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Bifurcation analysis of stationary and oscillating domains in semiconductor superlattices with
doping fluctuations
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We investigate the effects of frozen-in spatial fluctuations of the doping density on the different forms of
spatiotemporal pattern formation found in weakly coupfedoped superlattices as described by a simple
microscopic model. For heavy doping, multistable field domains are observed, while for lower doping space-
charge oscillations are found. The corresponding bifurcation scenarios are discussed. We demonstrate that
there occurs a qualitative change once the degree of disorder exceeds a certain threshold. For the case of
moderate disorder and heavy doping, a direct correlation between the peak current of each branch of the
current-voltage characteristic and the doping density in the corresponding quantum well is derived and applied
to analyze a measured characterigi#0163-18208)05103-(

[. INTRODUCTION ages, we can restrict ourselves to the two lowest energy lev-
els,k=1,2. The rate of change of the electron densities can
The formation of electric field domains in a semiconduc-then be expressed &s
tor superlattice in the high-field regime was already pre-
dicted by Esaki and Chahgnd verified later for both doped n)=RPni Y- RIFDRD —pD(x(+D) 4 x(1)y
and optically excited superlatticés* These results were ex-
plained using different theoretical modéfs. Later, time-
dependent features such as tranSiemd persistent current o o _ _ ) ) )
oscillations were also found both in simulatidi$ and ny’=Ry'ny Y —R3ng —nd (Y[ + YY)
experimentally:* Recently, the agreement of simulations (1) () 4 (i +D)(i+1) (i)
with experimental results was considerably improved by tak- N XA X NG T, 2
ing into account growth-related disorder and structuralypere 7,1 is the intersubband relaxation timéq((i) is the
imperfections:~*° transition probability per unit time for electrons crossing the
For a structurally perfect superlattice general features ofin parrier[located between thith and the {+1)st well
stationary field domairté and self-oscillation$ have re- petween equivalent subbankiof two adjacent wells and is
cently been analyzed in terms of a simple, analytically tracmodeled by a simple phenomenological approximation.
table model. The coefficientsx™, X(V, Y andY{" for transitions be-
The purpose of the present paper is to gain a deeper URyeen different subbands of adjacent wells are determined by
derstanding of the different nonlinear spatiotemporal modegesonant tunneling and are calculated from quantum me-
and their sensitivity to the presence of growth-related dopinghanical perturbation theofyX stands for transitions from
fluctuations. We do this by presenting a comprehensivghe first to the second subband, avicstands for the reverse
analysis of bifurcation scenarios not only in dependence oRyrocess. The subscriptsand! denote resonant tunneling to
bias voltage and mean donor density but by taking the degrege right (towards the anodeand to the left(towards the
of disorder into account as a third, equally important systemgathodg, respectively. All transport coefficients depend
parameter. The different regimes of stationary multistablesyrongly upon the electric fielg( in the respective barrier.
field domains and self-sustained oscillations are investigated For 3 realistic modeling of the measured current-voltage
in the framework of the microscopic model of Ref. 12.  characteristics, spatial fluctuations of the structural param-

The superlattices discussed in this paper consisNof aters, j.e., the widths of the barridssand the quantum wells
(typically 400 GaAs quantum wells of width separated by

N—1 AlAs barriers of widthb. The values used in the simu- ~ TABLE I. Parameters of the superlattices used in the simula-
lation are summarized in Table I. The wells ardoped with  tjons.
an average doping densitger unit volume Ny . Due to the

FR YD GOy ()

relatively wide barriers considered, the coupling betweerwidth of GaAs quantum wells b =90 A
different quantum wells is weak, and thus each electron isvidth of AlAs barriers I =15 A
effectively localized in a quantum well. Charge transportNumber of quantum wells N = 40
then occurs mainly through sequential tunneling between acRelative permittivity of GaAs ey = 13.2
jacent wells. Intersubband relaxation time 75 =1 ps

We use the electron concentratiofper unit areain the | attice temperature T, =5K
kth energy level of théth quantum welln{’, as the dy-  conduction band discontinuity Vo = 982 meV

namic variables of our system. For moderate applied volt
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| as well as the doping densityy must be included. Fluc- 1018
tuations of these three quantities have already been examined

in Refs. 12 and 14, where it was inferred from a comparison

with experiment that doping fluctuations are the most likely

form of microscopic disorder responsible for the irregular 10"
shapes of measured current-voltage characteristics.

