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Semiclassical theory of the quantum Hall effect
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The localization-delocalization transition occurring in the quantum Hall effect is studied for noninteracting,
spinless electrons subject to a disordered long-range potential. Within the Chalker-Coddington network we
compute the localization length at various energies and for a wide distribution of disorder strengthsW. A
scaling analysis with respect to the system size and the disorder reveals a crossover from quantum-mechanical
to classical behavior that can be studied by means of a length scalej irr(W) which is ‘‘irrelevant’’ in the usual
field-theoretical sense. We show that pronounced classical structures arise at parameter valuesW an order of
magnitude below the classical limit. They are stabilized by interference effects and give rise toj irr}W4/3,
whereas for the localization length we still findj(e)}en with n' 7

3 in the entire investigated scaling regime.
By relating our observations to recent results on the dynamical conductivity, we propose that the irrelevant
scale actually leads to a ‘‘long-time tail’’ ofsxx(v) in long-range potentials.@S0163-1829~98!00303-8#
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I. INTRODUCTION

It is a common belief now that the integer quantum H
effect can be understood in terms of the localizat
scenario.1,2 The states at all energies except but one in
center of a disorder broadened Landau level are localize
localization-delocalization transition takes place when
Fermi energy sweeping through a Landau band crosse
center.

In the case of noninteracting electrons, there have b
several attempts to clarify how the localization of the tw
dimensional electronic states is destroyed by applying str
magnetic fields. The most intuitive approach is possi
when the potential correlation lengthd exceeds the magneti
length l considerably.3 In this case the electron ‘‘feels’’ an
electric field which can be considered as locally constan

moves on equipotential lines, i.e., on contoursV(rW)5e. In
the tails of the Landau band, the electronic states are lo
ized as the corresponding electronic trajectories are clo
When the Fermi energy approaches the center of a band
electronic orbits are still closed, but they become larger
eventually extended at criticality. The correlation lengthjp
}ue2ecu2np diverges, and the critical exponent known fro
analogy to percolation theory isnp5 4

3. Semiclassical quan
tization restricts the number of allowed electronic trajec
ries, as the flux penetrating the area between two adja
closed orbits has to be a multiple of the flux quantum.

It is only near ‘‘essential’’ saddle points where this sem
classical picture breaks down because tunneling couples
jacent trajectories and induces a percolation network. H
ever, as the tunneling probability is proportional to t
overlap of the wave function exp@2(d/l )2#, in the limit
l /d→0, tunneling becomes impossible, and the semicla
cal model is valid.

A controversial argument by Milnikov and Sokolov inco
porated the effect of tunneling at saddle points into this p
570163-1829/98/57~3!/1805~9!/$15.00
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ture, and related the classical percolation exponentnp and
the full quantum-mechanical exponentnqm for the localiza-
tion length.4,5

An electronic trajectory with extensionr at energye from
the band center crosses a numbern(e)5r /jp(e) of ‘‘essen-
tial’’ saddle points. Since the transfer probability along t
classical trajectory from one saddle point to the next equ
unity, the corresponding probability amplitude for the traje
tory is dominated by the overlap of the wave function ne
the saddle points: exp@2n(e)(d/l )2#. Assuming a parabolic
approximation d2}e, one immediately arrives a
nqm5np115 7

3. This result is in perfect agreement with nu
merical calculations and experiments.1

There are at least two crucial assumptions underlying
foregoing argument: Strictly speaking, the tunneling pro
ability is proportional to the overlap of the wave functio
only if it is sufficiently small. Furthermore, it is implied tha
objects with an extensionjp couple weakly essentially
through a single saddle point. If the energy is in the vicin
of the band center, both approximations become quest
able.

