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Minimal attenuation for tunneling through a molecular wire
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The electronic transmission coefficient through a finite-length molecular wire decreases exponentially when
its length increases for energy chosen in its gap. It is demonstrated that the damping factor in the exponential
depends on the full wire electronic structure and not only on the gap width as obtained from a WKB calculation
of this factor. The gap remains in controlling the minimum of the damping factor. However, this minimum is
far from being reached on known molecular wires. An optimization procedure is proposed to define molecular
wires with a very small damping in the tunneling regiri®0163-182608)10403-4

[. INTRODUCTION tance of a molecule. In the following we restrict ourselves to
a single-molecule conductance experiment.
Through a finite series dfl cells, each made of a trans-  In this paper, the exact analytical expressionf0E) as a

parent part and a less transparent one, waves propagate wftinction of y is obtained for tunneling through a tight-

a transmission coefficierfty(E) equal to unity for discrete binding chain considered as a model for finite-length mo-

resonant energiegfrequencies’ Elsewhere, Ty(E) de- lecular wires. Starting in Sec. Il with a standard transfer-

creases whehl increases, following the exponential thtv ~ matrix approach using a "Mmdin effective Hamiltonian
technique, we show in Sec. Ill thai(E) is bounded from

TN(E)=To(E)e 27BN, (1) below, i.e., for a given family of chains it is not possible to

go below a damping limit in tunneling through those wires. It

v(E) is a damping factor characteristic of the interferenceds further shown in Sec. IV, through analytical examples, that

of the propagating wave between successive scattering on thieis limit is far from being reached on known chains.

cells. Away from the resonances, in the evanescent regime, a

question is whethey(E) is bounded from below preventing 1. EXPONENTIAL LAW

the propagation to persist through a lafdeseries of cell.

This applies to a variety of problems since this question is Let us consider an infinite chain made of two semi-infinite

obviously related to the phenomenon of band-structure forparts linked in series by a finite chain bf identical cells,

mation whenN increases. This is the case in micro-optics different from the semi-infinite one€Fig. 1). Each cell is

with the search for photonic band-gap systemmsd for lay- made of two different part&\ andB to get a finitex and

ered materials to reach a larg€E) with a minimum layer there arem states inA and inB. In a monoelectronic ap-

thickness! Another case, the background of this paper, is theproximation, the Hamiltonian of the complete system is writ-

exponential decrease of the elastic conductance of atomi¢en

and molecular wirds' in the low-bias voltgg?e regime where

their current-voltage characteristic is lin€arin the elastic Ly /oL L L

tunnel regime, the conductance of a metal—molecule—metaIH:n;oc h(|¢’n><¢’n*1|+|¢nfl><¢n|)+HLC+§1 Hadi)

junction reflects the transparency of the molecule to the elec-

trons coming from the electrod&sThis takes into account +Haiyo, T 0ilo) @] +Hy o+ Her

the possible dephasing between intramolecular tunnel

channels, but not inelastic effects such as vibrational cou- Ry, AR R R

pling. In this regime and foE belonging to a given elec- +r]§=:0 h(lén)(¢nal +[dne){BnD- (2)

tronic gap,y(E) is often considered to depend only on the

gap width!® This is supported by tight-binding calculations For oddi, «(i)=A and w;=w,; for eveni, «(i)=B and

on specific system$and by the WKB approximatiory(E) wj=w,. H ¢ and Hcr are the coupling Hamiltonians be-

xx 1 (Ref. 12 or y(E)x\y in another approximatiolf. ~ tween the finite part and the semi-infinite part of the chain.

