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We consider adatom dynamics and diffusion in a lattice-gas model of thé1QO\system under conditions
where the adatom interaction effects are important. In particular, we study the behavior of the tracer and
collective diffusion coefficients as a function of temperature when crossing over from the high-temperature
disordered phase to a low-temperature symmetry broken phase. To this end, we utilize a combined analytical
and numerical approach based on the recently developed dynamical mean field(Bleéyin addition to
conventional Monte Carlo simulations. In the case studied here, the origin of the strong temperature depen-
dence of the effective activation barri&, close to an order-disorder transition, i.e., the non-Arrhenius
behavior of the diffusion coefficients, can be traced back to that of the average microscopic junip rate
appearing within the DMF. This is in contrast to the usual assumption that thermodynamics controls diffusion
near phase transitions. The behaviodofin turn, is found to arise predominantly from critical effects in the
short-time behavior of the waiting-time distribution of single-particle junMiét), which is an experimentally
accessible quantity. The long-time decayVift) is then used to define another effective barﬁé’r, which
shows no anomalous effects near the transiti&0163-18208)07703-0

. INTRODUCTION experiments? Most of the existing theoretical
description§™2° for Dy and D have been developed for
The migration of atoms and molecules is one of the mostases where the interparticle interactions do not play an im-
important processes taking place on solid surfaces. It appeap®rtant role. Approximations for strongly interacting systems
in many phenomena such as catalytic reactions and surfa¢eve been developed in some special cA%&¢,and espe-
growth that are important for practical applicatidrfswith  cially for Do some phenomenological descriptiéh& 28
the advent of the modern high vacuum technology togethehave been suggested. One appealing suggestion was given by
with the field ion microscope(FIM) and especially the scan- Reed and Ehrlich already in 1981. They related to the
ning tunneling microscopéSTM),* a microscopic look at microscopic adparticle motion, and proposed fbatcan be
these phenomena has become feasible. At the same timexpressed as a product of a thermodynamical factor and an
theoretical understanding of the microscopics of surface dyeffective jump rate of adparticles. Since studies of micro-
namics has increased significantly via both realistic totalscopic jump dynamics have become available from STM
energy calculatiorfsand statistical mechanical studids?®  experiments! this constitutes an important link between mi-
However, there are still several important problems re-croscopic and macroscopic mass transport, which is not com-
lated to surface diffusion that are not very well understoodpletely understood. The Reed-Erlich description has recently
One of the most challenging problems is the description obeen given a firm theoretical badfs?>3?which shows that it
surface diffusion at finite coverages in the presence of strongssentially corresponds to neglecting the memory effects in
interparticle interactions, which corresponds to a situation irdiffusion>® The validity of this approximation for strongly
many applications. At finite coverages, there are two differinteracting systems has been studied only in a few cases,
ent diffusion coefficients. The tracer diffusion coeffici€nt however?
is related to the motion of a tagged particle as observed in The observed temperature dependence of the surface dif-
STM and FIM measurements, while the collective diffusionfusion coefficientD is usually fitted to an activated Arrhen-
coefficientD ; describes the macroscopic density fluctuationgus form, whereD is written as a product of an entropic
as measured in field emission and optical gratingprefactorDy and a term expf ER/kBT) describing thermally
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activated jumps over an energy barrléi. In the limit of  quantity that can be directly probed in STM experiménts.
single-particle diffusion on an ideal surface, the ArrheniusFinally, we discuss the effect of ordering on transition rates
form can be shown to arise from a microscopic theory in theand activation barriers, and comprise a brief summary in Sec.
appropriate limits”*° At low temperatures and in the high- V-

friction Markovian limit in particular, the activation barrier

Ex is precisely the difference in the adiabatic potential be- Il. MODEL FOR THE O/W (110) SYSTEM
tween the lowest saddle point that the particle has to cross to _
move from one unit cell to another and its value at a A. The lattice-gas model

minimum:"** This simple picture may be invalidated by  The O/MW110) system is undoubtedly one of the most
many factors such as the adatom phonon coufiliffiand  studied adsorption systems. Its phase diagram has been de-
phonon anomalie¥. In many-particle diffusion in the pres- termined through experimental studi®€3using low-energy
ence of strong adsorbate interactions the situation is eveglectron diffraction(LEED) spot profile analysis and STM.
more ComplicatEd due to the fact that the actual local CON{ts main features can be summarized as follows. At tempera_
figuration around an adatom fluctuates, thus leading to flucyresT=710 K*? the system is in a disordered phase, while
tuating activation barriers for the microscopic jump pro-at jower temperatures there is a wide variety of ordered
cesses. In this case, there is no theoretical reaspnori phases at different coverages, namely, tpé2x1),
why the Arrhenius form should still hold. Even if an approxi- p(2x2), and (1x1) phases corresponding to ideal cover-
mate Arrhenius form seems reasonable, the effective barrigges of 1/2, 3/4, and 1, respectively. At intermediate cover-
must involve a complicated average over the distribution Ofages, some coexistence regions also &Rigthe substrate
micro;copic barriers and offers no simple microscopic interyemains unreconstructed at all coveraffeé®the oxygen at-
pretation. . _ _ oms have well-defined adsorption sites on the surfaée?®

The aim of the present work is to consider surface diffu-ang desorption of oxygen occurs only at temperatures as high
sion in a system with adatom-adatom interactions under corzs 1600 K or abov& 4 Therefore, this system is suitable for
ditions where the interaction effects are particularly pro-simylation studies using a lattice-gas description over a wide
nounced and broken symmetry phases appear. To this en@mperature range, the first attempt to our knowledge being
we carry out Monte Carl¢dMC) simulation$® for a lattice-  that by Chinget al*!