In the first part of our paper, following the ideas of Miln
kov and Sokolov, we incorporate tunneling in a random w
model for the classical trajectories suggested by Wysokin
Evers, and Brenig. We study numerically how the mean
tension of the paths varies with energy. We find that ev
small tunneling probabilities destroy the localized charac
of the classical paths in a broad range of energies near
band center. In particular, we have been unable to obser
transition region exhibiting exponentially localized stat
with a corresponding exponentn5 7

3, as predicted by the ar
gument given above. This type of percolation picture do
not capture the relevant aspects of the localization physic
the quantum Hall effect.

In the considerations leading ton5 7
3 interference effects

are unimportant. However, Chalker and Coddington6 showed
that taking random phases into account one can reprod
1805 © 1998 The American Physical Society
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1806 57F. EVERS AND W. BRENIG
nqm52.560.5 even with all saddle points at the same e
ergy. In their network model the critical behavior is due
phase fluctuations7 brought about by the spatial disorder
the position of the saddle points rather than by their fluct
tions in energy. The latter constitute an irrelevant pertur
tion for the critical behavior.8 The classical limit is attained
only for an infinite magnitude of the potential fluctuations

Lee, Wang, and Kivelson9 used generalizations of the ne
work model of Ref. 6, including fluctuating tunneling pro
abilities at the saddle points to study the crossover fr
quantum to percolation-type behavior: One expects to fin
numerical value for the localization length exponentn close
to 2.3 for weak potential fluctuations similar to the earl
result of Ref. 6. With increasing fluctuation strength, the
gime of energies near the band center where one obtains
quantum behavior should shrink, and for energies m
larger than the tunnel width of a typical saddle point, o
should find a classical regime wheren is close to4

3.
In this strict sense Lee, Wang, and Kivelson did not o

serve a crossover. In the particular network realizati
where they observe a quantum type of behavior, they fo
it at all energies within the entire range of the numerica
accessible disorder strength. To see the classical expo
they enforced the classical limit by qualitatively changi
the distribution function of the saddle-point energies: In
quantum case it is homogeneous in@2W,W# and zero else-
where, whereas in the classical case it consists of two d
functions, d(e2W) and d(e1W).10 This model exhibits
only classical behavior, and no quantum behavior within
system sizes considered.

From our results of the random-walk model, we know th
classical trajectories are extremely unstable with respec
tunneling. We show, in Sec. II of our paper, that localizati
in the network model depends crucially on interference, e
if one observes the classical exponent4

3. We do so by dem-
onstrating that, for given values of disorder strength and
ergy, the localization length can be finite or infinite~more
precisely, much larger than the analyzed system sizes! de-
pending on the rules for the phase shifts in the model.
conclude that interference effects suppress tunneling
saddle points so efficiently that observables can expose
sical features liken5 4

3 even if the potential fluctuations ar
at least an order of magnitude below the true classical lim

This result is of particular interest, as in recent work11,12

on the dynamical conductivity in the quantum Hall effect t
classical long-time tail anomaly13 has been found in two dif-
ferent quantum calculations. Classical physics alone can
explain this result because the conductivity calculations h
been done in a physical model potential with a homogen
energy distribution function with finite width and a potenti
small correlation lengthd52l .

In Sec. III of our paper, we suggest a solution for th
problem and reexamine the crossover from classical to qu
tum percolation. We study the localization length usi
Chalker and Coddington’s network model in the version
Eastmond and Chalker14 in the entire numerically accessib
range for the disorder fluctuations up toW530. As Lee,
Wang, and Kivelson before, we failed to see the crossove
the localization length directly. Since disorder turns out to
irrelevant for the critical behavior, it is natural to study i
effect on the leading irrelevant lengthj irr . It describes how
-
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node disorder drives the system away from the critical po
and is defined in Eq.~4!. On the basis of a physical interpre
tation of this scale, we propose that in the quantum lim
W→0,

j irr}S W

D D 1/yirr

, yirr5
D2

2
2

1

nqm
50.3560.05,

whereas, in the classical limitW→`,

j irr}S W

D D np

, np5
4

3
.

