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Charge fluctuations in quantum point contacts and chaotic cavities in the presence of transport
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We analyze the frequency-dependent current fluctuations induced into a gate near a quantum point contact
or a quantum chaotic cavity. We use a current- and charge-conserving effective scattering approach in which
interactions are treated in the random-phase approximation. The current fluctuations measured at a nearby gate,
coupled capacitively to the conductor, are determined by the screened charge fluctuations of the conductor.
Both the equilibrium and nonequilibrium current noise at the gate can be expressed with the help of resistances
which are related to the charge dynamics on the conductor. We evaluate these resistances for a point contact,
and determine their distributions for an ensemble of chaotic cavities. For a quantum point contact these
resistances exhibit pronounced oscillations with the opening of channels. For a chaotic cavity coupled to
one-channel point contacts, the charge relaxation resistance shows a broad distribution Bemeémnf a
resistance quantum. The nonequilibrium resistance exhibits a broad distribution between zér@faad
resistance quantuniS0163-182@8)03103-§

I. INTRODUCTION The diagonal elements of this matrix determine the density
of states of the conductdd=2X,Tr(N,,,); the trace is over
The investigation of fluctuations in mesoscopic conduc-all quantum channels. The nondiagonal elements are essen-
tors is an interesting problem which has found considerabléial to describe fluctuations. At equilibrium and in the zero-
attention both experimentally and theoretically. Two recentemperature limit, we find that to leading order in frequency
reviews provide both an introduction to the subject as well ashe mean-squared current fluctuations at the gate have a
a discussion of some of the important restiftdn this work spectrum Soo(w V=0)=20%|w|C2R,. Here C,;'=C"?
we are interested in the frequency-dependent noise spectra ef(e’N) ~* , is the electrochem|cabapac|tanc%of the con-
mesoscopic conductors away from the low-frequency whiteductorvis avis the gate. The dynamical quantity which de-
noise limit. The experimental observation of deviations fromtermines the fluctuations is the charge relaxation resistance
the white-noise limit in the current-fluctuation spectra ofR
well conducting samples requires large frequentietere
we investigate the fluctuations induced into a nearby gate,
capacitively coupled to the conductor. These fluctuations are

not a correction to an effect that exists already in the zero- h % Tr(/\/’yy\/;(;)

frequency limit. We present a discussion which describes the Ri=r—5 = (2
internal potential of the mesoscopic conductor with a single 2e [2 Tr(WN. )}

variable. The Coulomb interactions are described with the

help of a geometrical capacitan€einstead of the full Pois-
son equation. Furthermore, we will treat the gate as a mac-
roscopic electric conductor. In this case the current fluctua-
tions induced into a nearby gate are determined entirely by
the dynamics of the charge fluctuations of the mesoscopic
conductor.

Consider a conductor, for instance the quantum point
contactt~’ shown in Fig. 1. The conductor is described by
scattering matrices,; which relate the amplitudes of in- _Q
coming currents at contag@ to the amplitudes of the outgo-
ing currents atv. We find that the charge fluctuations of the
mesoscopic conductor can be described with the help of a

I~ Q <1

[\e]

density-of-states matrix A
I
1 ds 0
Ny, =5—2>, shs—=L. 1
oy 27'“; > dE @) FIG. 1. Geometry of the quantum point contact.
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Buttiker, Thomas, and Pre® showed that the charge relax- are governed by the fluctuations of the charge distributions,
ation resistance governs the dissipative part of the lower more precisely by the fluctuations of dipolar charges.
frequency admittance of mesoscopic capacitors. Together The charge fluctuations of a noninteracting system can be
with the electrochemical capacitanCe, , R, determines the  described with the help of the density-of-states matrix; Eq.
charge relaxation tim&,C,, of the mesoscopic conductor. (1). However, the charge distribution of a noninteracting sys-
Similarly to the equilibrium noise spectrum, at zero temperatem is not dipolar. In fact, without interactions, charge is not
ture, the nonequilibrium current noise spectrum at the gateonserved, and consequently currents are not conserved. To
Soo( V, @) =2w%€|V|CIR,, is determined by a resistance achieve a dipolator higher order multipolarcharge distri-

Ry, bution it is necessary to consider interactions. Here we con-
sider the simple approximation in which the charge distribu-
_h Tf(Nlezl) tion is effectively represented by a single dipole. We permit

v a2 : ) the charging of the quantum point contact visia the gate.

