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Charge fluctuations in quantum point contacts and chaotic cavities in the presence of transport
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We analyze the frequency-dependent current fluctuations induced into a gate near a quantum point contact
or a quantum chaotic cavity. We use a current- and charge-conserving effective scattering approach in which
interactions are treated in the random-phase approximation. The current fluctuations measured at a nearby gate,
coupled capacitively to the conductor, are determined by the screened charge fluctuations of the conductor.
Both the equilibrium and nonequilibrium current noise at the gate can be expressed with the help of resistances
which are related to the charge dynamics on the conductor. We evaluate these resistances for a point contact,
and determine their distributions for an ensemble of chaotic cavities. For a quantum point contact these
resistances exhibit pronounced oscillations with the opening of channels. For a chaotic cavity coupled to
one-channel point contacts, the charge relaxation resistance shows a broad distribution between1

4 and 1
2 of a

resistance quantum. The nonequilibrium resistance exhibits a broad distribution between zero and1
4 of a

resistance quantum.@S0163-1829~98!03103-8#
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I. INTRODUCTION

The investigation of fluctuations in mesoscopic cond
tors is an interesting problem which has found considera
attention both experimentally and theoretically. Two rec
reviews provide both an introduction to the subject as wel
a discussion of some of the important results.1,2 In this work
we are interested in the frequency-dependent noise spect
mesoscopic conductors away from the low-frequency wh
noise limit. The experimental observation of deviations fro
the white-noise limit in the current-fluctuation spectra
well conducting samples requires large frequencies.3 Here
we investigate the fluctuations induced into a nearby g
capacitively coupled to the conductor. These fluctuations
not a correction to an effect that exists already in the ze
frequency limit. We present a discussion which describes
internal potential of the mesoscopic conductor with a sin
variable. The Coulomb interactions are described with
help of a geometrical capacitanceC instead of the full Pois-
son equation. Furthermore, we will treat the gate as a m
roscopic electric conductor. In this case the current fluct
tions induced into a nearby gate are determined entirely
the dynamics of the charge fluctuations of the mesosco
conductor.

Consider a conductor, for instance the quantum po
contact,4–7 shown in Fig. 1. The conductor is described
scattering matricessab which relate the amplitudes of in
coming currents at contactb to the amplitudes of the outgo
ing currents ata. We find that the charge fluctuations of th
mesoscopic conductor can be described with the help
density-of-states matrix

Ndg5
1

2p i(a sad
† dsag

dE
. ~1!
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The diagonal elements of this matrix determine the den
of states of the conductorN5(gTr(Ngg); the trace is over
all quantum channels. The nondiagonal elements are es
tial to describe fluctuations. At equilibrium and in the zer
temperature limit, we find that to leading order in frequen
the mean-squared current fluctuations at the gate hav
spectrumS00(v,V50)52v2\uvuCm

2 Rq . Here Cm
215C21

1(e2N)21, is the electrochemicalcapacitance8 of the con-
ductorvis à vis the gate. The dynamical quantity which d
termines the fluctuations is the charge relaxation resista
Rq ,

Rq5
h

2e2

(
gd

Tr~NgdN gd
† !

F(
g

Tr~Ngg!G2 . ~2!

FIG. 1. Geometry of the quantum point contact.
1838 © 1998 The American Physical Society
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57 1839CHARGE FLUCTUATIONS IN QUANTUM POINT . . .
Büttiker, Thomas, and Preˆtre8 showed that the charge relax
ation resistance governs the dissipative part of the lo
frequency admittance of mesoscopic capacitors. Toge
with the electrochemical capacitanceCm , Rq determines the
charge relaxation timeRqCm of the mesoscopic conducto
Similarly to the equilibrium noise spectrum, at zero tempe
ture, the nonequilibrium current noise spectrum at the g
S00(V,v)52v2euVuCm

2 Rv , is determined by a resistanc
Rv ,

Rv5
h

e2

Tr~N21N 21
† !

F(
g

Tr~Ngg!G2 . ~3!

Whereas the charge relaxation resistanceRq invokes all ele-
ments of the density-of-states matrix with equal weight,
the presence of transport the nondiagonal elements of
density-of-states matrix are singled out. Below we pres
the derivation of these results and evaluate the charge re
ation resistanceRq and the resistanceRv for the quantum
point contact and for a chaotic quantum dot.