Here D is an energy scale denoting the tunnel width of
saddle point, andD2 is the correlation dimension.1 Our nu-
merical data support this crossover scenario. Since the
quency dependence of the conductivity at criticality is n
universal, we conclude that the observation of the class
long-time tail in full quantum calculations should be relat
to the crossover in the irrelevant scale.

II. A CLASSICAL LATTICE MODEL PLUS TUNNELING

Only recently, a model was introduced which allows us
simulate the motion of classical particles under quantum H
conditions in an efficient manner. This model is explained
detail elsewhere,15 so we restrict ourselves to a few bas
notions.

We model classical trajectories in a random potential b
lattice model. The nodes correspond to the saddle po
whereas the links represent the classical paths. The en
distribution of the nodes is taken to be homogeneous in
interval @2W,W#. As indicated in Fig. 1, we attach arrow
to the links, taking the chiral nature of the trajectories in
account.

An ant, traveling on the lattice, carries an energye. When
arriving at a saddle point, it first measures its energyVsp.
Then it calculates the ‘‘tunneling probability’’ according to

T~e!5
1

11exp~e2Vsp!
. ~1!

It turns right ~left! with probability T (12T). For instance,
in the classical lattice model considered in Ref. 15,T is
either 0 or 1.

The result forT, due to Fertig and Halperin,16 is valid
only if the trajectories involved are extended, whereas ty

FIG. 1. Map of the lattice constituting the network. The arrang
ment of systematic phase shifts in modelsMa andMs explained in
Sec. III B, is indicated for later reference.
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57 1807SEMICLASSICAL THEORY OF THE QUANTUM HALL EFFECT
cal equipotentials in a random potential are closed, so
interference effects become significant. These are negle
in the current approach. Forueu.Vsp we recover the correc
expression for the tunneling probability as used above.

The model is constructed such that the presumptions
derlying the semiclassical argument are fulfilled. In the lim
of large W, the ant walks on classical paths, which a
coupled only via saddle points with a tiny tunneling pro
ability T.

We calculate the mean-square deviation of the ant’s p
^Re

2(t)& at various energiese. If exponential localization
holds true, one expects^Re

2(t→`)& to have an upper bound
ary proportional toj2(e). Indeed, taking the classical lim
W→` with a typical ratioe/W50.2 fixed, the mean-squar
deviation attains a finite value. In Fig. 2 this limit is repr
sented by the lowest curve, which is basically independen
time. However, at huge but finite values of the disord
^R2(t)& does not saturate.

The existence of a finite minimal tunneling probabili
Tmin on the lattice gives rise to a lower boundary of t
diffusion coefficientDmin5d2Tmin , whered denotes the lat-
tice constant. Therefore, at finiteW, we expect the ants to b
delocalized regardless of their energy. This, however, can
be the reason for the pronounced divergence of^R2(t)&.
First, we note, thatDmin'e2W, e.g., is practically zero. Sec
ond, the mechanism under consideration would imply t
time scales withTmin so that in a double-logarithmic plot a
curves are more or less parallel, which obviously is not
case.

One gains some insight by realizing that along a class
n-step trajectory ate!W, there are approximatelyn/W
saddle points with a tunneling probability of order 1. So,
general, a large classical orbit couples over many sad
points to other orbits, which gives rise to the strong thou
subdiffusive divergence we observe. The small but fin
minimal tunneling probabilityTmin manifests itself in a smal
positive curvature in all data curves.

In contrast, the semiclassical argument assumes ta
that there is one single saddle point yielding the domin
contribution. Our result demonstrates that the concept ‘‘c
sical percolation plus tunneling’’ fails to explain the loca
ization scenario.