To model doping fluctuations, we introduce local donor
densities, NO'=(1+ae™)Np in the ith quantum well,
which are distributed around a mean valNg and param- 10'°
eterized by a random sequenceNbfalues{e(")} and a scal- .
ing parameter that quantifies the degree of disorder without
changing the individual random sequence. For the computa- 15 . . . .
tlgns prgsenteql in this paper, we chods®} to pe eqq|d|s- 10 0 1 5 3 4 5
tributed in the interva] —1,1] but the concept is easily ex- U
tended to more general distributions.

The fields are related to the electron densities and the FiG. 1. Phase diagram of spatiotemporal instabilities as a func-
doping densities by the discrete version of Gauss’ law, tion of external voltagd) and doping densiti)Ny for a “perfect”

superlattice. Saddle-node bifurcations are marked by solid lines,

e(FITV—FO)y=g(n{)+nd - IND), (3)  Hopf bifurcations by dashed lines, and cusp points as triarigies

Np [em™]

where € is the permittivity of GaAs. The total voltage drop different energy levels in adjacent wells. Beyond the first
across the superlattice must be equal to the external voltageeak, there is a regime of negative differential conductivity
U applied to the sample: (NDO).

, Il. BIFURCATION SCENARIOS OF SPATIOTEMPORAL
(I):
Zi (I+b)F"=U, (4) PATTERNS

. . . In order to gain insight into the general features of the
which represents a global coupling condition for the electron__ .. . - . '
L spatiotemporal scenarios, we shall first briefly review the
densities in the system.

case of a structurally perfect sample. The different regimes

The sample contacts are treated as two additional “Vir'of spatiotemporal behavior found from our simulations are
tual” quantum wells denoted biy=0 andi =N+1, in which P P

y , i i ized in the ph di f Fig. 1. Th t-
the electron densities are fixed af’=2Np and n{’=0. summarizes In e pnase clagram ot g © curen

Th Dirichlet bound dit deling Ohmi voltage characteristics corresponding to cross sections for
us, we use Dirichlet boundary conditions modeling Ohmic ifferent fixedNp, are depicted in Fig. 2.

contacts as a carrier reservoir created by heavily dope The spatially homogeneousy-shaped current-voltage
boundary layers. Different boundary conditiomy?’=n{")  caracteristic is stable only at low dopififig. 2@)]. For
and n{'" Y=n{", which can be conceived as a discretepigher doping, a smeared-out domainlike field distribution
form of Neumann boundary conditions, have been discussefrms, and a bistablg-shaped current-voltage characteristic
previously>=* arises[Fig. 2(b)], indicating a transition between a smeared-
The total current density across tite barrier, composed out field domain for high current and lower voltage, and an

of the conduction and the displacement current densities, igimost homogeneous field distribution for low current and

given by higher voltage. The positions of saddle-node bifurcation
‘ _ _ ' . . o points where a stable and an unstable steady-state merge are
j=e[n{ DRV +X1)+nd = DRY + YD) —nPx(D indicated by diamonds; they form two lines in the lower part
o o of the phase diagram in Fig. 1. At a minimum valueNy
—nyY" ]+ eF D, (5  the two lines end in a cusp point where tH&J) character-

. istic changes fronN shaped toZ shaped.

?gg does not depend on the specific quantum well number At higher doping, spatiotemporal instabilities lead to self-
I generated current oscillations associated with the buildup of
Let us first discuss the case of a homogeneous stationaghace chargesHere, the current-voltage characteristic con-

field distribution throughout the superlattiGeeglecting dis-  tains a regime of limit cycle oscillationgFig. 2(c)]. This
order and boundary effegtsBy Eq. (3), this is equivalentto regime is confined by supercritical Hopf bifurcation points,
the absence of any charge accumulation or depletion, i.emarked as a closed dashed line in Fig. 1. Note that subcritical
n{’+n{’=Np. Thus, the electric field is fixed by the ap- Hopf bifurcations can be observed for different boundary
plied voltageU, F("=U/[N(l+b)], and one can determine conditions'®

the current-voltage characteristic from E&) taken at the A typical oscillation is depicted in Fig. 3. The field profile
steady state. The macroscop{®J) characteristic is then re- in Fig. 3@ shows that an inhomogeneous field distribution
lated to the local drift velocity v(F) by setting forms and moves towards the anode. The charge accumula-
j(U)=ev(F)Np . Both characteristics exhibit two distinct tion associated with ftFig. 3(b)] grows in order to fulfill the
maxima; the first peak is associated with miniband conducglobal coupling condition(4), and eventually, near the an-
tion, the second one is caused by resonant tunneling betweende, vanishes. Then the whole cycle is repedtethe cor-
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FIG. 2. Current-voltage characteristics for doping densitie@oN,=3.2x 10'° cm 2, (b) Np=10" cm ™3, (c) Np=7x 10" cm™3, (d)
Np=10" cm™3, (&) Np=2x10cm3, (f) Np=7.9x10" cm 3. In all current-voltage characteristics presented in this paper, stable
stationary states are marked as solid lines, unstable ones as dashed lines, saddle-node bifurcation points ag dipmodddopf
bifurcation points as crossés ). Oscillations are indicated by shaded areas within minimum and maximum current density. The insets show
enlarged sections of the respective current-voltage characteristics.