The characterization of the current fluctuations in terms
resistances can be motivated as follows. The current fluc
tions at the gate contact are directly related to fluctuation
the chargeQ on the conductor,

S00~v,V!5v2SQQ~v,V!. ~4!

In turn, the charge fluctuations are related to the poten
fluctuations by the geometrical capacitanceC,

SQQ~v,V!5C2SUU~v,V!. ~5!

Voltage fluctuations, as is well known, are essentially de
mined by resistances. However, in contrast to the Nyq
formula for equilibrium voltage fluctuations, we deal he
with electrostatic potential fluctuations inside the conduc
The resistancesRq andRv are related to the charge dynami
rather than the two-terminal dc resistance.

The resistancesRq andRv probe an aspect of mesoscop
conductors which is not accessible by investigating the
conductance or the zero-frequency limit of shot noise. Th
resistances are not determined by the scattering matrix al
but also by its energy derivative. According to the fluctuati
dissipation theorem, the low-frequency equilibrium curre
fluctuations of a conductor which permits transmission
determined by the conductance of the system. For a t
terminal conductor the conductance is simply the sum of
transmission eigenvaluesTn . The low-frequency nonequilib
rium noise, the shot noise,9,10 of a two-terminal conductor is
determined by the sum of the productsTn(12Tn), where
Tn512Rn are again the eigenvalues of the transmission m
trix multiplied by its Hermitian conjugate.11,12 Hence both
the equilibrium noise and the shot noise are governed by
transmission behavior of the sample. This is even true
correlations on multiterminal conductors which cannot
expressed in terms of transmission eigenvalues.11,13,14 In
contrast, the dynamic conductance is determined by osc
tions of the charge distribution in the conductor.15 Since
charge is a conserved quantity, the oscillatory part of
charge distribution can be represented as a sum
dipoles.16,17 Similarly, the frequency-dependent fluctuatio
-
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are governed by the fluctuations of the charge distributio
or more precisely by the fluctuations of dipolar charges.

The charge fluctuations of a noninteracting system can
described with the help of the density-of-states matrix; E
~1!. However, the charge distribution of a noninteracting s
tem is not dipolar. In fact, without interactions, charge is n
conserved, and consequently currents are not conserved
achieve a dipolar~or higher order multipolar! charge distri-
bution it is necessary to consider interactions. Here we c
sider the simple approximation in which the charge distrib
tion is effectively represented by a single dipole. We perm
the charging of the quantum point contact vis a` vis the gate.
In Fig. 1 this dipole is indicated by the chargesQ and2Q.
A more realistic treatment of the charge distribution of
quantum point contact includes a dipole across the quan
point contact itself,16 and in the presence of the gates i
cludes a quadrupolar charge distribution.17

The frequency dependence of the noise spectra gene
by the fluctuations of the dipolar charges should be dis
guished from a purely statistical frequency dependence a
ing from the Fermi distribution functions:3,18,19 Even for a
conductor with an energy-independent scattering mat
there exists a frequency dependence due to the Fermi d
bution functions of the different reservoirs. For small fr
quencies the distribution functions are governed by the te
peraturekT or the applied voltageeV, and a crossover
occurs when the frequency\v exceeds bothkT andeV. We
will not emphasize this crossover further, since it is a pro
erty of the Fermi distribution alone, and provides no ne
information on the conductor itself.

Our work is also of interest in view of recent efforts
discuss the dephasing induced by the shot noise of two c
ductors in close proximity,20,21or due to the fluctuating elec
tromagnetic field.22 Our work shows that what counts are th
dipolar charge fluctuations. The discussion presented be
cannot be applied to metallic diffusive conductors, for whi
the potential needs to be treated as a field.2 Recently
Nagaev’s23 classical discussion of shot noise in metallic co
ductors was extended to investigate the effect of a nea
gate.24,25In these works the source of the noise is taken to
frequency independent over the entire range of interest
contrast for the examples treated here, it is not only the e
trodynamic response which is frequency dependent but
the noise itself.

