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Enhanced optical nonlinearity of hybrid excitons in an inorganic semiconducting quantum dot
covered by an organic layer
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We study excited states in an inorganic semiconducting quantum dot that is covered by a thin organic layer.
The resonant energy transfer due to dipole-dipole interaction leads to the appearance of new states, mixed
Wannier-Mott and Frenkel excitons~hybrid excitons!. These new states have quite remarkable properties such
as large optical nonlinearities and short lifetimes, which should be especially interesting with respect to
applications in nonlinear optics. The parameter, governing the strength of the coupling between the two
excitonic states, depends on the size of the system and can, therefore, be controlled experimentally.
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I. INTRODUCTION

As has been noted recently,1,2 a new type of excitonic
state in organic-inorganic heterostructures may appear du
resonant mixing of Wannier-Mott and Frenkel exciton
These hybrid excitons have already been discussed for s
simple geometries such as quasi-two-dimensional quan
films1 and quasi-one-dimensional, parallel organic and in
ganic semiconducting quantum wires.2 Now it seems to be of
some practical interest to study the properties of the hyb
excitons in a spherical system, since such quantum dots
already been fabricated.3,4

We are interested in the nonlinear optical polarizabili
determined byx (3). The results for the new hybrid state wi
be compared to those of the Wannier-Mott and Frenkel
citon states in order to show that further and more deta
studies of such composite systems are of practical intere

In Sec. II we propose our model starting with th
Wannier-Mott exciton states in the quantum dot~Sec. II A!
and the Frenkel exciton states in the organic layer~Sec. II B
and Appendix A!. The hybrid exciton Hamiltonian is given
in Sec. II C. The nonlinear optical susceptibility and the d
cay rates are calculated and compared to the results, obta
for the uncoupled Wannier-Mott and Frenkel excitons,
Sec. III and in Sec. IV. A detailed calculation of the hybri
ization parameter is given in the Appendix B.

II. THE MODEL

The heterostructure consists of an inorganic semicond
ing sphere that is covered by a thin organic layer. The e
tations in the inorganic quantum dot are Wannier-Mott ex
tons whereas in the organic layer we have Frenkel excit
that can move between lattice sites due to the transfer m
element. The coupling between the two excitons is gover
570163-1829/98/57~3!/1784~7!/$15.00
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by the hybridization parameterG,

G5^1FuH intu1WM&, ~1!

the physical process behind this coupling is, for example,
creation of the Wannier-Mott exciton state in the quantu
dot and the annihilation of the Frenkel exciton in the orga
layer due to the Coulomb interaction. The Coulomb inter
tion causes a nonvanishing matrix element between the
exciton states.

The stateu1WM& describes one Wannier-Mott exciton o
cupying the lowest state in the quantum dot, analogou
u1F& describes one Frenkel exciton occupying the low
state in the organic layer. The interaction HamiltonianH int
between the two materials is given by

H int52E d3rPW ~rW !•EW ~rW !, ~2!

and the integration is carried out over the whole volume
the heterostructure. HerePW (rW) is the interband polarization
operator for the Wannier-Mott excitons

PW ~rW !5mW WM@ĉe
†~rW !ĉh

†~rW !1ĉh~rW !ĉe~rW !#, ~3!

ĉe(h)
† (rW) creates an electron~hole! at rW in the quantum dot

and mW WM is the transition dipole moment for the Wannie
Mott exciton. Its value can be estimated from the transver
longitudinal splitting of the excitonic band.5

The size of the considered heterostructure is consider
smaller than the wavelength of light that corresponds to
transition between excited and ground states, so that reta
tion effects may be neglected. Then the operator of the e
tric field in the semiconducting quantum dot created by
Frenkel excitons in the organic layer is
1784 © 1998 The American Physical Society
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Ei~rW !52(
nW

Fd i j 2
3~rW2rWnW ! i~rW2rWnW ! j

urW2rWnW u2
G mF, j

eurW2rWnW u3
~AnW

†
1AnW !.

~4!

