting anantiphase boundary, i.e., an interface between th
two phases6fb @Fig. 9~b!#. These solutions always yield
higher free energy than the profiles of Fig. 9~a!. For the
chosen parameter values, the free energy of the profile
found to increaseas the position of the interface moves in
the bulk, so that the leftmost profile represents the equi
rium solution for this type of boundary conditions. By ana
ogy with wetting phenomena,21 we may say that the surfac
is ‘‘nonwet,’’ i.e., the interface has a finite~microscopic!
distance from the surface. Ifh1 is increased, so that the ‘‘ef
fective’’ ordering surface fieldg1 favoring the bulk phase
fb.0 becomes strong enough, the free energy of the p
files eventuallydecreasesand the surface is ‘‘wet’’@e.g., in
the situation depicted in Fig. 9~b! this happens if one choose

he

FIG. 9. ~a! OP profiles belowTc for the ~100! surface. The
corresponding trajectories converge to the fixed pointvord

1 @cf. Fig.
8~b!#. The middle profile (h150.39) belongs to the intersectionS` .
~b! OP profiles describing an antiphase boundary. The trajecto
converge tovord

2 . The leftmost profile belongs to the intersectionS1,
the next one toS2, etc. @Fig. 8~b!#. An infinite number of such
solutions exists, the first ten of which are shown here.
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1916 57R. LEIDL AND H. W. DIEHL
h150.4.# In Ref. 22 the wetting phase diagram in the spa
of thermodynamic parametersK, h, andh1 is calculated us-
ing the continuum model derived in the next section.

IV. GINZBURG-LANDAU THEORY

In this section, the aim is to derive and critically exami
a Ginzburg-Landau model for the semi-infinite alloy with
~100! surface. In particular, we want to show that the loss
the a↔b sublattice symmetry~cf. Sec. I! leads, in a con-
tinuum description, to asymmetry-breaking boundary cond
tion for the OP profilef(z),

ḟ~0!5
1

l
f~0!2

g1

C
, ~63!

wherez50 corresponds to the surface plane (n51) and the
dot denotes differentiation with respect toz. Such a bound-
ary condition is familiar from the phenomenological theo
of surface critical phenomena.3 The parameterC.0 is the
coefficient of the gradient term of the Ginzburg-Land
functional. Theextrapolation lengthl should be positive
owing to the absence of enhanced surface bonds. Thus
persistence of surface order forT>Tc originates solely from
the ‘‘effective’’ ordering surface field g1Þ0. We will deter-
mine the dependence ofg15g1(K,h,h1) on the reduced
coupling constantK and the fieldsh andh1.

No such ordering surface field emerges in the case of
symmetry-preserving~110! surface. However, the Ginzburg
Landau free energy now becomes a functional ofboth the
spatially varying OPand the segregation profile, which play
the same role as the energy density~cf. Sec. I!.9

Upon approaching the bulk critical point in the presen
of an ordering surface fieldg1Þ0, the semi-infinite system
undergoes thenormal transition, which exhibits critical sin-
gularities that are distinct from those of theordinary transi-
tion. The latter occurs forg150 and subcritical surface en
hancement (l.0).23 In order to confirm that the continuum
theory derived in Sec. IV A correctly describes th
asymptotic critical behavior of the lattice model, we sh
draw a detailed numerical comparison with the solutions
the lattice MF equations and clearly identify the singu
behavior of the normal transition for generic values ofh and
h1 ~Sec. IV B!. By tuning h and h1, one can achieve tha
g150 at T5Tc . Then the singularities of the ordinary tran
sition are recovered, although the OP at the surface is n
zero forT.Tc because ofg1Þ0 for TÞTc ~Sec. IV C!.

A. Derivation of continuum model

One has to be careful to define the local OPfn in such a
way that thespace-inversion symmetryof the lattice MF
equations~13! survives the continuum limit. If the magnet
zation profilemn , n51,2, . . . , is asolution of Eq.~13!, so is
the profilem̃n[m2n12, n51,0,21, . . . ,obtained by reflec-
tion at the surface planen51. If the definition offn respects
this symmetry, the differential equation for the continuu
profile f(z) should be invariant underf(z)→f(2z). How-
ever, the definition~53! distinguishes one direction along th
@100# axis and violates space-inversion symmetry explicit
As a consequence, first-order derivatives off(z) appear in
the Ginzburg-Landau equations, corresponding tolinear de-
e

f

the

e

e

l
f

r

n-

.

rivative terms in the free-energy functional.6 Such terms ren-
der the functional unbounded from below and thus preclu
it from serving as a Landau-Ginzburg-Wilson Hamiltonia
of a field theory.