In Fig. 1 this dipole is indicated by the charg®sand — Q.
A more realistic treatment of the charge distribution of a
Whereas the charge relaxation resistaRgénvokes all ele- quantum point contact includes a dipole across the quantum
ments of the density-of-states matrix with equal weight, inpoint contact itselt® and in the presence of the gates in-
the presence of transport the nondiagonal elements of theludes a quadrupolar charge distributidn.
density-of-states matrix are singled out. Below we present The frequency dependence of the noise spectra generated
the derivation of these results and evaluate the charge relaky the fluctuations of the dipolar charges should be distin-
ation resistancd}, and the resistanc®, for the quantum guished from a purely statistical frequency dependence aris-
point contact and for a chaotic quantum dot. ing from the Fermi distribution functiors'®1° Even for a
The characterization of the current fluctuations in terms ofconductor with an energy-independent scattering matrix,
resistances can be motivated as follows. The current fluctudhere exists a frequency dependence due to the Fermi distri-
tions at the gate contact are directly related to fluctuations opution functions of the different reservoirs. For small fre-

Zy Tr(N,,)

the chargeQ on the conductor, quencies the distribution functions are governed by the tem-
peraturekT or the applied voltageeV, and a crossover
Soo(@,V) = 0?Sgg(,V). (4)  occurs when the frequendyw exceeds botk T andeV. We

a\f\/ill not emphasize this crossover further, since it is a prop-
erty of the Fermi distribution alone, and provides no new
information on the conductor itself.

SQQ(w,V)=CZSUU(w,V). (5) _ Our work is also_ of _interest in view of rece_nt efforts to
discuss the dephasing induced by the shot noise of two con-

Voltage fluctuations, as is well known, are essentially deterductors in close proximity®?*or due to the fluctuating elec-
mined by resistances. However, in contrast to the Nyquistromagnetic field? Our work shows that what counts are the

formula for equilibrium voltage fluctuations, we deal heredipolar charge fluctuations. The discussion presented below

with electrostatic potential fluctuations inside the conductorcannot be applied to metallic diffusive conductors, for which

The resistanceR, andR, are related to the charge dynamics the potential needs to be treated as a flelecently
rather than the two-terminal dc resistance. Nagaev'é® classical discussion of shot noise in metallic con-

The resistanceR, andR, probe an aspect of mesoscopic ductors was extended to investigate the effect of a nearby
conductors which is not accessible by investigating the dcgate?*?°In these works the source of the noise is taken to be
conductance or the zero-frequency limit of shot noise. Thes&requency independent over the entire range of interest. In
resistances are not determined by the scattering matrix alonegntrast for the examples treated here, it is not only the elec-
but also by its energy derivative. According to the fluctuationtrodynamic response which is frequency dependent but also
dissipation theorem, the low-frequency equilibrium currentthe noise itself.

fluctuations of a conductor which permits transmission are There has been a considerable recent interest in the para-
determined by the conductance of the system. For a twometric derivatives of the scattering matrix of chaotic

terminal conductor the conductance is simply the sum of altonductors®=3° The energy derivative of the scattering ma-

transmission eigenvaluds,. The low-frequency nonequilib- trix determines quantities like the density-of-states matrix;
rium noise, the shot noise!® of a two-terminal conductor is Eq. (1). For electrostatic problems it is the functional deriva-
determined by the sum of the producks(1—T,), where tive of the scattering matrix with respect to the local poten-