The summation runs over the lattice sitesnW with radius vec-
tor rWnW of the molecular lattice.AnW

† is the creation operator o

the Frenkel exciton at lattice sitenW andmW F is the transition
dipole moment of the Frenkel exciton. Although there a
three dielectric functions involved in our model—one for t
quantum dot, one for the organic layer, and one for the s
rounding material—we assume that the differences betw
them are small as compared to their moduli. Thus ther
only one dielectric functione present in our formulas.

The expression for the hybridization parameter can
found in the Appendix B.

A. Excitations in the quantum dot

As in Ref. 6 our calculations of the exciton states in t
semiconductor quantum dot are based upon the effec
mass approximation. This means that the quantum dot i
macroscopic size as compared to the size of the unit ce
the inorganic material. Furthermore we use the we
confinement limit, i.e.,RD@aB , whereaB is the Bohr radius
of the Wannier-Mott exciton andRD is the radius of the
quantum dot. In this limit we can neglect the influence
polarization charges upon the electron and the hole in
quantum dot since the ratio between the Coulomb interac
and the potential of these polarization charges isVCoul/VPol
;RD /aB@1. The influence of the polarization charges w
discussed by Brus.7,8 We restrict ourselves to the lowest sta
in the quantum dot and use the following Hamiltonian~bo-
son model9,10!

HWM5EWMB†B1V0B†B†BB, ~5!

whereB† creates a Wannier-Mott exciton in the lowest sta
according to

B†u0&5u1WM&, ~6!

and the same state occupied with two Wannier-Mott excit
is

1

A2
B†B†u0&5u2WM&. ~7!

The energy of the lowest one-exciton state in the quan
dot is

EWM5Eg2ERy1
\2

2M S p

RD
D 2

, ~8!

with M being the total effective mass of the electron and
hole, Eg the gap between the relevant conduction and
lence bands, andERy the effective Rydberg energy.V0 is the
interaction between the two Wannier-Mott excitons in t
quantum dot, which is the Coulomb interaction between
four particles, two electrons, and two holes. An express
for V0 is given by11–13
e
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V05 f S aB

RD
D 3

ERy , ~9!

where f is a numerical factor of the order of unity. For in
stance,f 53.168 for CuCl. It is essential to note the depe
dence ofV0 on the ratio of the Bohr radiusaB to the radius
of the quantum dotRD . For very large quantum dots, com
pared to the size of the exciton, there is almost no interac
between the excitons and thus there will be no nonlin
susceptibility. The excitons behave as harmonic oscillat
showing no optical nonlinearity. On the other hand, t
weak-confinement limit has to be satisfied, i.e., the radius
the dot must be considerably larger than the Bohr rad
Therefore, we have a competition between the we
confinement assumption and the wish for a large optical n
linearity. In the framework of the considered wea
confinement regime the favorable situation occurs in
limit RD*aB . We will discuss the limitations for large op
tical nonlinearities in Sec. III.

B. Excitations in the molecular layer

We start from the microscopic Hamiltonian for Frenk
excitons,

HF5«(
nW

AnW
†
AnW1 (

nW ,nW 8
nW ÞnW 8

JunW 2nW 8u~AnW
†
AnW 81AnW 8

†
AnW !, ~10!

where« is the excitation energy of the molecule at lattice s
nW andJunW 2nW 8u is the transfer matrix element which is main
determined by dipole-dipole interaction. The exact comm
tation relations are

@AnW ,AnW
†
#151, ~AnW !25~AnW

†
!250,

@AnW ,AnW 8#25@AnW
† ,AnW 8

†
#25@AnW ,AnW 8

†
#250 if nW ÞnW 8.

~11!

The lowest Frenkel exciton state can be written in the oc
pation number representation as

u1F&5(
nW

cF~nW !AnW
†u0&,

and the two-particle state as

u2F&5 (
nW ,nW 8

nW ÞnW 8

cF~nW !cF~nW 8!AnW
†
AnW 8

† u0&.

The two-particle state is written as a product of one parti
states, for the following reason: For Wannier-Mott excito
we can roughly estimate that the density, for which t
exciton-exciton interaction becomes important, is of the
der nWM;1/aB

3 . Since the interaction between the Frenk
excitons is only of short range we getnF;1/aorg

3 . The ratio
of these densities is, therefore,

nWM

nF
;S aorg

aB
D 3

. ~12!
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This means that we can neglect the interaction between F
kel excitons because the density, at which the interac
between two Frenkel excitons will be important, is mu
larger than the one of Wannier-Mott excitons. Taking f
instanceaB'80 Å anda org'5 Å, the above ratio is 2.4
31024.

