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Adatom dynamics and diffusion in a model of O/W„110…
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We consider adatom dynamics and diffusion in a lattice-gas model of the O/W~110! system under conditions
where the adatom interaction effects are important. In particular, we study the behavior of the tracer and
collective diffusion coefficients as a function of temperature when crossing over from the high-temperature
disordered phase to a low-temperature symmetry broken phase. To this end, we utilize a combined analytical
and numerical approach based on the recently developed dynamical mean field theory~DMF! in addition to
conventional Monte Carlo simulations. In the case studied here, the origin of the strong temperature depen-
dence of the effective activation barrierEA

D close to an order-disorder transition, i.e., the non-Arrhenius
behavior of the diffusion coefficients, can be traced back to that of the average microscopic jump rateG
appearing within the DMF. This is in contrast to the usual assumption that thermodynamics controls diffusion
near phase transitions. The behavior ofG, in turn, is found to arise predominantly from critical effects in the
short-time behavior of the waiting-time distribution of single-particle jumps,W(t), which is an experimentally
accessible quantity. The long-time decay ofW(t) is then used to define another effective barrierEA

W , which
shows no anomalous effects near the transition.@S0163-1829~98!07703-0#
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I. INTRODUCTION

The migration of atoms and molecules is one of the m
important processes taking place on solid surfaces. It app
in many phenomena such as catalytic reactions and sur
growth that are important for practical applications.1,2 With
the advent of the modern high vacuum technology toge
with the field ion microscope3 ~FIM! and especially the scan
ning tunneling microscope~STM!,4 a microscopic look at
these phenomena has become feasible. At the same
theoretical understanding of the microscopics of surface
namics has increased significantly via both realistic to
energy calculations5 and statistical mechanical studies.6–29

However, there are still several important problems
lated to surface diffusion that are not very well understo
One of the most challenging problems is the description
surface diffusion at finite coverages in the presence of str
interparticle interactions, which corresponds to a situation
many applications. At finite coverages, there are two diff
ent diffusion coefficients. The tracer diffusion coefficientDT
is related to the motion of a tagged particle as observe
STM and FIM measurements, while the collective diffusi
coefficientDC describes the macroscopic density fluctuatio
as measured in field emission and optical grat
570163-1829/98/57~3!/1896~12!/$15.00
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experiments.30 Most of the existing theoretica
descriptions6–19 for DT and DC have been developed fo
cases where the interparticle interactions do not play an
portant role. Approximations for strongly interacting system
have been developed in some special cases,20–27 and espe-
cially for DC some phenomenological descriptions21,27,28

have been suggested. One appealing suggestion was giv
Reed and Ehrlich21 already in 1981. They relatedDC to the
microscopic adparticle motion, and proposed thatDC can be
expressed as a product of a thermodynamical factor and
effective jump rate of adparticles. Since studies of mic
scopic jump dynamics have become available from ST
experiments,31 this constitutes an important link between m
croscopic and macroscopic mass transport, which is not c
pletely understood. The Reed-Erlich description has rece
been given a firm theoretical basis,24,25,32which shows that it
essentially corresponds to neglecting the memory effect
diffusion.33 The validity of this approximation for strongly
interacting systems has been studied only in a few ca
however.32

The observed temperature dependence of the surface
fusion coefficientD is usually fitted to an activated Arrhen
ius form, whereD is written as a product of an entropi
prefactorD0 and a term exp(2EA

D/kBT) describing thermally
1896 © 1998 The American Physical Society
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57 1897ADATOM DYNAMICS AND DIFFUSION IN A MODEL OF . . .
activated jumps over an energy barrierEA
D . In the limit of

single-particle diffusion on an ideal surface, the Arrhen
form can be shown to arise from a microscopic theory in
appropriate limits.17,19 At low temperatures and in the high
friction Markovian limit in particular, the activation barrie
EA

D is precisely the difference in the adiabatic potential b
tween the lowest saddle point that the particle has to cros
move from one unit cell to another and its value at
minimum.17,34 This simple picture may be invalidated b
many factors such as the adatom phonon coupling35,36 and
phonon anomalies.37 In many-particle diffusion in the pres
ence of strong adsorbate interactions the situation is e
more complicated due to the fact that the actual local c
figuration around an adatom fluctuates, thus leading to fl
tuating activation barriers for the microscopic jump pr
cesses. In this case, there is no theoretical reasona priori
why the Arrhenius form should still hold. Even if an approx
mate Arrhenius form seems reasonable, the effective ba
must involve a complicated average over the distribution
microscopic barriers and offers no simple microscopic int
pretation.

The aim of the present work is to consider surface dif
sion in a system with adatom-adatom interactions under c
ditions where the interaction effects are particularly p
nounced and broken symmetry phases appear. To this
we carry out Monte Carlo~MC! simulations38 for a lattice-
gas model of the O/W~110! system which is described i
detail in Sec. II. We concentrate on the behavior of the d
fusion coefficientsDC and DT when crossing over from a
high-temperature disordered phase down to a lo
temperaturep(231) phase in the model. The diffusion co
efficients are computed accurately from their correspond
definitions, and the results are compared with the appr
mate method of Ref. 32. It consists of a combination of
analytic approach and MC simulations, the only approxim
tion being that the memory effects are replaced by the kno
results for the Langmuir gas model,28 where the only inter-
action between the adatoms is the exclusion of the dou
occupancy of lattice sites. ForDC , this yields exactly the
form proposed by Reed and Ehrlich.21 In Sec. IV, we find
that there is a very good quantitative agreement between
full MC results and the approximate theory forDC . ForDT ,
however, we find the influence of interactions on t
memory effects to be more pronounced. These observat
together imply that the often employed Darken’s equation28

