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Surface critical behavior of bcc binary alloys
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The surface critical behavior of bce binary alloys undergoing a continB@+82 order-disorder transition
in the bulk is investigated in the mean-fie{IF) approximation, employing a semi-infinite lattice model
equivalent to an Ising antiferromagnet in an external field. Our main aim is to present clear evidence for the
fact that surfaces thdireak the two-sublattice symmegnerically display the critical behavior of thermal
transition, whereas symmetry-preserving surfaces exhibit the behavior of the ordinary transition. To this end,
the lattice MF equations for both symmetry-breaki@0 and symmetry-preserving 10 surfaces are cast in
the form of nonlinear symplectic maps, the associated Hamiltonian flows are analyzed, and the length scales
involved are computed. Careful examination of the continuum limit yields the appropriate semi-infinite
Ginzburg-Landau model for thel00 surface and reveals subtleties overlooked in previous work. The con-
tinuum model involves an “effective’dbrdering surface field g+ 0, which depends on the parameters of the
lattice model. The singular behavior predicted by the Ginzburg-Landau model is shown to agree quantitatively
with the solutions of the lattice MF equatio§0163-18208)06603-X]

I. INTRODUCTION normal transition, which belongs to the same universality
class as thextraordinarytransition’
Experiments on binaryAB) alloys that undergo an order-  In a foregoing papérby Drewitz, Leidl, Burkhardt, and

disorder transition in the bulk have yielded a wealth of in-Diehl, exact transfer matrix calculations were employed in

formation on surface critical phenomena in semi-infiniteconjunction with conformal invariance to present clear evi-

matter! In these systems one inevitably has to cope with thelence for(a) and(b) in bulk dimensiond=2. Here we gen-

influence ofsurface segregatigri.e., the enrichment of one eralize these results to arbitrady using MF theory and a

component at the surface. Surface segregation occurs, e.gapping onto a Ginzburg-Landau model.

due to different interaction energies or sizes of the two spe- The reason for the appearance of normal critical behavior

cies. Theoretically, the variation of the local compositionis a subtle interplay between the symmetry with respect to

near the surface may necessitate the introduction of “nonorsublattice ordering and broken translational invariance due to

dering” densities, which are given by linear combinations ofthe free surface. Consider first a finite system wi#riodic

the local concentrations oA and B atoms on the various boundary conditions. The precise form of the Hamiltonian

sublattices. In the case of surface critical phenomeriiasat ~ H{o} does not matter here and will be given in Sec. Il. The

order bulk transitions, such as surface-induced disordering irspin variableoc;=1 (o;=—1) represents aA (B) atom on

fcc binary alloys, nonordering densities strongly influencelattice sitei. The statistical weight of a configuratidir;} is

the asymptotic behavidr.In this paper we are concerned given by the finite-volume Gibbs measure,

with bcc alloys that exhibit @ontinuous(second-orderbulk

transition and are thus promising candidates for testing cur- 1

rent theories of surface critical behavior at bulk critical P({Ui})=ze’/m{"i}, B=1l(kgT), (1)

points3~°

e o e WHEIeT s e tmperature ar,dertes olzman's con
stant. The normalization fact@ is the grand-canonical par-

ied a semi-infinite lattice model equivalent to a bcc Isingt.t. function. The local trati FA at tsit
antiferromagnet both by Monte Carlo simulation and within 1N function. The focal concentratior) of A atoms at site

the mean-fieldMF) approximation, and made the important | can be expressed in ter_ms of the mean magneﬂ_z@tnp)n

observation that the orientation of the surface in general maSCi~ (1+(c))/2. The Gibbs measur@) is translationally

ters. Her conclusions can be summarized as folldgsA ~ mvanant,

nonvanishing order parameté©P) profile occurs forT

=T., the bulk critical temperature, provided thatthe sur- p{o)=p({ai}), oi=0is, )

face breaks the two-sublattice symme(sge belov, and(ii)

one component is enriched at the surfade) The observ- wheret may be chosen arbitrarily from the sétof all bcc

able surface critical behavior should be representative of thiattice vectors. Due tgpontaneous symmetry breakijribe

ordinary universality class even if the above conditiofi)s  thermodynamic states that are obtained by calculating expec-

and(ii) are met. tation values with the measuf&) and taking the infinite-
While we agree with(a), we find that(b’) should be volume limit needhotbe translationally invariantFormally,

replaced by(b): If conditions (i) and (ii) are satisfied, the one introduces a symmetry-breaking “staggered” field that

surface critical behavior generically is characteristic of theis sent to zerafter the thermodynamic limit has been per-
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(a) (110) surface According to the experimental results of Ref. 11, super-
critical enhancement of the surface couplings can be ruled
out. Thus it is natural to attribute the persistence of surface
order to anordering surface field g#0. This field causes
the system to display theormaltransition. However, for the
binary alloys considered here an ordering field corresponds
to a local chemical potential acting differently on the two
sublattices(staggered field in magnetic languag&here is
no natural source for such a field on the microscopic level.
The challenge is to demonstrate in an unequivocal fashion
that a nonzerog,; nevertheless emerges in a continuum
(coarse-grained description, i.e., in the context of a
Ginzburg-Landau model, and to derive a MF expression for
g; in terms of the lattice model parameters. Of course, in
; ; ; comparing theory and experimental or simulation data, one
symmetry-breaking surfaf:es. Sites of §ub|att|0eand B corre- should keep in mind thag, may be small, so that the cross-
spond to open and full circles, respectively. In #h2 phase, the o . 12
concentration of either component is the same on all sites, Wherea%ver to normal crltlpal behavior occurs only cIose'ITg)..
the two sublattices are preferentially occupiedAyndB atoms, In Fhe next section, we .Sha” reformglate the lattice MF
respectively, in the ordered2 phase. equations for the sem|-|nf|n|t¢ aI_on with freéL(_)O) qnd
(110 surfaces as a problem in discrete dynamics, i.e., the
iteration of nonlinear symplectic map$From the linearized
formed) In the ordered phase beloW., one has{o;) maps the characteristic length scales of both the concentra-
# (04 for all translationd=t,, that mapa to B sites(Fig. ~ tion and OP profiles away fromi; will be calculated(Sec.
1). Il A). The full nonlinear maps will be analyzed in Sec. Il B.
Surfaces are introduced by imposifrge boundary con-  After introducing the Ginzburg-Landau model for tE00)
ditions along one direction while retaining periodic boundarySurface orientation in Sec. IV A we shall compare the pre-
conditions in the other directions. Then the measiajeis ~ dictions of the continuum theory with the numerical solu-
invariant under the subsét’ C 7 of translationsparallel to ~ tions of the lattice MF equations. Whereas normal critical
the surface. We call the surfasgmmetry preserving 7' behawo_r is found g(_enerlcall(;Sec. VB, the smgule}nUes of
contains a “sublattice-exchanging” translation;, and the ordinary transition may be recovered by tuning the pa-

symmetry breakin@therwise. In the case of the bcc lattice rameters so thay, vanishes all =T, (Sec. IV Q. We wil

considered here, symmetry-breaking surfaces are charac:tecsf—mnarize our main results in Sec. V. Appendix A briefly
ized by the alternation ok and 8 planes along the direction iscusses the bulk M equations, while Appendices B and C

contain the derivation of the Ginzburg-Landau model.
normal to the surface. Let us assume that no spontaneous

symmetry breaking takes place aboVg, which would re-

quire supercritically enhanced surface couplings, so that

(o)) =(0iy for T=T; andte 7. We consider the lattice-gas model of a binaARB) alloy
Thus for symmetry-preserving surfaces ahgT., the on a bcc lattice. Each atomic configuration is characterized

