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The localization-delocalization transition occurring in the quantum Hall effect is studied for noninteracting,
spinless electrons subject to a disordered long-range potential. Within the Chalker-Coddington network we
compute the localization length at various energies and for a wide distribution of disorder stréhges
scaling analysis with respect to the system size and the disorder reveals a crossover from quantum-mechanical
to classical behavior that can be studied by means of a length &¢&l®) which is “irrelevant” in the usual
field-theoretical sense. We show that pronounced classical structures arise at parametéi\auvesler of
magnitude below the classical limit. They are stabilized by interference effects and give gsecWw*3,
whereas for the localization length we still figde) o e” with v%% in the entire investigated scaling regime.

By relating our observations to recent results on the dynamical conductivity, we propose that the irrelevant
scale actually leads to a “long-time tail” of,(w) in long-range potential§S0163-18208)00303-9

[. INTRODUCTION ture, and related the classical percolation expongnand
the full quantum-mechanical exponen, for the localiza-
It is a common belief now that the integer quantum Halltion length®®
effect can be understood in terms of the localization An electronic trajectory with extensianat energye from
scenarid-® The states at all energies except but one in théhe band center crosses a numhge)=r/&,(e) of “essen-
center of a disorder broadened Landau level are localized. Aal” saddle points. Since the transfer probability along the
localization-delocalization transition takes place when theclassical trajectory from one saddle point to the next equals
Fermi energy sweeping through a Landau band crosses it{ity, the corresponding probability amplitude for the trajec-
center. tory is dominated by the overlap of the wave function near
In the case of noninteracting electrons, there have beef® saddle 'pointsz: ekpn(e)(d//)?]. Assuming a parabolic
several attempts to clarify how the localization of the two-aPProximation d®xe, one immediately —arives —at
dimensional electronic states is destroyed by applying strongam= pT 1= 3. This result is in perfect agreement with nu-
magnetic fields. The most intuitive approach is possibldnerical calculations and experimets.

when the potential correlation lengthexceeds the magnetic for-e]—hsirne a;(? atnLeiiF t;\f[?l (;Ir ucial aiisrl],lmp;ﬂonf ggdﬁrzlym? tge
length/ considerably’. In this case the electron “feels” an going argument. ctly speaking, the tunneiing pro

g . ; bility is proportional to the overlap of the wave function
electric field which can be considered as locally constant. lgnly if it is sufficiently small. Furthermore, it is implied that

moves on equipotential lines, i.e., on contoM§)=e. In  objects with an extensiorg, couple weakly essentially
the tails of the Landau band, the electronic states are locathrough a single saddle point. If the energy is in the vicinity
ized as the corresponding electronic trajectories are closeds the band center, both approximations become question-
When the Fermi energy approaches the center of a band thgle.
electronic orbits are still closed, but they become larger and In the first part of our paper, following the ideas of Milni-
eventually extended at criticality. The correlation length  kov and Sokolov, we incorporate tunneling in a random walk
x|e— €| ~*r diverges, and the critical exponent known from model for the classical trajectories suggested by Wysokinski,
analogy to percolation theory ispzfs‘,. Semiclassical quan- Evers, and Brenig. We study numerically how the mean ex-
tization restricts the number of allowed electronic trajecto-tension of the paths varies with energy. We find that even
ries, as the flux penetrating the area between two adjacestnall tunneling probabilities destroy the localized character
closed orbits has to be a multiple of the flux quantum. of the classical paths in a broad range of energies near the

It is only near “essential” saddle points where this semi- band center. In particular, we have been unable to observe a
classical picture breaks down because tunneling couples atransition region exhibiting exponentially localized states
jacent trajectories and induces a percolation network. Howwith a corresponding exponent= 3, as predicted by the ar-
ever, as the tunneling probability is proportional to thegument given above. This type of percolation picture does
overlap of the wave function ekp(d/i/)?], in the limit  not capture the relevant aspects of the localization physics in
/1d—0, tunneling becomes impossible, and the semiclassithe quantum Hall effect.
cal model is valid. In the considerations leading to= % interference effects