in which one equatesDC to the product of a thermodynami
factor andDT , is not a good approximation for strongl
interacting systems. As for the temperature dependenc
the diffusion coefficients, we find that an Arrhenius for
with a single activation barrier cannot describe the beha
across the order-disorder phase boundary atTc ,39 as ex-
pected. NearTc , the diffusion coefficients have a rapid tem
perature variation that arises from the onset of the orde
process as the temperature is decreased below the tran
temperature. However, we demonstrate that unlike wha
usually assumed, the behavior for this system isnot due to
thermodynamic effects but arises predominantly from the
erage microscopic jump rateG. The underlying physics is
clarified via the study of waiting-time distributions, whic
offer better insight into how the fluctuating configuratio
determine the jump rate.39 The waiting-time distribution is a
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quantity that can be directly probed in STM experiments31

Finally, we discuss the effect of ordering on transition ra
and activation barriers, and comprise a brief summary in S
V.

II. MODEL FOR THE O/W „110… SYSTEM

A. The lattice-gas model

The O/W~110! system is undoubtedly one of the mo
studied adsorption systems. Its phase diagram has bee
termined through experimental studies40–43using low-energy
electron diffraction~LEED! spot profile analysis and STM
Its main features can be summarized as follows. At tempe
turesT>710 K,42 the system is in a disordered phase, wh
at lower temperatures there is a wide variety of orde
phases at different coverages, namely, thep(231),
p(232), and (131) phases corresponding to ideal cove
ages of 1/2, 3/4, and 1, respectively. At intermediate cov
ages, some coexistence regions also exist.43 The substrate
remains unreconstructed at all coverages,44–46the oxygen at-
oms have well-defined adsorption sites on the surface,43,47,48

and desorption of oxygen occurs only at temperatures as
as 1600 K or above.45,46Therefore, this system is suitable fo
simulation studies using a lattice-gas description over a w
temperature range, the first attempt to our knowledge be
that by Chinget al.41

We shall use the lattice-gas model constructed by S
et al.49 to describe the main features of the phase diagr
The Hamiltonian includes pair interactions up to fifth near
neighbors and certain three-body interactions:49

H5 (
m51

5

(̂
i j &

Jmninj1 (
m51

2

(
^ i jk &

Jtmninjnk2m(
i

ni .

~1!

Here ni50,1 is the occupation variable of the lattice sitei ,
^ i j & and ^ i jk & denote every pair and three-body interacti
to occur only once in the sum, and the strengths of th
interactions are denoted byJm and Jtm (m51,2, . . . ).Fol-
lowing Ref. 49 we takeJ25J3520.390J1, J550.680J1,
andJt15Jt2520.720J1. In this work we shall focus on the
coverageu50.45, and set the temperature and energy sc
by choosingJ15258.3 meV, which reproduces the expe
mental valueTc'710 K of a continuous order-disorde
phase transition boundary at this coverage.42,50 All the other
J’s are set to zero. An illustration of the relevant couplin
coefficients is presented in Fig. 1. The principal axesx andy

are along the@11̄0# and @001# directions of the underlying
bcc lattice, respectively, and the unit vectorsx̂ and ŷ show
the directions of nearest-neighbor jumps between lat
sites. All our results for the diffusion coefficients will b
presented in units where the lattice coefficient is set to un

In canonical simulations with a constant value ofN
5( ini , the term proportional tom is irrelevant and one may
setm50 in Eq.~1!. In the grand canonical caseN fluctuates
and this term must be included inH. For such a purpose, w
introduce the field49

h5 1
2 @m22J12J22J322J52 3

2 ~Jt11Jt2!#. ~2!
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The resulting phase diagrams in theT-u andT-h planes are
presented in Fig. 2. The asymmetry aboutu51/2 is due to
the three-body interactions in the Hamiltonian. We furth
define the particle number densityr5N/Nmax ~whereNmax is
the total number of adsorption sites! whose ensemble aver
age^r& equals the coverageu.

Having introduced the lattice-gas Hamiltonian, we no
want to comment on two underlying simplifications in

FIG. 1. An illustration of the relevant pair and three-body inte
actions in the O/W~110! system. Substrate atoms and possible
sorption sites are denoted by crosses and open circles, respect

The principal directionsx and y are along the@11̄0# and @001#
directions, respectively. The two independent directions of near

neighbor jumps are denoted byx̂ and ŷ.

FIG. 2. Schematic phase diagrams of the O/W~110! system in
the ~a! T-u and~b! T-h planes~Ref. 49!. The energy parameters o
the model have been scaled so that the critical temperature o
order-disorder phase transition atu50.45 isTc5710 K ~Ref. 42!,
and the unit ofh in ~b! is uJ1u/2. DO denotes the disordered regio
while (231) and (232) denote the ordered phases. The CXi , i
51,2,3, are the coexistence phases. In~b!, solid and dashed lines
denote continuous and first-order phase transition boundaries
spectively.
r

First, in our model the oxygen atoms occupy the hollow si
of the underlying surface~see Fig. 1!. Recent STM
measurements43 together with some LEED results47 have re-
vealed that the true adsorption site is the triply coordina
site instead. However, this alone does not induce ser
problems, since the lattice-gas picture is still valid and
sequence of the ordered phases does not change. The d
eracy of the ground state of thep(231) increases from the
value of four as produced by our Hamiltonian to eight, whi
modifies the local energetics at domain walls without affe
ing the qualitative role of interaction effects in diffusion. Th
second simplification is the absence of interaction betw
the substrate and the adsorbate in the Hamiltonian. Howe
since no strong relaxation effects such as reconstruction
taking place in this system, we expect this interaction to
reasonably well approximated by a suitable choice of
namics in our MC simulations, which we shall discuss ne