OP profile vanishesas it is characteristic of therdinary by the values of the occupation variabigs, p°®, wherep;”

transition. Nonetheless one obtains an inhomogeneous mag-1 if site i is occupied by an atom of typee {A,B} and

netization(or concentrationprofile due to surface segrega- p{=0 otherwise. Within the grand-canonical ensemble, the

tion. Specifically for the110) orientation, segregation of one configurational energy reads

component leads to an alternation &f and B-rich lattice

planes since the interactions favor the occupation of nearest- 1 oy ,

neighbor(NN) sites by different species. Within MF theory, E{p".pi’}= Egj VET €j Pip; _ZV MVEi )

this profile decays exponentially evenTat T, (Sec. Il A). '

Derivation of a suitable Ginzburg-Landau motieéveals where €j =e€j is the interaction energy betweenand 7

that the segregation profile actually plays the same role astoms at sitesandj, andu, and g are chemical potentials

the energy density in generalized Ginzburg-Landauor A andB atoms, respectively. We neglect vacancies, so

functionals'® Beyond MF theory, the segregation profile that p+pP=1, and rewrite the occupation variables in

FIG. 1. Examples of(a symmetry-preserving, andb)

II. MF EQUATIONS AS NONLINEAR MAPS

thus shows a power-law dec&y. terms of Ising spingr,=+1 as
Symmetry-breaking surfaces, like tti#00) surface, de-
stroy the two-sublattice symmetry. Surface segregation again piA: 1(1+ay), piB: 11-oy). (4

leads to an inhomogeneous concentration profile for

T=T,., which is now equivalent to aonvanishing OP pro- Then Eq.(3) takes the form of an Ising Hamiltonian,
file since adjacent lattice planes belong to different sublat-

tices. The OP profile decays on the scale of the bulk corre- 1

lation length, whichdivergesfor T— T, (Sec. Il A). Such a Hioi}=— Egj JiiUiUJ_Ei Hioi, (5)
persistence of surface order o= T has been confirmed in

recent experiments on Fe(60).*! where a spin-independent term has been dropped and
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J.=1(2~B EG\A_ E”BB), (5a) magnetization densities of the two sublattices vary in the
direction perpendicular to the surface. For th€0) surface
one may thus write
Hi=% 2 (&= i)+ 3(na=ps). (5b) o

i (#0) (o)=m, for ie lattice planen, (10
In the following we only consider NN interactior$*”, e*B,
and €B. Moreover, we do not allow for enhanced surface
interactions. For aB2-A2 order-disorder transition to exist,

where m,, is the magnetization density of lattice plane
Likewise one has, for thé110) orientation,

the Ising couplingd=(2€"B— e**— €BB)/4 must beantifer- m,, for ie planen, sublatticex,
romagnetic(J<<0). For semi-infinite systems wittlL00) or (o))= ' for i | blatti 11)
(110 surfaces the local fielbb) differs from its bulk value Mng for i planen, sublattice 5.
only in the first layer, It is convenient to introduce the reduced quantities
’ H+H; if ie surface, 5 4)J| H H,
""|H otherwise, ©) K kT h=M’ h1=M' (12
where Then the MF equations read, for tkE00) surface,
_ g BB AA 1 1 —1
H=Z(e" =) +3(kaus), (6a) anim=h-—my,_,—m,_, (13
¢ forn>1, and
Hy==2— (25— "), (6b) )
. —tanh 'my=h+h; —mj. (14)
Here, { and {; are the coordination numbers of bulk and K

surface spins, i.e{=8, while {;=4 and{;=6 for the(100
and (110 surface, respectively.

Some remarks about the role of the surface fié¢ldare in 1 My 15+ Mys 1
order here. The fiel#i, favors one component at the surface Rtanh‘lmn,a= h—m, ;— f (153
and thus accounts for surface segregafieee Sec.)l Be-
cause of different interaction energie®+ €28 it is nonzero 1
generically. More generallyti; also models other effects —tanh™*m, s=h—m, ,—
such as different sizes of the two constituents. For K
symmetry-preserving orientationb}; acts uniformly ona forn>1. and
and g sites at the surface and must not be confused with an ’
ordering (staggereflfield. For symmetry-breaking surfaces, 1
spins ona and 8 sites in the first two layers experience Ktanh‘1m1,a=h+ hy—myg—3myg, (163
differentfieldsH +H,; andH. HenceH, should contribute to
an “effective” staggered surface fielgh # 0. However, even 1
if H;=0 (but H#0) one obtains an inhomogenedscil- —tanhflmlﬂ: h+h;—m;,—im,.,,. (16b)
lating) magnetization profile equivalent to a nonzero local K ' ' '

order parameter, and an ordering surface fggleé-0 should  \ve now combine the magnetization densities of two neigh-

For the(110 orientation, one has

mr‘lfl,a+ mn+ 1«

> (15b)

again emerge in a coarse-grained description. boring planes into single points > and R*, respectively,
The MF or Bragg-Williams approximation is conve-
niently formulated in terms of a variational princigteThe v,=(m,_;,m,)", (17)
free-energy functional reads
W, E(m —1,a!m —l,ﬁlm ,avm ,ﬁ)T! (18)
Fueal(o)}=H{(0)} = TSueal(on)}, ) Lo e e
_ where “T” denotes the transpose. Then E@$3) and (15)
with the MF entropy are equivalent to the recursion equations
(o) =
Swral( o)} = —kg 2 J’ dx tanh™*x. (8 On+1=Flon), 19
i 0
- , , Wi+ 1= G(Wy), (20
Variation of Fyea{({c;)} yields the MF equations ) )
where the nonlinear mags andG are defined by
1
<Ui>:tam{kB_T Hﬁ; Jij<<fj>) : 9 y

