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Bifurcation analysis of stationary and oscillating domains in semiconductor superlattices with
doping fluctuations

M. Patra, G. Schwarz, and E. Scho¨ll
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

~Received 10 January 1997; revised manuscript received 9 July 1997!

We investigate the effects of frozen-in spatial fluctuations of the doping density on the different forms of
spatiotemporal pattern formation found in weakly coupledn-doped superlattices as described by a simple
microscopic model. For heavy doping, multistable field domains are observed, while for lower doping space-
charge oscillations are found. The corresponding bifurcation scenarios are discussed. We demonstrate that
there occurs a qualitative change once the degree of disorder exceeds a certain threshold. For the case of
moderate disorder and heavy doping, a direct correlation between the peak current of each branch of the
current-voltage characteristic and the doping density in the corresponding quantum well is derived and applied
to analyze a measured characteristic.@S0163-1829~98!05103-0#
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I. INTRODUCTION

The formation of electric field domains in a semicondu
tor superlattice in the high-field regime was already p
dicted by Esaki and Chang1 and verified later for both dope
and optically excited superlattices.2–4 These results were ex
plained using different theoretical models.5–7 Later, time-
dependent features such as transient8 and persistent curren
oscillations were also found both in simulations9,10 and
experimentally.11 Recently, the agreement of simulation
with experimental results was considerably improved by t
ing into account growth-related disorder and structu
imperfections.12–16

For a structurally perfect superlattice general features
stationary field domains17 and self-oscillations18 have re-
cently been analyzed in terms of a simple, analytically tr
table model.

The purpose of the present paper is to gain a deeper
derstanding of the different nonlinear spatiotemporal mo
and their sensitivity to the presence of growth-related dop
fluctuations. We do this by presenting a comprehens
analysis of bifurcation scenarios not only in dependence
bias voltage and mean donor density but by taking the de
of disorder into account as a third, equally important syst
parameter. The different regimes of stationary multista
field domains and self-sustained oscillations are investiga
in the framework of the microscopic model of Ref. 12.

The superlattices discussed in this paper consist oN
~typically 40! GaAs quantum wells of widthl separated by
N21 AlAs barriers of widthb. The values used in the simu
lation are summarized in Table I. The wells aren doped with
an average doping density~per unit volume! ND . Due to the
relatively wide barriers considered, the coupling betwe
different quantum wells is weak, and thus each electron
effectively localized in a quantum well. Charge transp
then occurs mainly through sequential tunneling between
jacent wells.

We use the electron concentrations~per unit area! in the
kth energy level of thei th quantum well,nk

( i ) , as the dy-
namic variables of our system. For moderate applied v
570163-1829/98/57~3!/1824~10!/$15.00
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ages, we can restrict ourselves to the two lowest energy
els,k51,2. The rate of change of the electron densities
then be expressed as6

ṅ1
~ i !5R1

~ i !n1
~ i 21!2R1

~ i 11!n1
~ i !2n1

~ i !~Xr
~ i 11!1Xl

~ i !!

1n2
~ i 11!Yl

~ i 11!1n2
~ i 21!Yr

~ i !1n2
~ i !/t21, ~1!

ṅ2
~ i !5R2

~ i !n2
~ i 21!2R2

~ i 11!n2
~ i !2n2

~ i !~Yl
~ i !1Yr

~ i 11!!

1n1
~ i 21!Xr

~ i !1n1
~ i 11!Xl

~ i 11!2n2
~ i !/t21, ~2!

where t21 is the intersubband relaxation time.Rk
( i ) is the

transition probability per unit time for electrons crossing t
i th barrier @located between thei th and the (i 11)st well#
between equivalent subbandsk of two adjacent wells and is
modeled by a simple phenomenological approximation19

The coefficientsXr
( i ) , Xl

( i ) , Yr
( i ) , andYl

( i ) for transitions be-
tween different subbands of adjacent wells are determined
resonant tunneling and are calculated from quantum
chanical perturbation theory.6 X stands for transitions from
the first to the second subband, andY stands for the reverse
process. The subscriptsr and l denote resonant tunneling t
the right ~towards the anode! and to the left~towards the
cathode!, respectively. All transport coefficients depen
strongly upon the electric fieldF ( i ) in the respective barrier

For a realistic modeling of the measured current-volta
characteristics, spatial fluctuations of the structural para
eters, i.e., the widths of the barriersb and the quantum wells

TABLE I. Parameters of the superlattices used in the simu
tions.

