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Enhanced optical nonlinearity of hybrid excitons in an inorganic semiconducting quantum dot
covered by an organic layer
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We study excited states in an inorganic semiconducting quantum dot that is covered by a thin organic layer.
The resonant energy transfer due to dipole-dipole interaction leads to the appearance of new states, mixed
Wannier-Mott and Frenkel excitorthybrid exciton$. These new states have quite remarkable properties such
as large optical nonlinearities and short lifetimes, which should be especially interesting with respect to
applications in nonlinear optics. The parameter, governing the strength of the coupling between the two
excitonic states, depends on the size of the system and can, therefore, be controlled experimentally.
[S0163-182698)06703-4

I. INTRODUCTION by the hybridization parametét,

As has been noted recentif,a new type of excitonic I'=(1¢Hind Lwm). 1

state in organic-inorganic heterostructures may appear due %Re physical process behind this coupling is, for example, the

resonant mixing of Wannier-Mott and Frenkel excitons. " f the Wannier-Mott " tate in th N
These hybrid excitons have already been discussed for sonfgeation ot the Wwannier-Mott exciton state in the quantum
ot and the annihilation of the Frenkel exciton in the organic

simple geometries such as quasi-two-dimensional quantu NVer due to the Coulomb interaction. The Coulomb interac
films! and quasi-one-dimensional, parallel organic and inor- yer du u ! lon. u :

ganic semiconducting quantum wireblow it seems to be of 'uon.tc:austesJE a nonvanishing matrix element between the two
some practical interest to study the properties of the hybric?xCI on states.

excitons in a spherical system, since such quantum dots have The state| Ly,) descnbe_s one Wannier-Moit exciton oc-
already been fabricatétf. cupying the lowest state in the quantum dot, analogously

We are interested in the nonlinear optical poIarizabiIity,|1F> qlescrlbes one Frenkel ex_C|ton occupying the lowest
determined by®. The results for the new hybrid state will StAt€ in the organic layer. The interaction Hamiltontdg,

be compared to those of the Wannier-Mott and Frenkel expetween the two materials is given by

citon states in order to show that further and more detailed

studies of such composite systems are of practical interest. Hine= _j d3rP(r)-E(r), 2)
In Sec. Il we propose our model starting with the

Wannier-Mott exciton states in the quantum ¢8ec. 1l A

and the Frenkel exciton states in the organic lggac. || B

and Appendix A. The hybrid exciton Hamiltonian is given

in Sec. Il C. The nonlinear optical susceptibility and the de-

cay rates are calculated and compared to the results, obtained

and the integration is carried out over the whole volume of

the heterostructure. Her(r) is the interband polarization
operator for the Wannier-Mott excitons

for the uncoupled Wannier-Mott and Frenkel excitons, in P(1) = mwnl PO (1) + (1) dhe(0)], 3
Sec. lll and in Sec. IV. A detailed calculation of the hybrid- .. . -
ization parameter is given in the Appendix B. eny(r) creates an electrothole) atr in the quantum dot

and ,&WM is the transition dipole moment for the Wannier-
Mott exciton. Its value can be estimated from the transverse-
longitudinal splitting of the excitonic bart.

The heterostructure consists of an inorganic semiconduct- The size of the considered heterostructure is considerably
ing sphere that is covered by a thin organic layer. The excismaller than the wavelength of light that corresponds to the
tations in the inorganic quantum dot are Wannier-Mott exci-transition between excited and ground states, so that retarda-
tons whereas in the organic layer we have Frenkel excitongon effects may be neglected. Then the operator of the elec-
that can move between lattice sites due to the transfer matritxic field in the semiconducting quantum dot created by the
element. The coupling between the two excitons is governeffrenkel excitons in the organic layer is