With respect to Eq(l), an energy gap of widtly is, as usual,

the energy range between two energy bands whggd) b e A2 [B A} AR — b -

=0 when the wire length goes to infinity. Notice that long- e Lo

range electron transfer through a molecule also shows a char- £\ 1. Tight-binding skeleton of the chain family considered in

acteristic exponential decay of its transfer rate as a functiogq, (1). Each cell of the finiteN chain is composed of two states

of the molecule length>**Much work has been devoted to |4, separated by more complex and B parts withm states per

controlling this decay® However, in a through-bond elec- part. This chain is connected left and right through i@ andCR

tron transfer experiment the electron-transfer rate is relategells to two semi-infinite chains representing the connection pads.

to the tunneling rate of an electron in a single-molecule conbepending on th&\ parity, the last cell of the finite chain {gr no

ductance experiment and not directly to the elastic conducintegrated in theCR or the LC cell.

n=0 2N

+ oo
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Hcr, Ha, andHg need not be specified for the demonstra-

tion presented here. The only hypothesis on the finite chain is
that A andB in a cell are coupled to each other through a i
single |w;) state only(Fig. 1). There are th+2 states per 50 \ I
cell in the finite chain. \ /

The exact matrix elements dﬂa(i)wi, Hoat+1), Hic, 100 ' ; ; ; ' (
{
f
|

An effective, one state per site, chain is readily obtained §
from Eq. (2) by partitioning the state space of the chain into &
two parts: one generated by thg-), |#R), and|w;) states
(projectorP) and the other generated by all themX N states
of the A and B parts of the cellgprojectorQ). On theP
subspace, thel| ¢)=E|¢) eigenvalue problem is equivalent
to the effective Lowdin eigenvalue problert o;P|¢)
=EP|¢) with the effective Hamiltonian Hq=PHP 50 >0 oo 0o 5 25 30
+PHQ(E_H)_1QH p.1718 Energy E/o
T Z-Q)rili?:h ?E(:)Tiilzn sv?tnf;[?;r(]g)g ti;'ggfsg?&aiﬁg\éi((:g?nnel’ FIG. 2. Examples of the polynomial (E) calculated for the
N 11} ' d o d°[A(E)]=4 chain in Fig. 3a) (---) and is thed°[ A(E)]=8 chain
is a nonunitary transformation of the spatial propagator

. " in Fig. 3¢) (—). The parameters chosen at€/a=0.6, al/y
G(p,—p,E) defined from the left to the right part of the =0.1, B/6=1.0, andB/a=3.31, respectively. -.-.- is also for the
chain through the\ cells by'°

d°[A(E)]=8 chain in Fig. 8c), but with the nonoptimized param-
etersa/y=0.91, 8/6=0.93, andB/a=1.5.

Cp+1 c_

Cp

p
C—(p+1)

=G(p.—p.E) ’ 3 Ill. BOUNDING OF THE DAMPING FACTOR
with A simple question is whether or not for a given chain
structure , (E) can take any value. For example, in the
G(p,—p,E)=K(E)PA(E)[M(E)M,(E)]NB(E)K(E)P tunneling regime and far from the resonance, it would be
(P.=p.E)=K(E)'ABNIM1(E)Mo(E)TB(E)K(E) interesting to get a . (E) as small as possible. The secular
andc; the coefficients of thé|¢) decomposition on the  €quation giving thex..(E) roots in Eq.(5) is simply the
subspace. The elementary propagato(E) is defined Standard second-order Kramers equdtion
through a unit cell of the semi-infinite part&(E) andB(E) 2 _
are the interface propagators from the semi-infinite to the ME)"=THMy(BE)Mo(E)IM(E) +defMy(B)M,(E)] (()6)
finite parts of the chain, anM ;(E)M,(E)]N is the propa-
gator from one end to the other along the finite chain. TheSince by time-reversal invariance pidt(E)M(E)]=1, the
M;(E) matrices are easily constructed from tHgy matrix  two roots of Eq.(6) result in
elements. The transfer matrix(E)=A(E)D(E)"B(E) is N
obtained after a diagonalizatidd(E) of the M1(E)M,(E) Ao (E)= VA(E)+4+ JA(E) @)
matrix*° Thed;; andb;; matrix elements oA(E) andB(E) - 2
accommodate thile(.E)Mz(E) diagonalization and the \ith A(E)=Tr{M4(E)M(E)]?>— 4.
A(E) and B(E) nonunitary transformation from the propa-
gator to the transfer matrix. Thereforg(E) is given by

Obviously, forN going to infinity, the energy intervals
whereA(E)=<0 correspond to the location of the electronic
bands of the chain and the ones wharde) >0 to the gaps
T(E) 1 of this band structuré?! The zeros of the\(E) polynomial

NA=T " N, = w Nj2’ provide the bandwidths and the band gaps of the structure.