A controversial argument by Milnikov and Sokolov incor- are unimportant. However, Chalker and Coddin§simowed
porated the effect of tunneling at saddle points into this picthat taking random phases into account one can reproduce
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vgm=2.5+0.5 even with all saddle points at the same en-
ergy. In their network model the critical behavior is due to
phase fluctuatiodsbrought about by the spatial disorder in
the position of the saddle points rather than by their fluctua-
tions in energy. The latter constitute an irrelevant perturba-
tion for the critical behaviof. The classical limit is attained
only for an infinite magnitude of the potential fluctuations.
Lee, Wang, and Kivelsdrused generalizations of the net-
work model of Ref. 6, including fluctuating tunneling prob-
abilities at the saddle points to study the crossover from
guantum to percolation-type behavior: One expects to find a
numerical value for the localization length exponentlose FIG. 1. Map of the lattice constituting the network. The arrange-
to 2.3 for weak potential fluctuations similar to the earlier ment of systematic phase shifts in modilg andM; explained in
result of Ref. 6. With increasing fluctuation strength, the re-Sec. Il B, is indicated for later reference.
gime of energies near the band center where one obtains this
quantum behavior should shrink, and for energies mucﬁ]Ode disorder drives the SyStem away from the critical pOint,
larger than the tunnel width of a typical saddle point, oneand is defined in Eq4). On the basis of a physical interpre-
should find a classical regime whereis close to?. tation of this scale, we propose that in the quantum limit
In this strict sense Lee, Wang, and Kivelson did not ob-W—0,
serve a crossover. In the particular network realization,
where they observe a quantum type of behavior, they found £ oc(
it at all energies within the entire range of the numerically "
accessible disorder strength. To see the classical exponenth in the classical limit/— oo
they enforced the classical limit by qualitatively changingW ereas, In the classical limy—,
the distribution function of the saddle-point energies: In the W
guantum case it is homogeneouq inW, W] and zero else- firroc(_
where, whereas in the classical case it consists of two delta A

. 10 . . .
functions, 5(e—W) and §(e+W).”™ This model exhibits are A is an energy scale denoting the tunnel width of a
only classical behavior, and no quantum behavior within the;; e point, and,, is the correlation dimensiochOur nu-

system sizes considered. merical data support this crossover scenario. Since the fre-
From our results of the random-walk model, we know thatg,ency dependence of the conductivity at criticality is not

classical trajectories are extremely unstable with respect tQnjyersal, we conclude that the observation of the classical

tunneling. We show, in Sec. Il of our paper, that localization|ong time tail in full quantum calculations should be related
in the network model depends crucially on interference, eveR, ihe crossover in the irrelevant scale.

if one observes the classical exponénWe do so by dem-
onstrating that, for given values of disorder strength and en-
ergy, the localization length can be finite or infinigmore
precisely, much larger than the analyzed system kides Only recently, a model was introduced which allows us to
pending on the rules for the phase shifts in the model. Weimulate the motion of classical particles under quantum Hall
conclude that interference effects suppress tunneling ajonditions in an efficient manner. This model is explained in
saddle points so efficiently that observables can expose clagetail elsewheré® so we restrict ourselves to a few basic
sical features likev= 42 even if the potential fluctuations are notions.
at least an order of magnitude below the true classical limit. \We model classical trajectories in a random potential by a
This result is of particular interest, as in recent Work  |attice model. The nodes correspond to the saddle points,
on the dynamical conductivity in the quantum Hall effect thewhereas the links represent the classical paths. The energy
classical long-time tail anomalyhas been found in two dif- distribution of the nodes is taken to be homogeneous in the
ferent quantum calculations. Classical physics alone canngtterval [ —W,W]. As indicated in Fig. 1, we attach arrows
explain this result because the conductivity calculations have the links, taking the chiral nature of the trajectories into
been done in a physical model potential with a homogenousccount.
energy distribution function with finite width and a potential An ant, traveling on the lattice, carries an eneegyVhen
small correlation lengthl=2/". arriving at a saddle point, it first measures its enevgy.
In Sec. Ill of our paper, we suggest a solution for thisThen it calculates the “tunneling probability” according to
problem and reexamine the crossover from classical to quan-
tum percolation. We study the localization length using 1
Chalker and Coddington’s network model in the version of T(e)= m- @
Eastmond and Chalk¥rin the entire numerically accessible s
range for the disorder fluctuations up W=30. As Lee, It turns right(left) with probability T (1—T). For instance,
Wang, and Kivelson before, we failed to see the crossover iin the classical lattice model considered in Ref. I5js
the localization length directly. Since disorder turns out to beeither 0 or 1.
irrelevant for the critical behavior, it is natural to study its ~ The result forT, due to Fertig and Halperilf, is valid
effect on the leading irrelevant leng#, . It describes how only if the trajectories involved are extended, whereas typi-

