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Minimal attenuation for tunneling through a molecular wire

M. Magoga and C. Joachim
CEMES, Centre National de la Recherche Scientifique, 29 Rue J. Marvig Boıˆte Postale 4347, 31055 Toulouse Cedex, France

~Received 4 August 1997!

The electronic transmission coefficient through a finite-length molecular wire decreases exponentially when
its length increases for energy chosen in its gap. It is demonstrated that the damping factor in the exponential
depends on the full wire electronic structure and not only on the gap width as obtained from a WKB calculation
of this factor. The gap remains in controlling the minimum of the damping factor. However, this minimum is
far from being reached on known molecular wires. An optimization procedure is proposed to define molecular
wires with a very small damping in the tunneling regime.@S0163-1829~98!10403-4#
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I. INTRODUCTION

Through a finite series ofN cells, each made of a trans
parent part and a less transparent one, waves propagate
a transmission coefficientTN(E) equal to unity for discrete
resonant energies~frequencies!.1 Elsewhere, TN(E) de-
creases whenN increases, following the exponential law1,2

TN~E!5T0~E!e22g~E!N. ~1!

g(E) is a damping factor characteristic of the interferenc
of the propagating wave between successive scattering o
cells. Away from the resonances, in the evanescent regim
question is whetherg(E) is bounded from below preventin
the propagation to persist through a large-N series of cell.
This applies to a variety of problems since this question
obviously related to the phenomenon of band-structure
mation whenN increases.1 This is the case in micro-optic
with the search for photonic band-gap systems3 and for lay-
ered materials to reach a largeg(E) with a minimum layer
thickness.4 Another case, the background of this paper, is
exponential decrease of the elastic conductance of ato5

and molecular wires6,7 in the low-bias voltage regime wher
their current-voltage characteristic is linear.8,9 In the elastic
tunnel regime, the conductance of a metal-molecule-m
junction reflects the transparency of the molecule to the e
trons coming from the electrodes.6 This takes into accoun
the possible dephasing between intramolecular tun
channels,6 but not inelastic effects such as vibrational co
pling. In this regime and forE belonging to a given elec
tronic gap,g(E) is often considered to depend only on t
gap width.10 This is supported by tight-binding calculation
on specific systems11 and by the WKB approximationg(E)
}x21 ~Ref. 12! or g(E)}Ax in another approximation.10

With respect to Eq.~1!, an energy gap of widthx is, as usual,
the energy range between two energy bands whereTN(E)
50 when the wire length goes to infinity. Notice that lon
range electron transfer through a molecule also shows a c
acteristic exponential decay of its transfer rate as a func
of the molecule length.13–15Much work has been devoted t
controlling this decay.16 However, in a through-bond elec
tron transfer experiment the electron-transfer rate is rela
to the tunneling rate of an electron in a single-molecule c
ductance experiment and not directly to the elastic cond
570163-1829/98/57~3!/1820~4!/$15.00
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tance of a molecule. In the following we restrict ourselves
a single-molecule conductance experiment.

In this paper, the exact analytical expression forg(E) as a
function of x is obtained for tunneling through a tigh
binding chain considered as a model for finite-length m
lecular wires. Starting in Sec. II with a standard transf
matrix approach using a Lo¨wdin effective Hamiltonian
technique, we show in Sec. III thatg(E) is bounded from
below, i.e., for a given family of chains it is not possible
go below a damping limit in tunneling through those wires
is further shown in Sec. IV, through analytical examples, t
this limit is far from being reached on known chains.

II. EXPONENTIAL LAW

Let us consider an infinite chain made of two semi-infin
parts linked in series by a finite chain ofN identical cells,
different from the semi-infinite ones~Fig. 1!. Each cell is
made of two different partsA and B to get a finitex and
there arem states inA and in B. In a monoelectronic ap-
proximation, the Hamiltonian of the complete system is wr
ten

H5 (
n52`

n50

h~ ufn
L&^fn21

L u1ufn21
L &^fn

Lu!1HLC1(
i 51

2N

Ha~ i !

1Ha~ i !v i
1v i uv i&^v i u1Hv ia~ i 11!1HCR

1 (
n50

1`

h~ ufn
R&^fn11

R u1ufn11
R &^fn

Ru!. ~2!