Width of GaAs quantum wells b 5 90 Å
Width of AlAs barriers l 5 15 Å
Number of quantum wells N 5 40
Relative permittivity of GaAs eW 5 13.2
Intersubband relaxation time t21 5 1 ps
Lattice temperature TL 5 5 K
Conduction band discontinuity V0 5 982 meV
1824 © 1998 The American Physical Society
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l as well as the doping densityND must be included. Fluc-
tuations of these three quantities have already been exam
in Refs. 12 and 14, where it was inferred from a comparis
with experiment that doping fluctuations are the most lik
form of microscopic disorder responsible for the irregu
shapes of measured current-voltage characteristics.

To model doping fluctuations, we introduce local don
densities, ND

( i )5(11ae( i ))ND in the i th quantum well,
which are distributed around a mean valueND and param-
eterized by a random sequence ofN values$e( i )% and a scal-
ing parametera that quantifies the degree of disorder witho
changing the individual random sequence. For the comp
tions presented in this paper, we choose$e( i )% to be equidis-
tributed in the interval@21,1# but the concept is easily ex
tended to more general distributions.

The fields are related to the electron densities and
doping densities by the discrete version of Gauss’ law,

e~F ~ i 11!2F ~ i !!5e~n1
~ i !1n2

~ i !2 lND
~ i !!, ~3!

wheree is the permittivity of GaAs. The total voltage dro
across the superlattice must be equal to the external vol
U applied to the sample:

(
i

~ l 1b!F ~ i !5U, ~4!

which represents a global coupling condition for the elect
densities in the system.

The sample contacts are treated as two additional ‘‘
tual’’ quantum wells denoted byi 50 andi 5N11, in which
the electron densities are fixed atn1

( i )52ND and n2
( i )50.

Thus, we use Dirichlet boundary conditions modeling Ohm
contacts as a carrier reservoir created by heavily do
boundary layers. Different boundary conditions,nk

(0)5nk
(1)

and nk
(N11)5nk

(N) , which can be conceived as a discre
form of Neumann boundary conditions, have been discus
previously.6,12,13

The total current density across thei th barrier, composed
of the conduction and the displacement current densitie
given by

j 5e@n1
~ i 21!~R1

~ i !1Xr
~ i !!1n2

~ i 21!~R2
~ i !1Yr

~ i !!2n1
~ i !Xl

~ i !

2n2
~ i !Yl

~ i !#1eḞ ~ i !, ~5!

and does not depend on the specific quantum well num
i .20

Let us first discuss the case of a homogeneous statio
field distribution throughout the superlattice~neglecting dis-
order and boundary effects!. By Eq. ~3!, this is equivalent to
the absence of any charge accumulation or depletion,
n1

( i )1n2
( i )5ND . Thus, the electric field is fixed by the ap

plied voltageU, F ( i )5U/@N( l 1b)#, and one can determin
the current-voltage characteristic from Eq.~5! taken at the
steady state. The macroscopicj (U) characteristic is then re
lated to the local drift velocity v(F) by setting
j (U)5ev(F)ND .15 Both characteristics exhibit two distinc
maxima; the first peak is associated with miniband cond
tion, the second one is caused by resonant tunneling betw
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different energy levels in adjacent wells. Beyond the fi
peak, there is a regime of negative differential conductiv
~NDC!.

II. BIFURCATION SCENARIOS OF SPATIOTEMPORAL
PATTERNS

In order to gain insight into the general features of t
spatiotemporal scenarios, we shall first briefly review t
case of a structurally perfect sample. The different regim
of spatiotemporal behavior found from our simulations a
summarized in the phase diagram of Fig. 1. The curre
voltage characteristics corresponding to cross sections
different fixedND are depicted in Fig. 2.

The spatially homogeneous,N-shaped current-voltage
characteristic is stable only at low doping@Fig. 2~a!#. For
higher doping, a smeared-out domainlike field distributi
forms, and a bistableZ-shaped current-voltage characteris
arises@Fig. 2~b!#, indicating a transition between a smeare
out field domain for high current and lower voltage, and
almost homogeneous field distribution for low current a
higher voltage. The positions of saddle-node bifurcat
points where a stable and an unstable steady-state merg
indicated by diamonds; they form two lines in the lower p
of the phase diagram in Fig. 1. At a minimum value ofND
the two lines end in a cusp point where thej (U) character-
istic changes fromN shaped toZ shaped.