X
: — B , (21
For a spatially homogeneous bulk system, the local magne- <Y) h—x— Rtanh ly

tizations(o;) are the same on each sublattice, and Egs.
and (9) simplify accordingly (Appendix A). Generally, the and
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X3 25 — T T T T T T
X1 Xya § 5l A2 phase
X2 2 =
G: —| 2h—x;—2x3— —tanhi Ix, | . (22 S 15 ¢
X3 K <
I
X 2 o1 B2 phase
N 2h—X,— 2x,— —tanh 1x3 ~
K 05}
One advantage of rewriting the MF equations in terms of the 0 L L .
discrete dynamicg19) and (20) is that one may gain an 3 2 4 0 1 2 3
overview ofall solutions by iterating arbitrary starting points h = H/(4]J))
v, andw;. In this way one obtains trajectories,v,, . . .
and w; ,W,, ... in a two-dimensiona(2D) and 4D phase FIG. 2. MF phase diagram of the NN Ising antiferromagnet on a

space, respectively. The mapsandG are bothsymplectic ~ bcc lattice, showing a line of continuous transitions between the
i.e., their differential<DF andDG are symplectic matrices, disordered A2) and the ordered82) phase.

and thus generate a discrétamiltonian dynamics on these

phase spaces. Note that any symplectic map is volume pre- G 1=%G-S, (31
serving, in particular. The theory of nonlinear dynamics of- h

fers convenient tools to understand the discrete dynamicvsv ere

generated by such maps. R: T, T 32
The MF equationg14) and (16) take the same form as (y) =X (32

Egs. (13) and (15) if fictitious zeroth layer magnetizations S (X1 X Xa Xa) T (Xa X1 Xx Xo) T 33
mo=—h; andm,=mq 5= — 2h; are introduced, i.e., (X0 X2, X3:Xe) = (X, Xa X X2). 33
v,=F(vy), (23 1. ANALYSIS OF NONLINEAR MAPS

A. Linearized MF equations and length scales

, N The bulk MF equation$Eqgs. (A2) of Appendix A] are
wherev, andw, satisfy the boundary conditions equivalent to the fixed point equations of the nonlinear maps
v=(—hy,m)T (25) G andF?=F-F, the second iterate ¢f. For T#T,, linear-
! L ization of the maps about the fixed points yields the
(26) asymptotic(exponentigl decay of the sublattice magnetiza-
tion profiles away from the surface. The decay lengths can be
Moreover we require that the sublattice magnetization denexpressed by the eigenvalues of the linearized maps. In the

Wo=G(Wy), (24)

Wl: ( - Zhl y Zhl,ml'a ,mlﬁ)T.

sities approach their bulk values for-oo, case of thg100 surface onlyonelength scale, proportional
to the OP correlation length, governs the decay of both the
Mon—1— Mg,  Mzp—Mpg, (270 sublattice magnetization and the OP profiles. An additional
length scale associated with the decay of the segregation pro-
m, ,—My, My g—Mg, (28 file appears for th€110) orientation, Within MF theory, this

decay remains exponential evenTat T (cf. Sec. ).

An analysis of the bulk MF equations is straightforward
and may be found in Appendix A. The critical coupliikg
=(4]3])/(kgT.) as a function of the uniform bulk field is
S‘determined by

wherem, ,m; are the solutions of the bulk MF equations
[Egs.(A2)]. As will be discussed in the next section, the bulk
solutions correspond to fixed points of the mapand G.
Then Egs(27) and(28) imply that the trajectories converge
to these fixed points. The task of solving the MF equation
for the semi-infinite systenffor given values ofK, h, and
h;) thus translates into finding the intersections of skeble —
manifold of the corresponding fixed point with the surface 2K¢(h)
boundary condition$25) and (26) (see Sec. Il B. wherem,=mc(h) is the uniform magnetization &=T,.

We finally quote an importargymmetry propertyf the  ysing Eq.(A7) to eliminatem, in favor of K, andh in Eq.
above maps. The MF equatiofts3) and(15) are symmetric  (34) ‘one obtains an expression for the critical lifiég. 2.%°
with respect to interchanging the layer magnetizations of the  The pylk sublattice magnetization densities may be writ-

=1-me(h)?, (34)

planesn—1 andn+1. Thus one has ten
m m - -
F( n+1) :( n ) 29 m,=m+¢, mg=m-—a, (35
My Mh-1

wherem and ¢ are the mean magnetization and the OP,
and an analogous relation f@. It follows that both maps respectively. In the region of the phase diagram where the
are invertible and that their inversés * andG ! are given A2 phase is thermodynamically stable, the bulk MF equa-
by tions have a unique solutid@ppendix A

F 1=RoF°R, (30 m=mg{K,h), #=0. (36)
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FIG. 3. Temperature dependence of the bulk mean magnetiza- Adis A
tion density at fixed magnetic field. BeloW., the disordered state / jord\ jord  pord ﬂ Aord\ pord
(dashed lingbecomes thermodynamically unstable. LR - S et

\// fen A?\Q e
)\<2:h Acziis

Thus the only fixed points df? andG in this case are
(37
(38)

_ T
Ugis= (Mgis, Mis) '

_ T
Wais= (Myis » Mais s Mis s Meis) * -

is

FIG. 4. Behavior of the eigenvalué44) and (46) in the com-
plex plane as one crosses the critical liiwé Fig. 2. The super-
scripts “dis” and “ord” indicate the linearizations about the fixed

The solution(36) becomes thermodynamically unstable onpoints of the disordered and ordered phase, respectively.

crossing the critical linéFig. 3). At the same time, two new

solutions describing the pu®2 phases emerge,

m=mg(K,h),  ¢==ep(K,h)#0, (39
corresponding to the fixed points

Vgra= (Mora™ b\ Morg™ ) (40

Wé'r?i: (Morg™ dp ,Morg™ Pp s Morg™ G, Morg+ ¢b)T- 1)

41

Note that the fixed points’ 4, v2,4 form a two cycle of the
mapF,

F(vtl)rd) = vgrd’ F(vgrd) = vérd' (42)
Defining the reduced temperaturdy
T-T, K=K

- T, K “3)

the OP vanishes g§/# for t—0—, with the usual MF expo-
nentB=1/2[Eq. (A10)]. The mean magnetization density

is a “nonordering” (or noncritica) density. Such quantities

typically couple to the energy densigy which thus controls

whereu, andug are defined by Eq(A3). SinceF is sym-
plectic and thus area preservi(8ec. I), one has\;\,=1.
Likewise, the eigenvalues of the linearization®faboutwy;
or w3 are

A= =142\ U ug=2VUUg— VU,Ug,
Ag=—1—2\uug=2VU,Ug+ VU,Ug,

with the corresponding eigenvectors

ua ua T
Lio=|1- u_BAl,z_ u_BAl,Z )
ull ua T
Lss=|1 U_BA3,4 U_BA3,4 .