Il. THE MODEL
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(4) wheref is a numerical factor of the order of unity. For in-
stance,f=3.168 for CuCl. It is essential to note the depen-
R oy ) dence ofV, on the ratio of the Bohr radiuag to the radius

tor r; of the molecular latticeA; is the creation operator of ¢ the quantum doRp, . For very large quantum dots, com-

the Frenkel exciton at lattice site and ur is the transition  pared to the size of the exciton, there is almost no interaction
dipole moment of the Frenkel exciton. Although there arebetween the excitons and thus there will be no nonlinear
three dielectric functions involved in our model—one for the susceptibility. The excitons behave as harmonic oscillators,
guantum dot, one for the organic layer, and one for the surshowing no optical nonlinearity. On the other hand, the
rounding material—we assume that the differences betweeweak-confinement limit has to be satisfied, i.e., the radius of
them are small as compared to their moduli. Thus there ithe dot must be considerably larger than the Bohr radius.

The summation runs over the lattice sitesvith radius vec-

only one dielectric functiore present in our formulas. Therefore, we have a competition between the weak-
The expression for the hybridization parameter can be&onfinement assumption and the wish for a large optical non-
found in the Appendix B. linearity. In the framework of the considered weak-

confinement regime the favorable situation occurs in the
limit Rp=ag. We will discuss the limitations for large op-

] ) ) ] tical nonlinearities in Sec. Ill.
As in Ref. 6 our calculations of the exciton states in the

semiconductor quantum dot are based upon the effective-
mass approximation. This means that the quantum dot is of
macroscopic size as compared to the size of the unit cell of We start from the microscopic Hamiltonian for Frenkel
the inorganic material. Furthermore we use the weakexcitons,

confinement limit, i.e.Rp>ag, whereag is the Bohr radius
of the Wannier-Mott exciton andRy is the radius of the _ The o ataL ToaL
quantum dot. In this limit we can neglect the influence of HF_Szﬁ: Anfnt z‘ Jn-n (A T Az A, (10
polarization charges upon the electron and the hole in the nen

guantum dot since the ratio between the Coulomb interaction , . . :
and the potential of these polarization charge¥ds,/Veq wheree is the excitation energy of the molecule at lattice site

-

~Rp/ag>1. The influence of the polarization charges wash andJ;;_y is the transfer matrix element which is mainly
discussed by Bru&® We restrict ourselves to the lowest state determined by dipole-dipole interaction. The exact commu-
in the quantum dot and use the following Hamiltonido-  tation relations are

son modett9

A. Excitations in the quantum dot

B. Excitations in the molecular layer

T T
[Ar Al =1, (Ap?=(Ap?*=0,
Hwu=EwuB'B+V,B'B'BB, (5)
[As.Av]l =[ALAL] =[A;,AL] =0 if n#n’

whereBT creates a Wannier-Mott exciton in the lowest state ('1 2

according to
The lowest Frenkel exciton state can be written in the occu-

B'0)=]1wm), (6)  pation number representation as
and the same state occupied with two Wannier-Mott excitons -
is 119=2 ¢e(N)AL[0),
n
1 . . and the two-particle state as
EB B'|0)=2wwm)- (7
> = ATat
. , 20 = n n")A-A:,|0).
The energy of the lowest one-exciton state in the quantum 12¢) E e Pe(n)AA, 10)
dot is n#n’
52 o \2 The two-particle state is written as a product of one particle
Ewm=Eg—Eryt 527 _) , (8) states, for the following reason: For Wannier-Mott excitons
2M\Rp we can roughly estimate that the density, for which the

with M being the total effective mass of the electron and thegz?:]on T(E;%n Ig}ﬁgzcilﬁg i?]fggz;s mt;p?rtant, tlﬁ othhe korl
hole, E4 the gap between the relevant conduction and va- WM BI. f n ewie” € rrenke
lence bands, anfig, the effective Rydberg energy,, is the excitons I only o _short range we geg~ 1/ay,. The ratio
interaction between the two Wannier-Mott excitons in theOf these densities is, therefore,

guantum dot, which is the Coulomb interaction between the

four particles, two electrons, and two holes. An expression Nwm

for Vg is given byt™13 Ng

3
Qorg

2 (12
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This means that we can neglect the interaction between Fren- 1

kel excitons because the density, at which the interaction |0), |Hy—)=h'|0), |Hy—Hy—)=-—=h"h'|0).