T,=1-R, are again the eigenvalues of the transmission matial which matters* Only in the limit where we describe the

trix multiplied by its Hermitian conjugate-!? Hence both internal electrostatic potential as a single varidinstead of

the equilibrium noise and the shot noise are governed by tha continuous field and only if we are satisfied with a WKB-

transmission behavior of the sample. This is even true folike-description can the energy derivatives of the scattering

correlations on multiterminal conductors which cannot bematrix be used. These two conditions are likely to be fulfilled
expressed in terms of transmission eigenvaliéd!* In  for a ballistic quantum dot. Then the energy derivative of the

contrast, the dynamic conductance is determined by oscillascattering matrix and the potential derivative differ just by a

tions of the charge distribution in the conductdrSince  sign. For chaotic cavities a theory of the energy derivative of

charge is a conserved quantity, the oscillatory part of thehe scattering matrix has permitted a discussion of the distri-
charge distribution can be represented as a sum dfution of capacitanceS 2°Fyodorov and Sommet$?°used
dipoles®!’ Similarly, the frequency-dependent fluctuations supersymmetric methods to investigate the energy deriva-

In turn, the charge fluctuations are related to the potenti
fluctuations by the geometrical capacitarite
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tives of the scattering matrix. For a chaotic cavity connectedvith a current matrix

to a reservoir via a single channel lead, Gopar, Mello, and

Buttiker?” found the distribution functions for all universality A?s (a,E,E")=6,50
classes by analyzing directly the statistical properties of the 7

scattering matrix. The single-channel discussion of GoparHere the upper index 0 indicates that we deal with noninter-
Mello, and Biitiker*” was generalized by Brouwer, Frahm, acting electrons. The current noise spectra are determined by
and Beenakket] who found the distribution of the scattering the quantum expectation valge- - ) of the current operators
matrix and its derivatives for the multichannel problem. Thisat contacty and v, 2(AT,(0)AT (@) + AT (o)Al (@)
generalization made it possible to investigate the distribution=» s = 5(w»+w'). The gpectral densities in terms of the
of parametric conductance derivatives like the transconducsrrent matrix ars

tancedG/dvg, whereG is the conductance and, is the

gate voltage” Here we use the result of Ref. 30 to find the e?

distribution of the charge relaxation resistariRg and the Sw(“’)zﬁz de F75(E,w)Tr[A25(M,E,E+ﬁw)
resistancdR, for a chaotic quantum dot coupled to reservoirs oy

via two perfect one-channel leads. X(Ao);ﬁ(v'E,EJrﬁw)]’ (10)

1,—SI5(E)Se(E). (9

ay

II. CURRENT AND CHARGE FLUCTUATIONS F75(E,w)=f7(E)[1—fg(E-I-ﬁw)]
To find th t fluctuations for the struct f inter-
o find the current fluctuations for the structures of inter FEAE+hw)[1—f,(E)]. (1)

est, in this section we discuss an approach which includes

interaction effects in the random-phase approximatior]_| . .
. . ; ere the trace is taken over channels, dnds the Fermi
(RPA). This approach was used in Ref. 33 to find the dy'ditstribution function for contacy. At equilibrium these fluc-

namic conductance of mesoscopic structures for the case th{;\ .
. . Uation spectra are related to the ac conductances of the non-
the self-consistent potential of the conductor can be taken tg

be a single variabldJ. The fluctuations belonging to this mteracting problem discussed in Ref. 33. The current opera-

' : tor for the gate has thus far not been defined: that will be
approach are discussed in Ref. 8 for the case of a MESOSCORIG i e only in Sec. 11 B

capacitor, and for a more general multiprobe conductor ca- . -
P 9 P It is natural to decompose the current matrix into two

pacitively coupled to a gate in Ref. 34. contributions: one at equal energies that determines the dc
o _ response of the conductor, and one at differing energies that
A. Fixed internal potential is associated with the dynamics of the system. Thus we write
We consider a conductor with a fixed internal potential
(noninteracting problemand present the results needed later Agy(a,E,E’) = 6,50
on to treat the problem with interactions. Consider a conduc-

tor described by scattering matricgs; which relate the an- —2mi(E'-E)Ns(a,E,E"), (12
nihilation operatoréﬂ in the incoming channels in contaBt

to the annihilation operator&a of a carrier in the outgoing
channel of contact via'*

wyla—SLs(E)Say(E)

with a partial density-of-statesnatrix

i S G(E)[Say(E)—Say(E")]
/\/'ﬁy(a,E,E’)=2|—7T £ I;/’—E r_

(13

ba=% Sapdp- (6)