[31(B)bu(BIA - (B)"+8rd B)b2i(BIN—(B) |(4) For a large but finiteN, the position of theA(E) zeros
control also the damping of the tunneling phenomenon
with \ . (E) and\ _(E), the twoM (E)M,(E) eigenvalues. through a finite chainFig. 2). However, in theA(E)>0

For large but finiteN and becausa _(E)=\_(E) %2° energy intervals, what happens for a firliteas a function of
the exponential behavior in E¢l) for the tunneling regime the intrinsic cell structure surprisingly was not studied in the

is recovered using Ed4): past. Therefore, answering the question about the minimum
possible value ofy(E) in Eqg. (1) demands from Eq€5) and
TN(E)=To(E)e™ 2N MBI, (5)  (7) a careful study of the\(E) polynomial, outside the en-

ergy range normally of interest for band-structure calcula-
Compared to equivalent calculations for a series of potentidions (Fig. 2).
barriers and well$ the improvement in the demonstration of ~ Taking, for example, an odd number of statef\iand B
Eq. (1) presented here is that the Hamiltonidhgs andHg in ~ (m=2p—1), it is easy to show thal’[A(E)]=8p. In this
a cell can be more complex than the one of a potential wellcase,A(0) is the largest positive value af(E) inside the
For example, states with different symmetry can be includednergy interval containing all thg;’s A(E) roots. Therefore,
and the parameters controlling each stateAirand B are  the study ofy(E) can be restricted t& =0 because in this
accessible independently. casey(0)=In[A,(0)] and (0) is the largest damping factor
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inside this interval. From Ed7) and using the factorization = o %% st s et T
A(E)=II? ,(E—E;)(E+E;), one obtains G
XH+ (XH)2+16 l_(;);a a—0o - Ea o g ----- — 0o a—a ai‘"u—“;
y(0)=In 4 . €S)) 362
x=2|E;| is the width of the central band gap of the chain 15.5"_“_’_5_"""E"I‘;?_\’;f_"""_“_ﬁ_y_ﬂ«?

with |E,| the smallestA(E) root andI1=IIP, E; is the
product of all the other positive roots.

This exact expression does not depend on a specific form FIG. 3. Tight-binding skeleton of the three finite chains whose
of Hy andHg. It must be opposed to the standard approxi-y(0)— x charts are given in Fig. 4a) is a model for the (CH)
mations wherey(0) is found to depend only og.}®*?In Eq.  chain,(b) for the (SN)y, chain, both withd°[ A(E)]=4, and(c) a
(5), all the A(E) roots contribute to determine the damping model for thed°[ A(E)]=8 optimized chain. The, a’, 8, andy
factor. The consequence of E) is the difficulty, for a  parameters are the coupling matrix elements between the atomic
given , to lower IT independently ofy because the coeffi- levels used to model the (Ciiand (SN) chains.a stands for the
cients of the polynomial A(E)=A(0)+a;E%+--- fi_rst ip_nization potential difference between S and N in an over
+a4p71E2(4pfl)+E8p are all dependent on the sarkky simplified model of (SN) (Ref. 24.
matrix elements. Obviously, the value of a giv&QE) root

cannot be fixed independently of the others. Due to this rifig. 4 together with they(0)=f(x) curves for (CH) and
gidity of the A(E) roots, equivalent to the eigenvalue repul- (SN)y,, Which are easily obtained analytically. These

fsiont.phenfominqi"ﬁ 'E[r;]ereo if a n:(i.n.imizati(l).%:)f;;(r?) AbyEa curves develop far from the forbidden region given by the
unction of x. Using the Ostrowski inequalityto the A(E) 4 (%) jower limit because this lower limit was obtained with

roots, we obtain after some calculations independenb andc parameters. With a tight-binding chain,

(33)

2 2pal b andc are obviously related imposing a constraint on the
A(O)ZX_ a,+ \/a’— 21 ) (9) A(E) roots. To attenuate this constrain and reach the
2p X d°[A(E)]=4 forbidden region in Fig. 4, we have con-