At higher doping, spatiotemporal instabilities lead to se
generated current oscillations associated with the buildup
space charges.9 Here, the current-voltage characteristic co
tains a regime of limit cycle oscillations@Fig. 2~c!#. This
regime is confined by supercritical Hopf bifurcation poin
marked as a closed dashed line in Fig. 1. Note that subcri
Hopf bifurcations can be observed for different bounda
conditions.13

A typical oscillation is depicted in Fig. 3. The field profil
in Fig. 3~a! shows that an inhomogeneous field distributi
forms and moves towards the anode. The charge accum
tion associated with it@Fig. 3~b!# grows in order to fulfill the
global coupling condition~4!, and eventually, near the an
ode, vanishes. Then the whole cycle is repeated.15 The cor-

FIG. 1. Phase diagram of spatiotemporal instabilities as a fu
tion of external voltageU and doping densityND for a ‘‘perfect’’
superlattice. Saddle-node bifurcations are marked by solid lin
Hopf bifurcations by dashed lines, and cusp points as triangles~n!.
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FIG. 2. Current-voltage characteristics for doping densities of~a! ND53.231015 cm23, ~b! ND51016 cm23, ~c! ND5731016 cm23, ~d!
ND51017 cm23, ~e! ND5231017 cm23, ~f! ND57.931017 cm23. In all current-voltage characteristics presented in this paper, st
stationary states are marked as solid lines, unstable ones as dashed lines, saddle-node bifurcation points as diamonds~L! and Hopf
bifurcation points as crosses~1!. Oscillations are indicated by shaded areas within minimum and maximum current density. The inset
enlarged sections of the respective current-voltage characteristics.
o
b

i-
th

b

or

er,

ent
ay-
an-
u-

cies
lly

s
pes

he
ent

he

ed-

ld
r of

her
be-
x-
dja-
cur

ble
ry to
d a
-
is a
m-
al

s
ar
t d

d
ry
ne
responding oscillation of the current densityj is almost per-
fectly sinusoidal. The oscillation exhibits a square-ro
dependence of the amplitude upon the distance from the
furcation point as shown in the inset of Fig. 3~c! for fixed ND
and increasingU. The frequency is not affected by this b
furcation and is determined near the bifurcation point by
imaginary part of the corresponding eigenvalue@Fig. 3~c!#.
Similar results are obtained for fixedU and variableND .
Over the entire oscillatory regime, the frequency varies

FIG. 3. Limit cycle oscillation (ND5531016 cm23). ~a! Tem-
poral evolution of the field profileF. ~b! Temporal evolution of the
charge density,r (U51 V). ~c! Frequency of the oscillation versu
U ~solid line!. The frequency corresponding to the imaginary p
of the largest eigenvalue is shown as a dashed line. The inse
picts the amplitude of the current densityj ~in kA/cm2! versusU ~in
V! near one of the Hopf bifurcation points~1!. ~d! Phase portrait of
n1

30 vs n1
29 ~1, unstable fixed point; solid line, limit cycle; dashe

line, trajectory lying in the center manifold; dotted line, trajecto
starting outside the center manifold; the other trajectories start
the limit cycle!.
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approximately 25% similar to what is seen in Ref. 18 f
corresponding boundary conditions~cf. the inset of Fig.
13~b! therein!. The frequencies calculated there, howev
depend strongly on the choice of boundary conditionn(0)

5(11c)ND parametrized byc. The values ofc used
throughout most of Ref. 18 are very small and thus differ
from our model, which assumes heavily doped boundary l
ers. Therefore, most of the results presented in Ref. 18 c
not directly be compared with our results. However, for Ne
mann boundary conditions we have also found frequen
strongly varying with voltage and decreasing monotonica
almost down to zero21 as in the model of Ref. 18. This i
consistent with the results found in Ref. 18, since both ty
of boundary conditions allow for an~almost! homogeneous
field distribution as a stationary solution, in contrast to t
heavily doped boundary layer conditions used in the pres
paper.

The dynamics is fast in the directions orthogonal to t
center manifold~see, e.g., Ref. 22!, in which the limit cycle
as well as the corresponding unstable fixed point are emb
ded @Fig. 3~d!#.

Note that in contrast to the formation of stationary fie
domains, the superlattice must contain a minimum numbe
quantum wells to enable oscillations.17 In addition to such
charge oscillations of a single domain boundary, at hig
doping levels traveling high-field domains embedded
tween two low-field domains are found if the model is e
tended to accommodate highly doped boundary layers a
cent to the contacts. Thus current oscillations may also oc
at larger doping.

At the highest doping densities, the number of availa
carriers is sufficient to provide the space charge necessa
form a stable, stationary boundary between a low-field an
high-field domain~cf. Fig. 4!. The buildup of a charge accu
mulation and the subsequent nucleation of field domains
process of self-organized pattern formation, which is co
mon in semiconductors with negative differenti
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conductivity.23–26 However, there are essential differenc
compared, e.g., to the classical Gunn domain instabi
which is associated with a traveling triangular domain. F
its existence it is required only that thev(F) characteristic
has one rising and one falling branch. In the superlattice,
high- and low-field domains correspond to spatial coex
ence of two stable states of the localj (F) characteristic at
the same current density,15 while the Gunn domains have
triangular field profile whose maximum does not attain
second stable state.24 Different equal area rules have bee
derived for both cases.10,15,27,28If the doping density is suf-
ficiently high, the width of the domain boundary is of th
order of the superlattice period. In this case, the dom
boundary is localized in a specific quantum well and, in co
trast to the Gunn diode, cannot move continuously throu
the sample but can only jump from one quantum well to
next. As a result, there exist different stable stationary
main states~their number being approximately equal to t
number of quantum wells! which arise from different loca-
tions of the boundary.