A detailed calculation of the wave function for the Fre
kel exciton can be found in the Appendix A.

C. The hybrid exciton

Taking into account only the lowest state both f
Wannier-Mott and Frenkel excitons, the Hamiltonian of t
coupled system is

H total5EWMB†B1V0B†B†BB1EFA
†A1G* AB†1GBA†,

~13!

and the interaction is described by the hybridization para
eter @Eq. ~1!#. From now on we assume that all operato
obey Bose commutation relations. For vanishing interact
V0, the Hamiltonian could readily be diagonalized in term
of new operatorsh6 :

h6
† 5u6A†1v6B†. ~14!

h6
† and its conjugateh6 are Bose operators creating a hybr

exciton. They are linear combinations of Wannier-Mott a
Frenkel exciton operators where the contribution of the ba
states to the new hybrid state is determined by the co
cientsu6 and v6 . The statesuHy6 &5h6

† u0& are the new
hybrid states. The coefficients are given by

u65u6* 5
uGu

AuEF2EHy6u21uGu2
,

v65v6* 56
uEF2EHy6u

AuEF2EHy6u21uGu2
, ~15!

whereuGu is the modulus of the hybridization parameter@Eq.
~1!# andEHy6 are the excitation energies for the new hyb
excitons. Due to the hybridization between the two exci
states the wave function for the new hybrid state is a lin
combination of the basic exciton states and is smoothly
tributed over the geometry of the whole system chang
only on a macroscopic scale.

For noninteracting excitons there would be no opti
nonlinearity, i.e., the optical nonlinearity stems from the
teraction between the Wannier-Mott excitons.

The interaction with the external electric field is given
Eq. ~2!, where the polarization operator is the sum of t
polarization operators for the Wannier-Mott and the Fren
excitons and now the electric fieldEW should be understood a
the applied external electric field. To calculate the linear a
nonlinear responses on a disturbing external field we de
mine in a first step the eigenstates of the Hamiltonian~13!,
which is performed in an approximate manner. We took o
three states into account, namely the ground stateu0&, the
state with one hybrid excitonuHy2&, and finally the state
with two hybrid excitonsuHy2,Hy2&. These states are ob
tained by means of the operatorh2

† from the ground state:
n-
n

r

-

n

ic
fi-

n
r

s-
g

l
-

l
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y

u0&, uHy2&5h2
† u0&, uHy2,Hy2&5

1

A2
h2

† h2
† u0&.

~16!

The restriction to only one type of hybrid exciton is reaso
able since we are considering the case where the app
electromagnetic field is in resonance with the lowest state
the hybrid exciton. The energetically higher stateuHy1 &
decays faster as compared to the lower one.

III. NONLINEAR OPTICAL SUSCEPTIBILITY

The nonlinear optical susceptibility is defined asx (3)

5P/(VE3), whereP is the averaged third-order polarizatio
of the system. For instance, if we considerxWM

(3) , we average
over the volume of the quantum dot. The nonlinear opti
susceptibilityx (3) is calculated using third-order perturbatio
theory. We calculatex (3) for Wannier-Mott excitons in a
quantum dot and consider only the resonant case in wh
the detuningDv between the frequencies of the electron
excitation and the light field is smaller than the nonline
interactionV0. The result is

xWM
~3! ~2v;v,v,2v!52

2mWM
4

\3VDot~Dv!2S 8RD
3

p2aB
3 D 2

3H 1

Dv2
2

\
V0

2
1

DvJ . ~17!

The nonlinear optical susceptibility due to the interactionV0
is enhanced as compared to the value in the bulk. The la
factor (8RD

3 /p2aB
3)2 is due to the confinement of th

Wannier-Mott excitons in the quantum dot. In the derivati
of Eq. ~17! we have used the following assumptions:

~i! the weak-confinement limit must hold,

RD@aB ; ~18!