However, from Eq.(7), A, (0) is only a function ofA(0). structed a new fami!y of tight-.binding chains. This is a
Therefore,y(0) is bounded from below by a function of ~ d°[A(E)]=8 chain wittm=1 [Fig. 3(c)]. A complete ex-
This is the result obtained, showing that for a giveit will ploration of its control parameter space was possible because
be difficult to reach ay(0) close to zero since eaghvalue its A(E) roots can still be obtained analytically. This opti-
imposes a limitation on the minimum reachable dampingmization leads to a specific repartition of the tight-binding
factor. This originates from the Hamiltonian eigenvalue re-coupling over the unit cell of the chain with/y=0.1 and
pulsion phenomenon. However, as shown below for a fews/5=1.0. As presented in Fig. 4, for a givep ¥(0) is
examples, the best known molecular wires are far from thislways much smaller in this case than for a (GH)r a
limit.** Therefore, the lower limit can be the pivot for a (SN)y,, chain. This is a verification thag is not the only
better optimization of the wire structure to reach a very smalparameter controlling the damping. An interesting aspect of

%0).

IV. ANALYTICAL EXAMPLES

The simplest chain structure withy#0 is of the
d°[A(E)]=4 type because witd°[A(E)]=2 there is only
one electronic band with no gap. Two generic chains with
d°[A(E)]=4 are known: the polyene (CH)and the
poly(sulfonitride (SN), (Ref. 24 whose simple tight-
binding representation is recalled in Fig. 3. In this represen-
tation, the polynomials can be calculated analytically with
A(E)=y ?E*—2E%y Yy+y H+(y—y H)? for (CH)y
andA(E)=E(E—a)(E?2—Ea—4) for (SN)y,;. The dimer-
ization coupling ratio is/=a'/« for (CH)y (Ref. 11 anda
is the first ionization potential difference between S and N in
this oversimplified model of (SN, (Ref. 24 with, respec-
tively, y=2(a’—a) for (CH)y and y=a for (SN)y.
These polynomlals are of t_he form(X)_=X4—2b_X2+c FIG. 4. Variation of ¢(0) as a function of the gap for the
and their roots can be obtained analytically. This leads thH)N, (SN)yj,, andd°[A(E)]=8 chains given in Fig. 3. The
A+ (0)=x"/64+ \x*/64+1, which is a better lower limit forbidden region of they(0)—y chart is obtained by the
than Eq.(9) because it is restricted to a specil A(E)]  d°[A(E)]=4 dedicated minoration. Th#’[A(E)]=8 curve is ob-
=4 family of tight-binding chains. tained by selecting the besk(0) for a given x with y

The lower limit of (0) as a function ofy defines a for- =v2(A— AZ—4B?)12 A=a?+ B2+ 2+ 52, B=(5B—ay), and
bidden region on they(0)— y chart. This is presented in then\(0)=g8d/ay.

1(0)
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the strategy to increasi®[ A(E)] for a bettery(0) is that the
optimized y(0)=f(x) curve for d°[A(E)]=8 penetrates
the d°[A(E)]=4 forbidden region on they(0)— x chart.

MINIMAL ATTENUATION FOR TUNNELING THROUGH A . ..

1823

ing is controlled by the complete electronic band structure of
the chain. Our demonstration was restricted to a particular
energy value but can be generalized easily to all gap intervals

This means that by a better architecture of each part of thef an electronic band structure. Families of tight-binding

unit cell of the finite chain,¥(0) is controllable. The diffi-
culty is to translate in a chemical formula the optimized
tight-binding skeleton.

V. CONCLUSION

chains have been presented, showing very different damping
factors for the same gap. It remains that the gap width is
quite influential because it fixes the minimum accessible
damping. But this lower limit is still far away from the
damping factor of known molecular wires. This opens the
way to design molecular wires that will transport current in a

The damping factor of the transmission coefficient in thetunneling regime in the long range.
tunneling regime is often related only to the electronic gap We would like to thank the ESPRIT IV Nanowires project

width of the chain. We have demonstrated how this damp

for financial support during this work.
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