W) e P2 1 35005
A v YinT 5 V_qm_' U9,

Vp 4
y Vp:§.

Il. A CLASSICAL LATTICE MODEL PLUS TUNNELING
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300 Il. CRITICAL BEHAVIOR AND INTERFERENCE
To analyze interference effects on the localization proper-
ties of wave functions, we attach random-phase factors to the
links of the lattice model. They account for the Aharonov-
Bohm factors connected with fluctuating spatial distances of
A 100 ) - ; -
= the saddle points. Doing so, we essentially end up with a
o network model first introduced by Chalker and Coddington
v and later generalized by Eastmond.
------- ] - The technical details are described in the literdtumed
AV e once again we restrict ourselves to a few remarks. To prop-
T erly account for tunneling at the saddle points, we character-
20 . . . ize the nodes by ® 2 transfer matrices,
3 4 5 6 7
10 10 1(t) 10 10 o1 0 \/1+e7ﬂ-7 _\/efﬂ-y ez 0
M_( 0 ei“’z) —\Je ™ \/1+e”7)( 0 ei‘*’4)’
FIG. 2. Mean-square displacement of ant tracks on lattices with 2
varying disorder strength#/. The ratioe/W=0.2 is fixed. Every
curve was obtained after averaging 1000 paths. where y=e—V,,. The corresponding tunneling probability

) o ) is compatible with Eq(1). The diagonal matrices are meant
cal equipotentials in a random potential are closed, so tha} incorporate the phase factors along the links between two

interference effects become significant. These are neglectefljes Disorder can be introduced into the model by choos-
in the current approach. F¢e|>vsp we recover the correct ing at random phases from the interj&l,27] and the en-

expression for the tunneling probability as used above. ergy of the saddle point, from [—W,W] as before. We
. sp ] .

derlvina th iclassical fulfilled. In the i .rﬁpply periodic boundary conditions and calculate the eigen-
erlying the semiclassical argument are fuliilled. In the limit, 5,05 o the transfer matrix on long cylinders of length

of large W, th? ant walks on clgssica_l paths, WhiCh ar€odes and widtiM nodes. The localization length is
coupled only via saddle points with a tiny tunneling prob-

ability T.

We calculate the mean-square deviation of the ant’s path
(RA(t)) at various energie. If exponential localization
holds true, one expec{®R?(t— o)) to have an upper bound- where vme denotes the eigenvalue of the transfer matrix
ary proportional to¢2(e). Indeed, taking the classical limit closest to 1. We takél=1.28x1(P. The result has to be
W— o0 with a typical ratioe/W=0.2 fixed, the mean-square extrapolated tiM — .
deviation attains a finite value. In Fig. 2 this limit is repre- A considerable amount of work has already been done on
sented by the lowest curve, which is basically independent athis modet**°for much smaller values of the disordat.*’
time. However, at huge but finite values of the disorderAll authors agree thatv,=2.3=0.1. Another universal
(R?(t)) does not saturate. number is the value\. of the renormalized localization