To avoid these difficulties, we adopt an alternate defi
tion of the local OP treating thetwo neighboring layers of
lattice planen on an equal footing:

fn[ 1
2 ~21!n@ 1

2 ~mn211mn11!2mn#. ~64!

This definition complies with space-inversion symmetry a
coincides with Eq.~53! in the bulk of the system.

Substitutingmn111mn21 from Eq. ~13! into Eq. ~64! we
obtain

fn5~21!n11w~mn!, ~65!

where the function

w~x![2
h

4
1

x

2
1

1

4K
tanh21x ~66!

is strictly monotonic and thus invertible. We denote the
verse ofw byM, so that from Eq.~65!

mn5M„~21!n11fn…. ~658!

The continuum limit of the lattice MF equations~13! leads to
the Ginzburg-Landau equation~Appendix B!,

Cf̈54f12M~2f!22M~f!, ~67!

whereC[M8(0) @Eq. ~B4a!#. The MF equation at the sur
face ~14! entails the boundary condition~Appendix C!,

Cḟ~0!52h12M„2f~0!…. ~68!

For a spatially homogeneous system, Eq.~67! is identical to
the equation for the OP following from the bulk MF equ
tions ~A2 8). In fact, Eq.~A2 8) can be written as

f5w~m1f!, 2f5w~m2f!. ~69!

Operating withM on both sides of the above equations a
eliminatingm, one arrives at Eq.~67! with f̈[0.

We denote the bulk Landau free-energy density
f b(ma ,mb) @Eq. ~A1!#. Since

]a f b~ma ,mb!52w~ma!2~ma2mb!, ~70a!

]b f b~ma ,mb!52w~mb!1~ma2mb!, ~70b!

where]m[
]

]mm
, m5a,b, Eqs.~67! and~68! can be rewrit-

ten as

Cf̈5V8~f!, ~678!

Cḟ~0!5 f s8~f!, ~688!

where

V~f!5 1
2 @M~f!2M~2f!22f#21 f b„M~f!,M~2f!…

2 f b„M~0!,M~0!…, ~71!
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f s~f!52@h11M~2f!#f1 1
4 f b„M~2f!,M~2f!…

2 1
4 f b„M~0!,M~0!…. ~72!

Thus the Ginzburg-Landau equations~67! and ~68! follow
from the variation of the free-energy functional,

F@f#5E
0

`

dzFC

2
ḟ21V~f!G1 f s„f~0!…. ~73!

Expansion ofV(f) yields the usualf4 form,

V~f!5
A

2
f21

B

4
f41O~f6!, ~74!

with A54(12M1) and B524M3, whereM1 and M3 are
defined in Eqs.~B4a! and ~B4b!. With the aid of Eq.~A8!,
the leading temperature dependence of the Landau co
cients is found to be

A5A1t1O~ t2!, ~74a!

B5B01O~ t !, ~74b!

C511O~ t !. ~74c!

where

A15A1~h!52$12Kc~h!mc~h!@h22mc~h!#%, ~75a!

B05B0~h!5 8
3 Kc~h!2. ~75b!

Likewise, the Landau expansion off s(f) reads

f s~f!52g1f1
C

2l
f21O~f3!, ~76!

where

g1~K,h,h1!5h11mdis~K,h!, ~76a!

l51. ~76b!

Thus we obtain apositiveextrapolation lengthl and an or-
dering surface fieldg1Þ0, as anticipated above.

B. Comparison with lattice MF theory:
Generic „nonideal… stoichiometry

If h andh1 take generic values~nonideal bulk and surface
stoichiometry!, g15g1(K,h,h1) is nonzero atT5Tc and
gives rise to an OP profile decaying according to a pow
law. For t50, Eq. ~678! becomes

f̈5B0f3. ~77!