For odd i , a( i )5A and v i5v1 ; for even i , a( i )5B and
v i5v2 . HLC and HCR are the coupling Hamiltonians be
tween the finite part and the semi-infinite part of the cha

FIG. 1. Tight-binding skeleton of the chain family considered
Eq. ~1!. Each cell of the finite-N chain is composed of two state
uv i& separated by more complexA and B parts withm states per
part. This chain is connected left and right through theLC andCR
cells to two semi-infinite chains representing the connection pa
Depending on theN parity, the last cell of the finite chain is~or not!
integrated in theCR or theLC cell.
1820 © 1998 The American Physical Society
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57 1821MINIMAL ATTENUATION FOR TUNNELING THROUGH A . . .
The exact matrix elements ofHa( i )v i
, Hv ia( i 11) , HLC ,

HCR , HA , andHB need not be specified for the demonst
tion presented here. The only hypothesis on the finite cha
that A and B in a cell are coupled to each other through
single uv i& state only~Fig. 1!. There are 2m12 states per
cell in the finite chain.

An effective, one state per site, chain is readily obtain
from Eq. ~2! by partitioning the state space of the chain in
two parts: one generated by theufn

L&, ufn
R&, and uv i& states

~projectorP! and the other generated by all the 2m3N states
of the A and B parts of the cells~projectorQ!. On theP
subspace, theH uf&5Euf& eigenvalue problem is equivalen
to the effective Lowdin eigenvalue problemHeffPuf&
5EPuf& with the effective Hamiltonian Heff5PHP
1PHQ(E2H)21QHP.17,18

Through a chain containing a single propagative chan
TN(E)5uF11(E)u22, with F(E) the transfer matrix.18 F(E)
is a nonunitary transformation of the spatial propaga
G(p,2p,E) defined from the left to the right part of th
chain through theN cells by19

Fcp11

cp
G5G~p,2p,E!F c2p

c2~p11!
G , ~3!

with

G~p,2p,E!5K~E!pA~E!@M1~E!M2~E!#NB~E!K~E!p

andci the coefficients of thePuf& decomposition on theP
subspace. The elementary propagatorK(E) is defined
through a unit cell of the semi-infinite parts,A(E) andB(E)
are the interface propagators from the semi-infinite to
finite parts of the chain, and@M1(E)M2(E)#N is the propa-
gator from one end to the other along the finite chain. T
Mi(E) matrices are easily constructed from theHeff matrix
elements. The transfer matrixF(E)5Ã(E)D(E)NB̃(E) is
obtained after a diagonalizationD(E) of the M1(E)M2(E)
matrix.20 The ãi j andb̃i j matrix elements ofÃ(E) andB̃(E)
accommodate thisM1(E)M2(E) diagonalization and the
A(E) and B(E) nonunitary transformation from the propa
gator to the transfer matrix. Therefore,TN(E) is given by

TN~E!5
1

uã11~E!b̃11~E!l1~E!N1ã12~E!b̃21~E!l2~E!Nu2
,

~4!

with l1(E) andl2(E), the twoM1(E)M2(E) eigenvalues.
For large but finiteN and becausel2(E)5l1(E)21,20

the exponential behavior in Eq.~1! for the tunneling regime
is recovered using Eq.~4!:

TN~E!5T0~E!e22N ln@ ul1~E!u#. ~5!

Compared to equivalent calculations for a series of poten
barriers and wells,1 the improvement in the demonstration
Eq. ~1! presented here is that the HamiltoniansHA andHB in
a cell can be more complex than the one of a potential w
For example, states with different symmetry can be includ
and the parameters controlling each state inA and B are
accessible independently.
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III. BOUNDING OF THE DAMPING FACTOR

A simple question is whether or not for a given cha
structurel1(E) can take any value. For example, in th
tunneling regime and far from the resonance, it would
interesting to get al1(E) as small as possible. The secul
equation giving thel6(E) roots in Eq. ~5! is simply the
standard second-order Kramers equation20

l~E!22Tr@M1~E!M2~E!#l~E!1det@M1~E!M2~E!#50.
~6!