gas model of the OML10 system which is described in  \ye shall use the lattice-gas model constructed by Sahu
detail in Sec. Il. We concentrate on the behavior of the dif-gt 5149 to describe the main features of the phase diagram.
fusion coefficientsDc and Dy when crossing over from & The Hamiltonian includes pair interactions up to fifth nearest
high-temperature  disordered phase down to a lowngjghbors and certain three-body interactiths:
temperaturg(2x 1) phase in the model. The diffusion co-

efficients are computed accurately from their corresponding 5 2
definitions, and the results are compared with the approxi- _ _ _
mate method of Ref. 32. It consists of a combination of an H_mzzl <,2]> Jm”i”J‘*mZ:l <”2k> Jimin; N ’“Z ni-

analytic approach and MC simulations, the only approxima- )

tion being that the memory effects are replaced by the known

results for the Langmuir gas modé&lwhere the only inter- Here n;=0,1 is the occupation variable of the lattice site
action between the adatoms is the exclusion of the doublg‘j> and(ijk) denote every pair and three-body interaction
occupancy of lattice sites. F@¢, this yields exactly the to occur only once in the sum, and the strengths of these
form proposed by Reed and Ehrlighin Sec. IV, we find interactions are denoted by, andJ,, (m=1,2, .. .).Fol-

that there is a very good quantitative agreement between thewing Ref. 49 we takel,=J;=—0.39Q);, J5=0.680,,

full MC results and the approximate theory ¢ . ForDr,  andJ,;=J,,= —0.720;. In this work we shall focus on the
however, we find the influence of interactions on theCoveragegz 0.45, and set the temperature and energy scales
memory effects to be more pronounced. These observationsy choosingd, = —58.3 meV, which reproduces the experi-
together imply that the often employed Darken’s equatfon, mental valueT,~710 K of a continuous order-disorder
in which one equateB to the product of a thermodynamic phase transition boundary at this cover&ge All the other
factor andD+, is not a good approximation for strongly J's are set to zero. An illustration of the relevant coupling

interacting systems. As for the temperature dependence @befficients is presented in Fig. 1. The principal axesdy

the diffusion coefficients, we find that an Arrhenius form are along the[lTO] and [001] directions of the underlying

with a single activation barrier cannot describe the behaV|o[)CC lattice, respectively, and the unit vect&rand§/ show

across the order-disorder phase boundaryr af® as ex- L . i .
pected. Neall ., the diffusion coefficients have a rapid tem- the directions of nearest-ne|g_hbor Jumps .b.etween_ lattice
" %ltes. All our results for the diffusion coefficients will be

perature variation that arises from the onset of the orderin . . ; o ;
process as the temperature is decreased below the transiti hesented n umts_wherg the Iatltlce coefficient is set to unity.
In canonical simulations with a constant value Wf

temperature. However, we demonstrate that unlike what is . o
usually assumed, the behavior for this systemmasdue to =i, the term proportional tg, is wre!evant and one may
thermodynamic effects but arises predominantly from the ayS€t#=0 in Eq.(1). In the grand canonical caséfluctuates
erage microscopic jump raté. The underlying physics is _and this term must be included . For such a purpose, we
clarified via the study of waiting-time distributions, which introduce the fielt?

offer better insight into how the fluctuating configurations

determine the jump rat€. The waiting-time distribution is a h=3[u—23;—J3,—J3—2)s— 3(J + Jio) ]. 2
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X PoN X J,,0 X First, in our model the oxygen atoms occupy the hollow sites
Al RN / of the underlying surface(see Fig. L Recent STM
OZ----X----0 X g O measurements together with some LEED resuffshave re-

\_/3’ vealed that the true adsorption site is the triply coordinated

% o L x o X site instead. However, this alone does not induce serious

7 Js problems, since the lattice-gas picture is still valid and the

sequence of the ordered phases does not change. The degen-
eracy of the ground state of th2X 1) increases from the
value of four as produced by our Hamiltonian to eight, which
X modifies the local energetics at domain walls without affect-
ing the qualitative role of interaction effects in diffusion. The
FIG. 1. Anillustration of the relevant pair and three-body inter- second simplification is the absence of interaction between
actions in the O/WL10 system. Substrate atoms and possible ad-the substrate and the adsorbate in the Hamiltonian. However,
sorption sites are denoted by crosses and open circles, respectiveince no strong relaxation effects such as reconstruction are
The principal directionsx andy are along thg110] and[001]  taking place in this system, we expect this interaction to be
directions, respectively. The two independent directions of nearesteasonably well approximated by a suitable choice of dy-
neighbor jumps are denoted Byandy. namics in our MC simulations, which we shall discuss next.