The existence of a finite minimal tunneling probability length
Tmin ON the lattice gives rise to a lower boundary of the
diffusion coefficientD ;= d’T,, whered denotes the lat- ém(e)
tice constant. Therefore, at finit/, we expect the ants to be Ale)= M
delocalized regardless of their energy. This, however, cannot . o
be the reason for the pronounced divergence(Ri(t)). at e=&c in the limit M—co. Whereas most authors agree
First, we note, thab ,,~e~", e.g., is practically zero. Sec- With the original result obtained by Eastmond,
ond, the mechanism under consideration would imply that
time scales withT ,;, so that in a double-logarithmic plot all A=1.21+0.01,
curves are more or less parallel, which obviously is not thq_ee, Wang, and Kivelson differ from this value by 10%.
case.

One gains some insight by realizing that along a classical
n-step trajectory ate<W, there are approximately/W
saddle points with a tunneling probability of order 1. So, in We display our results for the scaling function of the
general, a large classical orbit couples over many saddleenormalized localization lengti\(e) in systems with
points to other orbits, which gives rise to the strong thougharge disordefiV=30 in Fig. 3, with filled symbols. Because
subdiffusive divergence we observe. The small but finiteof rounding errors, we could not go to higher valued\flf
minimal tunneling probabilityT ,;, manifests itself in a small scaling worked well, all data should collapse onto a single
positive curvature in all data curves. curve. They tend to do so for the largest system sizes, which

In contrast, the semiclassical argument assumes tacitlgorrespond to the uppermost curves. For smaller systems, the
that there is one single saddle point yielding the dominantlata scale only in the high-energy tail, where the localization
contribution. Our result demonstrates that the concept “claslength is sufficiently small for finite-size effects to be negli-
sical percolation plus tunneling” fails to explain the local- gible. This leads to an estimate for the exponert2.3
ization scenario. shown in the inset. Our result is consistent with the conjec-

fMZW, (3

A. Network model with random-phase shifts
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FIG. 4. Renormalized localization length in modél,. Local-
. . o ) ization is indicated by the intersection of all curves in a single point.
FIG. 3. Scaling function of the localization length in systems of 11,o yatistical errors are considerably larger than the symbol size,

widthM =8, 16, 24, 32, 40, and 48 at very large disordér30in 54 can be read from the scattering of the data at zero energy.
a model with random, physicalM, , filled symbol$ and system-

atical, symmetrical K5, empty symbolsphase shifts. The lowest . . . .
4 ) ?
curve (circles denotes the smallest system size, the uppermos?f system sizes, while mod#l , does not? Figure 1 displays

curve (triangle down the largest system size. The statistical andthe arr.angement of the ph.ase shifts der_IOted by the m|nu§
numerical errors are not larger than the symbol size. Inset: Scalin§!dn$ in the transfer matrix on the lattice. One can easily
factor e, resulting from rescaling of the energy axis. The solid line convince oneself that a closed loop in modél always

is not a fit, but is meant for comparison. The logarithm has base 10c0mes with a phase factor ef1.
In contrast, in modeM, phase factors-=1 and 1 can

ture of other authors, stating that potential fluctuations giveoccur. Therefore, we believe that localization in molitl,

rise only to an irrelevant scaling fietd:®*° and also inM,, occurs because of suppression of tunneling
due to destructive interference. In other words, the tunnel
B. Network models with non-random-phase shifts splitting induced by the coupling of two closed classical or-

s can be greatly reduced because of phase effects.

(2) Is large disorder relevant in model,? To answer this
uestion we have repeated the procedure leading to Fig. 3
ith slightly smaller values for the disorder. The results are

depicted in Fig. 5. The curves are no longer linear, but have

a slope increasing with the system size. Since the slope de-

_ ” _ tbit
Introducing interference restored the critical properties o
the otherwise noncritical lattice model. Next we ask how
these properties change if we vary the rules for the phas

factors along the links.