responding oscillation of the current densjtys almost per- approximately 25% similar to what is seen in Ref. 18 for
fectly sinusoidal. The oscillation exhibits a square-rootcorresponding boundary conditior(sf. the inset of Fig.
dependence of the amplitude upon the distance from the bit3(b) therein. The frequencies calculated there, however,
furcation point as shown in the inset of FiQCBfOI’ fixed Np depend 3tr0ng|y on the choice of boundary Conditi‘dﬂ)
and increasingJ. The frequency is not affected by this bi- =(1+c)N, parametrized byc. The values ofc used
furcation and is determined near the bifurcation point by thehroughout most of Ref. 18 are very small and thus different
Imaginary part of the co_rrespondl_ng elgenva[tl:F_ﬂag. 3c)].  from our model, which assumes heavily doped boundary lay-
Similar results are obtained for fixed and variableNp.  grs Therefore, most of the results presented in Ref. 18 can-
Over the entire oscillatory regime, the frequency varies by, girectly be compared with our results. However, for Neu-
mann boundary conditions we have also found frequencies
strongly varying with voltage and decreasing monotonically
almost down to zerd as in the model of Ref. 18. This is
consistent with the results found in Ref. 18, since both types
of boundary conditions allow for atelmos} homogeneous
field distribution as a stationary solution, in contrast to the
heavily doped boundary layer conditions used in the present
paper.
(CL 20 The dynamics is fast in the directions orthogonal to the
/ (d) o5 | center manifoldsee, e.g., Ref. 22in which the limit cycle
/oo = as well as the corresponding unstable fixed point are embed-
10 4/ o6 ] o 297 ded([Fig. 3d)].
A P 9{ 15 4 5 Note that in contrast to the formation of stationary field
0.0 1 0% 03 o 10 B ) domains, the superlattice must contain a minimum number of
0.0 05 1.0 15 20 10 15 20 25 quantum wells to enable oscillatiohSIn addition to such
charge oscillations of a single domain boundary, at higher
doping levels traveling high-field domains embedded be-
tween two low-field domains are found if the model is ex-

poral evolution of the field profil€&. (b) Temporal evolution of the tended tf? accommodar:e highly dopeqllb()_undary Iaylers adja-
charge densityp (U=1 V). (c) Frequency of the oscillation versus cent to the contacts. Thus current oscillations may also occur

U (solid ling). The frequency corresponding to the imaginary partat larger dqping. . . .
of the largest eigenvalue is shown as a dashed line. The inset de- At the highest doping densities, the number of available

picts the amplitude of the current densjitiin kA/cm?) versusU (in  carriers is sufficient to provide the space charge necessary to
V) near one of the Hopf bifurcation points ). (d) Phase portrait of ~form a stable, stationary boundary between a low-field and a
n3% vs n2? (+, unstable fixed point; solid line, limit cycle; dashed high-field domain(cf. Fig. 4). The buildup of a charge accu-
line, trajectory lying in the center manifold; dotted line, trajectory mulation and the subsequent nucleation of field domains is a
starting outside the center manifold; the other trajectories start negirocess of self-organized pattern formation, which is com-
the limit cycle. mon in semiconductors with negative differential
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FIG. 3. Limit cycle oscillation Np=5x10'% cm™3). (a) Tem-
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bifurcation points belonging to a particular unstable branch
merge in a cusp point. Thus, the associated valublpfis

the minimum doping density necessary for multistability and
hysteresis of current branches. Since the cusp points lie at
slightly different values oNp , in the respective range dfp
values hysteresis may set on only above a certain threshold
voltage as can be seen in the inset of Fig)2The overall
behavior shown in Fig. 2 for the structurally perfect model is
similar to the one found in simple phenomenological