X ©

The resulting phase diagrams in theg and T-h planes are B. Microscopic dynamics of the model

presented in Fig. 2. The asymmetry about 1/2 is due to ) o .
the three-body interactions in the Hamiltonian. We further 1 N€ lattice-gas Hamiltonian alone as given above does not

define the particle number densjiy= N/N . (WhereN o is constitute a complete model for surface diffusion, because it
max max

the total number of adsorption sileshose ensemble aver- 40€S not specify any microscopic dynamics for how the sys-
age(p) equals the coverage. tem evolves in time. In the context of lattice-gas models,

Having introduced the lattice-gas Hamiltonian, we nowStochastic methods such as Monte CAML) ;lmulatlonél ,
want to comment on two underlying simplifications in it. &€ Widely used for modeling of their static and dynamic
properties’>~°* However, they do not describe time in the
800 i i : usual sense but rather the order of events taking place in the
system studied This may be particularly problematic when
dynamic processes involving several time scales, such as dif-
fusion of complex molecules, are studied. A related ambigu-
ity is associated with the choice of the transition
probabilities?® Namely, the detailed balance condition
W; (Pi=Wg P, Wherew; ¢ is the transition rate from an ini-
tial statei to a final statd, andp; andp; are the equilibrium
probabilities corresponding to the Hamiltonian, does not
specify the transition rates uniquel’.>* Nevertheless, re-
cent experienc&>*with the MC method suggests that it de-
scribes many static and time-dependent properties of simple
adsorption systems rather well, and thus its use in the present
800 r : : T context is justified. However, if true quantitative information
(b) DO is needed, methods based on true microscopic dynamics
should be used.

] In the context of diffusion, the fundamental problem with
2x1) ‘ the traditional choices of;  such as the standard Metropo-

\ lis form>' the Kawasaki forn?® and the initial value
dynamics’ is that they do not take into account the effect of
the saddle point of the adiabatic surface potential. One pos-
sibility to facilitate a more realistic description in this sense
is to introduce an intermediate stdtand write the transition
probability of each jump as a product of two probabilities as
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FIG. 2. Schematic phase diagrams of the Q) system in o . . . .
the (a) T-6 and(b) T-h planes(Ref. 49. The energy parameters of Within this transition dynamics algonthf'ﬁ (TDA), the tran-

the model have been scaled so that the critical temperature of thiltion from the initial state with energl; to the final state
order-disorder phase transition @t 0.45 isT,=710 K (Ref. 49,  With energyE actually proceeds by two successive steps via
and the unit oh in (b) is |J;|/2. DO denotes the disordered region, the intermediate state with enerdy. Here E; has to be
while (2x1) and (2<2) denote the ordered phases. The,CX  chosen to describe a jump attempt of a particle in the pres-
=1,2,3, are the coexistence phases(bp solid and dashed lines €nce of interactions as realistically as possible without vio-
denote continuous and first-order phase transition boundaries, réating the detailed balance condition. We have used the
spectively. form'’

Wi £ =W (W 5. 3
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(E;+Ey) is defined through the particle number fluctuatigsN)?)
== T4 (4 =(N?—(N)2 in the grand canonical ensemble, or in terms
. . o ~_ of the static structure factd,=lim;_oS(k,0), or thecom-
where the quantltyA. characterlzes the activation barr!er iN pressibility of the adlayerr=1/(kgT0E) (see also Sec.
the zero coverage limit due to the substrate-adatom interagy g) The termD . qq IN EQ. (7) is proportional to the

tion. For the ratesv;| andw, ¢ any suitable form satisfying center-of-mass motion of the adsorbate layer. This approach
the condition of detailed balance is applicable, although wgs sometimes called the “Kubo-Green method.”

have taken them both to be of the Metropolis fomm; The diagonal elements of theacer diffusion tensor are
=womin[1,exp(-&E; ; /kgT)], wherew, is the attempt fre-  gefined by?
quency that is usually set to unity ak; ; =E;, —E; are

the appropriate energy differences. Tinstantaneous acti- L N

vation barrier E, for a jump attempt from a filled to a vacant De = lim— R (1) —R (0|2 9

Sito 1o thon Tae= M52 (RUO-RLQF. (O
Ea: ma)(E|_Ei ,Ef_Ei ,0) (5)

The tracer diffusion coefficierD is therefore proportional
This illustrates the main advantage of the TDA method.to the slope of the mean square displacement of a tagged
Namely, forA>0 the rates can be of activated form also for particle in the hydrodynamic limit.
jumps with E;=E;. Satisfying the detailed balantéthe
TDA method therefore complements the description of the
Hamiltonian given by Eq(1). Other schemes accounting for ] T
the barrier effects in the MC studies have also been &&e4. Recently, an approximate theory of diffusion has been
For the present study, we chase=0.0437 eV. This value presented and shown to give rather good results for some
is believed to be much lower than the true value, whichStrongly interacting systeni8.For collective diffusion, the
should be closer to the experimentally observed b&ft8r ~starting point of the theory is the density-density autocorre-
of 0.5 to 0.6 eV in the disordered phase and in the limit oflation function S(r,r’,t) introduced in Eq.(6). Using the
zero coverage. Our choice is necessitated by the need tdori projection operator formalisiT, it can be shown that
speed up the jump rate in the numerical simulations at lowts Laplace-Fourier transform can be writterf’as
temperatures, but we will show below how the effect of
changingA can be estimatetsee Sec. |V B beloy

B. Microscopic transition rates and waiting times

)= x(9)
lIl. THEORETICAL METHODS z—b(q)x(q) " *+M(q,2)

(10

A. Definitions of collective and tracer diffusion > . . . . .
where b(q) contains microscopic jump rate information,

The collective diffusion tensorD¢ can be conveniently () is the thermodynamical susceptibility, and the memory
defined via the density-fluctuation autocorrelation funcffon . - . ) .
function M(q,z) contains the dynamical correlations. The
> - - >, collective diffusion coefficient can be obtained from the cor-
S(rr',t)=(dp(r,t) dp(r',0)), (6) : s o : -
relation functionS(qg,z) by examining its pole in the limits
wherer andr’ denote position vectors on a lattice, the den-q—0 and z—02*?%® In the limit g—O0, b(q)
sity fluctuations are given byp(r,t)=p(r,t)— 0, and the ~N=,I',q%/2, wherel, is the average jump rate and,
angular brackets denote an ensemble average. In the hydrs-the jump length along the directian Also, the compress-
dynatnic regirpe, the cclrrespgnding Fourier transform decayility term onliquOX(a)/N:kBTQKT is an equivalent
asS(k,t) =S(k,0)exp(~k-D¢- kt), allowing us to extract the expression for the inverse of the thermodynamic factor

elements of the collective diffusion tensbg for smallk.  \When the memory functiom(a'z) is left out, this consti-
We shall refer to the use of this definition as the “density-tytes adynamical mean field theoMF) for D .%?