There has been a considerable recent interest in the p
metric derivatives of the scattering matrix of chao
conductors.26–30 The energy derivative of the scattering m
trix determines quantities like the density-of-states mat
Eq. ~1!. For electrostatic problems it is the functional deriv
tive of the scattering matrix with respect to the local pote
tial which matters.31 Only in the limit where we describe th
internal electrostatic potential as a single variable~instead of
a continuous field!, and only if we are satisfied with a WKB
like-description can the energy derivatives of the scatter
matrix be used. These two conditions are likely to be fulfill
for a ballistic quantum dot. Then the energy derivative of t
scattering matrix and the potential derivative differ just by
sign. For chaotic cavities a theory of the energy derivative
the scattering matrix has permitted a discussion of the dis
bution of capacitances.27–29Fyodorov and Sommers26,29used
supersymmetric methods to investigate the energy der
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tives of the scattering matrix. For a chaotic cavity connec
to a reservoir via a single channel lead, Gopar, Mello, a
Büttiker27 found the distribution functions for all universalit
classes by analyzing directly the statistical properties of
scattering matrix. The single-channel discussion of Gop
Mello, and Büttiker27 was generalized by Brouwer, Frahm
and Beenakker,30 who found the distribution of the scatterin
matrix and its derivatives for the multichannel problem. Th
generalization made it possible to investigate the distribu
of parametric conductance derivatives like the transcond
tancedG/dV0, whereG is the conductance andV0 is the
gate voltage.32 Here we use the result of Ref. 30 to find th
distribution of the charge relaxation resistanceRq and the
resistanceRv for a chaotic quantum dot coupled to reservo
via two perfect one-channel leads.

II. CURRENT AND CHARGE FLUCTUATIONS

To find the current fluctuations for the structures of int
est, in this section we discuss an approach which inclu
interaction effects in the random-phase approximat
~RPA!. This approach was used in Ref. 33 to find the d
namic conductance of mesoscopic structures for the case
the self-consistent potential of the conductor can be take
be a single variableU. The fluctuations belonging to thi
approach are discussed in Ref. 8 for the case of a mesosc
capacitor, and for a more general multiprobe conductor
pacitively coupled to a gate in Ref. 34.

A. Fixed internal potential

We consider a conductor with a fixed internal potent
~noninteracting problem!, and present the results needed la
on to treat the problem with interactions. Consider a cond
tor described by scattering matricessab which relate the an-
nihilation operatorsâb in the incoming channels in contactb

to the annihilation operatorsb̂a of a carrier in the outgoing
channel of contacta via11

b̂a5(
b

sabâb . ~6!

In a multichannel conductor thes matrix has dimensions
Na3Nb for leads that supportNa andNb quantum channels
Here a and b run over all contacts of the conductora,b
51,2. ~Later, we need indices for the contacts of the co
ductor and the gate. For this case we will use the lab
m,n50,1,2). The current at contacta is determined by the
difference in the occupation of the incident channels min
the occupation of the outgoing channels

Î a~v!5
e

\E dE@ âa
†~E!âa~E1\v!2b̂a

†~E!b̂a~E1\v!#.

~7!

Using Eq. ~6! to eliminate the occupation numbers of th
outgoing channels in terms of the incoming channels yield
current operator11

Î a~v!5
e

\E dE(
bg

âb
†~E!Abg

0 ~a,E,E1\v!âg~E1\v!,

~8!
d
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with a current matrix

Adg
0 ~a,E,E8!5daddag1a2sad

† ~E!sag~E8!. ~9!

Here the upper index 0 indicates that we deal with nonin
acting electrons. The current noise spectra are determine
the quantum expectation value^•••& of the current operators
at contactm and n, 1

2 ^D Î m(v)D Î n(v8)1D Î n(v8)D Î m(v)&
[2pSmnd(v1v8). The spectral densities in terms of th
current matrix are11

Smn~v!5
e2

h (
dg

E dE Fgd~E,v!Tr@Agd
0 ~m,E,E1\v!

3~A0!gd
† ~n,E,E1\v!#, ~10!

Fgd~E,v!5 f g~E!@12 f d~E1\v!#

1 f d~E1\v!@12 f g~E!#. ~11!