B. Microscopic dynamics of the model

The lattice-gas Hamiltonian alone as given above does
constitute a complete model for surface diffusion, becaus
does not specify any microscopic dynamics for how the s
tem evolves in time. In the context of lattice-gas mode
stochastic methods such as Monte Carlo~MC! simulations51

are widely used for modeling of their static and dynam
properties.52–54 However, they do not describe time in th
usual sense but rather the order of events taking place in
system studied.55 This may be particularly problematic whe
dynamic processes involving several time scales, such as
fusion of complex molecules, are studied. A related ambi
ity is associated with the choice of the transitio
probabilities.52,53 Namely, the detailed balance conditio
wi , f pi5wf ,i pf , wherewi , f is the transition rate from an ini
tial statei to a final statef , andpi andpf are the equilibrium
probabilities corresponding to the Hamiltonian, does n
specify the transition rates uniquely.52–54 Nevertheless, re-
cent experience53,54 with the MC method suggests that it de
scribes many static and time-dependent properties of sim
adsorption systems rather well, and thus its use in the pre
context is justified. However, if true quantitative informatio
is needed, methods based on true microscopic dynam
should be used.

In the context of diffusion, the fundamental problem wi
the traditional choices ofwi , f such as the standard Metropo
lis form,51 the Kawasaki form,56 and the initial value
dynamics57 is that they do not take into account the effect
the saddle point of the adiabatic surface potential. One p
sibility to facilitate a more realistic description in this sen
is to introduce an intermediate stateI and write the transition
probability of each jump as a product of two probabilities

wi , f5wi ,IwI , f . ~3!

Within this transition dynamics algorithm17 ~TDA!, the tran-
sition from the initial state with energyEi to the final state
with energyEf actually proceeds by two successive steps
the intermediate state with energyEI . Here EI has to be
chosen to describe a jump attempt of a particle in the p
ence of interactions as realistically as possible without v
lating the detailed balance condition. We have used
form17

-
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EI5
~Ei1Ef !

2
1D, ~4!

where the quantityD characterizes the activation barrier
the zero coverage limit due to the substrate-adatom inte
tion. For the rateswi ,I andwI , f any suitable form satisfying
the condition of detailed balance is applicable, although
have taken them both to be of the Metropolis formwj , j 8
5w0min@1,exp(2dEj,j8 /kBT)#, wherew0 is the attempt fre-
quency that is usually set to unity anddEj , j 85Ej 82Ej are
the appropriate energy differences. Theinstantaneous acti-
vation barrier Ea for a jump attempt from a filled to a vacan
site is then

Ea5max~EI2Ei ,Ef2Ei ,0!. ~5!

This illustrates the main advantage of the TDA metho
Namely, forD.0 the rates can be of activated form also f
jumps with Ei>Ef . Satisfying the detailed balance,17 the
TDA method therefore complements the description of
Hamiltonian given by Eq.~1!. Other schemes accounting fo
the barrier effects in the MC studies have also been used29,55

For the present study, we choseD50.0437 eV. This value
is believed to be much lower than the true value, wh
should be closer to the experimentally observed barrier40,58

of 0.5 to 0.6 eV in the disordered phase and in the limit
zero coverage. Our choice is necessitated by the nee
speed up the jump rate in the numerical simulations at
temperatures, but we will show below how the effect
changingD can be estimated~see Sec. IV B below!.

III. THEORETICAL METHODS

A. Definitions of collective and tracer diffusion

The collective diffusion tensorDC can be conveniently
defined via the density-fluctuation autocorrelation functio28

S~rW,rW8,t !5^dr~rW,t !dr~rW8,0!&, ~6!

whererW andrW8 denote position vectors on a lattice, the de
sity fluctuations are given bydr(rW,t)5r(rW,t)2u, and the
angular brackets denote an ensemble average. In the hy
dynamic regime, the corresponding Fourier transform dec
asS(kW ,t)5S(kW ,0)exp(2kW•DC•kW t), allowing us to extract the
elements of the collective diffusion tensorDC for small k.
We shall refer to the use of this definition as the ‘‘densi
fluctuation method.’’

An equivalent and a very useful way of describing colle
tive diffusion is to write the diagonal elements ofDC as28

DC,aa5j lim
t→`

1

4Nt K U(i 51

N

@Ra
i ~ t !2Ra

i ~0!#U2L 5jDc.m.,aa ,

~7!

where the two spatial componentsa5x,y of the position
vector for a particlei at timet are denoted byRa

i (t), and the
sum is over theN particles in the system. The ‘‘thermody
namic factor’’28

j5
^N&

^~dN!2&
5

u

S0
~8!
c-
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is defined through the particle number fluctuations^(dN)2&
5^N2&2^N&2 in the grand canonical ensemble, or in term
of the static structure factorS0[ limkW→0S(kW ,0), or thecom-
pressibility of the adlayerkT51/(kBTuj) ~see also Sec
III B !. The termDc.m.,aa in Eq. ~7! is proportional to the
center-of-mass motion of the adsorbate layer. This appro
is sometimes called the ‘‘Kubo-Green method.’’

The diagonal elements of thetracer diffusion tensor are
defined by28

DT,aa5 lim
t→`

1

4Nt(i 51

N

^uRa
i ~ t !2Ra

i ~0!u2&. ~9!