fluctuation method.” N The combined approactproposed originally in Ref. 32
_ An equivalent and a very useful way of describing collec-consists of evaluating the average jump geand the com-
tive diffusion is to write the diagonal elements Bt as pressibility yo not through further analytic approximations as

attempted previousf{?® but rather by MC simulationd",,
2\ is directly obtained from the success ratio of individual par-
- gDC.m.,aa ’ i i i i ilai _
ticle jumps in the canonical ensemble, whilgis more con
7) veniently evaluated within the grand canonical ensemble.
. B This procedure is easily implemented for arbitrary interac-
where the two spatial componenis=x,y of the position  tion strength® and transition algorithms and is computation-
vector for a particle at timet are denoted biR,(t), and the  ally very efficient when compared with brute force simula-
sum is over theN particles in the system. The “thermody- tions in the hydrodynamic limit. Neglecting the memory

namic factor'®® function M(q,z) in Eq. (10) is equivalent to the Langmuir
(N) ) gas approximatiod??*>*2where for collective diffusion the
_ _ (8) memory effects cancel out exacﬂ?ﬁlThis leads to the form

((6N)?)  So first proposed by Reed and Ehrliéh:

N

> [RL()—RL(0)]

=1

1
Dcvaa:§|lmm<

t—ow

3
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2 -2
appr :/_“ & (1) 0 — Dy
C,aa 2d Xo 3 O --= D¢y

For tracer diffusion, a similar analysis can be performed for
the self-correlation functiorSS(F,F’,t), which differs from

S(r,r’,t) defined by Eq(6) in that it refers to the probability ST
of finding ataggedparticle at the given site¥.In the expres- ol AN
sion analogous to Eq10), the jump rate factoln(ﬁ) remains ) Ry

4t

In Do

the same andy(q) is replaced by unity. In this case the P
Langmuir model gives a nontrivial correlation factb{6). 06 08 10 1214
This quantity has been calculated accurately for the two- I./T

dimensional(2D) square lattice in Refs. 10—12. The result-

) . FIG. 3. Results forlD¢ in an Arrhenius plot at?=0.45. The
ing expression foDt become&' © P

results along the two principal axes,y) are based on the density
fluctuation method and are given by squares and circles, respec-
/2 tively. The error bars are of the size of the symbols. The corre-
D appr __“f( 6T (12 . . . . :
T,aa™ 5 a- sponding approximations based on Ebjl) are given by lines. The
critical temperaturdl; of the order-disorder phase transition is de-

. . . noted by a dotted line.
Another useful quantity related to jump rates is the

waiting-time distribution Wt) defined as follows? Let the
particle have performed its last transitiontat0. ThenW(t)

is the probability density that the particle in question per-
forms its next transition dtafter it remained still untit. The
natural definition of time in the MC simulations is the num-
ber of jump attempts per particle, denoted tywith the
corresponding distribution functiow/(n). The average jump
ratel” is related toW(t) via

also used the Kubo-Green method to calculBte. Here
getting good statistics for the center-of-mass tddgy, ..
becomes the major problem.

Of the many possible ways to calculate the thermody-
namic factor &, we evaluated((SN)?) within the grand-
canonical ensemble, in which the particle number density
is not fixed but is fluctuating around its mean valueAt all
temperatures considered, the results of the Kubo-Green
method were consistent with those given by the density fluc-
1 - tuation method. FoD+ to be well defined, long simulation
f:<n>: nzl nW(n), (13 times were needed to overcome the initial nonlinearity of the
mean-square displacement as a function of time due to the
memory effects. This is too often taken for granted in the
research literature, apparently because of the seemingly good
statistics for the mean-square displacement.

C. Monte Carlo method Throughout the present work, we make our numerical re-

The actual Monte Carlo simulations to sample the quanSults for the quantitieDr, D¢, and I d|m§n3|onless by
tities defined above were carried out in lax L lattice with ~ €XPressing them in the natural gnﬂsa}’ﬂto, a‘lto, and 1y,
fully periodic boundary conditions, the linear sizebeing 30 "€SPectively, whera is the lattice constant ant is one
unless mentioned otherwise. This is large enough for th&lonte Carlo step per particle.
finite-size effects to be negligible, provided that one is not

where(n) is the mean waiting time of the particle.