Here the trace is taken over channels, andf g is the Fermi
distribution function for contactg. At equilibrium these fluc-
tuation spectra are related to the ac conductances of the
interacting problem discussed in Ref. 33. The current ope
tor for the gate has thus far not been defined: that will
achieved only in Sec. II B.

It is natural to decompose the current matrix into tw
contributions: one at equal energies that determines the
response of the conductor, and one at differing energies
is associated with the dynamics of the system. Thus we w

Adg
0 ~a,E,E8!5daddag1a2sad

† ~E!sag~E!

22p i ~E82E!Ndg~a,E,E8!, ~12!

with a partial density-of-statesmatrix

Nbg~a,E,E8!5
i

2p

sab
† ~E!@sag~E!2sag~E8!#

E82E
. ~13!

This matrix has a simple interpretation: The elements
Nbg(a,E,E8) are the diagonal and nondiagonal elements
the density-of-states associated with carriers incident fr
contactb andg which eventually contribute to the current
contacta. From the continuity equation we find immediate
that the total charge fluctuations in the conductor genera
by particles incident from contactb and g irrespective
through which contact they leave the conductor are de
mined by the density of states matrix

Nbg~E,E8!5(
a
Nbg~a,E,E8!. ~14!

Some additional combinations of these matrices have a
cial meaning.31,35 We call

Nb~E,E8!5(
a
Nbb~a,E,E8! ~15!

the injectance matrixof contactb, and call
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Na~E,E8!5(
b
Nbb~a,E,E8! ~16!

the emittance matrix. The frequency-dependent injectance
the quantum expectation value of the injectance oper
N̄b(v)5^(aN̂bb(a,E,E1\v)&. Similarly, the frequency
dependent emittance isNa(v)5^(bN̂bb(a,E,E1\v)&.
Below we will often use only the zero-frequency limit of th
density matrix Eq.~14! (v→0), which is given by Eq.~1!.
Similarly we will most often use only the zero-temperatu
zero-frequency injectance,

N̄b5
1

2p i(a TrS sab
† dsab

dE D , ~17!

and emittance,

Na5
1

2p i(b TrS sab
† dsab

dE D . ~18!

The density matrices introduced above together with the
jectances and emittances can now be used to characteriz
charge fluctuations of the conductor. The evaluation of
injectances and emittances in the equilibrium state of
conductance limits the theory presented below to linear o
in the applied voltage.

B. Effective current matrix

Our goal is to derive a current matrix which includes t
effect of screening2 and replaces the current matrix, Eq.~9!
of the noninteracting problem. To this extent we next det
mine the operatorÛ for the internal potential. The charge o
the conductor is determined by the Coulomb interacti
Here we describe the interaction with the help of a sin
geometrical capacitance. Hence the charge on the condu
is Q̂5CÛ. Here we have assumed that the gate is mac
scopic, and has no dynamics of its own. We can also de
mine the chargeQ̂ as the sum of the bare charge fluctuatio
eN̂ and the induced charges generated by the fluctua
induced electrical potential. In the RPA the induced char
are proportional to the average frequency-dependent de
of statesN(v) times the fluctuating potential. Thus the n
charge is determined by

Q̂5CÛ5eN̂2e2NÛ. ~19!

Solving this equation gives us, for the operator of t
potential fluctuations,

Û5GeN̂, ~20!

with

G~v!5@C1e2N~v!#21. ~21!

Here G(v) takes into account the effective interaction p
tential.

The total current at probea is determined by the particle
current, and in addition by a current due to the fluctuat
potential. The fluctuation of the internal potential creates
ditional currents at all the contacts. The current fluctuatio
or
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generated by the induced potential fluctuations at contaca

are determined byive2Na(v)Û(v). Here the response to
the internal potential is determined by the emittance31,33 of
the conductor into contacta. Thus the total current at contac
a of the conductor is

Î a~v!5 Î a
0~v!2 ive2Na~v!Û~v!, ~22!

where Î a
0 is the current operator for fixed internal potentia

The current induced into the gate is given by the time
rivative of the total charge, and hence by

Î g~v!5 ivCÛ~v!. ~23!