The tracer diffusion coefficientDT is therefore proportiona
to the slope of the mean square displacement of a tag
particle in the hydrodynamic limit.

B. Microscopic transition rates and waiting times

Recently, an approximate theory of diffusion has be
presented and shown to give rather good results for so
strongly interacting systems.32 For collective diffusion, the
starting point of the theory is the density-density autocor
lation function S(rW,rW8,t) introduced in Eq.~6!. Using the
Mori projection operator formalism,59 it can be shown that
its Laplace-Fourier transform can be written as25

S~qW ,z!5
x~qW !

z2b~qW !x~qW !211M ~qW ,z!
, ~10!

where b(qW ) contains microscopic jump rate information
x(qW ) is the thermodynamical susceptibility, and the memo
function M (qW ,z) contains the dynamical correlations. Th
collective diffusion coefficient can be obtained from the co
relation functionS(qW ,z) by examining its pole in the limits
qW→0 and z→0.24,25 In the limit qW→0, b(qW )
;N(aGaqa

2 l a
2 , whereGa is the average jump rate andl a

is the jump length along the directiona. Also, the compress-
ibility term x05 limq→0x(qW )/N5kBTukT is an equivalent
expression for the inverse of the thermodynamic factorj.
When the memory functionM (qW ,z) is left out, this consti-
tutes adynamical mean field theory~DMF! for DC .32

The combined approachproposed originally in Ref. 32
consists of evaluating the average jump rateGa and the com-
pressibilityx0 not through further analytic approximations a
attempted previously24,25 but rather by MC simulations.Ga
is directly obtained from the success ratio of individual p
ticle jumps in the canonical ensemble, whilex0 is more con-
veniently evaluated within the grand canonical ensemb
This procedure is easily implemented for arbitrary intera
tion strengths60 and transition algorithms and is computatio
ally very efficient when compared with brute force simul
tions in the hydrodynamic limit. Neglecting the memo
function M (qW ,z) in Eq. ~10! is equivalent to the Langmui
gas approximation,24,25,32 where for collective diffusion the
memory effects cancel out exactly.28,61This leads to the form
first proposed by Reed and Ehrlich:21
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DC,aa
appr 5

l a
2

2d

Ga

x0
. ~11!

For tracer diffusion, a similar analysis can be performed f
the self-correlation functionSs(rW,rW8,t), which differs from
S(rW,rW8,t) defined by Eq.~6! in that it refers to the probability
of finding ataggedparticle at the given sites.24 In the expres-
sion analogous to Eq.~10!, the jump rate factorb(qW ) remains
the same andx(qW ) is replaced by unity. In this case th
Langmuir model gives a nontrivial correlation factorf (u).
This quantity has been calculated accurately for the tw
dimensional~2D! square lattice in Refs. 10–12. The resu
ing expression forDT becomes24

DT,aa
appr 5

l a
2

2d
f ~u!Ga . ~12!

Another useful quantity related to jump rates is t
waiting-time distribution W(t) defined as follows.15 Let the
particle have performed its last transition att50. ThenW(t)
is the probability density that the particle in question p
forms its next transition att after it remained still untilt. The
natural definition of time in the MC simulations is the num
ber of jump attempts per particle, denoted byn, with the
corresponding distribution functionW(n). The average jump
rateG is related toW(t) via

1

G
5^n&5 (

n51

`

nW~n!, ~13!

where^n& is the mean waiting time of the particle.

C. Monte Carlo method

The actual Monte Carlo simulations to sample the qu
tities defined above were carried out in anL3L lattice with
fully periodic boundary conditions, the linear sizeL being 30
unless mentioned otherwise. This is large enough for
finite-size effects to be negligible, provided that one is n
very close to the critical point. The number of independ
runs in our studies varied typically between 1000 a
10 000. We used the RANMAR pseudorandom number g
erator, which has performed very well in a number of exte
sive test programs.62 Some additional test runs were pe
formed using the ZIFF9689 generator,63 whose diffusion
results were found to be consistent with those obtained w
RANMAR.

We paid particular attention to ensuring that the pro
regimes for evaluatingDC andDT were achieved in the MC
simulations. Within the density fluctuation method forDC ,
we need to sample fluctuations in the hydrodynamic reg
characterized by smallk and long time. We used the tw
smallest values ofk (k}2p i /L, i 51,2), whose results wer
found to be consistent with each other. We followed t
approach of Mak, Andersen, and George64 by studying the
decay of S(kW ,t) separately for the sine and cosine tran
forms, and used the deviation between the two resulting
ues to obtain an error estimate forDC . For comparison, we
-
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e
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t
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e
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also used the Kubo-Green method to calculateDC . Here
getting good statistics for the center-of-mass termDc.m.,aa
becomes the major problem.

Of the many possible ways to calculate the thermo
namic factor j, we evaluated̂ (dN)2& within the grand-
canonical ensemble, in which the particle number densitr
is not fixed but is fluctuating around its mean valueu. At all
temperatures considered, the results of the Kubo-Gr
method were consistent with those given by the density fl
tuation method. ForDT to be well defined, long simulation
times were needed to overcome the initial nonlinearity of
mean-square displacement as a function of time due to
memory effects. This is too often taken for granted in t
research literature, apparently because of the seemingly g
statistics for the mean-square displacement.

Throughout the present work, we make our numerical
sults for the quantitiesDT , DC , and G dimensionless by
expressing them in the natural units ofa2/t0, a2/t0, and 1/t0,
respectively, wherea is the lattice constant andt0 is one
Monte Carlo step per particle.