Since G is symplectic, the eigenvalues come in pairs; (
Ay) and (As, A,) with A;A,=A3A,=1. Repeated appli-
cation of the linearized map to, , generates eigensolutions
with opposite sublattice magnetization densities within each

(469

(46b)

(479

(470

their leading critical behavior. Since the scaling dimension ofayer. Thereforel, , represent “ordering” eigenmodes. The

£is wg=(1—a)/v (as compared te,=B/v of the OB,*°
they exhibit thermal singularities of the forjt}* ~*, wherea

eigensolutions generated Iy , show an oscillating profile
of the magnetization density becausg,<0. However, the

andv are standard bulk critical exponents. In MF theory thislocal magnetization is the same falt sites in a given lattice
behavior reduces to a discontinuity in the first temperaturglane parallel to the surface. Hence the OP profile vanishes

derivative sincex=0 [see Eqs(A8) and(A9)].
The linearization o2 about any of the fixed points
andvl3 has the eigenvalues

Nio=—1+2u,Uug*2\u,Ug U ug—1 (44
and the associated eigenvectors
1+Ng0 "

and one may refer tb; 4 as “nonordering” eigenmodes.

The behavior of the eigenvalues in the complex plane as
one crosses the critical line is shown schematically in Fig. 4.
The eigenvalues ;, A, collide at+1 and form a complex
conjugate pair on the unit circle in the ordered phase. Thus
the character of the fixed poimt;s changes from hyperbolic
to elliptic. At the same time, two new real eigenvalues cor-
responding to the hyperbolic fixed poimsé'rﬁ emerge.
Within the notions of nonlinear dynamics, the mapnder-
goes a period-doubling bifurcation. The eigenvaliesA ,
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of the 4D mapG show an analogous behavior. However, the
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Likewise, the magnetization profiles for tii#&10) orien-

fixed pointwgs remains unstable in the ordered phase sinceéation are

A3, A, stay real.

The solutions of the linearized MF equations satisfying

the bulk boundary condition®7) and (28) read

Uon1= Uy +a2)\r21|2, (48)

Wi 1= Wy +A2A2L2+A3Agl_3, (49)

wherev, andw, stand for one of the fixed point87),(38)
and (40),(41). The coefficientsa,, A,, and A5 are fixed by
the surface boundary conditio25) and (26).

Thus for the(100) orientation we obtain

Mon 1 =M, +ae (21T D/E (509
My, =mg—be 2%, (50b)
with the decay length
€=2[Inx,| 7, (51)
and the amplitudes
a=(h;+mg) \/?, b=h;+mg. (52

a

In the disordered phase, the amplitudes simplify to

a=b=h1+ Myis - (52,)
We define the local O, by
1 n

d’nE E(_l) (mn+1_mn)v (53)

where the power of- 1 ensures that one always subtracts the

magnetization densities ¢ planes from those af planes'’
Equations(50) imply a nonvanishing OP profile, which de-
cays on the scale of. In fact, ¢ may be identified, up to a
proportionality factor, with the bulk OP correlation length.
To see this, one expandg,ug in Eq. (44) in powers oft
using Eqs(A8)—(A9). This gives

£= £. |t 21 1), (54
where
_ h)= .
(544
1
L (54b)

§.=¢(h)= \/§§+(h)-

The decay length displays|d ™" singularity just as the bulk
correlation length, with the MF exponent= 1/2. Asymptoti-

My o= My+Ae V¢ +(—1)"Re e, (559
M, s=ms—Be "¢ +(~1)"Be ¢, (55D
where nowtwo length scales appear,
£ =|InA,| "1, E=|In|A4]| "L (56)
The amplitudes are given by
I L P R L
A= (1 ™ h, 5| Ma uamﬁ , (573
Am— 14 72|y 2| mat /2 57b
- u, 1 2 mg uamﬁ ) ( )
fu, ~ Uy
B=+\/—A, B=1\/—A. (570
Ug Ug
In the disordered phase aboVg, they simplify to
A=B=0, A=B=-2h;—mg;. (57)
In particular, the OP profile
¢nE%(mn,a_mn,B) (58)

vanishes folT=T;, which is a consequence of the symme-
try of the (110 surface with respect to the two sublattices
and the fact that neither enhanced surface couplings nor a

staggered surface field are present. Asymptoticallyand €
behave as

§'=i§+|tl*1’2+ o(t) (59
\/E - 1
E=[In(3—2+2)| "+ 0(1), (60)

with £, given in Eq.(54) and|In(3—2y2)| *=0.57. The
length ¢’ associated with the ordering eigenmodes diverges
ast— 0 and may again be identified with the bulk correlation

length!® whereas¢ stays on the order of the lattice constant.

As will be seen in the next sectiod, describegwithin MF
theory) the decay of the mean magnetization profile Tor
=T,.

Note that for both surface orientations the layer magneti-
zations oscillate aboutys for T>T, due to the antiferro-
magnetic coupling between adjacent lattice planes. However,
only in the case of thél00) orientation does this oscillating
profile lead to a nonvanishing OP profile whose characteris-
tic length scale diverges as-»0+. In view of the presumed
absence of enhanced surface couplings, such a behavior
should be due to an “effective’brdering surface field g

cally, £ should thus be proportional to the correlation length.= g, (K, h,h;). Away from T, and in the disordered phase,

Indeed, one hag, (h)/¢_(h)=+/2, which is the MF value

such a field generates a linear response of the local OP which

of the universal amplitude ratio of the correlation lengthsdecays exponentially into the bulk. A glance at E&®) and

above and belowl.'8 As t—0, the exponential decay of

(52) leads us to anticipate the form

the OP profile becomes a power law, whose precise form

will be investigated in Sec. IV.

91(K,h,hy)=h; +mg(K,h). (62)
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1.5 K =0.530, h=1, hy =04
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1t 0.6 | o My, n odd 1
0.5 05 L o x My, N even 4
E; 0 04+ ° . o order parameter ¢, |
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FIG. 5. Stable and unstable manifolds of the hyperbolic fixed lattice plane n

pointvys. The direction of the flow under iteration of the mBgs
indicated by arrows. The dashed line represents the boundary con- FIG. 6. Magnetization and OP profiles for th#&00 surface
dition for h;=0.4. aboveT,, as obtained from the intersecti®of Fig. 5. Planes with
odd and even index belong to sublatticex (<¢) and B8 (X),

We will derive a formula forg, identical with the above respectively. Note tham, oscillates about the bulk valumys
expression in Sec. IV, when we map the lattice model onto 4dashed ling
continuum theory. There it will become clear thwt is in-
deed a surface field coupling to the local OP that enters intave obtain a nonvanishing order parameter profile at any tem-
a coarse-grainetGinzburg-Landalfree-energy functional. peratureT>T_.. This conforms with the idea that the OP
profile is due to an ordering surface field.

An exceptional case occurs if the boundary condition ex-
) ) actly hits the fixed poinvgs, so thatm,=mys and ¢,=0.