ExpressingÛ in terms of the density of states matrix give
for the current operators Eqs.~22! and ~23! an expression
which is of the same form as Eq.~8!, but with the current
matrix Eq.~9! replaced by an effective current matrix

Adg~a,E,E1\v!5Adg
0 ~a,E,E1\v!

1 ive2NaGNdg~E,E1\v!. ~24!

Equation~24! determines the current at the contacts of t
conductor. The current induced into the gate contact is
termined by a current matrix

Adg~0,E,E1\v!52 ivCGNdg~E,E1\v!. ~25!

The sum of all currents at the contacts of the sample and
current at the gate is conserved. Indeed, labeling the in
which runs over all contacts byn (n50,1,2), we find

(
n

Adg~n,E,E1\v!50. ~26!

Equation ~26! follows from the relation between the bar
current matrix and the density-of-states matrix, Eqs.~12!–
~14! and the fact that 12e2NG5CG. Before continuing we
notice that for these effective current matricesAdg(n), the
index n runs over all contacts but the indicesd and g run
only over the contacts of the sample. This ‘‘asymmetry’’ is
consequence of our macroscopic treatment of the gate.

C. Charge fluctuation spectra

With the help of the effective current matrices, Eqs.~24!
and ~25!, we can find the current fluctuation spect
Smn(v,V) as in the noninteracting case: In Eq.~10! we have
to replace the bare current matrixAdg

0 (a) by the effective
current matrixAdg(n). This determines a matrixSmn(v) of
fluctuation spectra for the mean-square current fluctuation
the contacts of the conductor and the gate and for the co
lations between any two currents. As a consequence of
rent conservation,(mSmn(v)5(nSmn(v)50. At equilib-
rium the fluctuation spectra which we find with the help
the effective current matrix are related via the fluctuati
dissipation theorem to the frequency-dependent cond
tances of the interacting system given in Ref. 33. The spe
also agree with the expression given in Ref. 34. Here we
interested in the current fluctuations at the gate determi
by the spectrumS00(v,V). This spectrum is entirely deter
mined by the charge fluctuations of the conductor@see Eq.
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~4!#. Defining the frequency-dependent capacitance of
conductor to the gateCm(v)[e2N(v)CG(v), and using
Eq. ~25!, we find

SQQ~v!5Cm
2 ~v!N22~v!(

dg
E dE Fgd~E,v!

3Tr@Ngd~E,E1\v!N gd
† ~E,E1\v!#.

~27!

Two limits are of special interest. At equilibrium, at ze
temperature, we find, for the charge fluctuation spectrum
the low-frequency limit,SQQ(v)52Cm

2 Rq\uvu, where the
electrochemical capacitance is given by its zero-freque
value, and where the charge relaxation resistance is d
mined by Eq.~2!.

The second limit we wish to consider is the zer
temperature, low-frequency limit of the charge fluctuatio
to leading order in the applied voltageV. Evaluation of Eq.
~27! givesSQQ(v)52Cm

2 RvueVu, with a resistanceRv given
by Eq.~3!. Thus the nonequilibrium noise is determined by
nondiagonal element of the density-of-states matrix. If b
the frequency and the voltage are nonvanishing, we obt
to leading order in\v and V, SQQ(v)52Cm

2 R(v,V)\uvu
with a resistance

R~v,V!\uvu5H Rq\uvu, \uvu>euVu

Rq\uvu1RV~euVu2\uvu!, \uvu<euVu,
~28!

which is a frequency- and voltage-dependent series com
nation of the resistancesRq andRv . For the experimentally
relevant cases the variation ofCm is very small, and the
measured noise is directly proportional to the resistance
fined above. Below, we discuss the resistancesRq andRv in
detail for two examples: a quantum point contact and a c
otic cavity.