~ii ! only the lowest excited state is required to be dominan
the susceptibility,

\2

2mred

3p2

RD
2

@\Dv, ~19!

and ~iii ! the interactionV0 should be larger than the detun
ing,

V0@\Dv. ~20!

The conditions for our calculation can be summarized in
following inequality for the radius of the quantum dot:

R1!RD!R2 ,

with
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R15A \2

2me

3p2eaB

e2
,

R25minH aBA3 ERy

\Dv
;A 3\p2

2meDvJ . ~21!

For hybrid excitons the nonlinear optical susceptibility is

xHy
~3!~2v;v,v,2v!52

2

\3VDot~Dv!2
mF

4

3S 4Vshell

p2Vcell
D 2H 1

Dv2
2

\
Ṽ0

2
1

DvJ ,

~22!

whereDv5v2ṽ and \ṽ is the energy of the lowest ex
cited hybrid state andṼ0 is the interaction between thes
states. Here we assumed thatVcellRD /(aB

3d0) is small as
compared to 1.@Vcell is the unit cell volume of the organi
material andd0 is the thickness of the organic layer; fo
numerical values see the text below Eq.~29!#.

The aim of our investigation is to examine the nonline
optical properties of this new hybrid state for the quant
dot geometry. The results for the ratios of the induced n
linear optical polarizationsP5x (3)VE3 are quite lengthy.
Therefore, we present here only their orders of magnitud

PHy2
~3!

PF
~3!

;
Vshell

Vcell
,

PHy2
~3!

PWM
~3!

;S d0

RD
D 2S aB

aorg
D 6

. ~23!

The enhanced nonlinear optical polarizability of confin
excitons was reported earlier by Hanamura5,13–15 and we
therefore do not discuss it in detail here. The factors that
responsible for the large nonlinear optical polarizability a
due to the confinement of excitons in the given geome
Here the influence of the dimensionality comes into pl
However, the new hybrid state has an even higher nonlin
optical polarizability. The volume of the shell isVshell

54pRD
2 d0 and if we take for the lattice constant of an o

ganic materialaorg'5 Å we can estimate that the induce
nonlinear optical polarizability of hybrid excitons is five o
ders of magnitude larger than the one of Frenkel excit
and even six orders of magnitude larger than for Wann
Mott excitons. The form of Eq.~23! is determined by two
factors: there is a decrease due to the finite thicknessd0 of
the layer, which is much smaller than the radiusRD of the
quantum dot, and an increase due to (aB /aorg)

6, which is a
consequence of the hybridization. The latter factor remark
dominates; if we take, for instance,aB'80 Å and aorg
'5 Å, we get (aB /aorg)

6;107.
The physical interpretation for this large nonlinear optic

polarizability PHy2
(3) is the following. The expressions for th

third-order polarizabilities for the hybrid and the Wannie
Mott exciton in the resonant range differ by the factors
r

-

:

re

.
.
ar

s
r-

ly

l

PHy2
~3! ;S Vshell

Vcell
D 2

mF
4, PWM

~3! ;S RD
3

a3 D 2S a3

aB
3 D 2

mWM
4 .

~24!

Here we introduced the lattice constanta of the bulk semi-
conductor. The factor (a/aB)3/2mWM is an effective dipole
moment for Wannier-Mott excitons that takes into accou
the probability amplitude (a/aB)3/2 of finding an electron
and a hole within an elementary cell of the semiconduc
The fourth power of thismeff corresponds to the third-orde
response to the external electric field. The factor (RD

3 /a3)2

describes the number of possibilities for creation/annihilat
of two electron-hole pairs within the quantum dot. The co
siderable enhancement ofPHy2

(3) stems from the more effi-
cient interaction of Frenkel excitons with light due to the
large oscillator strength.

IV. RADIATIVE DECAY RATES

In order to decide whether the hybridization is rea
present and not masked by the large radiative decay rate
compare the radiative decay ratesg with the hybridization
parameterG. The radiative decay rate from the first excite
state to the ground state is calculated using Fermi’s gol
rule. The interaction Hamiltonian of Wannier-Mott exciton
and the electromagnetic field is given by

H int5 i(
qW ,s

E
Dot

d3rA2p\vqW ,s

V
eWqW ,s^1WMuPW ~rW !u0&~B†1B!