The neglected higher powers off do not affect the
asymptotic behavior off(z) as z→`. The solution of Eq.
~77! satisfyingf(z)→0 asz→` reads

f~z!5
P0

z1z0
, ~77a!

with the amplitude

P0~h!56A 2

B0~h!
56

A3

2Kc~h!
. ~77b!
ffi-

r

The signs refer to positive and negativeg1, respectively. The
integration constantz0 follows by inserting Eq.~77a! into the
boundary condition~68!. An algebraic decayf(z);z2xf of
the OP profile atT5Tc , wherexf5b/n is the scaling di-
mension of the OP, is characteristic of the normal transiti
Within MF theory one hasb5n51/2, so thatxf51.

In order to check whether the lattice MF profiles exhib
the above power-law decay with the predicted value~77b!
for the amplitude, we used the ‘‘nonlinear-mapping rep
sentation’’ of the lattice MF equations~Sec. III! to determine
the profiles numerically up to.1000 layers from the sur
face. Figure 10 demonstrates that the power law deca
well reproduced. The amplitude extracted from the nume
cal fits is in perfect agreement with Eq.~77b! for a wide
range of the bulk fieldh ~Fig. 11!.

As a second test of the validity of our continuum mod
we investigate the temperature singularity of the surface
We multiply the Ginzburg-Landau equation~678! by ḟ and
perform the integral fromz50 to z5` on both sides using
the boundary conditions~688! and f(z)→0 asz→`. This
gives

2
C

2
f s8~fs!

21V~fs!5V` , ~78!

FIG. 10. Scaling of the critical OP profilefn @defined by Eq.
~64!#. The expected power law decay has been factored out,
the parametern0 fitted optimally. The dashed line is the predictio
~77b! of the continuum theory.

FIG. 11. Amplitude of the critical OP profile as a function of th
bulk field h. The data obtained from the solution of the lattice M
equations (h) agree well with the prediction~77b! of the con-
tinuum model~full line!.
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wherefs[f(0) andV`[V(fb). One has

V`5H 0, t.0,

2
A1

2

2B0
t21O~ t3!, t,0.

~79!

Expanding the coefficients on both sides of the surface eq
tion of state~78! in powers of t, one recognizes thatfs
exhibits a discontinuity in the second temperature deriva
due to the nonanalyticity ofV` at t50,

fs5fs
~0!1fs

~1!t1fs,6
~2! t21•••, ~80!

with fs,1
(2) Þfs,2

(2) . This result complies with the general form
of the leadingutu22a singularity of the surface OP at th
normal and extraordinary transitions.24

Figure 12 shows a comparison with the solutions of
lattice MF equations. While the singularity in the seco
temperature derivative is too weak to be detected with
considerable numerical effort, the data are fully consist
with the continuity of the first temperature derivative att
50 and agree well with the predictions of the continuu
theory. The continuity of the first temperature derivative
fs is incompatible with the ordinary transition and confirm
again that the asymptotic critical behavior falls into the u
versality class of the normal transition.

C. Comparison with lattice MF theory:
Vanishing ordering surface field at T5Tc

According to Eq.~76a!, g1 can be made to vanish atT
5Tc by choosingh1 such that

h152mc~h!. ~81!

If h5h150 ~ideal bulk and surface stoichiometry!, g1[0
for all temperatures, and the system clearly displays ordin
surface critical behavior. IfhÞ0 and Eq.~81! is fulfilled, g1
varies linearly witht as t→0. In particular,the surface OP
fs is nonzero for T.Tc and vanishes only in the limi
t→06. One may wonder whether such a behavior is con
tent with the ordinary transition where one usually expe
that fs[0 for T>Tc .

To derive the leading temperature singularity offs con-
sider again Eq.~78!. Sincefs50 if t50, fs is found to
behave asymptotically as

FIG. 12. Temperature dependence of the surface OPfs for ge-
neric values ofh, h1, in the immediate vicinity of the critical tem
perature. The results of the lattice MF theory (h) agree well with
the prediction of the continuum model~solid line!.
a-

e

e

t
t

f

-

ry

s-
s

fs5fs,6
~1! t1 less singular terms, ~82!

with fs,1
(1) Þfs,2

(1) . The ordering surface field~76a! can be
expanded as

g1~K,h,h1!5g1
~0!~h,h1!1g1

~1!~h!t1O~ t2!, ~83!

where g1
(0)(h,h1)5h11mc(h)50 owing to Eq. ~81! and

g1
(1)(h)5mdis

(1)(h) @Eq. ~A8!#. Insertion into Eq.~78! yields,
to leading order int,

~2g1
~1!1fs,6

~1! !25H 0, t.0,

A1
2

B0
, t,0.