III. QUANTUM POINT CONTACT

Quantum point contacts~QPC’s! are formed with the help
of gates. It is therefore interesting to ask what the fluct
tions are which would be measured at one of these gates
simplicity, we consider a symmetric contact: We assume
the electrostatic potential is symmetric for electrons
proaching the contact from the left or from the right. Furth
more, we combine the capacitances of the conduction ch
nel to the two gates, and consider a single gate, as sh
schematically in Fig. 1. If only a few channels are open,
potential has in the center of the conduction channel the f
of a saddle:36

V~x,y!5V01 1
2 mvy

2y22 1
2 mvx

2x2, ~29!

whereV0 is the electrostatic potential at the saddle and
curvatures of the potential are parametrized byvx andvy .
For this model the scattering matrix is diagonal, i.e., for ea
quantum channel@energy\vy(n11/2) for transverse mo
tion# it can be represented as a 232 matrix. For a symmetric
scattering potential and without a magnetic field the scat
ing matrix is of the form
e

in
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sn~E!5S 2 iARnexp~ ifn! ATnexp~ ifn!

ATnexp~ ifn! 2 iARnexp~ ifn!
D , ~30!

whereTn andRn512Tn are the transmission and reflectio
probabilities of thenth quantum channel, andfn is the phase
accumulated by a carrier in thenth channel during transmis
sion through the QPC. The probabilities for transmiss
through the saddle point are36

Tn~E!5
1

11e2pen~E!
, ~31!

en~E!52@E2\vy~n1 1
2 !2V0#/~\vx!. ~32!

The transmission probabilities determine the conducta
G5(e2/h)(nTn and the zero-frequency shot noise10,11 S(v
50,V)5(e2/h)((nTnRn)euVu. As a function of energy~gate
voltage! the conductance rises steplike.4,5 The shot noise is a
periodic function of energy. The oscillations in the shot no
associated with the opening of a quantum channel have
cently been demonstrated experimentally by Reznikovet al.6

and Kumaret al.7

To obtain the density of states we use the relation betw
density and phaseNn5(1/p)fn , and evaluate it semiclass
cally. The spatial region of interest for which we have to fi
the density of states is the region over which the elect
density in the contact is not screened completely. We den
this length byl. The density of states is then found fro
Nn51/h*2l

l (dpn /dE) dx, where pn is the classically al-
lowed momentum. A simple calculation gives a density
states

Nn~E!5
4

hvx
arsinhSA1

2

mvx
2

E2En
l D ~33!

for energiesE exceeding the channel thresholdEn, and

Nn~E!5
4

hvx
arcoshSA1

2

mvx
2

En2E
l D ~34!

for energies in the intervalEn2(1/2)mvx
2l2<E,En below

the channel threshold. Electrons with energies less thanEn

2 1
2 mvx

2l2 are reflected before reaching the region of int
est, and thus do not contribute to the density of states.
resulting density of states has a logarithmic singularity at
thresholdEn5\vy(n1 1

2 )1V0 of the nth quantum channel
~We expect that a fully quantum-mechanical calculati
gives a density of states which also exhibits a peak at
threshold but which is not singular!. The total density of
states as function of energy~gate voltage! is shown in Fig. 2
for vy /vx53, V050 andmvxl

2/\518. Each peak in the
density of states of Fig. 2 marks the opening of a new ch
nel. With the help of the density of states we also obtain
capacitanceCm

215C211(e2N)21. For the experimentally
most relevant case (e2/C)@N21 the variations in the capaci
tance are small and the noise spectra are dominated by
energy dependence ofRq and Rv, which we will now dis-
cuss.



a
he

-

io
h
he

a

i-

c
e

-

otic
e
an-

e at

um
ve
y in
and
es
act.
ax-

he
e

d to
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It is instructive to evaluate the resistancesRq andRv ex-
plicitly in terms of the parameters which determine the sc
tering matrix. We find for the density of states matrix of t
nth quantum channel, we find

N115N225
1

2p

dfn

dE
, ~35!

N125N215
1

4p

1

ARnTn

dTn

dE
. ~36!

Inserting these results into Eq.~2! gives, for the charge re
laxation resistance,33

Rq5
h

e2

(
n

~dfn /dE!2

F(
n

~dfn /dE!G2 . ~37!

It is determined by the derivatives of the phases~densities!
evaluated at the Fermi energy. The resistanceRv is given by

Rv5
h

e2

(
n

1

4RnTn
S dTn

dE D 2

F(
n

~dfn /dE!G2 . ~38!