As the domain boundary is shifted from the anode to
cathode with increasing voltage, the current-voltage cha
teristic exhibits small modulations in the form of sequenc
of N- @Fig. 2~e!# or Z-shaped@Fig. 2~f!# branches corre-
sponding to different locations of the domain boundary
shown experimentally.29 The different stable branches a
connected by unstable parts as depicted in the insets. T
the current-voltage characteristic consists of a single cont
ously connected curve, along which stable and unstable p
alternate. The changes of stability are caused by saddle-
bifurcations, which show up as a complex pattern of int
secting lines in the upper part of Fig. 1. This diagram allo
one to determine the positions of the individual curre
branches as well as, for given parametersU and ND , the
number of multistable states. The two lines of saddle-n

FIG. 4. Field profile as a function of the doping density,ND , for
fixed U51 V.
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bifurcation points belonging to a particular unstable bran
merge in a cusp point. Thus, the associated value ofND is
the minimum doping density necessary for multistability a
hysteresis of current branches. Since the cusp points li
slightly different values ofND , in the respective range ofND
values hysteresis may set on only above a certain thres
voltage as can be seen in the inset of Fig. 2~e!. The overall
behavior shown in Fig. 2 for the structurally perfect model
similar to the one found in simple phenomenologic
models.17,29

III. EFFECTS OF DOPING FLUCTUATIONS
ON FIELD DOMAINS

In the next two sections we will discuss how doping flu
tuations affect the spatiotemporal patterns, i.e., the forma
of multistable field domains and limit cycle oscillation
First, we focus on field domains.

Figure 5 shows how the current-voltage characteris
changes in the regime of domain formation if the donor d
sity in a single quantum well is either increased~b! or de-
creased~c! with respect to the unperturbed case~a!. It is
evident that there exists a direct correlation between the lo
doping density in thekth well and the peak current of th
(k11)th branch of the current-voltage characteristic~count-
ing from the right! corresponding to the location of the do
main boundary at the (k11)th well. One can even infe
quantitative information about the local doping density fro
the peak currents, i.e., the positions of the saddle-node b
cations which mark the end of a stable branch. It is sho
analytically in the Appendix under some simplifying a
sumptions that the maximum current reached on a partic
stable branch is proportional to the doping density in
quantum well next to the well at which the domain bounda
is located. This opens up the possibility to determine
local values of the ratioND

( i )/ND with good precision from
measured current-voltage characteristics and thereby cha
terize the quality of a sample. This procedure has been te
by applying it to numerically simulated characteristics w
random doping fluctuations.30

It has also been successfully applied to several meas
characteristics where it yields reasonable estimates of
degree of disorder. The computed values of the rela
variation d i5(ND

( i )2ND)/ND of the local doping density in
the i th quantum well from the mean doping densityND are
shown in Table II. Thus, the current-voltage characteris
serves as a direct ‘‘fingerprint’’ of the microscopic realiz
tion of doping fluctuations. For quantum wells close to t
d

FIG. 5. Part of the current-voltage characteristics in the regime of domain formation (ND57.931017 cm23). The doping density in the

20th well is ~b! increased by 10%,~c! decreased by 10%. The unperturbed characteristic is displayed in~a!. The branches are numbere
according to the location of the domain boundary at thekth well.
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1828 57M. PATRA, G. SCHWARZ, AND E. SCHO¨ LL
cathode or anode, boundary effects become important,
therefore the respective quantum wells have not been
cluded in the analysis. The standard deviationA( id i

2/N of
the doping density is 6.7%~corresponding to a value ofa
510.8%!, which is in good agreement with what is genera
known about the properties of the growth process.

Even though the full continuously connected curre
voltage characteristic, consisting of alternating stable and
stable branches, shows only slight changes if moderate
order is introduced, the characteristic that is found un
voltage sweep up or sweep down may change qualitativ
Individual branches are shifted and their lengths are chan
according to the doping densities in the corresponding qu
tum wells; thus, some stable branches might be missed
completely during voltage sweep up or sweep down if
doping densities in two adjacent quantum wells differ su
ciently. This is demonstrated in Fig. 6 by comparing volta
sweep up and sweep down~a! with the full stable branches
~b!. For a given degree of disordera, the effect of missed-ou
branches is most pronounced at large doping or high volta
A careful inspection of the saddle-node lines in the ass
ated phase diagram@Fig. 6~c!# already allows one to deter
mine which branches are missed out for givenND .