~84!

Therefore one concludes that25

fs,1
~1! 5g1

~1! , fs,2
~1! 5g1

~1!2
A1

AB0

. ~85!

The discontinuity offs in the first temperature derivative
differs strikingly from the singularity in the second deriv
tive for generic values ofh, h1 ~Sec. IV B!. This result is in
excellent agreement with the numerical solutions of the
tice MF equations~Fig. 13!. As will be shown below, such a
behavior is precisely what one expects if the lead
asymptotic behavior belongs to the universality class of
ordinary transition. The variation of the effective orderin
surface fieldg1 with temperature@cf. Eq. ~83!# explains the
onset of surface order fort.0 ~see below!.

Let us elucidate the above behavior of the surface OPfs
by resorting to a scaling argument. The basic assumptio
the existence of a scaling fieldg̃15 g̃1(K,h,h1) associated
with fs and depending analytically onK, h, and h1. Of
course, g̃1 will in general differ from the MF expression
~76a!. By analogy with Eq.~83! we write

g̃1~K,h,h1!5 g̃1
~0!~h,h1!1 g̃1

~1!~h,h1!t1O~ t2!. ~86!

We suppose thatg̃1
(0)(h,h1) vanishes ifh andh1 are chosen

appropriately. This should always be possible sincefs is
positive for large positiveh1, and becomes negative if on

FIG. 13. Temperature dependence of the surface OP in the
where the effective ordering surface fieldg1 vanishes atT5Tc .
The discontinuity in the first temperature derivative predicted by
continuum model~full line! is well confirmed by the numerica
solutions of the lattice MF equations (h).
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letsh1→2`, assumingh andt to be fixed. Thus for givenh
andt50, fs must vanish for a special value ofh1, in which
case one clearly hasg̃1

(0)50.
The singular part of the surface free energyf s

sing should
take the standard scaling form3

f s
sing~ t, g̃1!5Mt

~d21!nutu~d21!ng6~M g̃1
Mt

2D1g̃1utu2D1!,
~87!

whereD1.0.48. All nonuniversality is embodied in the me
ric factorsMt andM g̃1

associated with the two relevant sca

ing fields ~at the ordinary transition! t and g̃1, while the
critical exponents and the scaling functionsg6(z) are uni-
versal. The singular part offs follows by taking the deriva-
tive with respect tog̃1, i.e.,

fs2fs
~reg!5Mt

b1M g̃1
utub1Y6~M g̃1utu2D1!, ~88!

where Y6[g68 , M[M g̃1
Mt

2D1 , and b15(d21)n2D1.

The regular contributionfs
(reg) describes, to leading orde

the linear response offs ,

fs
~reg!5c g̃11O~ g̃1

2!. ~89!

The importance of such regular terms for the correct ide
fication of surface critical exponents and scaling functio
has been emphasized in Ref. 26. The scaling functi
Y6(z) are analytic atz50,

Y1~z!5Y1
~1!z1O~z2!, ~90a!

Y2~z!5Y2
~0!1Y2

~1!z1O~z2!. ~90b!

Using Eq.~86! with g̃1
(0)50, Eqs.~88!–~90! yield

fs5Mt
b1M g̃1

utub1Y6~M g̃1
~1!tutu2D1!1c g̃1

~1!t1O~ t2!,
~91!

where terms of ordertputu2D1, p52,3, . . . ,have been omit-
ted in the argument ofY6(z). Thus the leading behavior a
t→0 becomes

fs;H c g̃1
~1!t1Mt

b1M g̃1
M g̃1

~1!Y1
~1!t12g1,1, t.0,

Mt
b1M g̃1

Y2
~0!utub1, t,0,

~92!

where we used the scaling relation2g1,15b12D1. Since
g1,1,0 at the ordinary transition,3 fs varies linearly witht
as t→01, but vanishes with the characteristic expone
b1.0.8 of theordinary transition ast→02. In MF theory,
b151 and the power singularity fort→02 degenerates into
an integer power, see Eqs.~82! and~85!. That the asymptotic
behavior of the ordinary transition can be obtained by tun
h andh1 has also been demonstrated by transfer matrix
culations in two dimensions,27 which supplement the result
of Ref. 8.