modelst”2°

FIG. 4. Field profile as a function of the doping denshty, , for

fixedU=1V. Ill. EFFECTS OF DOPING FLUCTUATIONS

N o ON FIELD DOMAINS
conductivity?>~26 However, there are essential differences

compared, e.g., to the classical Gunn domain instability, In the next two sections we will discuss how doping fluc-
which is associated with a traveling triangular domain. Foriuations affect the spatiotemporal patterns, i.e., the formation
its existence it is required only that th&€F) characteristic ©Of multistable field domains and limit cycle oscillations.
has one rising and one falling branch. In the superlattice, th&irst, we focus on field domains. o
high- and low-field domains correspond to spatial coexist- Figure 5 shows how the current-voltage characteristic
ence of two stable states of the log4F) characteristic at Cchanges in the regime of domain formation if the donor den-
the same current densitywhile the Gunn domains have a Sity in a single quantum well is either increaseg or de-
triangular field profile whose maximum does not attain acréased(c) with respect to the unperturbed ca®. It is
second stable stafé.Different equal area rules have been €vident that there exists a direct correlation between the local
derived for both case¥:'>2728f the doping density is suf- doping density in thekth well and the peak current of the
ficiently high, the width of the domain boundary is of the (K+1)th branch of the current-voltage characterigtiount-
order of the superlattice period. In this case, the domaind from the right corresponding to the location of the do-
boundary is localized in a specific quantum well and, in con/nain boundary at thek(+ 1)th well. One can even infer
trast to the Gunn diode, cannot move continuously througt§luantitative information about the local doping density from
the sample but can only jump from one quantum well to thethe. peak currents, i.e., the positions of the saddle-npde bifur-
next. As a result, there exist different stable stationary docations which mark the end of a stable branch. It is shown
main stategtheir number being approximately equal to the analytically in the Appendix under some simplifying as-
number of quantum wellswhich arise from different loca- Sumptions that the maximum current reached on a particular
tions of the boundary. stable branch is proportional to the doping density in the
As the domain boundary is shifted from the anode to theduantum well next to the well at which the domain boundary
cathode with increasing voltage, the current-voltage charads located. This opens up the possibility to determine the
teristic exhibits small modulations in the form of sequencedocal values of the ratidN§)/Np, with good precision from
of N- [Fig. 2(e)] or Z-shaped[Fig. 2(f)] branches corre- measured current-voltage characteristics and thereby charac-
sponding to different locations of the domain boundary agerize the quality of a sample. This procedure has been tested
shown experimentall§® The different stable branches are by applying it to numerically simulated characteristics with
connected by unstable parts as depicted in the insets. Thugndom doping fluctuatior?s.
the current-voltage characteristic consists of a single continu- It has also been successfully applied to several measured
ously connected curve, along which stable and unstable par@haracteristics where it yields reasonable estimates of the
alternate. The changes of stability are caused by saddle-nogegree of disorder. The computed values of the relative
bifurcations, which show up as a complex pattern of inter-variation 5i=(N(D')—ND)/ND of the local doping density in
secting lines in the upper part of Fig. 1. This diagram allowsthe ith quantum well from the mean doping dendity, are
one to determine the positions of the individual currentshown in Table Il. Thus, the current-voltage characteristic
branches as well as, for given parametersand Np, the  serves as a direct “fingerprint” of the microscopic realiza-
number of multistable states. The two lines of saddle-nod¢ion of doping fluctuations. For quantum wells close to the

(a) 7 T T T T (b) 7 T T T T (c
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FIG. 5. Part of the current-voltage characteristics in the regime of domain formaiga 7.9x 101" cm~3). The doping density in the
20th well is (b) increased by 10%c) decreased by 10%. The unperturbed characteristic is display@. ifihe branches are numbered
according to the location of the domain boundary atktrewell.
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TABLE IIl. Computed relative variations;= (N —Np)/Np of
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We will now focus on a particular class of isolas; a typical

the doping density in theth quantum well for the sample investi- member is depicted in Figs(ly (thin dashed lingand 7c).

gated in Ref. 29.

The field profile displays an additional, smaller peak in the
low-field domain. All parts of these isolas are unstable for

6= T7.5%  53=-59% &= 62% = —59%  the doping density considered here but stable branches exist
6=—1.0% &7= 10% &= 93% o= 2.7% for higher doping. The isolas become more complex when
010= 7.1% 6= 12.0%  51,= 14.0%  Si3=  3.0% doping fluctuations are introduced since additional branches
014= 2.8% S15= 1.4% 655=—6.6% 5;;,=—14.6% emerge at cusp points; some of these branches are stable for
S515=—7.0% 5;=—6.9% 5,,=—8.3% 5= —1.9% sufficient degrees of disorder.