This matrix has a simple interpretation: The elements of

In a multichannel conductor the matrix has dimensions A, («,E,E’) are the diagonal and nondiagonal elements of
N, XN for leads that suppoit, andN g quantum channels. the density-of-states associated with carriers incident from
Here « and B run over all contacts of the conducta;,8  contactg andy which eventually contribute to the current at
=1,2. (Later, we need indices for the contacts of the con-contacta. From the continuity equation we find immediately
ductor and the gate. For this case we will use the labelshat the total charge fluctuations in the conductor generated
w,v=0,1,2). The current at contaat is determined by the by particles incident from contac8 and vy irrespective
difference in the occupation of the incident channels minushrough which contact they leave the conductor are deter-
the occupation of the outgoing channels mined by the density of states matrix

e
R 3 At nn N,
|a(w)—gf dE[aa(E)aa(E-i-ﬁw)—ba(E)ba(E-Fﬁw)]. Nﬁy(E!E,):z Nﬁy(a,E,E,). (14)
()
Using Eq.(6) to eliminate the occupation numbers of the Some additional combinations of these matrices have a spe-

outgoing channels in terms of the incoming channels yields &ial meaning™>**We call
current operatdt

S e e . No(EE)=2 Ngg(a,EE") (15
Ia(a))ng dE% ag(E)As (a,E,E+fiw)a,(E+fiw), a

(8) the injectance matrixof contactg, and call
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generated by the induced potential fluctuations at contact

are determined bywe?N,(w)U(w). Here the response to
the internal potential is determined by the emittahd@of
the emittance matrixThe frequency-dependent injectance isthe conductor into contaet. Thus the total current at contact
the quantum expectation value of the injectance operato of the conductor is

Nﬁ(w)=<2aﬂfﬁﬁ(a,E,E+hw)>. Simil::\rly, the frequency . o o .

dependent emittance i ,(w)=(=sNp5(a.E .E+fw)). l(@)=1,(0)—iweN(0)U(w), (22
Below we will often use only the zero-frequency limit of the

density matrix Eq(14) (w—0), which is given by Eq(1).
Similarly we will most often use only the zero-temperature,
zero-frequency injectance,

Ma(E,E’)=% Ngp(a,E,E") (16)

wherei? is the current operator for fixed internal potential.
The current induced into the gate is given by the time de-
rivative of the total charge, and hence by

dsag) Ig(w)=iwCU(w). (23)

— 1 :
Nﬁer Tr Sus—gE 17 X
7 ExpressingU in terms of the density of states matrix gives
and emittance, for the current operators Eq&22) and (23) an expression
which is of the same form as E8), but with the current
1 + dsup matrix Eq.(9) replaced by an effective current matrix
N,=5—> Tr| sl
— 2 B dE

. (19

Asa.EE+fiw)=A} (a,E E+ho)
The density matrices introduced above together with the in- L,
jectances and emittances can now be used to characterize the +iweN,GN;y(E,E+hiw). (24

charge fluctuations of the conductor. The evaluation of theequation(24) determines the current at the contacts of the

injectances and emittances in the equilibrium state of theonductor. The current induced into the gate contact is de-
conductance limits the theory presented below to linear ordefermined by a current matrix

in the applied voltage.
A5, (0E,E+fw)=—iwCGN,(E,Ethw). (25

B. Effective current matrix The sum of all currents at the contacts of the sample and the

Our goal is to derive a current matrix which includes thecurrent at the gate is conserved. Indeed, labeling the index
effect of screeningand replaces the current matrix, E§)  which runs over all contacts by (»=0,1,2), we find
of the noninteracting problem. To this extent we next deter-

mine the operatoU for the internal potential. The charge on A EE+%hw)=0 26
the conductor is determined by the Coulomb interaction. Ey s E, @)=0. (28