V. SUMMARY

We have studied the surface critical behavior of bcc
nary alloys undergoing a continuousB2-A2 order-disorder
i-
s
s

t

g
l-

-

transition in the bulk. Clear evidence has been found t
symmetry-breaking surfaces, such as the~100! surface, ge-
nerically display the critical behavior of thenormal transi-
tion, which belongs to the same universality class as
extraordinary transition. We have analyzed the lattice M
equations using the ‘‘nonlinear-mapping’’ representation a
achieved a mapping onto a continuum~Ginzburg-Landau!
model. The latter assumes the form of the standard o
componentf4 model for semi-infinite systems. Its crucia
feature is the emergence of an ‘‘effective’’ordering surface
field g1Þ0, which depends on temperature and the ot
parameters of the lattice model and is not present on a
croscopic level. By a detailed comparison with the solutio
of the lattice MF equations the continuum model has be
shown to accurately describe the asymptotic behavior of
lattice model.

In the case of the symmetry-preserving~110! surface the
appearance of an ordering surface field is ruled out by s
metry, and the surface critical behavior is characteristic
the ordinary transition~in the absence of suitably enhance
surface interactions!. Analysis of the lattice MF equation
shows the existence of an additional length scale differ
from the OP correlation length, which aboveTc describes the
decay of the nonzero magnetization~or segregation! profile.
Within MF theory the decay is exponential even atT5Tc .
More generally, inspection of the corresponding Ginzbu
Landau free-energy functional, whose derivation is defer
to a subsequent paper,9 reveals that the segregation profi
plays the same role as the energy densityE, which decays
according to a power law;z2vE at T5Tc , where
vE5(12a)/n is the scaling dimension ofE.10
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APPENDIX A: BULK MF EQUATIONS

For a spatially homogeneous system with sublattice m
netization densitiesma andmb , the variational free energy
~7! yields the Landau free-energy density,

f b~ma ,mb![
FMFA /N

4uJu
5mamb2

h

2
~ma1mb!

1
1

2KS E
0

ma
dx tanh21x1E

0

mb
dx tanh21xD ,

~A1!

whereN is the number of lattice sites. The MF equations

]a f b50, ]b f b50, ~A2a!

where]m[]/]mm , m5a,b, read

tanh21ma5K~h22mb!, ~A2b!

tanh21mb5K~h22ma!. ~A2c!
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For the following it is useful to define

ua[u~ma!, ub[u~mb!, ~A3!

where

u~x![
1

2K

1

12x2
. ~A4!

A solution (ma ,mb) of ~A2! minimizes f b and is thus ther-
modynamically stable if the matrix

S ]a
2 f b ]a]b f b

]a]b f b ]b
2 f b

D 5S ua 1

1 ub
D ~A5!

is positive definite, i.e.,

uaub.1. ~A6!

If one writesma5m1f andmb5m2f as in Eq.~35!, the
MF equations~A2! take the form

tanh21~m1f!5K~h22m!12Kf, ~A2b8!

tanh21~m2f!5K~h22m!22Kf. ~A2c8!

The disordered state (m5mdis, f50) satisfies

tanh21mdis5K~h22mdis!. ~A7!

This equation has a unique solutionmdis5mdis(K,h), which
may be expanded in powers of the reduced temperatut
5(Kc2K)/K as

mdis5mc1mdis
~1!t1O~ t2!, ~A8!

wheremc5mc(h) is the magnetization atT5Tc , and

mdis
~1!5mdis

~1!~h!52
h22mc~h!

4
. ~A8a!

The disordered state is thermodynamically stable only
u(mdis).1 @cf. Eq. ~A6!#. The phase transition occurs whe
u(mdis)51 @cf. Eq. ~34!#. Two new minima off b describing
the ordered phases (m5mord,f56fb) emerge if
u(mdis),1. The asymptotic behavior following from Eq
~A28! is found to be

mord5mc1mord
~1!t1O~ t2!, ~A9!

fb5f0utu1/21O~ utu3/2!, ~A10!

where

mord
~1!5mord

~1!~h!5mdis
~1!~h!1Kc~h!mc~h!f0~h!2,

~A9a!

f05f0~h!5
A3

2Kc~h!
A12Kc~h!mc~h!@h22mc~h!#.