FIG. 2. Mean-square displacement of ant tracks on lattices w
varying disorder strengthsW. The ratioe/W50.2 is fixed. Every
curve was obtained after averaging 1000 paths.
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III. CRITICAL BEHAVIOR AND INTERFERENCE

To analyze interference effects on the localization prop
ties of wave functions, we attach random-phase factors to
links of the lattice model. They account for the Aharono
Bohm factors connected with fluctuating spatial distances
the saddle points. Doing so, we essentially end up wit
network model first introduced by Chalker and Coddingt
and later generalized by Eastmond.

The technical details are described in the literature6 and
once again we restrict ourselves to a few remarks. To pr
erly account for tunneling at the saddle points, we charac
ize the nodes by 232 transfer matrices,

M5S eiw1 0

0 eiw2
D S A11e2pg 2Ae2pg

2Ae2pg A11e2pgD S eiw3 0

0 eiw4
D ,

~2!

whereg5e2Vsp. The corresponding tunneling probabilit
is compatible with Eq.~1!. The diagonal matrices are mea
to incorporate the phase factors along the links between
nodes. Disorder can be introduced into the model by cho
ing at random phases from the interval@0,2p# and the en-
ergy of the saddle pointVsp from @2W,W# as before. We
apply periodic boundary conditions and calculate the eig
values of the transfer matrix on long cylinders of lengthN
nodes and widthM nodes. The localization length is

jM5
1

4N ln~gM /2!
, ~3!

where gM /2 denotes the eigenvalue of the transfer mat
closest to 1. We takeN51.283106. The result has to be
extrapolated toM→`.

A considerable amount of work has already been done
this model6,14,9 for much smaller values of the disorderW.17

All authors agree thatnqm52.360.1. Another universal
number is the valueLc of the renormalized localization
length

L~e!5
jM~e!

M

at e5ec in the limit M→`. Whereas most authors agre
with the original result obtained by Eastmond,

Lc51.2160.01,

Lee, Wang, and Kivelson differ from this value by 10%.

A. Network model with random-phase shifts

We display our results for the scaling function of th
renormalized localization lengthLM(e) in systems with
large disorderW530 in Fig. 3, with filled symbols. Becaus
of rounding errors, we could not go to higher values ofW. If
scaling worked well, all data should collapse onto a sin
curve. They tend to do so for the largest system sizes, wh
correspond to the uppermost curves. For smaller systems
data scale only in the high-energy tail, where the localizat
length is sufficiently small for finite-size effects to be neg
gible. This leads to an estimate for the exponentn52.3
shown in the inset. Our result is consistent with the conj

th
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1808 57F. EVERS AND W. BRENIG
ture of other authors, stating that potential fluctuations g
rise only to an irrelevant scaling field.14,8,19

B. Network models with non-random-phase shifts

Introducing interference restored the critical properties
the otherwise noncritical lattice model. Next we ask ho
these properties change if we vary the rules for the ph
factors along the links.

Modifying the phase shifts is easily accomplished in t
network model, as in Eq.~2!. It allows for different arrange-
ments of the systematic phase shifts such that one end
with the original Chalker-Coddington model when introdu
ing phase disorder. We study two cases (Ms and Ma) in
which all random-phase factors vanish:w i50. The remain-
ing systematic phase shifts are organized as depicted in
1.18

In Fig. 3 we confront the results of a scaling analysis
the physical case ofw i chosen completely at random as d
cussed above~model Mr , filled symbols; and modelMs,
empty symbols!. The latter was analyzed by Lee in the lim
of small disorder.19 He found thatn51, and that small dis-
order is an irrelevant perturbation at this fixed point. Ho
ever, we are interested in the other limit of large disord
and observe a similar valuen'2.3 in the numerically acces
sible intervall of system sizes 8<M<48 for both models.

We also calculated the renormalized localization length
model Ma . In contrast to the previous case of modelMs,
here we findno hint of localization at all up to the system
sizeM564, as can be seen in Fig. 4.