Here we describe the interaction with the help of a single

geometrical capacitance. Hence the charge on the conductbfluation (26) follows from the relation between the bare

is O=C0. Here we have assumed that the gate is macrostent matrix and the density-of-states matrix, HG<2)—

- 2 _ . .
scopic, and has no dynamics of its own. We can also deter(—l4) and the fact that + e"NG=CG. Before continuing we

i - __“notice that for these effective current matricks,(v), the
mine the charg® as the sum of the bare charge fluctuations;,qex » runs over all contacts but the indicésand y run

eN and the induced charges generated by the fluctuatingnly over the contacts of the sample. This “asymmetry” is a
induced electrical potential. In the RPA the induced Charge%onsequence of our macroscopic treatment of the gate.
are proportional to the average frequency-dependent density
of statesN(w) times the fluctuating potential. Thus the net

: h C. Charge fluctuation spectra
charge is determined by

With the help of the effective current matrices, E()
O=cU=eN—e?NU. (199 and (25, we can find the current fluctuation spectra
S..(®,V) as in the noninteracting case: In E40) we have
Solving this equation gives us, for the operator of theto replace the bare current matixs,(«) by the effective
potential fluctuations, current matrixA;,(v). This determines a matri$,,,(w) of
R fluctuation spectra for the mean-square current fluctuations at
Uu=GeV, (20 the contacts of the conductor and the gate and for the corre-
lations between any two currents. As a consequence of cur-
rent conservation2 .S, (w)=%,S,,(0)=0. At equilib-
G(w)=[C+eN(w)] L. 21) rium the f_Iuctuatlon spectra which we flnd_ with the help_of
the effective current matrix are related via the fluctuation
Here G(w) takes into account the effective interaction po-dissipation theorem to the frequency-dependent conduc-
tential. tances of the interacting system given in Ref. 33. The spectra
The total current at probe is determined by the particle also agree with the expression given in Ref. 34. Here we are
current, and in addition by a current due to the fluctuatingnterested in the current fluctuations at the gate determined
potential. The fluctuation of the internal potential creates adby the spectrunByo(w,V). This spectrum is entirely deter-
ditional currents at all the contacts. The current fluctuationsnined by the charge fluctuations of the condudtwee Eq.

with
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(4)]. Defining the frequency-dependent capacitance of the —iVRexplid,)  NT.explic,)
conductor to the gate:#(w)EeZN(w)CG(w), and using sy(E)= " ) " . " _n , (30
Eq. (25), we find VTaexp(idn)  —iVReexp(idn)
whereT,, andR,,=1—T, are the transmission and reflection
SQQ(w)zci(w)N’z(w)E j dE F,sE,®) probabilities of thenth quantum channel, angl, is the phase
oy accumulated by a carrier in thgh channel during transmis-
XTHN, (E,E+ )N (E.E+fhm)]. sion through the QPC. The probabilities for transmission
[Nl ON @) through the saddle point &fe
(27)

Two limits are of special interest. At equilibrium, at zero T (E)= 31)
temperature, we find, for the charge fluctuation spectrum in n(B)= 1+e "n(E)’

the low-frequency Iimit,SQQ(w)zzcquMwl, where the
electrochemical capacitance is given by its zero-frequency N
value, and where the charge relaxation resistance is deter- én(E)=2[E—fiwy(n+ 3) = Vol/(hawy). (32)
mined by Eq.(2). o - ,

The second limit we wish to consider is the zero- 1he transmission probabilities determine the conductance
temperature, low-frequency limit of the charge quctuationsG:(ezlh)%nTn and the zero-frequency shot ndf$€' S(w
to leading order in the applied voltagé Evaluation of Eq. = 0.V)=(e7/h)(2,TRy)e|V|. As a function of energygate
(27) gives Sqo ®) =2CiRv|eVI, with a resistanc®, given volt_ag.e the cqnductance rises stepll"k@?l_’he s_hot noise is a
by Eq.(3). Thus the nonequilibrium noise is determined by aperlod_|c funct_|0n of energy. The oscillations in the shot noise
nondiagonal element of the density-of-states matrix. If botrfSSociated with the opening of a quantum channel have re-
the frequency and the voltage are nonvanishing, we obtairf€Ntly been demonstrated experimentally by Reznikoal.