IV. RESULTS

A. The role of dynamical correlations

We first compare the results forDC andDT given by the
approximations of Eqs.~11! and ~12! with those obtained
from full MC simulations via the definitions in Sec. III A
Since in the former the only approximation is the absence
memory effects beyond those in the Langmuir gas mode
comparison of the two results provides information on t
effect of interactions on dynamical correlations. All the r
sults presented here are for the coverageu50.45 for which
the low-temperature ordered phase isp(231).

In Figs. 3 and 4 the full MC results forDC and DT are
shown by open symbols while the corresponding appro
mate descriptions are shown by lines. In the case ofcollec-
tive diffusion, the agreement between the DMF result and
direct MC data is remarkably good, indicating that t
memory effects are not very important. At very high tem
peratures, this is an expected result. However, DMF tu

FIG. 3. Results forDC in an Arrhenius plot atu50.45. The
results along the two principal axes (x,y) are based on the densit
fluctuation method and are given by squares and circles, res
tively. The error bars are of the size of the symbols. The co
sponding approximations based on Eq.~11! are given by lines. The
critical temperatureTc of the order-disorder phase transition is d
noted by a dotted line.
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out to be a good approximation also at low temperature
the ordered phase and even in the vicinity of a phase tra
tion, the difference being always less than 15%. This me
that the memory effects are not very important for collect
diffusion, since thestatic quantityGa is a good approxima-
tion of thedynamiccenter-of-mass termDc.m.,aa . The same
observation has very recently been made in other stron
interacting systems such as a lattice-gas model on a ste
substrate and a model polymer system,32 thus justifying the
use of the Reed-Ehrlich description.21

We next consider the behavior oftracer diffusion along
the same lines. We first note that the general behavior ofDT
is to a great extent similar toDC . Yet Eq. ~12! seems to be
an inadequate description ofDT under circumstances wher
the effect of interparticle interactions is significant, i.e.,
temperatures belowTc . Here the difference between the a
proximation and the direct MC data is entirely due to t
memory effects: in Eq.~12! the correlation factorf (u) in-
cludes only the backcorrelation effect in the Langmuir ga24

Thus, since the other memory effects arising from the dir
interparticle interactions are not taken into account, and
approximationDT,aa

appr is an overestimate ofDT , we may con-
clude that the remaining memory effects are also predo
nantly of the backcorrelation type. In the specific case st
ied here, the microscopic origin of the additional memo
effects can be understood by considering the snapsho
typical lattice configurations shown in Fig. 5. At low tem

FIG. 4. Results forDT in an Arrhenius plot atu50.45. The
results along the two principal axes (x,y) are given by squares an
circles, respectively. The error bars are much smaller than the
of the symbols. The corresponding approximations based on
~12! are given by lines. Again, the critical temperatureTc is denoted
by a dotted line.

FIG. 5. Representative snapshots of the configurations in
O/W~110! system withu50.45. The occupied sites are denoted
filled circles. The temperatures corresponding to~a!, ~b!, and~c! are
T50.714Tc , T50.952Tc , andT52.143Tc , respectively.
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peratures, the adatoms are mostly standing still, while on
few mobile atoms at a time are wandering around small
cancy islands and along the channels that separate filled
of adatoms. Due to the interactions, the jump rate of a mo
tracer particle is much higher than that of the surround
atoms. Therefore it is moving in a practically ‘‘frozen’’ en
vironment, where the memory of the vacant sites left beh
has a long lifetime.12

To further compare the diffusion coefficients, one c
also consider the Darken equation,20,28,33,65which is based on
the assumption that the velocities~displacements! of differ-
ent adatoms are not correlated. If this were true, then
center-of-mass termDc.m.,aa in Eq. ~7! could be replaced
with DT,aa and thus the collective diffusion coefficient cou
be written asDC5jDT . To characterize the validity of this
assumption, we considered the ratior a5Dc.m.,aa /DT,aa .
Our results forr a in Fig. 6 show that the Darken equatio
holds reasonably well in the disordered phase, while in
ordered phase this is no longer true. As a matter of fact, a
temperatures considered in the present work, the DMF
scription for DC works better than the Darken equatio
Therefore, to conclude the discussion on the memory effe
the results of the present model system suggest that dyn
cal correlations do not seem to play a major role in collect
diffusion, whereas for tracer diffusion the conclusion is e
actly the opposite.

B. Non-Arrhenius behavior of the diffusion
coefficients aroundTc

The observed temperature dependence of a diffusion
efficient D is commonly fitted to an activated Arrheniu
form,

D'D0e2EA
D/kBT. ~14!

Within the transition state theory,16 the prefactorD0 arises
from the entropic barrier, while the remaining part describ
thermally activated jumps over an effective energy barr
EA

D . It is evident that the behavior displayed by the diffusi
coefficients in Figs. 3 and 4 cannot be reasonably descr
by a constant effective activation barrier over the whole te
perature regime. Further, for this kind of anon-Arrhenius

ze
q.

e

FIG. 6. A comparison of tracer and collective diffusion in term
of the ratio r a5Dc.m.,aa /DT,aa . Results for both directionsa
5x,y are shown. The critical temperature is denoted by a do
line.
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temperature dependence, there is no unique way of definin
a temperature-dependent barrier. One way is to use the
slope while another possibility is to choose a constant ef
tive prefactor and leave all the temperature dependenc
the effective barrier. These two procedures would lead
very different values for the barrier. We now follow the pra
tice commonly used in analysis of experiments and define
effective diffusion barrierEA

D as the local slope of an Arrhen
ius plot, namely,

EA
D[2

]

]~1/kBT!
lnD. ~15!