Th_e thermodynamically stable _sol_utlons (_)f the bulk MF However, except in the case=h,=0, this can only be
eguanons correspond to hyperbolic fixed points .of the mapghieved for a special temperatifie T, (at fixedh andh;).
F< andG (cf. Sec. lll A). The stablgunstable manifold W For T#T, the OP profile is still nonzero.
(W,) of a hyperbolic fixed point consists of all points that
converge to the fixed point under iteratiqn of the map . 2. (110) surface, BT,
verse map In order to solve the MF equations for the semi-
infinite system one must determine the intersections of the As we have seen in Sec. |, this type of surface is symme-
stable manifolds with the linear subspaces defined by th#Y preserving and the Hamiltonig®) is exactly symmetric
surface boundary conditiong5) and (25), i.e., the line With respect to interchanging and g sites. Since we pre-
{(=hy,x)T|xeR} and the hyperplane{(—2h;,—2h;, cluded the possibility of supercritically enhanced surface
x,¥)T|x,y € R}. The magnetization densities of the first layer bonds, a spontaneous breakdown of this symmetry is ruled
can be read off from the intersection points,= out for T=T.. Therefore, the solutions that minimize the
(—hy,my)7T andW1=(—2h1,—2h1-m1,a,ml,ﬁ)T- The com- free energy in this temperature regime fulfifi, ,=m;, 4
plete magnetization profile follows from the trajectories=M,, and G acts in a 2D subset{(x,x,y,y)"|x
passing through, andw,.2° Below T,, infinitely many in- € R,|y|<1} of R*. The picture of the invariant manifolds
tersections exist and one has to resort to the original varid00ks similar to Fig. 5. The magnetization profile at the bulk
tional principle to find the equilibrium profile minimizing the critical pointK=K(h) (for h=1) is depicted in Fig. 7. As

B. Solutions of the nonlinear recursive maps

free-energy functional?). in the case of th€100 orientation, the layer magnetization
densities oscillate about the bulk valog;s due to the anti-
1. (100) surface, BT, ferromagnetic coupling between neighboring planes. Within

MF theory, the decay length remains on the order of the
lattice constant even &= T, (cf. Sec. lll A). The numerical

. _ T .
well as ofF) is vgis= (Mais, Mais [Eq.(37)].. Figure 5 shows profile decays exponentially on a length scale that agrees
a plot of the invariant manifolds for particular values Kf well with the value(60).

and h. Figure 6 depicts the magnetization and OP profiles
obtained from the intersection with the boundary condition
for h;=0.4. SinceReF =F ~ 1R [cf. Eq.(30)], the stable and
unstable manifolds are mapped onto each other under reflec- On crossing the critical line in the MF phase diagram
tion at the linex=y. (Fig. 2), the mapF undergoes a period-doubling bifurcation
The picture of the invariant manifolds does not change(Sec. Il A), and the picture of the invariant manifolds
qualitatively as one varies the parametérandh. From the  changes qualitatively. The fixed point;s becomes elliptic
eigenvectorl, [Eq. (45)] one infers that the slope of the and looses any stable and unstable manifolds. The stable
stable manifold abys vanishes in the high-temperature limit (unstable manifold of any one of the hyperbolic fixed points
(K—0), whereas it approachesl for KTK; (T|T,). vl? cannot intersect itself but will generically intersect the
The upshot is that we find a unique intersection of theunstable(stable manifolds of the same fixed point, as well
boundary condition with the stable manifold. In particular, as the unstabléstablg manifolds of all other fixed points, at

In the disordered phase, the only fixed pointFef (as

3. (100) surface, kT,



nomenon of “chaotic entanglement® As a consequence,

infinitely many solutions of the lattice MF equations for the
semi-infinite system exist, and one has to resort to the origi-
nal variational principlécf. Sec. I) in order to decide which
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FIG. 7. Magnetization profile aT=T, for the (110 surface. )
The dashed line represents the bulk valyg,. The semilog plot of g
the inset demonstrates the exponential decay of the profile. The Z 02+
straight line has slopé ~* [Eq. ( 60)]. Thus the decay length agrees g 0
well with the value obtained from the linearized MF equations. ; 02|
o - i 5 04
an infinite number of so-called homoclinic and heteroclinic 06 |
points!® The invariant manifolds oscillate wildly in the vi- e
cinity of the fixed pointscf. Fig. 8), giving rise to the phe- -0.8

lattice plane n

FIG. 9. (a) OP profiles belowT, for the (100 surface. The
corresponding trajectories converge to the fixed pom; [cf. Fig.

solution corresponds to the true equilibrium profile. The8(b)]. The middle profile fi;=0.39) belongs to the intersecti& .

stable and unstable manifolté, andW, of v’,, andv?,, are

(b) OP profiles describing an antiphase boundary. The trajectories

converge ta)ﬁrd. The leftmost profile belongs to the intersect®n
(a) the next one tadS,, etc. [Fig. 8b)]. An infinite number of such

-0.38 -0.36

My

-0.4 -0.34

FIG. 8. (a) Part of the stable manifold of the fixed poin,.
The inset shows the first few loops in the vicinityag,y. (b) Mag-
nification of the region marked in the inset ). The dashed-
dotted line is the boundary condition fbg=0.39, which intersects
the stable manifold at an infinite number of poits S,, . ... The
latter accumulate at the poir®, on the stable manifold ob2,
(dashed ling

W, (059 = FeR(Wq(v29),

Wq(v2,9) = F(Wy(v} o),

W, (02,9 = R(W(v29).

solutions exists, the first ten of which are shown here.

determined uniquely given only one of them, swg(ug,d).
In fact, from the symmetry propert{30) one concludes that

(629
(62b)

(620

Typical minimum-free-energy profiles are shown in Fig.
9(a). The corresponding trajectories converge to the fixed
point vérd describing the bulk phasé,>0. If one imposes
the bulk boundary conditio,— — ¢,<0 (n—), so that
the solutions converge 24, one obtains OP profiles ex-
hibiting anantiphase boundary.e., an interface between the
two phasest ¢, [Fig. Ab)]. These solutions always yield a
higher free energy than the profiles of FigaP For the
chosen parameter values, the free energy of the profiles is
found toincreaseas the position of the interface moves into
the bulk, so that the leftmost profile represents the equilib-
rium solution for this type of boundary conditions. By anal-
ogy with wetting phenomer,we may say that the surface
is “nonwet,” i.e., the interface has a finitémicroscopi¢
distance from the surface. Itf; is increased, so that the “ef-
fective” ordering surface fieldy,; favoring the bulk phase
¢,>0 becomes strong enough, the free energy of the pro-
files eventuallydecreasesnd the surface is “wet'[e.g., in
the situation depicted in Fig(B) this happens if one chooses
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h,=0.4] In Ref. 22 the wetting phase diagram in the spacerivative terms in the free-energy functiorfabuch terms ren-
of thermodynamic parameteks h, andh, is calculated us- der the functional unbounded from below and thus preclude

ing the continuum model derived in the next section. it from serving as a Landau-Ginzburg-Wilson Hamiltonian
of a field theory.
IV. GINZBURG-LANDAU THEORY To avoid these difficulties, we adopt an alternate defini-