: : ind Kumaret al.’
to leading order iiw andV, Soo(w)=2C5R(w,V)h|w| an : . .
With a resistance To obtain the density of states we use the relation between

density and phasiH,=(1/7) ¢,, and evaluate it semiclassi-
th|w|, iilw|=e|V| cally. The_ spatial region of interest for which we have to find
the density of states is the region over which the electron
Ryfilo|+Ry(elV|—t|w|), #Alo|<elV], density in the contact is not screened completely. We denote
(28)  this length byx. The density of states is then found from
which is a frequency- and voltage-dependent series comb[Nn=21/MJ2, (dp,/dE) dx, where p, is the classically al-
nation of the resistance®, andR, . For the experimentally lowed momentum. A simple calculation gives a density of

relevant cases the variation &, is very small, and the States
measured noise is directly proportional to the resistance de-

R(w,V)#|w|=

fined above. Below, we discuss the resistarRgandR, in 4 . 1 mo?

detail for two examples: a quantum point contact and a cha- Nn(B)=j, arsinh 5 g (33
. . Wy n

otic cavity.

for energiesE exceeding the channel threshddg, and

1 mwi )
N2 E—E" (34

n—

IIl. QUANTUM POINT CONTACT

Quantum point contactQPC’s are formed with the help N, (E)= arcos?{
of gates. It is therefore interesting to ask what the fluctua- hoy
tions are which would be measured at one of these gates. For o ) ~
simplicity, we consider a symmetric contact: We assume thafor energies in the intervet, — (1/2)mw,\“<E<E, below
the electrostatic potential is symmetric for electrons apthe channel threshold. Electrons with energies less Ean
proaching the contact from the left or from the right. Further-— 3mw2\? are reflected before reaching the region of inter-
more, we combine the capacitances of the conduction chagst, and thus do not contribute to the density of states. The
nel to the two gates, and consider a single gate, as showesulting density of states has a logarithmic singularity at the
schematically in Fig. 1. If only a few channels are open, thehresholdE,=7%wy(n+3) +V, of the nth quantum channel.
potential has in the center of the conduction channel the forniWe expect that a fully quantum-mechanical calculation

of a saddle™® gives a density of states which also exhibits a peak at the
threshold but which is not singularThe total density of
V(X,y)=Vo+ % mwf,yz— I mw3x?, (29  states as function of energgate voltaggis shown in Fig. 2

for wy/w,=3, Vo=0 andmw,\*/%=18. Each peak in the
whereV, is the electrostatic potential at the saddle and thedensity of states of Fig. 2 marks the opening of a new chan-
curvatures of the potential are parametrizeddgyand w, . nel. With the help of the density of states we also obtain the
For this model the scattering matrix is diagonal, i.e., for eacttapacitanceC,*=C '+ (e?N)*. For the experimentally
quantum channefenergy# w,(n+1/2) for transverse mo- most relevant casef/C)>N"1! the variations in the capaci-
tion] it can be represented as 2 matrix. For a symmetric tance are small and the noise spectra are dominated by the
scattering potential and without a magnetic field the scatterenergy dependence &, andR,, which we will now dis-
ing matrix is of the form CusS.
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FIG. 3. Effective resistance, in units ¢f/e?, as function of
FIG. 2. Density of states in units of 4/p,) for a saddle-point  energy, E/(w,), for the cases(curve a)hiw/(eV)=0, (curve
constriction as function of energf/ (% wy). w,/wy=3. b)%iw/(eV)=0.25, (curve c)hw/(eV)=0.5, and(curve d)Aw/(eV)
o ) ) =1, whereV is bias voltagew,/w,=3.
It is instructive to evaluate the resistand&sandR, ex-
plicitly in terms of the parameters which determine the scaty,yes jts maximum valuR,=h/e?. At the lowest frequency
tering matrix. We find for the density of states matrix of the . /— o the resistanceR(a?,V) is determined byR,. The