Since by time-reversal invariance det@M1(E)M2(E)#51, the
two roots of Eq.~6! result in

l6~E!5
AD~E!146AD~E!

2
, ~7!

with D(E)5Tr@M1(E)M2(E)#224.
Obviously, for N going to infinity, the energy intervals

whereD(E)<0 correspond to the location of the electron
bands of the chain and the ones whereD(E).0 to the gaps
of this band structure.1,21 The zeros of theD(E) polynomial
provide the bandwidths and the band gaps of the struct
For a large but finiteN, the position of theD(E) zeros
control also the damping of the tunneling phenomen
through a finite chain~Fig. 2!. However, in theD(E).0
energy intervals, what happens for a finiteN as a function of
the intrinsic cell structure surprisingly was not studied in t
past. Therefore, answering the question about the minim
possible value ofg(E) in Eq. ~1! demands from Eqs.~5! and
~7! a careful study of theD(E) polynomial, outside the en
ergy range normally of interest for band-structure calcu
tions ~Fig. 2!.

Taking, for example, an odd number of states inA andB
(m52p21), it is easy to show thatdo@D(E)#58p. In this
case,D~0! is the largest positive value ofD(E) inside the
energy interval containing all theEi ’s D(E) roots. Therefore,
the study ofg(E) can be restricted toE50 because in this
caseg(0)5 ln@l1(0)# andg~0! is the largest damping facto

FIG. 2. Examples of the polynomialD(E) calculated for the
do@D(E)#54 chain in Fig. 3~a! ~---! and is thedo@D(E)#58 chain
in Fig. 3~c! ~—!. The parameters chosen area8/a50.6, a/g
50.1, b/d51.0, andb/a53.31, respectively. -.-.- is also for th
do@D(E)#58 chain in Fig. 3~c!, but with the nonoptimized param
etersa/g50.91,b/d50.93, andb/a51.5.
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1822 57M. MAGOGA AND C. JOACHIM
inside this interval. From Eq.~7! and using the factorization
D(E)5P i 51

4p (E2Ei)(E1Ei), one obtains

g~0!5 lnS xP1A~xP!2116

4 D . ~8!

x52uE1u is the width of the central band gap of the cha
with uE1u the smallestD(E) root and )5) i 52

4p Ei is the
product of all the other positive roots.

This exact expression does not depend on a specific f
of HA andHB . It must be opposed to the standard appro
mations whereg~0! is found to depend only onx.10,12 In Eq.
~5!, all the D(E) roots contribute to determine the dampin
factor. The consequence of Eq.~8! is the difficulty, for a
given x, to lower P independently ofx because the coeffi
cients of the polynomial D(E)5D(0)1a1E21•••
1a4p21E2(4p21)1E8p are all dependent on the sameHeff
matrix elements. Obviously, the value of a givenD(E) root
cannot be fixed independently of the others. Due to this
gidity of the D(E) roots, equivalent to the eigenvalue repu
sion phenomenon,22 there is a minimization ofg~0! by a
function of x. Using the Ostrowski inequality23 to theD(E)
roots, we obtain after some calculations

D~0!>
x2

2p
S a21Aa2

22
2pa1

2

x2 D . ~9!

However, from Eq.~7!, l1(0) is only a function ofD~0!.
Therefore,g~0! is bounded from below by a function ofx.
This is the result obtained, showing that for a givenx it will
be difficult to reach ag~0! close to zero since eachx value
imposes a limitation on the minimum reachable damp
factor. This originates from the Hamiltonian eigenvalue
pulsion phenomenon. However, as shown below for a
examples, the best known molecular wires are far from
limit.11 Therefore, the lower limit can be the pivot for
better optimization of the wire structure to reach a very sm
g~0!.