] ) o . N _ tion of the local OP treating theavo neighboring layers of
In this section, the aim is to derive and critically examine|attice planen on an equal footing:

a Ginzburg-Landau model for the semi-infinite alloy with a

(100 surface. In _par'ucular, we want to show tha_t the loss of bo=1(—1)"L(my_y+my ) —m,]. (64)

the a«+ B sublattice symmetrycf. Sec. ) leads, in a con-

tinuum description, to aymmetry-breaking boundary condi- This definition complies with space-inversion symmetry and

tion for the OP profile(2), coincides with Eq(53) in the bulk of the system.
L Substitutingm,,, ; +m,_4 from Eq.(13) into Eq. (64) we
- g btai
$(0)=1 (0~ ¢, 63 A
$n=(—1)""te(my), (65

wherez=0 corresponds to the surface plame=(1) and the
dot denotes differentiation with respectzoSuch a bound- Where the function

ary condition is familiar frorTr}r the phenomenological theory h x 1

of surface critical phenomenaThe parameteC>0 is the AT R |

coefficient of the gradient term of the Ginzburg-Landau o= 4+ 2+ 4Ktanh X (66)
functional. Theextrapolation lengthx should be positive
owing to the absence of enhanced surface bonds. Thus t
persistence of surface order foe T, originates solely from

ﬁ% strictly monotonic and thus invertible. We denote the in-
verse ofp by M, so that from Eq(65)

th_e “effective” ordering surf_ace field g# 0. We will deter- my=M((—1)"1e,). (65)
mine the dependence a;=g,(K,h,h;) on the reduced
coupling constanK and the fieldsh andh;. The continuum limit of the lattice MF equatio$3) leads to

No such ordering surface field emerges in the case of ththe Ginzburg-Landau equatidAppendix B,
symmetry-preservingl10 surface. However, the Ginzburg- )
Landau free energy now becomes a functionaboth the Coh=4¢+2M(—¢p)—2M(¢), (67)

spatially varying ORandthe segregation profile, which plays whereC=M'(0) [Eq. (B4a)]. The MF equation at the sur-

the same role as the energy densitf; Sec. ).° : . .
Upon approaching the bulk critical point in the presenceface(14) entails the boundary conditidgppendix Q,

of an ordering surface field,# 0, the semi-infinite system .
undergoes th@ormal transition, which exhibits critical sin- Cé(0)=—hy=M(=(0)). (68)
gularities that are distinct from those of tbedinary transi- For a Spatia”y homogeneous system, W) is identical to
tion. The latter occurs ng]_ZO and subcritical surface en- the equation for the OP f0||owing from the bulk MF equa-
hancementX>0) 2% In order to confirm that the continuum tions (A2'). In fact, Eq.(A2’) can be written as

theory derived in Sec. IVA correctly describes the

asymptotic critical behavior of the lattice model, we shall d=eo(M+¢), —d=¢p(Mm—4¢). (69
draw a detailed numerical comparison with the solutions of , . . .
the lattice MF equations and clearly identify the singular©OPerating withAM on both sides of the above equations and
behavior of the normal transition for generic valueaind ~ eliminatingm, one arrives at Eq67) with ¢=0.

h, (Sec. IVB. By tuning h and h;, one can achieve that =~ We denote the bulk Landau free-energy density by
g;=0 atT=T,. Then the singularities of the ordinary tran- fo(Ma.Mp) [Eq. (A1)]. Since

sition are recovered, although the OP at the surface is non-

zero forT>T, because ofj; #0 for T#T, (Sec. IV O. Iafp(My,Mp) =2¢(M,) — (Mg —Mpg), (709

A. Derivation of continuum model 9pfp(Ma,Mg) =2¢(Mg) + (M, —Mp), (70b)

One has to be careful to define the local @Rin sucha \yhereg = é u=a,B, Eqs.(67) and(68) can be rewrit-
way that thespace-inversion symmetmyf the lattice MF #ooomy’ "

equationg(13) survives the continuum limit. If the magneti- t€n as

zation profilem,, n=1,2, .. ., is asolution of Eq.(13), so is . ,

the profilem,=m_,,.», n=1,0—1, . .. ,obtained by reflec- Co=V'(4), (67)
tion at the surface plarme= 1. If the definition of¢,, respects .

this symmetry, the differential equation for the continuum Co(0)="f(¢), (68)
profile ¢(z) should be invariant undef(z) — ¢(—z). How-
ever, the definitior{53) distinguishes one direction along the
[100] axis and violates space-inversion symmetry explicitly. V() =3[ M(d)— M(— ¢)— 212+ Fo(M( ), M(— b))
As a consequence, first-order derivativesgdlz) appear in

the Ginzburg-Landau equations, correspondingriear de- — fp(M(0), M(0)), (71

where
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fo(@)=—[h1+ M(— ) ]p+ 7 Tp(M(— ), M(—¢))
— 3 fp(M(0),M(0)). (72

Thus the Ginzburg-Landau equatio(®/7) and (68) follow
from the variation of the free-energy functional,

» |C.
A= [ a2 5674V 100, 73
Expansion olV(¢) yields the usualp? form,
A B
V(§)=5 ¢*+ 7 ¢*+0(4°), (74

with A=4(1-M,) andB=—-4Mj, whereM; andM; are
defined in Eqs(B4a) and (B4b). With the aid of Eq.(A8),
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FIG. 10. Scaling of the critical OP profilé,, [defined by Eg.
(64)]. The expected power law decay has been factored out, with
the parameten fitted optimally. The dashed line is the prediction

the leading temperature dependence of the Landau coeffiz7y of the continuum theory.

cients is found to be

A=At+0O(t?), (749
B=By+ O(t), (74b
C=1+0(1). (740

where

A1=Aq(h)=2{1-K(h)m(h)[h—2m.(h)]}, (758

Bo=Bo(h)=3K.(h)?. (750
Likewise, the Landau expansion &f( ¢) reads
C
f($)= =016+ 5 ¢°+0(7), (76
where
gl(K!h!hl):hl+mdiS(K!h)a (763
A=1. (76b)

Thus we obtain gositiveextrapolation lengthx and an or-
dering surface fieldy, # 0, as anticipated above.