Modifying the phase shifts is easily accomplished in the
network model, as in Ed2). It allows for different arrange-
ments of the systematic phase shifts such that one ends up

with the original Chalker-Coddington model when introduc- * W=10 <
ing phase disorder. We study two caséd (and M,) in O W=20
which all random-phase factors vanish=0. The remain- o0 W=25 S °
ing systematic phase shifts are organized as depicted in Fig. o W=27.5 x 7
118 A W=325 S

In Fig. 3 we confront the results of a scaling analysis of T - va713 /g// ]
the physical case af; chosen completely at random as dis- - |7 v= » ,/§/
cussed abovémodel M, , filled symbols; and modeMg, "= Agewé/
empty symbols The latter was analyzed by Lee in the limit w s
of small disorder® He found thatv=1, and that small dis- - o
order is an irrelevant perturbation at this fixed point. How- 7
ever, we are interested in the other limit of large disorder, ‘ /5'
and observe a similar value=2.3 in the numerically acces- o
sible intervall of system sizess8M <48 for both models.

We also calculated the renormalized localization length in ; X

. 10 100

model M . In contrast to the previous case of modiél, M

here we findno hint of localizationat all up to the system
sizeM =64, as can be seen in Fig. 4. FIG. 5. Similar data as depicted in the inset of Fig. 3 for model

At this point two questions deserve discussi@h): Why Mg, though now also for smaller values of the disorder parameter
do modelsM, and Mg exhibit localization in a certain range W. The broken lines are meant for orientation.
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FIG. 8. Renormalized localization length,(0)= &,,(0)/M for

FIG. 6. Data similar to Fig. 3. Here, however, the saddle-pointnine different disorder strengths. The statistical errors are smaller
energies are taken to be eitheW or W only (W=4.2). than the symbol size.

fines 1k, we expectr to decline to 1 in the thermodynamic splitting can eventually vanish. This is analytically verified
limit. Hence large disorder should also be irrelevant in modefor tractable model potentiafS.
1

Mq.2
The absence of localization in systeMs with an asym- IV. “IRRELEVANT LENGTH SCALE”
metric choice of phase shifts remains even in models exhib- AND CROSSOVER SCENARIO

iting the classical exponetwhen choosing the symmetric ] . o
versionsM; or M, . To see this, we have repeated the calcu- |f one compares the magnitudes of the disorder applied in
lations for the three modeld!,, Mg, andM, but using a the random-walk model, and the network model one arrives
different distribution function for the saddle-point energies.at the conclusion that the maximal disorder in the latter is at
Whereas previously we picked, at random from the inter- least an order of magnitude below the threshold to the clas-
val [ — W, W], we now choose itpto be-W or W only. Tak- sical limit, where tunneling is suppressed by potential fluc-
ing W as large as possible, we try to reduce the Coup“n(jfuations. Thus it seems unlikely to observe the crossover
between the classical paths. For moddlsandMy, scaling oM the quantum exponent 2.3 to the classical expofent
works reasonably wellFig. 6), and we obtain the classical diréctly within the given framework. _
value v= % for the localization length exponent. Once again . On the other hand, we have seen that potential fluctua-
the modelM, with the asymmetric systematic phase shifts!ioNS have a strong impact on the finite-size scaling proper-
does not show any sign of localization within the analyzed!i€S- When tumning on the disorder, one has to go to larger
system sizegFig. 7). Thus it is suggested that the tunnel system sizes to see the scaling behavior. Thus it seems natu-
ral to study how much the system size needs to be increased.