In Figs. 3 and 4, the local slope is approximately constan
low and high temperatures away fromTc . This implies that
the diffusion coefficients obey simple Arrhenius behavior
these limits. Overall, however, the Arrhenius form with
single activation barrier cannot successfully describe th
temperature dependence since nearTc the diffusion coeffi-
cients show strong temperature variations.

Since the definition ofDC contains the inverse compres
ibility, 28 it is often assumed that the non-Arrhenius behav
is due to nonlocal thermodynamic effects. This assumptio
well justified in cases where the thermodynamic factorj has
rapid temperature variations close toTc , and then the behav
ior of the collective diffusion coefficient is expected to b
dominated byj.66 In the present case, however, the co
pressibility shows only a cusplike behavior67 at Tc and thus
the non-Arrhenius behavior of bothDT andDC is predomi-
nantly determined by the average local jump rateG of single
particles. This can be easily seen from Eqs.~11! and ~12!.
We indeed observe that the temperature dependenceG
shown by circles in Fig. 7 is very similar to that ofDC as
well as DT , with a turning point and sharp temperatu
variations nearTc . It is evident thatj only slightly steepens
the slope ofDC versus 1/T aroundTc .

We next focus on the effective diffusion barrierEA
D as

extracted from Eq.~15! for DT . As shown by squares in Fig

FIG. 7. Results for the~dimensionless! thermodynamic factorj
~squares forL530 and triangles forL5120) and the average tran
sition rateG ~circles! in an Arrhenius plot. Forj, results with two
system sizesL are given to demonstrate the cusplike behavior;
critical regime is further illustrated in the inset. TheL dependence
~not shown! of G is extremely weak~Ref. 68!. The error bars are
smaller than the sizes of the symbols. The thermodynamic fa
has been shifted for clarity’s sake. The critical temperature of
order-disorder phase transition is denoted byTc and a dotted line.
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8, EA
D tends to a constant value of about 0.28 eV at lo

temperatures and to the value of about 0.12 eV at high t
peratures. We will come back to the interpretation of the
barriers in Sec. IV D. Here we consider the barrier at te
peratures aroundTc , whereEA

D has a very pronounced pea
centered atTc , arising from the steeper slope of theDT
versusT curves around the transition temperature. This pe
in EA

D is accompanied by a strong increase in the value of
corresponding prefactorD0 shown in the inset of Fig. 8. This
is yet another example of the well-known compensat
effect.28,69 Here the compensation simply results from t
fact that when the temperature dependence is non-Arrhen
there is no unique way of separating the prefactor and
barrier contributions. Since the temperature dependenc
the diffusion coefficient itself nearTc is smooth and nonsin
gular, any dramatic change in the temperature dependenc
the effective barrierEA

D mustbe followed by a corresponding
change in the effective prefactorD0.

To understand the observed strong temperature varia
of EA

D near Tc , we need to consider the energetics of t
microscopic jump processes that determine the average j
rateG. At finite coverages, there is a very complex distrib
tion P(Ea) for the instantaneous activation barriersEa @see
Eq. ~5!# that an adatom needs to overcome in a jump atte
from one configuration to another. For our model, the ran
of values is illustrated in Fig. 9. At high temperatures,P(Ea)
is strongly peaked at small values ofEa , while at low tem-
peratures the situation is completely the opposite. T
change in the distribution takes place aroundTc , thus char-
acterizing the ordering of the adlayer as the temperatur
decreased belowTc . This change in turn results in a stron
temperature dependence of the average transition ratG
aroundTc , as shown in Fig. 7.

We should point out, however, that the instantaneous
tivation barriersEa cannot explain the peak of the effectiv
barrier EA

D in Fig. 8, since the largest value ofEa in our
model system is only about 0.4 eV, as is evident from Fig
Thus, the peak does not refer to any microscopic ra
limiting jump process. Instead, it arises from an entro

e

or
e

FIG. 8. Results for the effective activation barriersEA . The
squares denote results based on the Arrhenius form, while o
circles represent the data based on the tail of the waiting-time
tribution. For the former, a typical error bar is shown, while for t
latter the errors are smaller than the size of the symbols. Beha
of the prefactorD0 is illustrated in the inset. The critical tempera
ture is denoted by a dotted line.
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57 1903ADATOM DYNAMICS AND DIFFUSION IN A MODEL OF . . .
contribution70 to G that has a strong temperature depende
in the vicinity of Tc . We note that these conclusions apply
both tracer and collective diffusion since the qualitative b
havior of DT andDC aroundTc is similar.

C. Long-time and short-time behavior of W„t…

To gain more insight into the microscopic dynamical pr
cesses and the anomalous temperature dependence neTc ,
we next consider the waiting-time distributionW(t) of
single-particle jumps as defined in Sec. III B. At very lon
times, we expectW(t) to decay asW(t);exp(2t/t). Heret
corresponds to the longest characteristic time scale am
the various jump processes. The expected exponential d
at long times is indeed observed for our model system
demonstrated in Fig. 10. The main contribution toG from the
right-hand side of Eq.~13! comes from the short-time re
gime. This can be demonstrated as follows: we divide
sum in Eq. ~13! into two parts, the first of which is the
short-time contribution̂n&S5(n51

nco nW(n). This quantity ac-
counts for the contribution up to a crossover timenco,71

which separates the short-time regime from the asympt
exponential decay. What remains is the long-time contri
tion ^n&L5^n&2^n&S . From Fig. 11 we observe that th
short-time regime indeed gives the dominant contribution
G and is thus mainly responsible for the anomalous temp
ture dependence of the diffusion coefficients. The tempe
ture dependencies of̂n&S and ^n&L are qualitatively very
similar, however.