between two Frenkel excitons will be important, is much V2

larger than the one of Wannier-Mott excitons. Taking for (16)

instanceag~80 A anda.,~5 A, the above ratio is 2.4

X104, The restriction to only one type of hybrid exciton is reason-
A detailed calculation of the wave function for the Fren- able since we are considering the case where the applied

kel exciton can be found in the Appendix A. electromagnetic field is in resonance with the lowest state of

the hybrid exciton. The energetically higher staité/+ )

C. The hybrid exciton decays faster as compared to the lower one.

Taking into account only the lowest state both for
Wannier-Mott and Frenkel excitons, the Hamiltonian of the I1l. NONLINEAR OPTICAL SUSCEPTIBILITY

coupled system is The nonlinear optical susceptibility is defined &>

Hya=EvB B+ VoB'B'BB+ELATA+ * AB' + TBAT, =P/(VE®), whereR is the avgraged thi_rd-o)rder polarization
(13) of the system. For instance, if we consigéty, . we average

over the volume of the quantum dot. The nonlinear optical
and the interaction is described by the hybridization paramsusceptibilityy® is calculated using third-order perturbation
eter [Eq. (1)]. From now on we assume that all operatorstheory. We calculatey®® for Wannier-Mott excitons in a
Obey Bose commutation relations. For VaniShing interactiomuantum dot and consider On|y the resonant case in which
Vy, the Hamiltonian could readily be diagonalized in termsthe detuningA  between the frequencies of the electronic
of new operators.. : excitation and the light field is smaller than the nonlinear
interactionV,. The result is

hl=u.A"+v.B" (14)
t : . ; ; 4 3\ 2
h gnd its c:onjugat_dai are Bos_e operators creat!ng a hybrid @ . B 2 twm / 8Rp
exciton. They are linear combinations of Wannier-Mott and Xwm(— @ 0,0, —0)=— 23V (A )2\ 233
Frenkel exciton operators where the contribution of the basic po(Aw)\ 72
states to the new hybrid state is determined by the coeffi- 1 1
cientsu. andv. . The stategHy= )=h’|0) are the new X =53, @D
hybrid states. The coefficients are given by Aw— gVo
e T : . - . :
Uu.=ui= 5 5 The nonlinear optical susceptibility due to the interaction
VIER— Epy+|“+|T| is enhanced as compared to the value in the bulk. The large
factor (8R3/7%a3)? is due to the confinement of the
|Eg— Epy=| Wannier-Mott excitons in the quantum dot. In the derivation
ok y (15) . .
Ve=Ux™ = — 2 2 of Eq. (17) we have used the following assumptions:
VIEg—Epy=*+]T|
y*

(i) the weak-confinement limit must hold,

where|T'| is the modulus of the hybridization parameftgn.
(1] andEy, - are the excitation energies for the new hybrid Rp>ag; (18)
excitons. Due to the hybridization between the two exciton
states the wave function for the new hybrid state is a lineafii) only the lowest excited state is required to be dominant in
combination of the basic exciton states and is smoothly disthe susceptibility,
tributed over the geometry of the whole system changing
only on a macroscopic scale.

F . . . . h2 3,”_2

or noninteracting excitons there would be no optical (19)

nonlinearity, i.e., the optical nonlinearity stems from the in- 2Migq RZD
teraction between the Wannier-Mott excitons.

The interaction with the external electric field is given by and (iii ) the interactionV, should be larger than the detun-
Eq. (2), where the polarization operator is the sum of theing,
polarization operators for the Wannier-Mott and the Frenkel

excitons and now the electric fielshould be understood as Vo> hAw. (20)
the applied external electric field. To calculate the linear and
nonlinear responses on a disturbing external field we dEteltl"he conditions for our calculation can be summarized in the

mine in a first step'the elgenstqtes of the Hamiltor{i), following inequality for the radius of the quantum dot:
which is performed in an approximate manner. We took only

three states into account, namely the ground s@je the

state with one hybrid excitopHy—), and finally the state R1<Rp<R;,
with two hybrid excitongHy—,Hy—). These states are ob-