very qlose to the pritical point. The number of independent IV. RESULTS
runs in our studies varied typically between 1000 and _ )
10 000. We used the RANMAR pseudorandom number gen- A. The role of dynamical correlations

erator, which has performed very well in a number of exten- e first compare the results f@- andD+ given by the
sive test program@z. Some additional test runs were per- approximations of Eqs(11) and (12) with those obtained
formed using the ZIFF9689 generafdrwhose diffusion  from full MC simulations via the definitions in Sec. 11l A.
results were found to be consistent with those obtained withsjnce in the former the only approximation is the absence of
RANMAR. _ _ _ memory effects beyond those in the Langmuir gas model, a
We paid particular attention to ensuring that the propercomparison of the two results provides information on the
regimes for evaluatin®c andDy were achieved in the MC  effect of interactions on dynamical correlations. All the re-
simulations. Within the density fluctuation method Ok,  sults presented here are for the coverdged.45 for which
we need to sample fluctuations in the hydrodynamic regimghe low-temperature ordered phase{@x1).
characterized by smak and long time. We used the two In Figs. 3 and 4 the full MC results fdb. and Dy are
smallest values dﬁ (kOCZ’TTl/L, i= 1,2), whose results were shown by open symbo|3 while the Corresponding approxi_
found to be consistent with each other. We followed themate descriptions are shown by lines. In the caseotlec-
approach of Mak, Andersen, and Gedttby studying the tive diffusion, the agreement between the DMF result and the
decay of S(k,t) separately for the sine and cosine trans-direct MC data is remarkably good, indicating that the
forms, and used the deviation between the two resulting valmemory effects are not very important. At very high tem-
ues to obtain an error estimate O . For comparison, we peratures, this is an expected result. However, DMF turns
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FIG. 4. Results foDt in an Arrhenius plot at#=0.45. The FIG. 6. A comparison of tracer and collective diffusion in terms

results along the two principal axes,y) are given by squares and of the ratio r,=D¢y 4a/D1.ea- Results for both directionse
circles, respectively. The error bars are much smaller than the size x,y are shown. The critical temperature is denoted by a dotted
of the symbols. The corresponding approximations based on Edine.
(12) are given by lines. Again, the critical temperatiitels denoted
by a dotted line. peratures, the adatoms are mostly standing still, while only a
few mobile atoms at a time are wandering around small va-
out to be a good approximation also at low temperatures icancy islands and along the channels that separate filled rows
the ordered phase and even in the vicinity of a phase transbf adatoms. Due to the interactions, the jump rate of a mobile
tion, the difference being always less than 15%. This meangacer particle is much higher than that of the surrounding
that the memory effects are not very important for collectiveatoms. Therefore it is moving in a practically “frozen” en-
diffusion, since thestatic quantityl’, is a good approxima- vironment, where the memory of the vacant sites left behind
tion of thedynamiccenter-of-mass ter®. , ,,. The same has a long lifetime?
observation has very recently been made in other strongly To further compare the diffusion coefficients, one can
interacting systems such as a lattice-gas model on a steppetso consider the Darken equatitft®33®which is based on
substrate and a model polymer syst&nthus justifying the  the assumption that the velocitiédisplacementsof differ-
use of the Reed-Ehrlich descriptiéh. ent adatoms are not correlated. If this were true, then the
We next consider the behavior thcer diffusion along  center-of-mass ternD , .., in Eq. (7) could be replaced
the same lines. We first note that the general behavi@-of with Dt ,, and thus the collective diffusion coefficient could
is to a great extent similar tbc. Yet Eq.(12) seems to be be written asD-=£D+. To characterize the validity of this
an inadequate description Bf; under circumstances where assumption, we considered the ratiQ=D¢m q4o/DT qa-
the effect of interparticle interactions is significant, i.e., atOur results forr , in Fig. 6 show that the Darken equation
temperatures belowW. . Here the difference between the ap- holds reasonably well in the disordered phase, while in the
proximation and the direct MC data is entirely due to theordered phase this is no longer true. As a matter of fact, at all
memory effects: in Eq(12) the correlation factof(6) in-  temperatures considered in the present work, the DMF de-
cludes only the backcorrelation effect in the Langmuir fas. scription for D works better than the Darken equation.
Thus, since the other memory effects arising from the direcTherefore, to conclude the discussion on the memory effects,
interparticle interactions are not taken into account, and théhe results of the present model system suggest that dynami-
approximatiorD?f’E; is an overestimate dd;, we may con- cal correlations do not seem to play a major role in collective
clude that the remaining memory effects are also predomidiffusion, whereas for tracer diffusion the conclusion is ex-
nantly of the backcorrelation type. In the specific case studactly the opposite.
ied here, the microscopic origin of the additional memory
effects can be understood by considering the snapshots of B. Non-Arrhenius behavior of the diffusion
typical lattice configurations shown in Fig. 5. At low tem- coefficients aroundT

The observed temperature dependence of a diffusion co-
efficient D is commonly fitted to an activated Arrhenius
form,

D~Dge EalkeT, (14)

(@

Within the transition state theory,the prefactorD, arises
from the entropic barrier, while the remaining part describes
thermally activated jumps over an effective energy barrier
FIG. 5. Representative snapshots of the configurations in th&x - It is evident that the behavior displayed by the diffusion
O/W(110 system withd=0.45. The occupied sites are denoted by coefficients in Figs. 3 and 4 cannot be reasonably described
filled circles. The temperatures correspondinggo (b), and(c) are by a constant effective activation barrier over the whole tem-
T=0.714T,, T=0.952T,, andT=2.143T, respectively. perature regime. Further, for this kind ofreon-Arrhenius
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FIG. 7. Results for thédimensionlessthermodynamic factog ) o .
(squares fot. =30 and triangles fot =120) and the average tran- G- 8. Results for the effective activation barrieg . The
squares denote results based on the Arrhenius form, while open

sition ratel” (circles in an Arrhenius plot. FoE, results with two ; ) o X !
system size4 are given to demonstrate the cusplike behavior; the(:l_rcle_s represent the data bas_ed on the tall_ of the wamn_g-tlme dis-
critical regime is further illustrated in the inset. Thedependence tribution. For the former, a typical error bar is shown, while for the
(not shown of T is extremely weakRef. 68. The error bars are latter the errors are §maller tha.n the size of the syr_nbols. Behavior
smaller than the sizes of the symbols. The thermodynamic facto?f the prefactoD, is illustrated in the inset. The critical tempera-
has been shifted for clarity’s sake. The critical temperature of thdUre is denoted by a dotted line.

order-disorder phase transition is denotedTyand a dotted line.