807=—2.1%  5,5=—4.9%  5,y=—6.1% Ss= —5.2% If the degree of disordew is high enough, some isolas
S5=—14% 5,7=—4.6% 5= 0.1% 5= —2.3% merge with the “standard,” continuous current-voltage char-
530=—1.2% Sy3= 3.4% S3p= 17% = 13.8% acteristic resulting in a more complex but still continuously

connected curve. Figure 8 depicts the same section of the full
continuous current-voltage characteristic bel@inse) and
cathode or anode, boundary effects become important, arbove(main figure this threshold. This qualitative change,
therefore the respective quantum wells have not been inmarking the transition between moderate and strong disor-
cluded in the analysis. The standard deviatigh, 6°/N of ~ der, is caused by a perturbed transcritical bifurcatisee,

the doping density is 6.7%corresponding to a value aof  €.9-, Ref. 3las schgmaucally sketched in Fig. 9. For Im/_v .
=10.8%), which is in good agreement with what is generally (left) the unstable isola and the *“standard” characteristic
known about the properties of the growth process. (stable and unstable I_arar)chre separate. At the th're_shold

Even though the full continuously connected current-value of a (centey the isola and the stable branch join at a
voltage characteristic, consisting of alternating stable and urffanscritical bifurcation poin{marked as a squaravhere
stable branches, shows only slight changes if moderate digwo branches exchange their stability. For larger values of
order is introduced, the characteristic that is found undefh€ transcritical bifurcation point splits into two saddle-node
voltage sweep up or sweep down may change qualitativelyi.’Oi_”tS, thereby forming a sipgle connected characteristic into
Individual branches are shifted and their lengths are change$fhich the isola has been “inserted.” _ _
according to the doping densities in the corresponding quan- If « is increased even further, additional isolas are in-
tum wells; thus, some stable branches might be missed ogerted into the continuous char_acterlsuc; some isolas separate
completely during voltage sweep up or sweep down if the_Off again for even stronger d|§order. Furthermore, _several
doping densities in two adjacent quantum wells differ suffi-iS0las may combine to form a single, more complex isola in
ciently. This is demonstrated in Fig. 6 by comparing voltage2 Similar scenario before merging with the continuously con-
sweep up and sweep dowa) with the full stable branches nected current-voltage charac_t_erlsnc, which can thu_s incor-
(b). For a given degree of disorder the effect of missed-out porate a large number of additional branches in a single bi-
branches is most pronounced at large doping or high voltagdurcation.

A careful inspection of the saddle-node lines in the associ-
ated phase diagrafirig. 6(c)] already allows one to deter-
mine which branches are missed out for gig.

Apart from the single continuously connected current-
voltage characteristic, there exist numerous other stationary The main effect of disorder in the regime of limit-cycle
states, i.e., fixed points of the dynamic systély (2), most  oscillations is to shift and deform its location in parameter
of them being unstable. Some of them are depicted in Figspace. For moderate disorder, it is determined by the location
7(a) for a superlattice without doping fluctuations. With the of the Hopf bifurcation point$Fig. 6(c), dashed as in the
exception of an additional peak, their field profiles are simi-perfect superlatticéFig. 1). The change of the oscillation
lar to those of states on the “standard” current-voltage charamplitude and frequency for fixed voltage and fixed donor
acteristic. Almost all such states form “isolas{closed density is only slight.
curves in the j(U) diagram. The effects of an increagdecreasgof the doping density

IV. EFFECTS OF DOPING FLUCTUATIONS
ON OSCILLATIONS

T T T T T T T T 1018 L EEE AR INNR NV
@[ ®), [ (©) VAR f
15 //// s it
I s - - e R -
—_ 5 ////[{//I//////{{Z///////Z:/:///,g{;’/://////// i — 5 ////////////////////{//{/{{/// | z 1016 | oscillations o
% 2z s 4 5 %0 1 2 s 4+ 5 o 12 s 4 s
U] uv] U]

FIG. 6. Current-voltage characteristics for superlattices with different degrees of doping fluctuati@sCharacteristics for voltage
sweep-up and sweep-dow(n) Stable parts of the full connected current-voltage characterigtigs- 7.9x 10'” cm™3; the vertical scale is
shifted for each curve (c) Phase diagram of mean donor density vs voltageU for a=8%.
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FIG. 7. (a) Current-voltage characteristic including all stable and unstable stationary states. The “standard” current-voltage characteristic
(bold) contains just a small fraction of all stationary stai@s.The thin dashed line denotes an isola consisting of unstable states only. The
“standard” current-voltage characteristic is also depicted and marked with bold (z)eSield profile for successive points on the isola in
(b) parameterized by the arc length of th@)) diagram (Np=7.9x 10" cm™3).