55 At the critical point (= €;), one expects the localization

' ' length to obey a scaling law
=MA(gMY1,g,M Y2, ).
50 | Aﬁ‘ﬁggA i ém(ec) (91 92 )
Ao . 4 Here,g,,0, . . . denote the coupling constants to the leading
) 2 = a irrelevant scaling fields, ang,,y, ... the corresponding
1.5 } O o % . scaling indices. As a definition of the leading irrelevant
@ 500000, D%A length scale we choose
= © o, mo
<10} o & ] £ =2(W) i, @
° § The ratio of this scale to the system sigé ¢, is a measure
©M=8 of how well finite-size scaling works. It defines an effective
0.5 | oM=16 g ) system size.
> M=32 8 Next we perform a finite-size analysis of our data dis-
A M=64 . ) ¥ played in Fig. 8. To this end we expand the scaling function
0-0_2 0 1.0 0.0 1.0 and keep only the leading finite-size correction
€ An(€)=Ac—gy(W)M Vir, (5

FIG. 7. Data similar to Fig. 4. However, the saddle-point ener-In principle, one could continue by fitting all data simulta-
gies are taken to be W or W only (W=4.2). neously according to this expression. It turns out, though,
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FIG. 9. Data from Fig. 8 after subtracting,=1.225 and then FIG. 10. Coupling constam, (W) to the leading irrelevant scal-

multiplying by MY with y,,=0.34. The inset shows the result for ing operator as obtained from Fig. 8. We have depicted results for
disorderW> 10. g; when choosing\ .=1.21(1.225 andy;,=0.38(0.34) for com-

parison. The empty symbols fov>10 give as an upper limg, as

. . o . estimated from a system si2d =64. This procedure leads to an
that given our system sizes the contribution of the h|gher-UIOper bound for the exponent In order to obtain a somewhat

order terms is important for disord®v>5. It is more reli-  jmproved estimate, we have extrapolated our data. The full symbols
able to assume a value far;, subtract this number from the genote the estimated result using a simple extrapolation scheme: we

scaling function, and multiply the difference wit¥i. The  have assumed that the data in the intervak¥@<30 drop by the

result of this procedure is shown in Fig. 9. We estimatesame fraction from their maximum value whish—o. The dashed

A=1.22+0.01 andy;,=0.35+0.05, in agreement with and solid lines are given for orientation.

Eastmond, who observed 120.02. The error bars iy,

andg; are mainly a consequence of the uncertaintj\in tions in e.. In the Appendix we propose a heuristic argu-
The scaling of the data withW<10 works reasonably ment, similar to the derivation of the Harris criteriGhthat

well. For larger disorder, however, our system sizes are togeads to the conjecture

small in order to extraag,. Without further extrapolation we

obtain only an upper limit fog,. Therefore we have ignored D, 1

these data when extracting, andyj, . Yir=— =5 —~0.350.05, (6)
Finally, Fig. 10 displays the outcome for the coupling am

constantg,(W). There are two different regim&¥—0 and  whijch is confirmed by our numerical finding®.,, denotes

W— characterized by power laws with different expo- the “correlation dimension” of the wave function known
nents. In what follows, we argue that these exponents can bgom the multifractal analysis.

related toy;, and vy,
2. W—o

1. W=0 In the large disorder limit, the slope gf(W) decreases

We consider the limit of vanishing disorder first. In our from 1 to 3, roughly. Therefore the exponent comes down
model, fluctuations in the energy of the saddle points ardrom 2.75+0.3 to values below 1.6.
equivalent to energy fluctuations along the trajectory. Thus In this limit, we expect the tunnel width at most saddle
the effect of the node disorder can be interpreted as a copoints to be very small due to interference, so that classical-
pling of the electron to an external spatially fluctuating field.like substructures can form. Their extension should be indi-
The coupling constant i8/. One expects the scaling function cated by¢,,, and is proportional to A/W)~*3, where A
A(W) to be linear inW in the limit W—0.2% Therefore, it  denotes the typical tunnel width of those saddle points which
seems plausible thaf, has an expansion actually provide the coupling of the classical substructures.
Therefore we propose’ =4/3. Klesse and Metzler observed
similar semiclassical structures in their version of the net-
work model® In particular, they recently confirmed our con-
_ _ _ jecture for the exponent’ 24
whereW,i=W,+ W defines an effective node disorder. We | our final numerical experiment, we report on another
estimateW,=1.0+1.0 and¢;=0.08+0.05 from our nu-  check of our interpretation of;, as an effective underlying
merical data. , unit of length. The extension of electronic states sufficiently