tained by means of the operaﬂm} from the ground state:  with




R,=

[ 42 3m2eag

Zme ez ’
.\/3ﬁ'n'2
"VN2mAw|®

For hybrid excitons the nonlinear optical susceptibility is

3 [Epg,
hAw

R,= minl ag (21

X<H3;<—w;w,w,—w>=—mﬂé
Ngar| [ 1 1
TV el Aw_%'\'/o Ao
(22

whereAw=w—® and%® is the energy of the lowest ex-

cited hybrid state and/, is the interaction between these
states. Here we assumed thége”RD/(agdo) is small as
compared to 1[V g is the unit cell volume of the organic
material andd, is the thickness of the organic layer; for
numerical values see the text below EZ9)].

The aim of our investigation is to examine the nonlinear
optical properties of this new hybrid state for the quantumHim:iz
dot geometry. The results for the ratios of the induced non- qo

linear optical polarizationg®= y®VE® are quite lengthy.
Therefore, we present here only their orders of magnitude:
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3\ 2

4

3
P( ) -~ /.LF,

Hy— Hwwm -

(24)

Here we introduced the lattice constanbf the bulk semi-
conductor. The factora/ag)®?uwy is an effective dipole
moment for Wannier-Mott excitons that takes into account
the probability amplitude d/ag)®? of finding an electron
and a hole within an elementary cell of the semiconductor.
The fourth power of thisu.; corresponds to the third-order
response to the external electric field. The factgp/(a%)?
describes the number of possibilities for creation/annihilation
of two electron-hole pairs within the quantum dot. The con-
siderable enhancement G‘l(Hsy), stems from the more effi-
cient interaction of Frenkel excitons with light due to their
large oscillator strength.

Vshell) 2
Veell

ag

IV. RADIATIVE DECAY RATES

In order to decide whether the hybridization is really
present and not masked by the large radiative decay rate, we
compare the radiative decay ratgswith the hybridization
parameted’. The radiative decay rate from the first excited
state to the ground state is calculated using Fermi’s golden
rule. The interaction Hamiltonian of Wannier-Mott excitons
and the electromagnetic field is given by

3 2mhog,, - N "
Dotd r Ted,a<1WM|P(r)|0>(B +B)

X(bl —bg.), (25)

whereﬁ is the wave vector of the photow; describes its

PR Vgar PR (dg\? ag)® polarization, andé; ., is its polarization unit vector. Accord-
y— y— (20 (23) I : q, -
P(Fs) Ve’ P§/\3n)v| Ro/ | aog ing to Fermi’s golden rule the decay rate for Wannier-Mott

excitons in the quantum dot is

The enhanced nonlinear optical polarizability of confined 2w L 2 .
excitons was reported earlier by Hanandra®® and we 7"\"\"_7&20 Kng.o= 1Hind Lu) "0 0= Evm)
therefore do not discuss it in detail here. The factors that are '
responsible for the large nonlinear optical polarizability are 347 pia
due to the confinement of excitons in the given geometry. 64( = S.3°

: . o . 3 A
Here the influence of the dimensionality comes into play.
However, the new hybrid state has an even higher nonlineafhe enhancement of the exciton decay rate by the factor
optical polarizability. The volume of the shell ¥y,  64(Rp/ag)® is again a consequence of the confinement and
=477R%d0 and if we take for the lattice constant of an or- was reported earlier by Hanamura.
ganic materialyg~5 A we can estimate that the induced  The calculation of the decay rates of the Frenkel and hy-
nonlinear optical polarizability of hybrid excitons is five or- brid excitons is performed analogously. The results are
ders of magnitude larger than the one of Frenkel excitons

Rp
ag

(26)

and even six orders of magnitude larger than for Wannier- __ Vshat4m e o Vshen 4w I