8, EX tends to a constant value of about 0.28 eV at low
temperature dependenddere is no unique way of defining temperatures and to the value of about 0.12 eV at high tem-
a temperature-dependent barrier. One way is to use the locperatures. We will come back to the interpretation of these
slope while another possibility is to choose a constant effecbarriers in Sec. IV D. Here we consider the barrier at tem-
tive prefactor and leave all the temperature dependence iperatures around., whereEE has a very pronounced peak
the effective barrier. These two procedures would lead teentered afT., arising from the steeper slope of tii;
very different values for the barrier. We now follow the prac- versusT curves around the transition temperature. This peak
tice commonly used in analysis of experiments and define am EY, is accompanied by a strong increase in the value of the
effective diffusion barrieEE as the local slope of an Arrhen- corresponding prefactd, shown in the inset of Fig. 8. This
ius plot, namely, is yet another example of the well-known compensation

effect?®®® Here the compensation simply results from the
d fact that when the temperature dependence is non-Arrhenius,
- m'”D- (19 there is no unique way of separating the prefactor and the
barrier contributions. Since the temperature dependence of
In Figs. 3 and 4, the local slope is approximately constant athe diffusion coefficient itself near; is smooth and nonsin-
low and high temperatures away frofy. This implies that ~gular, any dramatic change in the temperature dependence of
the diffusion coefficients obey simple Arrhenius behavior inthe effective barrieEx mustbe followed by a corresponding
these limits. Overall, however, the Arrhenius form with achange in the effective prefact@ry.
single activation barrier cannot successfully describe their To understand the observed strong temperature variation
temperature dependence since n€arthe diffusion coeffi- of EY nearT., we need to consider the energetics of the
cients show strong temperature variations. microscopic jump processes that determine the average jump
Since the definition oD contains the inverse compress- ratel”. At finite coverages, there is a very complex distribu-
ibility, 2 it is often assumed that the non-Arrhenius behaviortion P(E,) for the instantaneous activation barridts [see
is due to nonlocal thermodynamic effects. This assumption i€qg. (5)] that an adatom needs to overcome in a jump attempt
well justified in cases where the thermodynamic faéitias  from one configuration to another. For our model, the range
rapid temperature variations closeTg, and then the behav- of values is illustrated in Fig. 9. At high temperaturB$E,)
ior of the collective diffusion coefficient is expected to be is strongly peaked at small values ©f, while at low tem-
dominated by¢£.%® In the present case, however, the com-peratures the situation is completely the opposite. The
pressibility shows only a cusplike behaibat T, and thus  change in the distribution takes place arodnd thus char-
the non-Arrhenius behavior of bofb; andD¢ is predomi-  acterizing the ordering of the adlayer as the temperature is
nantly determined by the average local jump f@tef single  decreased beloW,. This change in turn results in a strong
particles. This can be easily seen from E@kl) and (12).  temperature dependence of the average transition Ifate
We indeed observe that the temperature dependendé of aroundT,, as shown in Fig. 7.
shown by circles in Fig. 7 is very similar to that Bf; as We should point out, however, that the instantaneous ac-
well as Dy, with a turning point and sharp temperature tivation barriersE, cannot explain the peak of the effective
variations neafl . It is evident that only slightly steepens barrier ER in Fig. 8, since the largest value &, in our
the slope oD versus 1T aroundT,. model system is only about 0.4 eV, as is evident from Fig. 9.
We next focus on the effective diffusion barriEr,'i as Thus, the peak does not refer to any microscopic rate-
extracted from Eq(15) for D+. As shown by squares in Fig. limiting jump process. Instead, it arises from an entropic

EQ=



57 ADATOM DYNAMICS AND DIFFUSION IN A MODEL OF ... 1903

T T T T T 0
01 (@ ] §

005 |
wld II

0.0} - |.|LI

™ 01} '(b)

0.0 | ! ol Il L.ll:lh.l.l.l:l[

005F | (©

00} ¢ J . . n 0 2000 4000 6000
00 01 02 03 04 n

E, [eV] FIG. 10. An example of the waiting-time distribution at tem-
peratures of 0.77R. (circles, 1.017T. (triangleg, and 2.143.
FIG. 9. Normalized probability distributionB(E,) of the in-  (gashed ling showing an exponential decay at large times. At tem-
stantaneous activation barriels, [see Eq.(5)] at three different peratures of 1.0I2, and 2.143 ., the time scales have been mul-
temperatures:(a) T=0.714T;, (b) T=1.01Z;, and () T  tiplied by 5 and 90, respectively. Also, at temperatures of OTZ74
=2.1437;. The barrier that corresponds to a jump from a fully ang 1.017, only some of the data points are shown here to clarify
ordered row in the perfeqp(2x1) phase to an empty channel the representation. The full curve is an exponential fit to the tail of
nearby, thus forming a vacancy behiftocess(4) in Fig. 12, is  \y(n) at 0.774,. In this case, the approximate crossover timg

0.392 eV. In all three figures, one of the peaks extends beyond thgom the early-time regime to the asymptotic long-time regime is
vertical scale: in(a) P(0.392 eV)}=0.496, in(b) P(0.392 eV) indicated by an arrowRef. 7J.