It is sensitive to the variation with energy of the transmiss
probability. Note that the transmission probability has t
form of a Fermi function. Consequently, the derivative of t
transmission probability is also proportional toTnRn . The
numerator of Eq.~38! is thus also maximal at the onset of
channel, and vanishes on a conductance plateau.

In Fig. 3 the effective resistanceR(v,V) is shown for
four frequencies\v/(eV)50, 0.25, 0.5, and 1, whereV is
the applied voltage. At the highest frequency\v/(eV)51
the resistanceR(v,V) is completely dominated by the equ
librium charge relaxation resistanceRq . The uppermost
curve (d) of Fig. 3 is nothing butRq and determines the
noise due the zero-point equilibrium fluctuations. The flu
tuations reach a maximum at the onset of a channel, sincRq

FIG. 2. Density of states in units of 4/(hvx) for a saddle-point
constriction as function of energy,E/(\vx). vy/vx53.
t-

n
e

-

takes its maximum valueRq5h/e2. At the lowest frequency
\v50 the resistanceR(v,V) is determined byRv . The
lowermost curve (a) of Fig. 3 is the nonequilibrium resis
tanceRv . It is seen that the nonequilibrium resistanceRv is
very much smaller thanRq . We will also encounter such a
large difference between these two resistances for the cha
cavity. FurthermoreRv exhibits a double-peak structure: Th
large peak in the density of states at the threshold of a qu
tum channel nearly suppresses the nonequilibrium nois
the channel threshold completely. Two additional curves@ b
and c for \v/(eV)50.25 and\v/(eV)50.5] describe the
crossover fromRv to Rq .

IV. QUANTUM CHAOTIC CAVITY

The general theory is now applied to a chaotic quant
dot37–39 with two ideal single-channel leads and capaciti
coupling to a macroscopic gate, as shown schematicall
Fig. 4. For such samples, averages lose their meaning
below we give the distribution functions of the resistanc
which characterize the noise induced into the gate cont
We compute the statistical distribution of the charge rel
ation resistanceRq and the resistanceRv from random ma-
trix theory,40 assuming that the classical dynamics of t
cavity is fully chaotic. We will again consider the cas

FIG. 3. Effective resistance, in units ofh/e2, as function of
energy, E/(\vx), for the cases~curve a)\v/~eV!50, ~curve
b)\v/~eV!50.25, ~curve c)\v/~eV!50.5, and ~curve d)\v/~eV!
51, whereV is bias voltage.vy/vx53.

FIG. 4. Quantum dot coupled to two open leads, and couple
a gate.
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e2/C@N21 for which the distribution function41 of the elec-
trochemical capacitance becomes very sharp.

The distribution of the two-terminal, zero-frequency sh
noise S5T(12T) in units of S052e(e2/h)uVu, follows
from the distributionP(T)}T211b/2 of the dimensionless
conductanceT. The symmetry indexb equals 1 or 2 de-
pending on whether time-reversal symmetry is presen
broken. The latter is a result of the uniform distribution
the scattering matrix on the set of unitary (b52) or unitary
symmetric (b51) 232 matrices.42 Thus one finds for the
distribution ofSP@0,1/4#

P~S!5H A11A124S1A12A124S

A16S~124S!
, b51

~1/42S!21/2, b52.

~39!

For the orthogonal ensemble the distribution of the s
noise is bimodal, and has square-root singularities atS50
and 1

4. In the unitary ensemble the distribution remains fin
at zero shot noise, and has a square-root singularity on
S51/4.

In contrast, for the low-frequency spectrum, Eq.~27!, of
the charge fluctuations, one needs the matricesNab , which
are just blocks of the well-known Wigner-Smith delay-tim
matrix (1/2p i ) s† (ds/dE)43. The distribution of this matrix
has recently been found.30 To computeP(Rq) it is sufficient
to know the joint distribution of the eigenvaluesP($qi%),
whereas forP(Rv) we also need that the eigenvectors a
distributed uniformly, and independently from the eigenv
ues. As in Ref. 32, we integrate over the eigenvalues with
extra weight factor( iqi , which is the fluctuating density o
states. For instance, the distribution ofRq ~in units of h/e2)
follows from

P~Rq!5E dq1dq2P~q1 ,q2!~q11q2!dS Rq2
q1

21q2
2

2~q11q2!2D .