At this point two questions deserve discussion:~1! Why
do modelsMr andMs exhibit localization in a certain rang

FIG. 3. Scaling function of the localization length in systems
width M58, 16, 24, 32, 40, and 48 at very large disorderW530 in
a model with random, physical (Mr , filled symbols! and system-
atical, symmetrical (Ms , empty symbols! phase shifts. The lowes
curve ~circles! denotes the smallest system size, the upperm
curve ~triangle down! the largest system size. The statistical a
numerical errors are not larger than the symbol size. Inset: Sca
factoreM resulting from rescaling of the energy axis. The solid li
is not a fit, but is meant for comparison. The logarithm has base
e

f

se
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f
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n

of system sizes, while modelMa does not? Figure 1 display
the arrangement of thep phase shifts denoted by the minu
signs in the transfer matrix on the lattice. One can ea
convince oneself that a closed loop in modelMs always
comes with a phase factor of21.

In contrast, in modelMa phase factors21 and 1 can
occur. Therefore, we believe that localization in modelMs,
and also inMr , occurs because of suppression of tunnel
due to destructive interference. In other words, the tun
splitting induced by the coupling of two closed classical o
bits can be greatly reduced because of phase effects.

~2! Is large disorder relevant in modelMs? To answer this
question we have repeated the procedure leading to Fi
with slightly smaller values for the disorder. The results a
depicted in Fig. 5. The curves are no longer linear, but h
a slope increasing with the system size. Since the slope

f

st

g

0.

FIG. 4. Renormalized localization length in modelMa . Local-
ization is indicated by the intersection of all curves in a single po
The statistical errors are considerably larger than the symbol s
and can be read from the scattering of the data at zero energy

FIG. 5. Similar data as depicted in the inset of Fig. 3 for mod
Ms , though now also for smaller values of the disorder parame
W. The broken lines are meant for orientation.
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57 1809SEMICLASSICAL THEORY OF THE QUANTUM HALL EFFECT
fines 1/n, we expectn to decline to 1 in the thermodynami
limit. Hence large disorder should also be irrelevant in mo
Ms.21

The absence of localization in systemsMa with an asym-
metric choice of phase shifts remains even in models ex
iting the classical exponent4

3 when choosing the symmetri
versionsMs or Mr . To see this, we have repeated the cal
lations for the three modelsMr , Ms, and Ma but using a
different distribution function for the saddle-point energie
Whereas previously we pickedVsp at random from the inter-
val @2W,W#, we now choose it to be2W or W only. Tak-
ing W as large as possible, we try to reduce the coupl
between the classical paths. For modelsMr andMs, scaling
works reasonably well~Fig. 6!, and we obtain the classica
valuen5 4

3 for the localization length exponent. Once aga
the modelMa with the asymmetric systematic phase shi
does not show any sign of localization within the analyz
system sizes~Fig. 7!. Thus it is suggested that the tunn

FIG. 6. Data similar to Fig. 3. Here, however, the saddle-po
energies are taken to be either2W or W only (W54.2).

FIG. 7. Data similar to Fig. 4. However, the saddle-point en
gies are taken to be2W or W only (W54.2).
l

b-

-

.

g

d

splitting can eventually vanish. This is analytically verifie
for tractable model potentials.20

IV. ‘‘IRRELEVANT LENGTH SCALE’’
AND CROSSOVER SCENARIO

If one compares the magnitudes of the disorder applie
the random-walk model, and the network model one arri
at the conclusion that the maximal disorder in the latter is
least an order of magnitude below the threshold to the c
sical limit, where tunneling is suppressed by potential flu
tuations. Thus it seems unlikely to observe the crosso
from the quantum exponent 2.3 to the classical expone4

3

directly within the given framework.
On the other hand, we have seen that potential fluct

tions have a strong impact on the finite-size scaling prop
ties. When turning on the disorder, one has to go to lar
system sizes to see the scaling behavior. Thus it seems n
ral to study how much the system size needs to be increa

At the critical point (e5ec), one expects the localizatio
length to obey a scaling law

jM~ec!5ML~g1M 2y1,g2M 2y2, . . . !.