Apart from the single continuously connected curre
voltage characteristic, there exist numerous other station
states, i.e., fixed points of the dynamic system~1!, ~2!, most
of them being unstable. Some of them are depicted in
7~a! for a superlattice without doping fluctuations. With th
exception of an additional peak, their field profiles are sim
lar to those of states on the ‘‘standard’’ current-voltage ch
acteristic. Almost all such states form ‘‘isolas’’~closed
curves! in the j (U) diagram.

TABLE II. Computed relative variationsd i5(ND
( i )2ND)/ND of

the doping density in thei th quantum well for the sample invest
gated in Ref. 29.

d25 7.5% d3525.9% d45 6.2% d55 25.9%
d6521.0% d75 1.0% d85 9.3% d95 2.7%

d105 7.1% d115 12.0% d125 14.0% d135 3.0%
d145 2.8% d155 1.4% d16526.6% d175214.6%
d18527.0% d19526.9% d20528.3% d215 21.9%
d22522.1% d23524.9% d24526.1% d255 25.2%
d26521.4% d27524.6% d285 0.1% d295 22.3%
d30521.2% d315 3.4% d325 1.7% d335 13.8%
nd
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ry
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-
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We will now focus on a particular class of isolas; a typic
member is depicted in Figs. 7~b! ~thin dashed line! and 7~c!.
The field profile displays an additional, smaller peak in t
low-field domain. All parts of these isolas are unstable
the doping density considered here but stable branches
for higher doping. The isolas become more complex wh
doping fluctuations are introduced since additional branc
emerge at cusp points; some of these branches are stab
sufficient degrees of disorder.

If the degree of disordera is high enough, some isola
merge with the ‘‘standard,’’ continuous current-voltage ch
acteristic resulting in a more complex but still continuous
connected curve. Figure 8 depicts the same section of the
continuous current-voltage characteristic below~inset! and
above~main figure! this threshold. This qualitative chang
marking the transition between moderate and strong di
der, is caused by a perturbed transcritical bifurcation~see,
e.g., Ref. 31! as schematically sketched in Fig. 9. For lowa
~left! the unstable isola and the ‘‘standard’’ characteris
~stable and unstable branch! are separate. At the thresho
value ofa ~center! the isola and the stable branch join at
transcritical bifurcation point~marked as a square! where
two branches exchange their stability. For larger values oa
the transcritical bifurcation point splits into two saddle-no
points, thereby forming a single connected characteristic
which the isola has been ‘‘inserted.’’

If a is increased even further, additional isolas are
serted into the continuous characteristic; some isolas sep
off again for even stronger disorder. Furthermore, seve
isolas may combine to form a single, more complex isola
a similar scenario before merging with the continuously co
nected current-voltage characteristic, which can thus inc
porate a large number of additional branches in a single
furcation.

IV. EFFECTS OF DOPING FLUCTUATIONS
ON OSCILLATIONS

The main effect of disorder in the regime of limit-cyc
oscillations is to shift and deform its location in parame
space. For moderate disorder, it is determined by the loca
of the Hopf bifurcation points@Fig. 6~c!, dashed# as in the
perfect superlattice~Fig. 1!. The change of the oscillation
amplitude and frequency for fixed voltage and fixed don
density is only slight.

The effects of an increase~decrease! of the doping density
FIG. 6. Current-voltage characteristics for superlattices with different degrees of doping fluctuationsa. ~a! Characteristics for voltage
sweep-up and sweep-down.~b! Stable parts of the full connected current-voltage characteristics~ND57.931017 cm23; the vertical scale is
shifted for each curve!. ~c! Phase diagram of mean donor densityND vs voltageU for a58%.
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FIG. 7. ~a! Current-voltage characteristic including all stable and unstable stationary states. The ‘‘standard’’ current-voltage chara
~bold! contains just a small fraction of all stationary states.~b! The thin dashed line denotes an isola consisting of unstable states only
‘‘standard’’ current-voltage characteristic is also depicted and marked with bold lines.~c! Field profile for successive points on the isola
~b! parameterized by the arc length of thej (U) diagram (ND57.931017 cm23).
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in a single quantum well are depicted in Fig. 10~a! @Fig.
10~b!#. Different curves are marked by the index of the a
fected quantum well. The influence of a particular quant
well is largest if it is located somewhere in the middle of t
superlattice~in the particular superlattice considered he
numerical computations yield the 17th well!.