~40!

FIG. 5. Distribution of the charge relaxation resistance of a c
otic quantum dot for the orthogonal ensemble~dashed! and the
unitary ensemble~solid line! line.
t

r

t

at

-
n

The weight factor appears because, in the limite2/C@N21,
the ensemble is generated either byuniformly varying the
total charge~rather thanEF) in case the gate voltage i
swept, or atconstantcharge~rather thanEF) if an other
parameter like the magnetic field is swept. In both cases
average can be replaced by a random matrix average,
vided the density of states is used as a Jacobian.32 Thus we
find the distribution of the charge relaxation resistanceRq

P@ 1
4,

1
2#,

P~Rq!5H 4, b51,

30~122Rq!A4Rq21, b52.
~41!

It is shown in Fig. 5.
For the resistanceRv ~also in units ofh/e2) the distribu-

tion is shown in Fig. 6. It is limited to the rangeRvP@0,1
4#

and given by

P~Rv!5H 2 lnF122Rv1A124Rv

2Rv
G , b51,

10~124Rv!3/2, b52.

~42!

For the orthogonal ensemble the distribution is singular
Rv50. Both distribution functions tend to zero atRv5 1

4.
We see that, as for the quantum point contact, the re

tanceRv is always smaller than the charge relaxation res
tanceRq . The distributions shown in Figs. 5 and 6 demo
strate that interesting information can be obtained from
measurement of frequency-dependent shot noise on ch
quantum dots.

V. DISCUSSION

We investigated the spectrum of the current noise indu
into the gate of a quantum point contact and of a chao
cavity. The current noise spectrum is a direct measure of
charge or potential fluctuations of the conductor. For t
calculation, we assumed that the external circuit exhib
zero impedance for the fluctuations. If the impedance of

-
FIG. 6. Distribution of the resistanceRv of a chaotic quantum

dot for the orthogonal ensemble~dashed! and the unitary ensemble
~solid line! line.
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57 1845CHARGE FLUCTUATIONS IN QUANTUM POINT . . .
external circuit is not zero, it is also necessary to investig
the effect of fluctuating reservoir voltages. The fluctuati
spectra of a mesoscopic sample embedded in a circuit
nonvanishing impedance will then also depend on the pr
erties of the external circuit.

We treated interactions in the random-phase approxi
tion. Since exchange effects13,14 play a role, a treatment o
interactions on the Hartree-Fock level is very desirable. T
discussion presented above also includes of course exch
effects but treats the self-consistent potential in rand
phase approximation. The importance to go beyond
single-parameter potential approximation, and to treat a c
tinuous potential distribution, has already been emphasi
A theory already exists for the low-frequency fluctuations
a mesoscopic capacitor.2

We have found it useful to express the noise spectra w
the help of resistancesRq and Rv . The charge relaxation
resistance has a clear physical meaning since it also d
mines the dissipative, low-frequency admittance of a me
scopic conductor.8 The charge relaxation resistance diffe
from the two-terminal resistance, which one might naive
want to use to characterize charge relaxation. Whether
resistanceRv introduced here will be useful beyond the di
cussion of noise properties is not presently apparent.
.
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The current fluctuations induced into the gate are prop
tional to the square of the electrochemical capacitance of
conductor to the gate. The noise will thus be the smaller
more effectively the charge on the conductor is screen
The strong dependence on interaction of the properties
cussed in this work are another illustration of the importan
of screening in the discussion of dynamical effects in me
scopic samples.

The frequency-dependent noise induced into a nea
gate is a first-order effect: It is not a small correction to
effect that exists already in the zero-frequency limit. This l
us hope that experimental detection of this noise is possi
From our work it is clear that such experiments wou
greatly contribute to our understanding of the dynamics
mesoscopic conductors and the role of interactions.
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34M. Büttiker, in Noise in Physical Systems and 1/f Fluctuation,
edited by P. H. Handel and A. L. Chung, AIP Conf. Proc. N
285 ~AIP, New York, 1993!, p. 3.

35V. Gasparian, T. Christen, and M. Bu¨ttiker, Phys. Rev. A54,
4022 ~1997!.
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