With the definition&;,,<Wgg;, we can identifyy’ = 1/y;,, . far in the tails of a Landau band is small, so that the corre-
On the other hand, on physical grounds it seems plausiblsponding localization length does not depend on the sample
that the irrelevant length arises from small spatial fluctuasize. Scaling, however, is still valid, so that

g1(W)=c1(Wo+ W)+ O(W?).
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0.10 T wider range olW. However, the result is confirmed for three
e=10° o different energies. The deviation from the expected value
® O v'=3=1.33 is due to the fact that our energies are still not
\§=15® o large enough to totally exclude finite-size effects.
‘\\ EIJ o Finally we relate our results to other recent experimental
— };\ ® . and numerical observations. Kratzer and BréhiGgammel
< £=20" 3. EH < and Brenigt? and the present authdfs computed the
w %\ ﬂ] ﬁ © frequency-dependent conductivity under quantum Hall con-
up Er+\ + ditions using various different approaches. They found that
< & W.=30 ‘qg\ o.(w) in short-range potentialg’/d>1 has conventional
0.01 - W°_25 +i&\ + Drude-like features at wave vectgr=0. Disregarding this
v - . trivial decay, it seems fair to say that at frequencies in the
o W=20 ~ scaling regimea,, is constant. In long-range potentials,
————— A=0.51/M NS however, one observes a long-time tail anomaly:
10 100 2
Oyx=5 — Consiw|. (9)
MYW/YWO 2h fol

FIG. 11. Renormalized localization length for energies deep in Assuming that ””'Vefsa'”Y for the COhdUCthl_ty holds, the
the insulator. The localization length is almost independem afs ~ requency dependence of,, in the scaling regime should
Aw=1M. Its dependence on the disorder can be eliminated by?0t hinge on the microscopic details of the underlying ran-
appropriate rescaling of thé axis. The data have been shifted on dom potential liked or W. Also, for long-range potentials we

the curve corresponding #/,= 30. expect the leading behavior to bg,(w)>*w® in the scaling
regime?® We consider particular features of the frequency
£(e, W) behavior, namely, the long-time tails, as due to corrections to
Ap(e,W)= TY(W)' (7) scaling. Hence we are led to the conclusion that the under-

lying classical substructure of the wave function, although in

Here, per definitionA, is proportional to M for energies & fiel_d—theoretical sense irrelevant at the. critical point, might
characterizing states localized within the sample and als§ominate the dynamical response functions, and can be ob-
Y(Wy)=1. Assuming that our interpretation makes senseS€rved experimentally. _
the least to expect is that(W) is proportional to&;,(W). Experimental results by Dolgopoloet al™ might cor-

In Fig. 11 we depictA,, for energies in the localized roborate our conglusmn: Th_ey measured the curre_nt-v_oltage
regime after rescaling th®l axis to extractY(W). The re- charact_enspcs n. .the. vicinity of ~ the _Iocallzatlon—
sults are given in Fig. 12. We find deIocallgqnon transition in a temperature regime w_here the

conductivity shows activated behavior. When analyzing their
data, they introduced a length sc&lée) as the ratio of the
activation energy and the critical electric field where thé

Due to rounding errors it is difficult to go to higher values of characteristics - becomes nonlinear. They observed

W which would be desirable to obtain more data points in a*|e— e[ ", with v~1, and interpreted their result in terms
of a classical percolation picture. Certainly, at zero tempera-

|26

Y(W)eeW”',  »'=1.2+0.1. (8)