Unfortunately, the total effect of a sequence of rand
fluctuations@Fig. 10~c!# cannot be predicted from a superp
sition of the effects of the individual single perturbations
in the regime of multistable field domains. In contrast to t
latter case, where the charge accumulation forming the
main boundary is largely confined to a single quantum w
oscillations involve changes of the charges in a large num
of quantum wells resulting in a nonlinear interaction. Fu
thermore, Fig. 10~c! demonstrates that the shape of the
gime of oscillations looks very different for different realiz
tions ei for the samea ~here a512%! and thus gives no
reliable indication of the global degree of disorder. The
gime of oscillations tends, however, to become larger w
increasing disorder for most of the realizations tested.

For strong disorder, the regime of oscillations may th
extend to doping densities high enough for multistable fi
domains to form, associated with saddle-node bifurcation
a Hopf bifurcation and a saddle-node bifurcation coinc
this is called a Takens-Bogdanov point~see, e.g., Ref. 32!. In
a superlattice with strong doping fluctuations, two Take

FIG. 8. Current-voltage characteristic for strong disordera
510%). The additional unstable branches are connected to
‘‘standard’’ characteristic at the upper end of the fourth sta
branch~starting from the left!. The inset depicts the same part of th
characteristic fora59% (ND57.931017 cm23).
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Bogdanov points and one cusp point are generated in a si
codimension-three bifurcation by appropriately adjusti
three control parameters:ND ,U,a. The two Takens-
Bogdanov points are connected by a curve of Hopf bifur
tion points; ifa is increased slightly, this curve merges wi
the closed curve of Hopf bifurcations found also in superl
tices with no or moderate disorder@Fig. 6~c!#. In the phase
diagram of the mean dopingND versus voltageU for fixed a
@Fig. 11~a!# this gives a single open curve~dashed!, which
encloses the shaded area of limit cycle oscillations. T
pairs of full lines corresponding to saddle-node bifurcatio
of domain states are also shown; each ending in a cusp p
~triangle!. The inset shows the phase diagram near a Take
Bogdanov point in more detail.

Since we are discussing a codimension-three bifurca
scenario, it is not sufficient to merely consider the location
the bifurcation points as a function of two parameters. The
fore, the same Takens-Bogdanov points~crosses! are also
depicted in the (a,U) plane for fixedND in Fig. 11~b!. One
of the cusp points from~a! is not shown in~b! since it does
not depend on the degree of disorder; consequently, there
two saddle-node bifurcation lines extending down toa50. It
can be seen that the Hopf bifurcation line~dashed! connect-
ing the two Takens-Bogdanov points exists only above
minimum value ofa.

Details of the current-voltage characteristics correspo
ing to cross sections of Fig. 11~b! at differenta are shown in
Fig. 12. Fora514.6% ~a! no oscillations exist. With in-
creasinga, at first the regime of oscillations~shaded! is lim-
ited by two Hopf bifurcation points@Fig. 12~b!#. When the
value of the control parametera is slightly increased, a Hop
bifurcation and a saddle-node bifurcation merge in the fi
Takens-Bogdanov point. At highera ~c,d! the regime of os-

he
e

FIG. 9. Schematic current-voltage characteristics illustrating
transition from an isola of unstable states~left! via a transcritical
bifurcation ~center! to a single continuously connected character
tic ~right!. The transcritical bifurcation is marked by a squa
saddle-node bifurcations are marked by diamonds.
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FIG. 10. Phase diagram of the oscillatory regime enclosed by Hopf bifurcation points for superlattices with doping fluctuatio
doping density in a single quantum well is~a! increased,~b! decreased by 12%. Each line is labeled by the number of the quantum
whose doping density is altered.~c! Different realizations of doping disorder$e( i )% with a512% ~solid line: a50%). The curve with the
longest dashes corresponds to the realization used throughout this paper.
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cillations is limited at lowerU by a Hopf bifurcation, while
at higher U it ceases due to a global bifurcation: a h
moclinic bifurcation in which a saddle point collides with
limit cycle, forming a saddle loop and subsequently dis
pearing in the ‘‘blue sky’’~see, e.g., Ref. 22!. Here the am-
plitude of the limit cycle remains finite whereas the fr
quency tends to zero.32

For higher a, we find different bifurcation scenarios
First, the regime of oscillations is no longer bounded fro
above by a homoclinic~saddle-loop! bifurcation but rather
by a saddle-node bifurcation on a limit cycle~see, e.g., Fig.
11~b! for a>15.4%!, which is another global bifurcation
characterized by zero frequency and finite amplitude.22 For
even highera, a saddle-node bifurcation line originatin
from the cusp point~triangle! crosses the branch of Hop
bifurcation points@see inset of Fig. 11~b!#. The main regime
of oscillations is now limited by two saddle-node bifurc
tions on the limit cycle~Fig. 13!; in addition, there is a smal
oscillatory regime~left inset! starting at the Hopf bifurcation
and being destroyed in a nearby saddle-loop bifurcat
Note that if the temporally averaged current is monitored
is usually done in experiments, the current-voltage charac
istic is expected to exhibit sharp transitions when differ
stationary and oscillatory regimes are entered.