B. Comparison with lattice MF theory:
Generic (nonideal) stoichiometry

If h andh, take generic valuegonideal bulk and surface

stoichiometry, g,=94(K,h,h;) is nonzero atT=T. and

gives rise to an OP profile decaying according to a power

law. Fort=0, Eq.(67') becomes

$=Bye>. 77)

The neglected higher powers ob do not affect the
asymptotic behavior ofb(z) asz—o. The solution of Eq.
(77) satisfying¢(z) —0 asz— reads

P
$D)=5 (773
with the amplitude
2 V3
Po(h)== Bo(h):iZKC(h)' (77b

The signs refer to positive and negatiyg respectively. The
integration constard, follows by inserting Eq(773 into the
boundary conditioni68). An algebraic decayb(z) ~z ¢ of

the OP profile af =T, wherex,=g/v is the scaling di-
mension of the OP, is characteristic of the normal transition.
Within MF theory one hag=v=1/2, so thax,=1.

In order to check whether the lattice MF profiles exhibit
the above power-law decay with the predicted valideb)
for the amplitude, we used the “nonlinear-mapping repre-
sentation” of the lattice MF equatioriSec. lll) to determine
the profiles numerically up te=1000 layers from the sur-
face. Figure 10 demonstrates that the power law decay is
well reproduced. The amplitude extracted from the numeri-
cal fits is in perfect agreement with E¢z7b for a wide
range of the bulk fieldh (Fig. 11).

As a second test of the validity of our continuum model
we investigate the temperature singularity of the surface OP.
We multiply the Ginzburg-Landau equati¢?’) by ¢ and
perform the integral fronz=0 to z= on both sides using
the boundary condition&8') and ¢(z) —0 asz—o. This
gives

(78

C
~ S T2+ V()= V.,

amplitude Py

1.1 : : ' '
0 04 08 12 16 2

magnetic field h

FIG. 11. Amplitude of the critical OP profile as a function of the
bulk field h. The data obtained from the solution of the lattice MF
equations [d) agree well with the predictior77b of the con-
tinuum model(full line).
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FIG. 12. Temperature dependence of the surfacefQfr ge- FIG. 13. Temperature dependence of the surface OP in the case

neric values oh, h;, in the immediate vicinity of the critical tem- \ynere the effective ordering surface fiedg vanishes aff=T,.
perature. The results of the lattice MF theofy)( agree well with  The discontinuity in the first temperature derivative predicted by the
the prediction of the continuum modgdolid line). continuum model(full line) is well confirmed by the numerical

solutions of the lattice MF equation&l().
where ¢,= ¢(0) andV.=V(¢p). One has

0 >0 b= L.t +less singular terms, (82)
V.= AL, 5 (79 with ) # ¢S . The ordering surface field76a can be
~2g,L TO), =0 expanded as
Expanding the coefficients on both sides of the surface equa- 01(K,h,h)=g%(h,hy) +gP(Mt+0O(t?), (83

tion of state(78) in powers oft, one recognizes thab,
exhibits a discontinuity in the second temperature derivativavhere g{®’(h,h;)=h;+m¢(h)=0 owing to Eq.(81) and

due to the nonanalyticity o¢.. att=0, g (h)=m{(h) [Eq. (A8)]. Insertion into Eq(78) yields,
o= ¢+ ¢+ G2 ..., (80 to leading order irt,

with ¢) # ¢Z) . This result complies with the general form 0, t=0,

of the leading|t|2~ ¢ singularity of the surface OP at the (—gP+ ¢l )2=1 AZ (84)

normal and extraordinary transitioffs. - 5 =0

Figure 12 shows a comparison with the solutions of the 0

lattice MF equations. While the singularity in the secondTherefore one concludes tRat

temperature derivative is too weak to be detected without

considerable numerical effort, the data are fully consistent A,

with the continuity of the first temperature derivative tat =g, o =gi"- B (85)
0

=0 and agree well with the predictions of the continuum
theory. The continuity of the first temperature derivative of e discontinuity ofés in the first temperature derivative

¢s is incompatible with the ordinary transition and confirms yitfers strikingly from the singularity in the second deriva-
again that the asymptotic critical behavior falls into the uni-e for generic values o, h; (Sec. IV B). This result is in

versality class of the normal transition. excellent agreement with the numerical solutions of the lat-
tice MF equationgFig. 13. As will be shown below, such a
C. Comparison with lattice MF theory: behavior is precisely what one expects if the leading
Vanishing ordering surface field atT=T, asymptotic behavior belongs to the universality class of the
According to Eq.(76a, g, can be made to vanish at ~ ordinary transition. The variation of the effective ordering
=T, by choosingh; such that surface fieldg, with temperaturdcf. Eq. (83)] explains the
onset of surface order far>0 (see below.
h;=—m.(h). (81 Let us elucidate the above behavior of the surfacegQP

If h=h,=0 (ideal bulk and surface stoichiomelyyg;=0 by resorting to a scaling argument. The basic assumption is

for all temperatures, and the system clearly displays ordinar§'® €xistence of a scaling field, = g,(K,h,h,) associated
surface critical behavior. fi#0 and Eq(81) is fulfiled, g, ~ With ¢s and depending analytically oK, h, and h;. Of
varies linearly witht ast—0. In particular,the surface OP course,g; will in general differ from the MF expression
&< is nonzero for BT, and vanishes only in the limit (768. By analogy with Eq(83) we write
t—0=. One may wonder whether such a behavior is consis-
tent with the ordinary transition where one usually expects 91(K,h,hy)=g'2(h,h))+ g P (h,h)t+O(t?). (86)
that =0 for T=T,. _

To derive the leading temperature singularity¢af con-  We suppose thag{”(h,h,) vanishes ith andh, are chosen
sider again Eq(78). Since ¢,=0 if t=0, ¢, is found to  appropriately. This should always be possible sirkeis
behave asymptotically as positive for large positivéh;, and becomes negative if one
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letsh;— —o, assumindh andt to be fixed. Thus for giveh
andt=0, ¢ must vanish for a special value bf, in which
case one clearly hag!{®=0. _

The singular part of the surface free enerfg@ should
take the standard scaling fofm
_A1~

FE"t,g0) =M@t @ D gL (Mg M “ig,t] ),
(87)

whereA ;=0.48. All nonuniversality is embodied in the met-

ric factorsM; andMgl associated with the two relevant scal-

ing fields (at the ordinary transitiont and g;, while the
critical exponents and the scaling functiogs({) are uni-
versal The singular part oty follows by taking the deriva-

tive with respect tag, i.e.,

bs— V= MIMg [t1FrY.(MT4|t]41),  (88)

where Y. =g’ , MEMalM;Al, and 8;=(d—1)r—A;.
The regular contributions{®® describes, to leading order,
the linear response ab,

9= yg,+0(gd). (89)

The importance of such regular terms for the correct ident
fication of surface critical exponents and scaling function
has been emphasized in Ref. 26. The scaling function
Y. ({) are analytic ag=0,

Y () =YPi+0(£?),

Y_(0)=YO+YDr+0(72).