Here,g1 ,g2 . . . denote the coupling constants to the lead
irrelevant scaling fields, andy1 ,y2 . . . the corresponding
scaling indices. As a definition of the leading irreleva
length scale we choose

j irr5g1~W!1/yirr. ~4!

The ratio of this scale to the system sizeM /j irr is a measure
of how well finite-size scaling works. It defines an effectiv
system size.

Next we perform a finite-size analysis of our data d
played in Fig. 8. To this end we expand the scaling funct
and keep only the leading finite-size correction

LM~ec!5Lc2g1~W!M 2yirr. ~5!

In principle, one could continue by fitting all data simult
neously according to this expression. It turns out, thou

t

-

FIG. 8. Renormalized localization lengthLM(0)5jM(0)/M for
nine different disorder strengthsW. The statistical errors are smalle
than the symbol size.
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1810 57F. EVERS AND W. BRENIG
that given our system sizes the contribution of the high
order terms is important for disorderW.5. It is more reli-
able to assume a value forLc , subtract this number from th
scaling function, and multiply the difference withM yirr. The
result of this procedure is shown in Fig. 9. We estim
Lc51.2260.01 and yirr50.3560.05, in agreement with
Eastmond, who observed 1.2160.02. The error bars inyirr
andg1 are mainly a consequence of the uncertainty inLc .

The scaling of the data withW,10 works reasonably
well. For larger disorder, however, our system sizes are
small in order to extractg1. Without further extrapolation we
obtain only an upper limit forg1. Therefore we have ignore
these data when extractingLc andyirr .

Finally, Fig. 10 displays the outcome for the couplin
constantg1(W). There are two different regimesW→0 and
W→` characterized by power laws with different exp
nents. In what follows, we argue that these exponents ca
related toyirr andnp .

1. W˜0

We consider the limit of vanishing disorder first. In o
model, fluctuations in the energy of the saddle points
equivalent to energy fluctuations along the trajectory. Th
the effect of the node disorder can be interpreted as a
pling of the electron to an external spatially fluctuating fie
The coupling constant isW. One expects the scaling functio
L(W) to be linear inW in the limit W→0.22 Therefore, it
seems plausible thatg1 has an expansion

g1~W!5c1~W01W!1O~W2!.

whereWeff5W01W defines an effective node disorder. W
estimateW051.061.0 and c150.0860.05 from our nu-
merical data.

With the definitionj irr}Weff
n8 , we can identifyn851/yirr .

On the other hand, on physical grounds it seems plaus
that the irrelevant length arises from small spatial fluct

FIG. 9. Data from Fig. 8 after subtractingLc51.225 and then
multiplying by M yirr with yirr50.34. The inset shows the result fo
disorderW.10.
r-

e

o

be

e
s
u-
.

le
-

tions in ec . In the Appendix we propose a heuristic arg
ment, similar to the derivation of the Harris criterion,23 that
leads to the conjecture

yirr5
D2

2
2

1

nqm
'0.3560.05, ~6!

which is confirmed by our numerical findings.D2 denotes
the ‘‘correlation dimension’’ of the wave function know
from the multifractal analysis.

2. W˜`

In the large disorder limit, the slope ofg1(W) decreases
from 1 to 1

2, roughly. Therefore the exponentn8 comes down
from 2.7560.3 to values below 1.6.