The saddle-loop bifurcation and the saddle-node bifur
tion on a limit cycle result in a sharp decrease of the os
lation frequency down to zero when the voltage approac
one of the bifurcation points~see inset of Fig. 13!. Therefore,
-

n.
s
r-
t

-
l-
es

if a superlattice is operated near one of these bifurca
points, the frequency of the oscillation can be controlled
just changing the applied external voltageU slightly. In Ref.
18, another explanation is given for the increase of the
quency with bias by discussing the space available for
charge monopole to travel. This explanation is not applica
to our model for superlattices of the short length chosen h
but becomes relevant only forN>200 superlattice periods
Voltage tuning of limit cycle oscillations has indeed be
observed experimentally in doped superlattices.18 Such be-
havior as well as the experimentally found discontinuo
switching between different oscillatory modes33 can be con-
sistently explained also within our model.

V. CONCLUSIONS

In this paper we have theoretically examined two differe
forms of spatiotemporal pattern formation found in semico
ductor superlattices, i.e., stationary multistable field doma
and limit cycle oscillations. In superlattices without dopin
fluctuations as well as in superlattices with moderate dis
der, the corresponding regimes are well separated in the
rameter space. This reflects the fact that Hopf bifurcatio
and saddle-node bifurcations are distinguished by differ
local bifurcation conditions that cannot be simultaneou
satisfied. Only for sufficiently strong doping disorder, mo
eled by spatial fluctuations in the growth direction, do t
two regimes of spatiotemporal modes overlap. As a result
r.
omoclinic
FIG. 11. Part of the phase diagram near the two Takens-Bogdanov points~marked as crosses,1! in a superlattice with strong disorde
The regime of oscillations is shaded. Hopf bifurcations are denoted by dashed lines, saddle-node bifurcations by full lines, and h
bifurcations by the label ‘‘hc.’’ The triangles denote cusp points.~a! ND vs U for fixed a517.5%. ~b! a vs U for fixed ND52.14
31017 cm23. The dotted, horizontal line marks the intersection of the slices of parameter space presented in the two figures.
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find complex bifurcation scenarios, including codimensio
two and codimension-three points, coexistence and switch
between stationary field domain states and different osc
tion modes, and global bifurcations that lead to a strong b
tunability of the oscillation frequency.

As far as a quantitative description of the effects of d
order is concerned, the regime of multistable field doma
and thus the case of heavy doping, is the easiest to deal
The superlattice is divided into a high-field and a low-fie
domain, and the domain boundary, formed by almost
entire charge accumulation, is localized in a single quan
well. The current through the superlattice is then domina
by the properties of a single quantum well~and a single
barrier!. Analyzing the peak currents of the differe
branches of a current-voltage characteristic thus gives q
titative insight into the local doping of the individual wel
and hence into the quality of the sample.

ACKNOWLEDGMENTS

We are indebted to F. Prengel and A. Wacker for stim
lating discussions, and to W. Jansen for supplying the p

FIG. 12. Details of the current-voltage characteristics for fix
ND52.1431017 cm23 and different degrees of doping disorder.~a!
a514.6%,~b! a514.7%,~c! a514.8%,~d! a515.2%. Oscilla-
tions are shaded.

FIG. 13. Current-voltage characteristic corresponding to the
ted line in Fig. 11~ND52.1431017 cm23, a517.5%!. The main
regime of limit cycle oscillations~shaded! is bounded on both side
by saddle-node bifurcations on the limit cycle. The left inset sho
the region near the Hopf bifurcation~1! in an enlarged scale. Th
small oscillatory regime~shaded! is bounded on the right-hand sid
by a saddle-loop bifurcation. The right inset depicts the variation
the frequencyf with voltageU.
-
g

a-
s

-
s,
th.

e
m
d

n-

-
-

gram Candys/QA. Part of this work was supported by DF
in the framework of Sfb 296.