nth quantum channel, we find lowermost curve &) of Fig. 3 is the nonequilibrium resis-
1 do tanceR, . It is seen that the nonequilibrium resistarRgis
N11=N22=2— d_En (35)  very much smaller thaR,. We will also encounter such a
aw

large difference between these two resistances for the chaotic
cavity. FurthermordR,, exhibits a double-peak structure: The

N A _1 1 4T, (36) large peak in the density of states at the threshold of a quan-
2N g R,T, dE’ tum channel nearly suppresses the nonequilibrium noise at

. _ _ the channel threshold completely. Two additional curves
Inserting these results into ER) gives, for the charge re- andc for #w/(eV)=0.25 andkw/(eV)=0.5] describe the

laxation resistanc®, crossover fronR, to Ry,.
h En: (depy/dE)? IV. QUANTUM CHAOTIC CAVITY
RQ:? 2 (37 The general theory is now applied to a chaotic quantum
; (d¢,/dE) dot”*° with two ideal single-channel leads and capacitive

coupling to a macroscopic gate, as shown schematically in
It is determined by the derivatives of the phasdensitie3  Fig. 4. For such samples, averages lose their meaning and
evaluated at the Fermi energy. The resistaRgés given by  below we give the distribution functions of the resistances
) which characterize the noise induced into the gate contact.
E 1 (dTn> We compute the statistical distribution of the charge relax-

h & 4R,T,\ dE ation resistanc&, and the resistancR, from random ma-
=" 2 (38  trix theory® assuming that the classical dynamics of the
€ > (d¢n/dE)} cavity is fully chaotic. We will again consider the case
n

It is sensitive to the variation with energy of the transmission
probability. Note that the transmission probability has the
form of a Fermi function. Consequently, the derivative of the
transmission probability is also proportional IQR,,. The
numerator of Eq(38) is thus also maximal at the onset of a
channel, and vanishes on a conductance plateau.

In Fig. 3 the effective resistand®(w,V) is shown for
four frequenciesi w/(eV) =0, 0.25, 0.5, and 1, wher¢ is

the applied voltage. At the highest frequenty/(eV)=1 -Q
the resistanc®(w,V) is completely dominated by the equi-
librium charge relaxation resistand®,. The uppermost TIO

curve d) of Fig. 3 is nothing butR, and determines the
noise due the zero-point equilibrium fluctuations. The fluc- FIG. 4. Quantum dot coupled to two open leads, and coupled to
tuations reach a maximum at the onset of a channel, §igce a gate.
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FIG. 6. Distribution of the resistand®, of a chaotic quantum

FIG. 5. Distribution of the charge relaxation resistance of a chaygt for the orthogonal ensemblédashedi and the unitary ensemble
otic quantum dot for the orthogonal ensemitiashedl and the (solid line line.

unitary ensemblésolid line) line.

The weight factor appears because, in the ligdtC>N"1,
the ensemble is generated either tnyiformly varyingthe
total charge(rather thanEg) in case the gate voltage is
swept, or atconstantcharge (rather thankg) if an other

e?/C>N""1 for which the distribution functiott of the elec-
trochemical capacitance becomes very sharp.
The distribution of the two-terminal, zero-frequency shot

noise S=T(1—T) in units 0j1§%/:2 2e(e2/h)|_\/|, follows  harameter like the magnetic field is swept. In both cases the
from the distributionP(T)oT . of the dimensionless average can be replaced by a random matrix average, pro-
conductanceT. The symmetry index3 equals 1 or 2 de- yjged the density of states is used as a Jacobidius we

pending on whether time-reversal symmetry is present Ofing the distribution of the charge relaxation resistafe
broken. The latter is a result of the uniform distribution of _, ;