In this limit, we expect the tunnel width at most sadd
points to be very small due to interference, so that classi
like substructures can form. Their extension should be in
cated byj irr , and is proportional to (D/W)24/3, where D
denotes the typical tunnel width of those saddle points wh
actually provide the coupling of the classical substructur
Therefore we proposen854/3. Klesse and Metzler observe
similar semiclassical structures in their version of the n
work model.8 In particular, they recently confirmed our con
jecture for the exponentn8.24

In our final numerical experiment, we report on anoth
check of our interpretation ofj irr as an effective underlying
unit of length. The extension of electronic states sufficien
far in the tails of a Landau band is small, so that the cor
sponding localization length does not depend on the sam
size. Scaling, however, is still valid, so that

FIG. 10. Coupling constantg1(W) to the leading irrelevant scal
ing operator as obtained from Fig. 8. We have depicted results
g1 when choosingLc51.21 ~1.225! andyirr50.38 ~0.34! for com-
parison. The empty symbols forW.10 give as an upper limitg1 as
estimated from a system sizeM564. This procedure leads to a
upper bound for the exponentx. In order to obtain a somewha
improved estimate, we have extrapolated our data. The full sym
denote the estimated result using a simple extrapolation scheme
have assumed that the data in the interval 10<W<30 drop by the
same fraction from their maximum value whenM→`. The dashed
and solid lines are given for orientation.
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57 1811SEMICLASSICAL THEORY OF THE QUANTUM HALL EFFECT
LM~e,W!5
j~e,W0!

M
Y~W!. ~7!

Here, per definition,LM is proportional to 1/M for energies
characterizing states localized within the sample and a
Y(W0)51. Assuming that our interpretation makes sen
the least to expect is thatY(W) is proportional toj irr(W).

In Fig. 11 we depictLM for energies in the localized
regime after rescaling theM axis to extractY(W). The re-
sults are given in Fig. 12. We find

Y~W!}Wn8, n851.260.1. ~8!

Due to rounding errors it is difficult to go to higher values
W which would be desirable to obtain more data points i

FIG. 11. Renormalized localization length for energies deep
the insulator. The localization length is almost independent ofM as
LM}1/M . Its dependence on the disorder can be eliminated
appropriate rescaling of theM axis. The data have been shifted o
the curve corresponding toW0530.

FIG. 12. Scaling factorY(W) from Fig. 11 as explained in the
body of the text.
o
,

a

wider range ofW. However, the result is confirmed for thre
different energies. The deviation from the expected va

n85 4
3 51.33 is due to the fact that our energies are still n

large enough to totally exclude finite-size effects.
Finally we relate our results to other recent experimen

and numerical observations. Kratzer and Brenig,11 Gammel
and Brenig,12 and the present authors13 computed the
frequency-dependent conductivity under quantum Hall c
ditions using various different approaches. They found t
sxx(v) in short-range potentialsl /d@1 has conventiona
Drude-like features at wave vectorq50. Disregarding this
trivial decay, it seems fair to say that at frequencies in
scaling regimesxx is constant. In long-range potential
however, one observes a long-time tail anomaly:

sxx5
e2

2h
2constuvu. ~9!

Assuming that universality for the conductivity holds, th
frequency dependence ofsxx in the scaling regime should
not hinge on the microscopic details of the underlying ra
dom potential liked or W. Also, for long-range potentials we
expect the leading behavior to besxx(v)}v0 in the scaling
regime.25 We consider particular features of the frequen
behavior, namely, the long-time tails, as due to correction
scaling. Hence we are led to the conclusion that the und
lying classical substructure of the wave function, although
a field-theoretical sense irrelevant at the critical point, mig
dominate the dynamical response functions, and can be
served experimentally.

Experimental results by Dolgopolovet al.26 might cor-
roborate our conclusion: They measured the current-volt
characteristics in the vicinity of the localization
delocalization transition in a temperature regime where
conductivity shows activated behavior. When analyzing th
data, they introduced a length scaleL(e) as the ratio of the
activation energy and the critical electric field where theI -V
characteristics becomes nonlinear. They observedL
}ue2ecu2n, with n'1, and interpreted their result in term
of a classical percolation picture. Certainly, at zero tempe
ture this interpretation breaks down, since tunneling is
only conduction mechanism, and phase coherence can
longer be neglected. Nevertheless, their example might d
onstrate that experiments can show certain features
might find a proper interpretation in the classical percolat
framework.