=0.171, and in(c) P(0.0 eV)=0.120. For these histograms, more

than 16 samples were taken. tor pg=1—(N—1)/(Npyax—1)~1— 6 is keptconstantwith

ibution® a value corresponding to average blocking of jumps. We
contributior!” to I" that has a strong temperature depe”denc%mphasize that this effective barrier, defined as

in the vicinity of T.. We note that these conclusions apply to
both tracer and collective diffusion since the qualitative be- EW=—kgTIn(p/po), (16)
havior of D+ andD¢ aroundT. is similar.
is thus not extracted from the local slope of an Arrhenius
C. Long-time and short-time behavior of W(t) plot.
) o . ) ) Qualitatively, the temperature dependenciegpadind I
To gain more insight into the microscopic dynamical pro-aye rather similar. At high temperatures, the absolute value of
cesses and the anomalous temperature dependencg& hear p is close to that off". For decreasing the temperatue,
we next consider the waiting-time distributiow/(t) of  gecreases more steeply theror D+ (cf. Fig. 4 aroundT..
§ingle-particle jumps as defined in Sec. Ill B. At very long |, Fig. 8 the barrieEX’ (shown by circlesis compared with
times, we expectV(t) to decay as(t) ~exp(~U7). Herer o parriereD as extracted from the local slope Bf; . The
corresponds to the longest characteristic time scale among o warriers agree away froff,, while aroundT, their be-
the various jump processes. The expected exponential dec vior is completely different :I'his is clearly d(l:,le to the use
at long times is indeed observed for our model system, a8¢ 2 constant prefactap, in déterminingEW while ED is
demonstrated in Fig. 10. The main contributiod térom the determined from the Iogal slope &f ’ A
right-hand side of Eq(13) comes from the short-time re- pe oy
gime. This can be demonstrated as follows: we divide the

sum in Eg.(13) into two parts, the first of which is the 4 — h<n>
short-time contributiofn)s= =" nW(n). This quantity ac- i
counts for the contribution up to a crossover timg,"* 2l S
which separates the short-time regime from the asymptotic AR
exponential decay. What remains is the long-time contribu- or N
tion (n)_,=(n)—(n)s. From Fig. 11 we observe that the N\
short-time regime indeed gives the dominant contribution to 2T A
I' and is thus mainly responsible for the anomalous tempera- TNeall -
ture dependence of the diffusion coefficients. The tempera- 41 S . o
ture dependencies din)s and (n)_ are qualitatively very 08 12 16 20
similar, however. T/T

c

D. Effective energy barrier from W(t) FIG. 11. Comparison of the early-time Contributi(’m>s and the

) ) ) late-time contributiorn), to the average waiting timén). The
To further illustrate the importance of how one defines aNjight increase ofn), at smallT is due ton,, whose value is

effective energy barrier, we define another barfigrvia the  gifficult to determine accurately at very low temperatuii@sf. 72.

asymptotic exponential decay &¥(t) by considering the The quantitiegn)s, (n), , and(n) are all expressed in units of one
jump probabilityp=1/7= pyexp(—Ea/ksT),”> where the fac-  Monte Carlo step per particle.
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FIG. 12. Some important jump processes in pf{@ x 1) phase 0.0 . .
in the O/W(110) system. Filled and open circles represent occupied 0.0 0.1 0.2 0.3
and vacant adsorption sites, respectively. A [eV]
Concerning the actual values Ef,i" in various limits, the FIG. 13. The dependence of the effective diffusion barrier

high-temperature value of about 0.12 eV appears to be B (A) for tracer diffusion on the intrinsic barriek. The studies
combination ofA and some average barrier arising from theWere carried out betweeh=1.667T. andT=2.143T. The line is
interparticle interactions in the disordered phase. At low tem®nly @ guide to the eye, and the barrier/at-0 is EX(0)=0.105
perature EX levels off to a value of about 0.28 eV. To un- ev.

derstand this value, we first note that within th€2x 1) i . .
phase at9=0.45, diffusion occurs mainly through the mo- intéraction effects are stronger. Nevertheless, the contribu-

: . e : i D i it i
tion of vacancies within occupied, ordered rows, or througHion of A to E4 is approximately additive, which can be used
the motion of adatoms between them. This corresponds t¢/hen a quantitative comparison between simulation results
the processe&l) and (2) shown in Fig. 12. For long range and experimental data is desiréd.

mass transport of a tracer particle, the first process is neces-

sary. Two typical processes that facilitate this é@eand(4) F. Ordering and diffusion anisotropy
in Fig. 12. In our case, the instantaneous activation barriers ]
E, of these two processes are 0.311 eV and 0.397sa¢ Within the ordered phase aroude-0.5, at any time there

Eq. (5)], respectively. These two barriers correspond to thdS Only one of the equivalem(2x1) andp(1x2) phases
energy cost of local symmetry breaking and are rathePresentin the system. One of them correAsponds to ordering
closé” to the low-temperature vaIuEX"ZO.ZS eV men- along thex direction and the other along tlyedirection(see
tioned above. In this respect, as becomes most evident ne&ig- 1). At low temperatures, due to the long characteristic
TC! the interpretation oEXV in terms of microscopic sing|e_ time scales |nV0|Ved, a SW|tCh|ng from one to the other does
not occur during simulations. Thus the ordering results in an
anisotropy of transition rates and corresponding activation
barriers, which manifests itself as diffusion anisotrépy?