in a single quantum well are depicted in Fig.(40[Fig. Bogdanov points and one cusp point are generated in a single
10(b)]. Different curves are marked by the index of the af-codimension-three bifurcation by appropriately adjusting
fected quantum well. The influence of a particular quantunthree control parametersNp,U,a. The two Takens-
well is largest if it is located somewhere in the middle of theBogdanov points are connected by a curve of Hopf bifurca-
superlattice(in the particular superlattice considered here,tion points; if « is increased slightly, this curve merges with
numerical computations yield the 17th well the closed curve of Hopf bifurcations found also in superlat-
Unfortunately, the total effect of a sequence of randomtices with no or moderate disordfFig. 6(c)]. In the phase
fluctuationsg[Fig. 10(c)] cannot be predicted from a superpo- diagram of the mean dopirdp versus voltag®) for fixed «
sition of the effects of the individual single perturbations as[Fig. 11(a)] this gives a single open curgasheg, which
in the regime of multistable field domains. In contrast to theencloses the shaded area of limit cycle oscillations. Two
latter case, where the charge accumulation forming the dgpairs of full lines corresponding to saddle-node bifurcations
main boundary is largely confined to a single quantum well,of domain states are also shown; each ending in a cusp point
oscillations involve changes of the charges in a large numbg(triangle. The inset shows the phase diagram near a Takens-
of quantum wells resulting in a nonlinear interaction. Fur-Bogdanov point in more detail.
thermore, Fig. 1) demonstrates that the shape of the re- Since we are discussing a codimension-three bifurcation
gime of oscillations looks very different for different realiza- scenario, it is not sufficient to merely consider the location of
tions e, for the samea (here «=12%) and thus gives no the bifurcation points as a function of two parameters. There-
reliable indication of the global degree of disorder. The re-fore, the same Takens-Bogdanov poiltsosses are also
gime of oscillations tends, however, to become larger withdepicted in the &,U) plane for fixedNp in Fig. 11(b). One
increasing disorder for most of the realizations tested. of the cusp points fronta) is not shown in(b) since it does
For strong disorder, the regime of oscillations may thusnot depend on the degree of disorder; consequently, there are
extend to doping densities high enough for multistable fieldwo saddle-node bifurcation lines extending downrte 0. It
domains to form, associated with saddle-node bifurcation. Itan be seen that the Hopf bifurcation litdashed connect-
a Hopf bifurcation and a saddle-node bifurcation coincideing the two Takens-Bogdanov points exists only above a
this is called a Takens-Bogdanov poiage, e.g., Ref. 32In minimum value ofa.
a superlattice with strong doping fluctuations, two Takens- Details of the current-voltage characteristics correspond-
ing to cross sections of Fig. () at differenta are shown in
T T T T Fig. 12. Fora=14.6% (a) no oscillations exist. With in-

6.5 creasinge, at first the regime of oscillationshadedlis lim-
ited by two Hopf bifurcation point§Fig. 12b)]. When the
6.0 o .
value of the control parameteris slightly increased, a Hopf
o 55 bifurcation and a saddle-node bifurcation merge in the first
£ Takens-Bogdanov point. At higher (c,d) the regime of os-
< 50¢F
= , .
e [ @ = b))
4.0 i
3.5 1 1 1 1
1.6 1.8 2.0 2.2 24
uv] U

FIG. 8. Current-voltage characteristic for strong disorder ( FIG. 9. Schematic current-voltage characteristics illustrating the
=10%). The additional unstable branches are connected to thiansition from an isola of unstable stat@sft) via a transcritical
“standard” characteristic at the upper end of the fourth stablebifurcation(centej to a single continuously connected characteris-
branch(starting from the left The inset depicts the same part of the tic (right). The transcritical bifurcation is marked by a square,
characteristic forr=9% (Np=7.9x 10" cm9). saddle-node bifurcations are marked by diamonds.
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FIG. 10. Phase diagram of the oscillatory regime enclosed by Hopf bifurcation points for superlattices with doping fluctuations. The
doping density in a single quantum well (8) increased(b) decreased by 12%. Each line is labeled by the number of the quantum well
whose doping density is altere@) Different realizations of doping disordée} with a=12% (solid line: «=0%). The curve with the
longest dashes corresponds to the realization used throughout this paper.