APPENDIX: CURRENT-VOLTAGE CHARACTERISTIC
FOR HEAVILY DOPED SUPERLATTICES

In this appendix, a correlation between the local dop
density in thekth quantum well and the current-voltage cha
acteristic in the regime of field domains will be derived an
lytically under simplifying assumptions. The results are va
irrespectively of the particular transport model used as lo
as only stationary states are of interest.21 In the following, we
shall assume that the electrons relax fast to the lowest
band in each quantum well, and there is no Fermi deg
eracy. The transport equations can then always be writte
the form

ṅ~ i !5(
j

f i j n
~ j !, i 51,..., ~A1!

wheren( i ) is the electron density in thei th well; f i j denotes
the transport coefficient for transitions from thej th to thei th
well, andf i i 52( j Þ i f j i summarizes all transitions out of th
i th well. The coefficients are assumed to exhibit a two-pe
structure as a function of the electric fieldF (k) for appropri-
ate values ofk.

The coupling between the electron densitiesn( i ), the dop-
ing concentrationsND

( i ) and the electric fieldsF ( i ) is given by
Gauss’ law~3!. An increase in the electron density in a pa
ticular quantum well has the same effect upon the elec
field, and thus the transport coefficientsf i j , as a decrease in
the doping density in that well:

] f i j

]n~k! 52
] f i j

]ND
~k! . ~A2!

As we are only interested in stationary states, we h
ṅ( i )50 ; i 51,... . Taking the total differential yields

05dṅ~ i !5(
k

]ṅ~ i !

]n~k! dn~k!1(
k

]ṅ~ i !

]ND
~k! dND

~k! , ; i .

~A3!

Applying Eqs.~A1! and ~A2!, we find

05(
k, j

] f i j

]n~k! n~ j !~dn~k!2dND
~k!!1(

k
f ikdn~k!, ; i .

~A4!

Since the coefficientsf i j are very sensitive to changes in th
electric field and thus to changes in the electron densities
first term is usually much larger than the second one, wh
can therefore be neglected. Assuming the matrix] f i j /]n(k)

to be regular, i.e., excluding bifurcation points, this yiel
the condition

dn~k!5dND
~k! , ;k51,... . ~A5!

Integrating this equation yields

n~k!2ND
~k!5const, ;k51,... . ~A6!
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Thus, the electron densities n(k) adjust to changes in the
doping densities ND

(k) in such a way that the electric fiel
distribution F(k) and, consequently, the transport coefficien
f i j , do not change. Furthermore, there is a strict one-to-o
correspondence between the perturbed and the unpertu
current-voltage characteristic except for very close to a
furcation point, which is in agreement with the results o
tained numerically.

Next, we consider the upper saddle-node bifurcation po
of the stable branch for which the domain boundary is
cated in thei th quantum well. For simplicity we assume th
the electrons in each well may only transfer into the adjac
well in the direction of the field, which effectively reduce
our model to the one used by Bonilla and co-workers.7,10 In
this case,f i 11,i52 f i i , i 51,..., are theonly nonzero coef-
ficients, andf i 11,i5v(F ( i 11)) is the velocity-field character
istic depending only onF ( i 11).15 This saddle-node bifurca
tion point is determined by the condition thatF ( i ) has moved
sufficiently far into the negative differential conductivit
~NDC! regime of f i ,i 21 .10,17

For all stationary states, the current density

j 5 f k11,kn
~k! ~A7!

must be independent ofk. Let us discuss what the limiting
effect in obtaining a higher current density at the bifurcat
point is. If we assume the electron densities to be fixed
stronger current is equivalent to larger values off k11,k .
.

.

ies

.

th

or

n

J.
B

ed
i-
-

t
-

nt

a

Since for sufficiently heavy doping all fieldsF (k) are in the
positive differential conductivity regime off k,k21 except for
k5 i ,17 this is possible by increasingF (k), k51,..., kÞ i ,
slightly. An overall increase in the electric field means th
the applied external voltage has to be increased. The ne
sary adjustments of the individual electron densities acco
ing to Gauss’ law are very small as the required increas
F (k) will be approximately the same for allk; the assumption
of fixed electron densities is thus satisfied.

Only the current through thei th barrier cannot be in-
creased in this way asF ( i ) lies in the NDC regime thus
making this barrier the limiting element. Since the (i 21)th
well does not form the domain boundary,n( i 21)'ND

( i 21)

and, therefore: The current reached in the upper bifurca
tion point of a stable branch is proportional to the dopin
density in the quantum well next to the well (on the catho
side) at which the domain boundary is located.For a suf-
ficiently high doping density, the upper bifurcation point lie
very close to the point of maximum current; thus, for pra
tical purposes it is not necessary to distinguish between th
two.

The main source of error in this approximate argumen
due to the neglect of the second term in Eq.~A4!. If it is
included, some electrons are shifted from quantum w
with increased doping into the neighboring wells, mainly
the direction of field.
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