The anisotropy is characterized by the ratio of the diago-
5 nal terms in the diffusion tensor, i.eD¢ y,/Dcyy and

E. Influence of A on E5 D1 xx/Dryy- In our results shown in Figs. 3 and 4 this ratio

Let us now comment on the influence of the intrinsic bar-is two. The reason for this is that in the(2x1) and
rier A defined in Sec. Il B o} . In the results presented so P(1X2) phases, the symmetry axes of the Hamiltonian and
far, we have used a rather small valuedoft0.0437 eV to  the principal axes of diffusion are actually the nearest neigh-
speed up the MC simulations so that the leading contributiomor directionsx andy.}” Thus the anisotropy ratio we ob-
to our results forEE\’ comes from the adatom-adatom inter- served is simply the geometrical factor describing the anisot-
actions. With large values @, on the other hand, one might ropy of the underlying substrate. This is in agreement with
expectE} to be dominated by the intrinsic barrier. We stud- experimenta; % observatiofis  and previous  MC
ied this issue by calculating} for tracer diffusion between C%'CU@'O”SZ.’ For the same reason, the diffusion barriers
T=1.667T, andT=2.143T, as a function ofA. The results Ea are |dent|cgl for directions andy. It is therefore 0pwous
for the contribution ofA in ER are given in Fig. 13. For that the off-diagonal elementS¢ ., and Dt ., With a
small values ofA the curve is nonlinear, which means that # @' measure the Qegree of ordenng_ in the_ adlayer. There-
changingA cannot be included as a constant prefactor of thdOre, to study the influence of ordering, it is necessary to
transition rate in Eq(3). For large values oA\, the slope of consider diffusion along the directioxsandy instead ofx
the curve approaches unity, which means thafuather in- andy. To measure this anisotropy we shall use the quantities
crease i goes directly into the effective barrier. The initial I'ma=maxIs Iy} and I pin=min{[’; I}, wherel'; (I';) is
shift of approximately 0.05 eV, which can also be consideredhe average transition rate in tﬁqgl) direction(see Fig. L
as a threshold value fax to dominate, prevails i} for all  Note that within the framework of DMF, they yield the same
values ofA. This is close to the value af chosen in this anisotropy forD- andD+. The results are presented in Fig.
work, and therefore it is roughly half of the high-temperaturel14. As expected, aboVE, there is no difference between the
value of E,'i in Fig. 8. At low temperatures this threshold two quantities, but in the ordered phase the anisotropy is
value is naturally expected to be larger, because there thdearly present. FoT<0.9T., the system is not capable of

particle jump processes is more transparent than thEﬁof
A detailed comparison betwed; andEY in different or-
dered phases of O/\W10) will be presented elsewhefe.
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0.15 y - ; y system at a fixed coverage as a function of temperature. In
: particular, we have studied a wide temperature range from
012} the high temperature disordered phase down to the
p(2x1) ordered phase, where adatom-adatom interactions
0 0.09F play an important role. The expected non-Arrhenius behavior
was analyzed using the framework provided by the DMF
0.06 | theory?#?32which in the case of collective diffusion con-
stitutes the theoretical foundation of the phenomenological
0.03 [ Reed-Ehrlich descriptioft. For the model considered here,
. _ the non-Arrhenius behavior of the collective diffusion coef-
0-00; 0'8 0'9 1'0 1'1 15 ficient D¢ was found to be predominantly determined by the

microscopic average jump ralg while the compressibility

T/T. factor &£ due to the nature of the transition only weakly con-
tributes to the observed temperature dependence. Over the
whole temperature rangB,¢ is very accurately described by
4he DMF formulaD ¢ €T

The temperature dependence of the tracer diffusion coef-
ficient D1 is qualitatively very similar to that oD andT’,
switching from one of the equivalent phases to the othePUt at low temperatures memory effects enhanced by adpar-

during the simulation. The anisotropy obtained here is conficle interactions are very prominent by. We have also

sistent with previous finding¥,and is naturally expected to Shown how the single-atom waiting-time distributiow(t)
be most pronounced #-=0.5. can be used to assess the role of various microscopic pro-

Within the ordered phase also the activation barriers fo€esses with different instantaneous activation barriers in de-
termining the observed macroscopic behavior. The non-
Arrhenius behavior was related to critical effects WA(t)

FIG. 14. The results for the transition ratEg,.,—= maxIy,I;}
(circles, I'yin=min{l; Iy} (crossel and " (full line). The error
bars are much smaller than the sizes of the symbols. The critic
temperature is denoted by a dotted line.

diffusion along thex andy directions are rather different. To

S'[l:ldy this, \fve considered .the_ W&}ltlng-'Elme dIStr_lbuuonSalready at short times, while the long-time deca ) is
Wi(n) andWy(n) along the directiong andy, respectively.  cjosely associated with the slowest microscopic processes.
From the tails of these distributions we indeed find the larger Based on the success of the DMF description in several
of the two barriers to be about 6% larger than the activatiorgtronmy interacting model systerfwe expect the methods
barrier we get fromW(n), while the lower is considerably ,nq concepts presented here to be applicable to a wide vari-

smaller than the effective activation barrier. Thus the effec—ety of systems. Experimental studies using the recently de-

tive activatiqn bgrrieEXV we find is indeed dominated by the veloped methods utilizing the STM to extract the waiting

largest barriers in the system. _ times! would be very interesting. A particularly interesting
_ We also note here that although in th€2x2) phase at  fyrther application is diffusion within coexistence phases.

higher coverages, for example, there is no anisotropy bework in this direction is under way.

tween the jump directions andy, diffusion is still consid-

erably influenced by ordering. However, in that case order-

ing manifests itself only via the high instantaneous activation ACKNOWLEDGMENTS
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