cillations is limited at lowelJ by a Hopf bifurcation, while if a superlattice is operated near one of these bifurcation
at higherU it ceases due to a global bifurcation: a ho- points, the frequency of the oscillation can be controlled by
moclinic bifurcation in which a saddle point collides with a just changing the applied external voltageslightly. In Ref.
limit cycle, forming a saddle loop and subsequently disap-18, another explanation is given for the increase of the fre-
pearing in the “blue sky”(see, e.g., Ref. 22Here the am- quency with bias by discussing the space available for the
plitude of the limit cycle remains finite whereas the fre- charge monopole to travel. This explanation is not applicable
quency tends to zerdS. to our model for superlattices of the short length chosen here
For higher «, we find different bifurcation scenarios. but becomes relevant only fof=200 superlattice periods.
First, the regime of oscillations is no longer bounded fromVoltage tuning of limit cycle oscillations has indeed been
above by a homoclini¢saddle-loop bifurcation but rather observed experimentally in doped superlattiteSuch be-
by a saddle-node bifurcation on a limit cydkeee, e.g., Fig. havior as well as the experimentally found discontinuous
11(b) for &=15.4%), which is another global bifurcation switching between different oscillatory mod&san be con-
characterized by zero frequency and finite amplittfdEor  sistently explained also within our model.
even highera, a saddle-node bifurcation line originating
from the cusp poinftriangle crosses the branch of Hopf
bifurcation pointgsee inset of Fig. 1(b)]. The main regime
of oscillations is now limited by two saddle-node bifurca- In this paper we have theoretically examined two different
tions on the limit cyclgFig. 13; in addition, there is a small forms of spatiotemporal pattern formation found in semicon-
oscillatory regimeleft inse) starting at the Hopf bifurcation ductor superlattices, i.e., stationary multistable field domains
and being destroyed in a nearby saddle-loop bifurcationand limit cycle oscillations. In superlattices without doping
Note that if the temporally averaged current is monitored, asluctuations as well as in superlattices with moderate disor-
is usually done in experiments, the current-voltage characteder, the corresponding regimes are well separated in the pa-
istic is expected to exhibit sharp transitions when differentrameter space. This reflects the fact that Hopf bifurcations
stationary and oscillatory regimes are entered. and saddle-node bifurcations are distinguished by different
The saddle-loop bifurcation and the saddle-node bifurcatocal bifurcation conditions that cannot be simultaneously
tion on a limit cycle result in a sharp decrease of the oscilsatisfied. Only for sufficiently strong doping disorder, mod-
lation frequency down to zero when the voltage approachesled by spatial fluctuations in the growth direction, do the
one of the bifurcation point&see inset of Fig. 3 Therefore, two regimes of spatiotemporal modes overlap. As a result we

V. CONCLUSIONS
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FIG. 11. Part of the phase diagram near the two Takens-Bogdanov foiatked as crosses;) in a superlattice with strong disorder.
The regime of oscillations is shaded. Hopf bifurcations are denoted by dashed lines, saddle-node bifurcations by full lines, and homoclinic
bifurcations by the label “hc.” The triangles denote cusp poiri8. Ny vs U for fixed a=17.5%. (b) « vs U for fixed Np;=2.14
X 10 cm 3. The dotted, horizontal line marks the intersection of the slices of parameter space presented in the two figures.
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= APPENDIX: CURRENT-VOLTAGE CHARACTERISTIC
1.76 L 1.76 S FOR HEAVILY DOPED SUPERLATTICES
1.99 2.00 2.01 1.99 2.00 2.01
In this appendix, a correlation between the local doping
1.79 179 (@ density in thekth quantum well and the current-voltage char-
T 478 178 . . acteristic in the regime of field domains will be derived ana-
é 177 177 \ 77777 ,_,,;;/ | Iytically under simplifying assumptions. The results are valid
= g : TN irrespectively of the particular transport model used as long
1.76 L 1.76 : as only stationary states are of inter&dn the following, we
1.99 2.00 2.01 1.99 0 2.01

U] ‘ S'?V] : shall assume that the electrons relax fast to the lowest sub-
band in each quantum well, and there is no Fermi degen-
FIG. 12. Details of the current-voltage characteristics for fixederacy. The transport equations can then always be written in
Np=2.14x 10" cm~2 and different degrees of doping disord&.  the form

a=14.6%,(b) a=14.7%,(c) «a=14.8%,(d) a=15.2%. Oscilla-
tions are shaded. . :
nO=> f;n®, i=1,.., (A1)

find complex bifurcation scenarios, including codimension- j

two and codimension-three points, coexistence and switchin\% Q) L .
between stationary field domain states and different oscillal/neren"” is the electron density in thieh well; f;; denotes

tion modes, and global bifurcations that lead to a strong biafe transport coefficient for transitions from tjté to theith
tunability of the oscillation frequency. well, andf;; = —X,.;f;; summarizes all transitions out of the