Mott excitons. The form of Eq(23) is determined by two YETON e 3 an3 WOV 3 s
factors: there is a decrease due to the finite thickigssf (27)
the layer, which is much smaller than the radiis of the _

quantum dot, and an increase due # fa.)®, which is a The comparison shows that

consequence of the hybridization. The latter factor remarkbly 1 Vv 20 2.131
dominates; if we take, for instanc@g~80 A and a,, YHV*:_, Yy- _ shell MF Bl 2 (29
~5 A, we get eBlaorg)6~107- P 2 Ywm VceII\MWM Rp/ 2

The physical interpretation for this large nonlinear optical This means that the decay rate of hybrid excitons is of the
polarizability P£|3y)_ is the following. The expressions for the same order of magnitude as the one of Frenkel excitons.
third-order polarizabilities for the hybrid and the Wannier-  We drop all numerical factors and give the result only in
terms of the important parameters:

Mott exciton in the resonant range differ by the factors
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3 3 72 - N
i i ~om" YR =Ee(r). (A1)
a'B ﬁ A do

The thicknesgl(0®) of the shell is assumed to be dependent

R2d 2V _R on the polar angl®. This angular dependence of the layer

Yry- V¢ D70 | /9B YcelTD (29)  thickness is essential, otherwise there would be no hybrid-

T &g, 72\, ization. The physical reason is that the electric field inside

the quantum dot created by the Frenkel exciton in the shell

If we take for exampleag=80 A, Rp=800 A, d, corresponds to the field created by a uniformly polarized

=4 A, a,;=5 A andA=3000 A, we get, as an esti- sphere. This is identically zero. Thus, in order to get hybrid-

mation, 7y, /|I'|~0.09. Thus we have demonstrated thatization, one has to break the spherical symmetry. The radial
the radiative decay rates are roughly two orders of magnitudeotion of the exciton is restricted to the ranBg<r <Rp

smaller as the hybridization parameter and, therefore, the hy+d(®) and the wave function is assumed to vanish at the
bridization of two excitons really takes place in our model. shell boundaries. We are looking for solutions of the form

V. CONCLUSIONS

an
) 1 2 sw{m(r RD)

We proposed a simple, analytically tractable microscopic l/fF(f):‘I’()\M— a(®) ; :
model for the coupling between excitonic states in inorganic ™ (A2)
and organic materials, i.e., between Wannier-Mott and Fren-
kel excitons. The new hybrid state has a larger optical noninserting Eg.(A2) into the Schrdinger equationAl) and
linearity (and at the same time a larger decay yate com-  averaging over the radial dependence, we obtain
pared to Wannier-Mott excitons. The high nonlinear optical

polarizability stems from the nonlinearity of the Wannier- 2m F\%[ h272

Mott excitons, to be more specific, from their interaction, 0=—5—E~- ®(0)

and from the large coupling of the Frenkel exciton to the h { 2md*(O)

external electromagnetic fieltarge oscillator strengih The 1 9 oD (0)

enhanced nonlinear response to an applied external electro- + Sne 70 sin W} (A3)

magnetic field would make these hybrid states especially in-
teresting to applications in nonlinear optics. This would jus-we represent!(®) in the form
tify the efforts to prepare such heterostructures. These very
interesting physical properties were obtained assuming that d(®)=dg[1+8(0)], (A4)
the energies of both excitonic states are nearly in resonance, o ]
i.e., Ep~Eyy . Outside this resonance the coupling betweerfNd assume a small dewatloq from the perfect sphere; i.e.,
the excitons is rather small. This requires, in particular, thave demand that5(®)|<1. This angular dependence may
the decay ratesincluding phonon scattering, radiationless correspond, e.g., to the roughness of the interface between
decay, etd. of both excitons be small as compared to thethe organic layer and the inorganic _quantum dot. Th_e last
hybridization parameteF. For a macroscopic sample con- t€rm in Eq.(A4) leads to a perturbation term on the right-
taining many heterostructures of the considered type, thBand side of the Schdinger equation:
nonuniformity of these spheres and the roughness between

N 2m R%[ E hlm?