the scattering matrix on the set of unitarg=€2) or unitary elazl,
symmetric 3=1) 2x2 matrices”? Thus one finds for the

distribution ofSe[0,1/4] 4, p=1,
P(Ry) = _ (41)
30(1-2R,)V4R,—1, B=2.
\/1+ 1-4S+ \/l— 1-4S _ It is shown in Fig. 5.
_ ' - For the resistanc®, (also in units ofh/e?) the distribu-
P(S)= V16S(1-4S (39 v
7128( ) tion is shown in Fig. 6. It is limited to the rand®, [0,3]
(1/14=9)~7%, p=2. and given by
For the orthogonal ensemble the distribution of the shot
noise is bimodal, and has square-root singularitieS-a0 1-2R,+V1-4R, _
and:. In the unitary ensemble the distribution remains finite (R)= 21In 2R , B=1, (42)
at zero shot noise, and has a square-root singularity only at v 3 Y
S=1/4. 10(1-4R,)*4 B=2.

In contrast, for the low-frequency spectrum, Eg7), of
the charge fluctuations, one needs the matriggg, which
are just blocks of the well-known Wigner-Smith delay-time
matrix (1/2mi) s' (ds/dE)*3. The distribution of this matrix

For the orthogonal ensemble the distribution is singular at
R,=0. Both distribution functions tend to zero R = 3.
We see that, as for the quantum point contact, the resis-

o m tanceR, is always smaller than the charge relaxation resis-
has recently been fouri.To computeP(R,) it is sufficient tanceR, . The distributions shown in Figs. 5 and 6 demon-

to know the joint distribution of the eigenvalué¥{ai}).  strate that interesting information can be obtained from the

whereas forP(R,) we also need that the eigenvectors aremeasurement of frequency-dependent shot noise on chaotic
distributed uniformly, and independently from the eigenval-qyantum dots.

ues. As in Ref. 32, we integrate over the eigenvalues with an
extra weight facto;q;, which is the fluctuating density of

. Lo . . V. DISCUSSION
states. For instance, the distributionRy{ (in units of h/e?)

follows from We investigated the spectrum of the current noise induced
into the gate of a quantum point contact and of a chaotic

2+ cavity. The current noise spectrum is a direct measure of the

1 2 i i i

p(Rq):f d0yda,P(01,02) (41 +02) 8| Rg— ——— | charge or potential fluctuations of the conductor. For this
2(g;+qy) calculation, we assumed that the external circuit exhibits

(40 zero impedance for the fluctuations. If the impedance of the
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external circuit is not zero, it is also necessary to investigate The current fluctuations induced into the gate are propor-
the effect of fluctuating reservoir voltages. The fluctuationtional to the square of the electrochemical capacitance of the
spectra of a mesoscopic sample embedded in a circuit witbonductor to the gate. The noise will thus be the smaller the
nonvanishing impedance will then also depend on the propmore effectively the charge on the conductor is screened.
erties of the external circuit. The strong dependence on interaction of the properties dis-
We treated interactions in the random-phase approximacyssed in this work are another illustration of the importance
tion. Since exchange effetts play a role, a treatment of of screening in the discussion of dynamical effects in meso-
interactions on the Hartree-Fock level is very desirable. Thecopic samples.
discussion presented above also includes of course exchangeThe frequency-dependent noise induced into a nearby
effects but treats the self-consistent potential in randonyate is a first-order effect: It is not a small correction to an
phase approximation. The importance to go beyond th@ffect that exists already in the zero-frequency limit. This lets
single-parameter potential approximation, and to treat a congs hope that experimental detection of this noise is possible.
tinuous potential distribution, has already been emphasizettrom our work it is clear that such experiments would
A theory already exists for the low-frequency fluctuations ofgreatly contribute to our understanding of the dynamics of

a mesoscopic capgcitér. ) ~ mesoscopic conductors and the role of interactions.
We have found it useful to express the noise spectra with

the help of resistanceR, and R,. The charge relaxation

reslstance h_as'a c_:Iear physical meaning since it also deter- ACKNOWLEDGMENTS
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