0.05 . . . : ture this interpretation breaks down, since tunneling is the
W =30 only conduction mechanism, and phase coherence can no
0 longer be neglected. Nevertheless, their example might dem-
0.00 P 1 onstrate that experiments can show certain features that
i might find a proper interpretation in the classical percolation
-0.05 }F y ] framework.
= i
d
% 010 | /@" ] V. SUMMARY
5 ,/’ First we concluded that the semiclassical argument as
2 o015t e o 6220 i given by Milnikov and Sokolov does not provide a possible
e &= mechanism, leading to the divergence of the localization
/. e=15 length with an exponeng in the quantum Hall effect. By
-0.20 i/ ©e=10 1 means of an appropriate numerical simulation, we explicitly
“““ YW, vi=1.2 £0.1 demonstrated that taking its basic idea literally, namely, cou-
-0.25 : L L L pling of classical orbits at saddle points via tunneling and
-020 -0.15 -0.10 -0.05 000 0.05 neglecting interference, one destroys the only localization
log(W/W,) mechanism in the model and thus obtains no finite localiza-
tion length.

FIG. 12. Scaling factolr (W) from Fig. 11 as explained in the Nevertheless, we also demonstrated that classical features
body of the text. exist in Chalker and Coddington’s network model at a disor-
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der strength an order of magnitude smaller than the values AgcocN_llz_
one would expect to be necessary from the model, ignorin

phase fluctuations. As a consequence, we were able to stu&g
acrossoverin the !rrelevant length .scale from the pure uarys, with the Harris criterion, one usually assumes that aver-
tum limit into a regime where classical substructures alread)éging occurs over the whole sample, so tNat L

exist. The crossover is characterized by a change in the ex- A second energy interval is definéd by '

ponent v’ in the power-law dependence of the irrelvant
length scale on the disorder strength. Our analytical argu- AegxL ™17,

m;r?itzsurg: tgﬁ;g&?ggv\cggjﬁ tﬁ‘;'ﬂa ggltr? I'mgfei;%?iit‘ clxr;enlt can be interpreted as the range of energies for which we
b ' 9 P éxpect electronic states extending throughout the sample if

Yir, Do, andv. W=0. The Harris criterion states that disorder is irrelevant,

Finally, we related our findings to the recently discovere if in the thermodynamic limit the ratio=A e, /A e,<1, or,

long-time tail anomaly in the frequency dependence of the .

. - . equivalently,
diagonal conductivity for strong, long-range disorder poten-
tials at zero wave number. We believe that this anomaly can, y=d/2—1/v>0.
in principle, be understood in purely classical terms, ano|

originates from the classical substructure of the wave func:

tions. We argued that this substructure, although yieldin ft I ing the disordsY t tore th lue for th
wrong exponents and » for the scaling behavior, neverthe- er eniargening the disor o restore he value for the
atio r. Hence we identifyy=y;,. Insertingd=2 and

less gives rise to the dominant frequency correction to th ) O .
staticgvalueaxxz e2/2h of the conducqtivity.y é1/_v~0.43, we arrive atyir,=0.57, which is _mcompanb!e

with our numerical findings 0.350.05. We interpret this
discrepancy as evidence that the assumptibrL? is, in
general, wrong.

During the course of this work one of the authdFsE) At least in the case of the integral quantum Hall effect, it
appreciated useful discussions with more colleagues than ca# known that wave function correlations exist only in a sub-
be listed here. Thus, while grateful to all of them, he men-spacelLP2 of the sample. In other words, amplitude fluctua-
tions only John Chalker, for sending of a copy J. F. G. Easttions of the wave function between different regions in space
mond’s thesis, and R. Klesse, and his closest collaborato®e almost always uncorrelated. Fluctuations in the saddle-
Dietrich Belitz, Berndt Gammel, Peter Kratzer, and Karol point energies modify the correlation properties of the wave
Wysokinski. He would particularly like to acknowledge the function only if they happen to occur in the subspace of the
warm hospitality of the University of Oregon during the final sample where long-range correlations exist. Therefore we
stage of this work. This work was supported by NSF undefropose a modified version of the Harris criterion in which

denotes the number of saddle points or, equivalently, the
ea of the subregion contributing to the average. In connec-

t seems reasonable to assume #hatW for smallW. Thus
he exponeny controls how the system size must be rescaled
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