D. Effective energy barrier from W„t…

To further illustrate the importance of how one defines
effective energy barrier, we define another barrierEA

W via the
asymptotic exponential decay ofW(t) by considering the
jump probabilityp51/t5p0exp(2EA

W/kBT),73 where the fac-

FIG. 9. Normalized probability distributionsP(Ea) of the in-
stantaneous activation barriersEa @see Eq.~5!# at three different
temperatures: ~a! T50.714Tc , ~b! T51.012Tc , and ~c! T
52.143Tc . The barrier that corresponds to a jump from a fu
ordered row in the perfectp(231) phase to an empty chann
nearby, thus forming a vacancy behind@process~4! in Fig. 12#, is
0.392 eV. In all three figures, one of the peaks extends beyond
vertical scale: in~a! P(0.392 eV)50.496, in ~b! P(0.392 eV)
50.171, and in~c! P(0.0 eV)50.120. For these histograms, mo
than 107 samples were taken.
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tor p0512(N21)/(Nmax21)'12u is kept constantwith
a value corresponding to average blocking of jumps. W
emphasize that this effective barrier, defined as

EA
W[2kBTln~p/p0!, ~16!

is thus not extracted from the local slope of an Arrheniu
plot.

Qualitatively, the temperature dependencies ofp and G
are rather similar. At high temperatures, the absolute valu
p is close to that ofG. For decreasing the temperature,p
decreases more steeply thanG or DT ~cf. Fig. 4! aroundTc .
In Fig. 8 the barrierEA

W ~shown by circles! is compared with
the barrierEA

D as extracted from the local slope ofDT . The
two barriers agree away fromTc , while aroundTc their be-
havior is completely different. This is clearly due to the u
of a constant prefactorp0 in determiningEA

W , while EA
D is

determined from the local slope ofDT .

he

FIG. 10. An example of the waiting-time distribution at tem
peratures of 0.774Tc ~circles!, 1.012Tc ~triangles!, and 2.143Tc

~dashed line!, showing an exponential decay at large times. At te
peratures of 1.012Tc and 2.143Tc , the time scales have been mu
tiplied by 5 and 90, respectively. Also, at temperatures of 0.77Tc

and 1.012Tc , only some of the data points are shown here to clar
the representation. The full curve is an exponential fit to the tai
W(n) at 0.774Tc . In this case, the approximate crossover timenco

from the early-time regime to the asymptotic long-time regime
indicated by an arrow~Ref. 71!.

FIG. 11. Comparison of the early-time contribution^n&S and the
late-time contribution̂ n&L to the average waiting timên&. The
slight increase of̂ n&L at small T is due tonco whose value is
difficult to determine accurately at very low temperatures~Ref. 72!.
The quantitieŝn&S , ^n&L , and^n& are all expressed in units of on
Monte Carlo step per particle.
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Concerning the actual values ofEA
W in various limits, the

high-temperature value of about 0.12 eV appears to b
combination ofD and some average barrier arising from t
interparticle interactions in the disordered phase. At low te
perature,EA

W levels off to a value of about 0.28 eV. To un
derstand this value, we first note that within thep(231)
phase atu50.45, diffusion occurs mainly through the mo
tion of vacancies within occupied, ordered rows, or throu
the motion of adatoms between them. This correspond
the processes~1! and ~2! shown in Fig. 12. For long rang
mass transport of a tracer particle, the first process is ne
sary. Two typical processes that facilitate this are~3! and~4!
in Fig. 12. In our case, the instantaneous activation barr
Ea of these two processes are 0.311 eV and 0.392 eV@see
Eq. ~5!#, respectively. These two barriers correspond to
energy cost of local symmetry breaking and are rat
close74 to the low-temperature valueEA

W50.28 eV men-
tioned above. In this respect, as becomes most evident
Tc , the interpretation ofEA

W in terms of microscopic single
particle jump processes is more transparent than that ofEA

D .
A detailed comparison betweenEA

D and EA
W in different or-

dered phases of O/W~110! will be presented elsewhere.75

E. Influence of D on EA
D

Let us now comment on the influence of the intrinsic b
rier D defined in Sec. II B onEA

D . In the results presented s
far, we have used a rather small value ofD50.0437 eV to
speed up the MC simulations so that the leading contribu
to our results forEA

D comes from the adatom-adatom inte
actions. With large values ofD, on the other hand, one migh
expectEA

D to be dominated by the intrinsic barrier. We stu
ied this issue by calculatingEA

D for tracer diffusion between
T51.667Tc andT52.143Tc as a function ofD. The results
for the contribution ofD in EA

D are given in Fig. 13. For
small values ofD the curve is nonlinear, which means th
changingD cannot be included as a constant prefactor of
transition rate in Eq.~3!. For large values ofD, the slope of
the curve approaches unity, which means that allfurther in-
crease inD goes directly into the effective barrier. The initia
shift of approximately 0.05 eV, which can also be conside
as a threshold value forD to dominate, prevails inEA

D for all
values ofD. This is close to the value ofD chosen in this
work, and therefore it is roughly half of the high-temperatu
value of EA

D in Fig. 8. At low temperatures this thresho
value is naturally expected to be larger, because there

FIG. 12. Some important jump processes in thep(231) phase
in the O/W~110! system. Filled and open circles represent occup
and vacant adsorption sites, respectively.
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interaction effects are stronger. Nevertheless, the contr
tion of D to EA