IV. ANALYTICAL EXAMPLES

The simplest chain structure withxÞ0 is of the
do@D(E)#54 type because withdo@D(E)#52 there is only
one electronic band with no gap. Two generic chains w
do@D(E)#54 are known: the polyene (CH)x and the
poly~sulfonitride! (SN)x ~Ref. 24! whose simple tight-
binding representation is recalled in Fig. 3. In this repres
tation, the polynomials can be calculated analytically w
D(E)5y22E422E2y21(y1y21)1(y2y21)2 for (CH)N
andD(E)5E(E2ā)(E22Eā24) for (SN)N/2 . The dimer-
ization coupling ratio isy5a8/a for (CH)N ~Ref. 11! andā
is the first ionization potential difference between S and N
this oversimplified model of (SN)N/2 ~Ref. 24! with, respec-
tively, x52(a82a) for (CH)N and x5ā for (SN)N/2 .
These polynomials are of the formD(X)5X422bX21c
and their roots can be obtained analytically. This leads
l1(0)>Ax4/641Ax4/6411, which is a better lower limit
than Eq.~9! because it is restricted to a specificdo@D(E)#
54 family of tight-binding chains.

The lower limit of g~0! as a function ofx defines a for-
bidden region on theg(0)2x chart. This is presented in
m
-
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g
-
w
is

ll

h

-

n

o

Fig. 4 together with theg(0)5 f (x) curves for (CH)N and
(SN)N/2 , which are easily obtained analytically. The
curves develop far from the forbidden region given by t
D(X) lower limit because this lower limit was obtained wit
independentb andc parameters. With a tight-binding chain
b and c are obviously related imposing a constraint on t
D(E) roots. To attenuate this constrain and reach
do@D(E)#54 forbidden region in Fig. 4, we have con
structed a new family of tight-binding chains. This is
do@D(E)#58 chain withm51 @Fig. 3~c!#. A complete ex-
ploration of its control parameter space was possible beca
its D(E) roots can still be obtained analytically. This opt
mization leads to a specific repartition of the tight-bindi
coupling over the unit cell of the chain witha/g50.1 and
b/d51.0. As presented in Fig. 4, for a givenx, g~0! is
always much smaller in this case than for a (CH)N or a
(SN)N/2 chain. This is a verification thatx is not the only
parameter controlling the damping. An interesting aspec

FIG. 3. Tight-binding skeleton of the three finite chains who
g(0)2x charts are given in Fig. 4.~a! is a model for the (CH)N
chain,~b! for the (SN)N/2 chain, both withdo@D(E)#54, and~c! a
model for thedo@D(E)#58 optimized chain. Thea, a8, b, andg
parameters are the coupling matrix elements between the at
levels used to model the (CH)x and (SN)x chains.ā stands for the
first ionization potential difference between S and N in an o
simplified model of (SN)x ~Ref. 24!.

FIG. 4. Variation ofg~0! as a function of the gapx for the
(CH)N , (SN)N/2 , and do@D(E)#58 chains given in Fig. 3. The
forbidden region of theg(0)2x chart is obtained by the
do@D(E)#54 dedicated minoration. Thedo@D(E)#58 curve is ob-
tained by selecting the bestl~0! for a given x with x
5&(A2AA224B2)1/2, A5a21b21g21d2, B5(db2ag), and
thenl(0)5bd/ag.



th

ed

he
a
p

of
lar

vals
ng
ping

is
ble

he
a

ct

57 1823MINIMAL ATTENUATION FOR TUNNELING THROUGH A . . .
the strategy to increasedo@D(E)# for a betterg~0! is that the
optimized g(0)5 f (x) curve for do@D(E)#58 penetrates
the do@D(E)#54 forbidden region on theg(0)2x chart.
This means that by a better architecture of each part of
unit cell of the finite chain,g~0! is controllable. The diffi-
culty is to translate in a chemical formula the optimiz
tight-binding skeleton.

V. CONCLUSION

The damping factor of the transmission coefficient in t
tunneling regime is often related only to the electronic g
width of the chain. We have demonstrated how this dam
i-

ys

ys

ia
e

p
-

ing is controlled by the complete electronic band structure
the chain. Our demonstration was restricted to a particu
energy value but can be generalized easily to all gap inter
of an electronic band structure. Families of tight-bindi
chains have been presented, showing very different dam
factors for the same gap. It remains that the gap width
quite influential because it fixes the minimum accessi
damping. But this lower limit is still far away from the
damping factor of known molecular wires. This opens t
way to design molecular wires that will transport current in
tunneling regime in the long range.

We would like to thank the ESPRIT IV Nanowires proje
for financial support during this work.
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