As far as a quantitative description of the effects of dis-ith well. The coefficients are assumed to exhibit a two-peak
order is concerned, the regime of multistable field domainsstructure as a function of the electric fiefd for appropri-
and thus the case of heavy doping, is the easiest to deal withte values ok. A
The superlattice is divided into a high-field and a low-field The coupling between the electron densitiés, the dop-
domain, and the domain boundary, formed by almost theng concentrationsl$}) and the electric fields " is given by
entire charge accumulation, is localized in a single quantuniayss’ law(3). An increase in the electron density in a par-
well. The current through the superlattice is then dominategciar quantum well has the same effect upon the electric

by the properties of a single quantum wednd a single fig|q and thus the transport coefficierfts, as a decrease in
barrie). Analyzing the peak currents of the different i, doping density in that well:

branches of a current-voltage characteristic thus gives quan-

titative insight into the local doping of the individual wells Jf;; Jf;;
and hence into the quality of the sample. PTG i W. (A2)
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1.70 €] ' .
«— 165 i Applying Egs.(Al) and (A2), we find
£
S 160 i i
= = —onV(dn®—dNE¥)+ > f,.dn®, Vi,
— 1.55 4 kzj ﬂn(k) ( D ) z ik
1.50 . (A4)
1.45 ol 7 Since the coefficient§;; are very sensitive to changes in the
1.40 . RS electric field and thus to changes in the electron densities, the
1.90 1.95 l%.oo 2.05 2.10 first term is usually much larger than the second one, which

[v] can therefore be neglected. Assuming the mazfix/dgn)

FIG. 13. Current-voltage characteristic corresponding to the dot!0 b€ regular, i.e., excluding bifurcation points, this yields
ted line in Fig. 11(Np=2.14x 101" cm™3, @=17.5%. The main  the condition
regime of limit cycle oscillationgshaded is bounded on both sides
by saddle-node bifurcations on the limit cycle. The left inset shows dn®W=dNg', Vk=1,... (A5)
the region near the Hopf bifurcatign-) in an enlarged scale. The
small oscillatory regiméshaded is bounded on the right-hand side
by a saddle-loop bifurcation. The right inset depicts the variation of
the frequencyf with voltageU.

Integrating this equation yields

n®—N®=const, Vk=1,.... (AB)
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Thus, the electron densities*h adjust to changes in the Since for sufficiently heavy doping all fields® are in the
doping densities &) in such a way that the electric field positive differential conductivity regime df, _, except for
distribution ¥ and, consequently, the transport coefficientsk=i,%’ this is possible by increasing®, k=1,..., k#i,

fij, do not changeFurthermore, there is a strict one-to-one slightly. An overall increase in the electric field means that
correspondence between the perturbed and the unperturbgee applied external voltage has to be increased. The neces-
current-voltage characteristic except for very close to a bisary adjustments of the individual electron densities accord-
furcation point, which is in agreement with the results ob-ing to Gauss’ law are very small as the required increase in

tained numerically. _ _ ~ F® will be approximately the same for &} the assumption
Next, we consider the upper saddle-node bifurcation poings fixed electron densities is thus satisfied.

of the stable branch for which the domain boundary is lo- Only the current through théth barrier cannot be in-
;:r?tedl mttheth quanthum \;\I’e"' For IS'TPI'C'P’ V\'/eta?rs]umg'that creased in this way a6 lies in the NDC regime thus
€ electrons in each well may only transter into the a JEjlt:enﬁwaking this barrier the limiting element. Since tHe-(@)th
well in the direction of the field, which effectively reduces . (-1)_n(i~1)
well does not form the domain boundany;' ™ */~Np

our model to the one used by Bonilla and co-workefsin ) _
and, therefore: The current reached in the upper bifurca-

this casef;,;=—"f;;, i=1,..., are theonly nonzero coef- °© ; i ) X
’ tion point of a stable branch is proportional to the doping

ficients, andf;, ;;=v(F(*Y) is the velocity-field character- Dolr
istic depending only orF(+1).15 This saddle-node bifurca- d_enS|ty in the quantum vyell next to the well (on the cathode
tion point is determined by the condition tHat) has moved ~Side) at which the domain boundary is locatedzor a suf-

sufficiently far into the negative differential conductivity ficiently high doping density, the upper bifurcation point lies

(NDC) regime off; ;_;.1017 very close to the point of maximum current; thus, for prac-
For all stationary states, the current density tical purposes it is not necessary to distinguish between these
two.
j=fir 1™ (A7)

The main source of error in this approximate argument is
must be independent & Let us discuss what the limiting due to the neglect of the second term in E&4). If it is
effect in obtaining a higher current density at the bifurcationincluded, some electrons are shifted from quantum wells
point is. If we assume the electron densities to be fixed, avith increased doping into the neighboring wells, mainly in
stronger current is equivalent to larger values ff ;. the direction of field.
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