(909
(90b)
Using Eq.(86) with g{®’=0, Eqs.(88)—(90) yield

bs=M{IMG, [tAY (ML 40+ ygiPt+O(12),
(93)
where terms of ordet®|t| "21, p=2,3, ... ,have been omit-

ted in the argument of ..(¢). Thus the leading behavior as
t—0 becomes

pa t+ MM MY P s >0,

d) ~
* | MPmg YO, <o,
1

(92

where we used the scaling relatieny,; ;= 8;—A;. Since
v1,<0 at the ordinary transition ¢ varies linearly witht

as t—0+, but vanishes with the characteristic exponent

B1=0.8 of theordinary transition as—0—. In MF theory,
B1=1 and the power singularity far—0— degenerates into
an integer power, see Eq82) and(85). That the asymptotic
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transition in the bulk. Clear evidence has been found that
symmetry-breaking surfaces, such as th80 surface, ge-
nerically display the critical behavior of theormal transi-
tion, which belongs to the same universality class as the
extraordinary transition. We have analyzed the lattice MF
equations using the “nonlinear-mapping” representation and
achieved a mapping onto a continuui@inzburg-Landay
model. The latter assumes the form of the standard one-
componenté* model for semi-infinite systems. Its crucial
feature is the emergence of an “effectivetdering surface
field g;#0, which depends on temperature and the other
parameters of the lattice model and is not present on a mi-
croscopic level. By a detailed comparison with the solutions
of the lattice MF equations the continuum model has been
shown to accurately describe the asymptotic behavior of the
lattice model.

In the case of the symmetry-preservifidlO surface the
appearance of an ordering surface field is ruled out by sym-
metry, and the surface critical behavior is characteristic of
the ordinary transition(in the absence of suitably enhanced
surface interactions Analysis of the lattice MF equations
shows the existence of an additional length scale different
from the OP correlation length, which aboVgdescribes the
decay of the nonzero magnetizatir segregationprofile.
Within MF theory the decay is exponential evenTat T..

ore generally, inspection of the corresponding Ginzburg-

Sg/landau free-energy functional, whose derivation is deferred

fo a subsequent pap&reveals that the segregation profile
plays the same role as the energy densitywhich decays
according to a power law~z “¢ at T=T., where
we=(1—a)/v is the scaling dimension &f.1°
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APPENDIX A: BULK MF EQUATIONS

For a spatially homogeneous system with sublattice mag-
netization densitiesn, andmg, the variational free energy
(7) yields the Landau free-energy density,

fp(m,,mg)= A MaMs 5 (My+mpg)

1 m, mg
+— f dxtanh*1x+J' dx tanh x|,
2K 0 0

(A1)

behavior of the ordinary transition can be obtained by tuni”g/vhereN is the number of lattice sites. The MF equations
h andh; has also been demonstrated by transfer matrix cal- '

culations in two dimensior, which supplement the results
of Ref. 8.
V. SUMMARY

We have studied the surface critical behavior of bcc bi-
nary alloys undergoing a continuo2-A2 order-disorder

&abeO, &bezo, (A2a)
whered,=dlom,, u=ea,B, read

tanh *m,=K(h—2mp), (A2b)

tanh *mg=K(h—2m,). (A2¢)
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For the following it is useful to define

u,=u(m,), Uug=u(mg), (A3)

where

1
ux)==—

2K 12’ (A4)

A solution (m,,mg) of (A2) minimizesf, and is thus ther-
modynamically stable if the matrix

Iofy  9adpfy) (U, 1
(3af9/3fb f?,Zr;fb ):( 1 UB) (45)
is positive definite, i.e.,
UgUug>1. (AB)

If one writesm,=m-+ ¢ andmz=m— ¢ as in Eq.(35), the
MF equationgA2) take the form

tanh }(m+ ¢)=K(h—2m)+2K ¢, (A2b)
tanh Y(m—¢)=K(h—2m)— 2K ¢. (A2c')

The disordered statarn(=mys, ¢=0) satisfies
tanhﬁlmdis: K(h—2mdis). (A?)

This equation has a unique solutians= Mgy K,h), which

may be expanded in powers of the reduced temperdture

=(K.—K)/K as

Mgis= M+ Mt + O(t?), (A8)

wherem;=m(h) is the magnetization ak=T., and

h—2m.(h)

1) _ (D))=
miid =md(h) = — 4

(A8a)

The disordered state is thermodynamically stable only if
u(mgi) >1 [cf. Eq. (A6)]. The phase transition occurs when

u(mgg) =1 [cf. Eq.(34)]. Two new minima off, describing
the ordered phases mEmgy,¢d==+¢,) emerge if

u(mge <1. The asymptotic behavior following from Eq.

(A2") is found to be

Morg=Mc+ Mit+ O(2), (A9)

b= dolt|?+ O(|t]¥?), (A10)

where

mi=miR(h) =mG(h) + K (hyme(h) go(h)?,
(A9a)

3
$o=o(h) = 2Kgh)¢1—Kc<h>mc<h>[h—2mc(h>].

(A10a)

APPENDIX B: GINZBURG-LANDAU EQUATION

Using Eqs.(65) and(65'), we may rewrite the MF equa-
tions (13) as

M(=1)"pn-1)+ M(=1)"¢n41)

=2M((=1)"" ) +4(—1)",. (B1)

In the continuum limit, one replaces, by a smooth profile
#(2) defined for allz=0, with the original layers located at
z,=n—1. Assuming that the OP varies slowly on the scale
of the layer spacing, we approximate

M((_ 1)n¢n—1)+M((_1)n¢n+l)
=2M((—1)"(zn))+(—1)" M’ (0) $(zy),

where the dot denotes differentiation with respectztand
terms of orderp ¢ and ¢? have been discarded. Substitution
of Eq. (B2) into (B1) leads to the Ginzburg-Landau equation
(67).

Since ¢(mgig) =0, i.e., M(0)=mys, M(¢) may be ex-
panded as

(B2)

M(¢)=mgst M1d+Md?+M3d®+O(¢%), (B3)

where
My=M'(0)=2[1+u(mgg] %, (B33
M= — Kmgiu(mgio) 2M3, (B3b)
M3=%{3M1[2Kmdisu(mdis)2]2
—(2K)*(1+3mgu(mge)*tM7. (B30

APPENDIX C: BOUNDARY CONDITION

By analogy with Eq(B1), the MF equation at the surface
(14) can be written as

—hi+ M(— ) =2M(d1)—4¢;.

The continuum approximatiofB2) now reads

(CY

M(— ¢)=M(— $(0))— M’ (0)[ $(0)+ 3 $(0)].
(C2)

Inserting (C2) into (C1) and requiring that the Ginzburg-
Landau equatiori67) be also valid az=0, we obtain

hy+ M(= $(0))+ M’ (0)$(0)=3M'(0)$(0).
(C3

The above equation reduces to the boundary condi{68n
if second-order derivatives are neglected.
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