~A10a!
if

APPENDIX B: GINZBURG-LANDAU EQUATION

Using Eqs.~65! and ~658!, we may rewrite the MF equa
tions ~13! as

M„~21!nfn21…1M„~21!nfn11…

52M„~21!n11fn…14~21!nfn . ~B1!

In the continuum limit, one replacesfn by a smooth profile
f(z) defined for allz>0, with the original layers located a
zn5n21. Assuming that the OP varies slowly on the sca
of the layer spacing, we approximate

M„~21!nfn21…1M„~21!nfn11…

.2M„~21!nf~zn!…1~21!nM8~0!f̈~zn!, ~B2!

where the dot denotes differentiation with respect toz and
terms of orderff̈ andḟ2 have been discarded. Substitutio
of Eq. ~B2! into ~B1! leads to the Ginzburg-Landau equatio
~67!.

Sincew(mdis)50, i.e.,M(0)5mdis, M(f) may be ex-
panded as

M~f!5mdis1M1f1M2f21M3f31O~f4!, ~B3!

where

M15M8~0!52@11u~mdis!#
21, ~B3a!

M252Kmdisu~mdis!
2M1

3 , ~B3b!

M35
1

6
$3M1@2Kmdisu~mdis!

2#2

2~2K !2~113mdis
2 !u~mdis!

3%M1
4 . ~B3c!

APPENDIX C: BOUNDARY CONDITION

By analogy with Eq.~B1!, the MF equation at the surfac
~14! can be written as

2h11M~2f2!52M~f1!24f1 . ~C1!

The continuum approximation~B2! now reads

M~2f2!.M„2f~0!…2M8~0!@ḟ~0!1 1
2 f̈~0!#.

~C2!

Inserting ~C2! into ~C1! and requiring that the Ginzburg
Landau equation~67! be also valid atz50, we obtain

h11M„2f~0!…1M8~0!ḟ~0!5 1
2M8~0!f̈~0!.

~C3!

The above equation reduces to the boundary condition~68!,
if second-order derivatives are neglected.



s

e

an
ti
th

.

G.

in

0

em
a-
r-

e
of
on

.

r
h is

lly
any

m
g.,
ing

J.

f the

57 1921SURFACE CRITICAL BEHAVIOR OF bcc BINARY ALLOYS
1H. Dosch, Critical Phenomena at Surfaces and Interface,
Springer Tracts in Modern Physics Vol. 126~Springer, Berlin,
1992!.

2D. M. Kroll and G. Gompper, Phys. Rev. B36, 7078~1987!; G.
Gompper and D. M. Kroll,ibid. 38, 459 ~1988!.

3K. Binder, in Phase Transitions and Critical Phenomena, edited
by C. Domb and J. L. Lebowitz~Academic, London, 1983!, Vol.
8, p. 1.

4H. W. Diehl, in Phase Transitions and Critical Phenomena, ed-
ited by C. Domb and J. L. Lebowitz~Academic, London, 1986!,
Vol. 10, p. 75.

5H. W. Diehl, cond-mat/9610143, Int. J. Mod. Phys. B~to be pub-
lished!.

6F. Schmid, Z. Phys. B91, 77 ~1993!.
7The crucial feature of both transitions is that the bulk orders~at

T5Tc) in the presence of an already ordered surface. The
traordinary transition exists only in bulk dimensiond.2 ~in the
Ising case!, i.e., if the dimension of the surface is greater th
the lower critical dimension. It can be shown that the asympto
surface critical behavior is the same, irrespective of whether
surface order occursspontaneouslydue to supercritically en-
hanced surface interactions~extraordinary transition!, or is in-
duced by an ordering surface field~normal transition!, see T. W.
Burkhardt and H. W. Diehl, Phys. Rev. B50, 3894~1994!.

8A. Drewitz, R. Leidl, T. W. Burkhardt, and H. W. Diehl, Phys
Rev. Lett.78, 1090~1997!.

9R. Leidl ~unpublished!.
10L. V. Mikheev and M. E. Fisher, J. Stat. Phys.66, 1231~1992!;

Phys. Rev. B49, 378 ~1994!.
11S. Krimmel, W. Donner, B. Nickel, H. Dosch, C. Sutter, and
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