V. SUMMARY

First we concluded that the semiclassical argument
given by Milnikov and Sokolov does not provide a possib
mechanism, leading to the divergence of the localizat
length with an exponent73 in the quantum Hall effect. By
means of an appropriate numerical simulation, we explic
demonstrated that taking its basic idea literally, namely, c
pling of classical orbits at saddle points via tunneling a
neglecting interference, one destroys the only localizat
mechanism in the model and thus obtains no finite locali
tion length.

Nevertheless, we also demonstrated that classical feat
exist in Chalker and Coddington’s network model at a dis
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der strength an order of magnitude smaller than the va
one would expect to be necessary from the model, igno
phase fluctuations. As a consequence, we were able to s
a crossover in the irrelevant length scale from the pure qu
tum limit into a regime where classical substructures alre
exist. The crossover is characterized by a change in the
ponent n8 in the power-law dependence of the irrelva
length scale on the disorder strength. Our analytical ar
ments for the numerical value ofn8 in both limits suggest, in
particular, a relation between the leading irrelevant expon
yirr , D2, andn.

Finally, we related our findings to the recently discover
long-time tail anomaly in the frequency dependence of
diagonal conductivity for strong, long-range disorder pote
tials at zero wave number. We believe that this anomaly c
in principle, be understood in purely classical terms, a
originates from the classical substructure of the wave fu
tions. We argued that this substructure, although yield
wrong exponentsn andh for the scaling behavior, neverthe
less gives rise to the dominant frequency correction to
static valuesxx5e2/2h of the conductivity.
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APPENDIX

Consider ad-dimensional network with sizeLd and small
disorder characterized by an energy scaleW. For a given
realization of the disorder, one can calculate the Gree
functionG(e,r ). The energyec , at whichuG(e,L)u becomes
maximal, fluctuates between different samples. Assum
that ec is the mean value averaged over subregions w
fluctuatinge0(rW), the corresponding energy width is
an
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Dec}N21/2.

N denotes the number of saddle points or, equivalently,
area of the subregion contributing to the average. In conn
tion with the Harris criterion, one usually assumes that av
aging occurs over the whole sample, so thatN5Ld.

A second energy interval is defined by

De0}L21/n.

It can be interpreted as the range of energies for which
expect electronic states extending throughout the samp
W50. The Harris criterion states that disorder is irreleva
if in the thermodynamic limit the ratior 5Dec /De0!1, or,
equivalently,

y5d/221/n.0.

It seems reasonable to assume thatec}W for smallW. Thus
the exponenty controls how the system size must be resca
after enlargening the disorderW to restore the value for the
ratio r . Hence we identifyy5yirr . Inserting d52 and
1/n'0.43, we arrive atyirr50.57, which is incompatible
with our numerical findings 0.3560.05. We interpret this
discrepancy as evidence that the assumptionN}Ld is, in
general, wrong.

At least in the case of the integral quantum Hall effect
is known that wave function correlations exist only in a su
spaceLD2 of the sample. In other words, amplitude fluctu
tions of the wave function between different regions in spa
are almost always uncorrelated. Fluctuations in the sad
point energies modify the correlation properties of the wa
function only if they happen to occur in the subspace of
sample where long-range correlations exist. Therefore
propose a modified version of the Harris criterion in whi
the average is not taken over the entire sample but only o
the subspaceLD2. An argument similar in spirit was given
earlier by Kramer.27 Hence the dimensiond of the support of
the wave function should be substituted byD2,

yirr5D2/221/n. ~A1!

In principle,D2 can be obtained from the multifractal anal
sis. Values betweenD251.5160.03~Ref. 8! and 1.6260.02
~Ref. 28! have been published in the literature. We end
with the estimateyirr50.3560.05, in agreement with the nu
merical result.
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