the spheres and the surrounding medium would cause an 1 J Sinﬁ‘b(@)} 3
90 #2 | 2md¥(0)

d(O)

inhomogeneous broadening of the absorption lines. Thissin ® 9@
broadening should be small as compared fdoo. Thus the

materials for the layer and the quantum dot have to be cho- 2R2D7T2
sen carefully in order to observe these new and promising =————3J(0)®(0). (AS5)
features of coupled organic and inorganic heterostructures. do

We expands(®) in terms of Legendre polynomials,
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and look for the wave functio®(®) in the form
APPENDIX A: THE WAVE FUNCTION

FOR FRENKEL EXCITONS

1 o0
We describe the motion of the Frenkel exciton within the ®(0)= EJFZI a/P/(cos®). (A8)

organic layer by the Schdinger equation for a particle with
a massam, The energy eigenvalue of the lowest exciton state is given by
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5252 Inserting the above expressions into the definitior of
E= S[1+0(8%)]. (A9)  we obtain
2md,
In first-order perturbation theory id we get, for the coeffi- _ mwmikr9(0) 3, - 9?
cientsa; I's——=——| d&r'ye(t’)——
I VVeel€ shell ary ar;
\/ERZDWZ 1 -
= . Pwm,100(1)
ap= 2 5J i(i : (A10) X dgl'_f—a. B3
d3 j(+1) oot | |r=r'| (B3)

As a result we obtain the eigenfunction , ) . .
The integral over the dot is formally the potential at the point

| R r’ created by the “charged” quantum dot with spherically
1 2 oM d(®) (r=Rp) symmetric distribution of charge, EB2). This is justQ/r’
Ye(r,@)= Jas Vd@) ; whereQ is given by

o

X %-‘rzl a,P,(cos®)|. (A1) Q:fDotd3r¢WM,10dF)- (B4)

As the radiusRp of the quantum dot is assumed to be con-

APPENDIX B: CALCULATION OF THE HYBRIDIZATION siderably larger than the thicknedsg of the layer,I’ can be
PARAMETER written as

The hybridization parametdr is given by Eq.(1). The

excitonic states are 0 -
r=- MJ d3r e(r){3 co(0)—1};
. R VVeen€Rp shell
|1WM>:fDotdsredgrhWre_rh)l/floo(R)lﬁl(re)(/fE(fh)|0>, (BY)
here we assumed that all the dipole moments point in a given
At direction, which we took as the direction. The function in
1) = A-|0), Bl ' .
[1¢) En: vr(n) “| ) BD the brackets is, up to a factor 1/2, the Legendre polynom of

.. ) ~ second-orderP,(cos®). Inserting the expression for the
whered(r.—ry) is the lowest wave function for the relative wave function of the Frenkel excitofi§q. (A11)] and using
motion of electron and hole in the quantum dot ahg(R) the orthonormality of the Legendre polynomials, we obtain
is the lowest wave function of the center-of-mass motion of

the two particles:
P 32uwmpE do WzRé
I'=- 3 > S5,. (B6)
56 2773ance||RD 3d0

7R
#(F) 1 ey (R) 2 sm(R—D) 1 The hyk_:)ridizfat;]on parameter ishdetertzninéadhby SG;IJ_mefir;]trinsic
=7 ) 1wdR=\/Z3—F% 7—: properties of the excitons, such as the Bohr radig®f the
mag Rp R Vam Wannier-Mott exciton, the volum¥ . of a cell of the or-
Ro (B2) ganic lattice, and the transition dipole moments of the exci-
tons. In addition, the hybridization parameter depends also
The quantum number€l00 have the following meaning: on the thicknessl, of the organic layer and the radi&g, of
the first number, here=1, labels the number of the zeros of the quantum dot. The interaction strength between the two
the spherical Bessel functithj (k. Rp) for a given value excitons can, therefore, be controlled by changing experi-
of /. ./ is the angular momentum of the center of mass andnental parameters.In order to give a numerical value fér
fim is the projection of the angular momentum along a cerwe take uwy~upr~1D, e=7, do/Rp~1/200, ap
tain direction. In the case”=0 the roots arek,, Rp ~80 A, Aorg™~5 A and 5,=1/10. Using these values we
=nm,(n=1,2,...). obtainI'~5 meV.
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