D is approximately additive, which can be use
when a quantitative comparison between simulation res
and experimental data is desired.76

F. Ordering and diffusion anisotropy

Within the ordered phase aroundu'0.5, at any time there
is only one of the equivalentp(231) andp(132) phases
present in the system. One of them corresponds to orde
along thex̂ direction and the other along theŷ direction~see
Fig. 1!. At low temperatures, due to the long characteris
time scales involved, a switching from one to the other do
not occur during simulations. Thus the ordering results in
anisotropy of transition rates and corresponding activat
barriers, which manifests itself as diffusion anisotropy.77,78

The anisotropy is characterized by the ratio of the dia
nal terms in the diffusion tensor, i.e.,DC,xx /DC,yy and
DT,xx /DT,yy . In our results shown in Figs. 3 and 4 this rat
is two. The reason for this is that in thep(231) and
p(132) phases, the symmetry axes of the Hamiltonian a
the principal axes of diffusion are actually the nearest nei
bor directionsx̂ and ŷ.17 Thus the anisotropy ratio we ob
served is simply the geometrical factor describing the anis
ropy of the underlying substrate. This is in agreement w
experimental observations79 and previous MC
calculations.77,80 For the same reason, the diffusion barrie
EA

D are identical for directionsx andy. It is therefore obvious
that the off-diagonal elementsDC,aa8 and DT,aa8 with a
Þa8 measure the degree of ordering in the adlayer. The
fore, to study the influence of ordering, it is necessary
consider diffusion along the directionsx̂ and ŷ instead ofx
andy. To measure this anisotropy we shall use the quanti
Gmax5max$Gx̂ ,Gŷ% and Gmin5min$Gx̂ ,Gŷ%, whereG x̂ (G ŷ) is
the average transition rate in thex̂ ( ŷ) direction~see Fig. 1!.
Note that within the framework of DMF, they yield the sam
anisotropy forDC andDT . The results are presented in Fi
14. As expected, aboveTc there is no difference between th
two quantities, but in the ordered phase the anisotropy
clearly present. ForT<0.9Tc , the system is not capable o

d

FIG. 13. The dependence of the effective diffusion barr
EA

D(D) for tracer diffusion on the intrinsic barrierD. The studies
were carried out betweenT51.667Tc andT52.143Tc . The line is
only a guide to the eye, and the barrier atD50 is EA

D(0)50.105
eV.
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switching from one of the equivalent phases to the ot
during the simulation. The anisotropy obtained here is c
sistent with previous findings,17 and is naturally expected t
be most pronounced atu50.5.

Within the ordered phase also the activation barriers
diffusion along thex̂ andŷ directions are rather different. T
study this, we considered the waiting-time distributio
Wx̂(n) andWŷ(n) along the directionsx̂ andŷ, respectively.
From the tails of these distributions we indeed find the lar
of the two barriers to be about 6% larger than the activat
barrier we get fromW(n), while the lower is considerably
smaller than the effective activation barrier. Thus the eff
tive activation barrierEA

W we find is indeed dominated by th
largest barriers in the system.

We also note here that although in thep(232) phase at
higher coverages, for example, there is no anisotropy
tween the jump directionsx̂ and ŷ, diffusion is still consid-
erably influenced by ordering. However, in that case ord
ing manifests itself only via the high instantaneous activat
barriers as discussed in the preceding sections, and ha
maximum effect on diffusion at the ideal coverageu50.75.
The interplay of long-range order and local jump rates
diffusion within the coexistence phases of the model rema
an open question. Work in this direction is in progress.75

V. SUMMARY AND DISCUSSION

In this work, we have considered adatom dynamics a
surface diffusion in a lattice gas model of the O/W~110!

FIG. 14. The results for the transition ratesGmax5max$Gx̂ ,Gŷ%
~circles!, Gmin5min$Gx̂ ,Gŷ% ~crosses!, and G ~full line!. The error
bars are much smaller than the sizes of the symbols. The cri
temperature is denoted by a dotted line.
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system at a fixed coverage as a function of temperature
particular, we have studied a wide temperature range fr
the high temperature disordered phase down to
p(231) ordered phase, where adatom-adatom interact
play an important role. The expected non-Arrhenius behav
was analyzed using the framework provided by the DM
theory,24,25,32which in the case of collective diffusion con
stitutes the theoretical foundation of the phenomenolog
Reed-Ehrlich description.21 For the model considered here
the non-Arrhenius behavior of the collective diffusion coe
ficient DC was found to be predominantly determined by t
microscopic average jump rateG, while the compressibility
factor j due to the nature of the transition only weakly co
tributes to the observed temperature dependence. Ove
whole temperature range,DC is very accurately described b
the DMF formulaDC}jG.

The temperature dependence of the tracer diffusion c
ficient DT is qualitatively very similar to that ofDC andG,
but at low temperatures memory effects enhanced by ad
ticle interactions are very prominent inDT . We have also
shown how the single-atom waiting-time distributionW(t)
can be used to assess the role of various microscopic
cesses with different instantaneous activation barriers in
termining the observed macroscopic behavior. The n
Arrhenius behavior was related to critical effects inW(t)
already at short times, while the long-time decay ofW(t) is
closely associated with the slowest microscopic processe

Based on the success of the DMF description in sev
strongly interacting model systems,32 we expect the method
and concepts presented here to be applicable to a wide
ety of systems. Experimental studies using the recently
veloped methods utilizing the STM to extract the waitin
times31 would be very interesting. A particularly interestin
further application is diffusion within coexistence phase
Work in this direction is under way.
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