3~bqW ,s
†

2bqW ,s!, ~25!

where qW is the wave vector of the photon,s describes its
polarization, andeWqW ,s is its polarization unit vector. Accord
ing to Fermi’s golden rule the decay rate for Wannier-M
excitons in the quantum dot is

gWM5
2p

\ (
qW ,s

z^nqW ,s51uH intu1WM& z2d~\vqW2EWM!

564S RD

aB
D 3 4p

3

mWM
2

\l3
. ~26!

The enhancement of the exciton decay rate by the fa
64(RD /aB)3 is again a consequence of the confinement a
was reported earlier by Hanamura.5

The calculation of the decay rates of the Frenkel and
brid excitons is performed analogously. The results are

gF564
Vshell

Vcell

4p

3

mF
2

\l3
, gHy2532

Vshell

Vcell

4p

3

mF
2

\l3
.

~27!

The comparison shows that

gHy2

gF
5

1

2
,

gHy2

gWM
5

Vshell

Vcell
S mF

mWM
D 2S aB

RD
D 31

2
. ~28!

This means that the decay rate of hybrid excitons is of
same order of magnitude as the one of Frenkel excitons

We drop all numerical factors and give the result only
terms of the important parameters:
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gWM

uGu
;S RD

aB
D 3AaB

3VcellRD

\2l6d0

,

gHy2

uGu
;

gF

uGu
;

RD
2 d0

aorg
3 AaB

3VcellRD

\2l6d0

. ~29!

If we take for exampleaB580 Å, RD5800 Å, d0
54 Å, a org55 Å and l53000 Å, we get, as an est
mation,\gHy2 /uGu'0.09. Thus we have demonstrated th
the radiative decay rates are roughly two orders of magnit
smaller as the hybridization parameter and, therefore, the
bridization of two excitons really takes place in our mode

V. CONCLUSIONS

We proposed a simple, analytically tractable microsco
model for the coupling between excitonic states in inorga
and organic materials, i.e., between Wannier-Mott and Fr
kel excitons. The new hybrid state has a larger optical n
linearity ~and at the same time a larger decay rate! as com-
pared to Wannier-Mott excitons. The high nonlinear opti
polarizability stems from the nonlinearity of the Wannie
Mott excitons, to be more specific, from their interactio
and from the large coupling of the Frenkel exciton to t
external electromagnetic field~large oscillator strength!. The
enhanced nonlinear response to an applied external ele
magnetic field would make these hybrid states especially
teresting to applications in nonlinear optics. This would ju
tify the efforts to prepare such heterostructures. These v
interesting physical properties were obtained assuming
the energies of both excitonic states are nearly in resona
i.e., EF'EWM . Outside this resonance the coupling betwe
the excitons is rather small. This requires, in particular, t
the decay rates~including phonon scattering, radiationle
decay, etc.! of both excitons be small as compared to t
hybridization parameterG. For a macroscopic sample con
taining many heterostructures of the considered type,
nonuniformity of these spheres and the roughness betw
the spheres and the surrounding medium would cause
inhomogeneous broadening of the absorption lines. T
broadening should be small as compared toG, too. Thus the
materials for the layer and the quantum dot have to be c
sen carefully in order to observe these new and promis
features of coupled organic and inorganic heterostructur

ACKNOWLEDGMENTS

We appreciate valuable discussions with V. M. Agrano
ich and R. Steib. One of the authors~V.I.Y.! acknowledges
the support from DFG, Volkswagen Foundation, and gra
from the Russian Ministry of Science~No. 97-1075! and
RFFI ~No. 96-03-34049!.

APPENDIX A: THE WAVE FUNCTION
FOR FRENKEL EXCITONS

We describe the motion of the Frenkel exciton within t
organic layer by the Schro¨dinger equation for a particle with
a massm,
t
e
y-

c
c
n-
-

l

,

ro-
-

-
ry
at
ce,
n
t

e
en
an
is

o-
g
.

-

ts

2
\2

2m
¹2cF~rW !5EcF~rW !. ~A1!

The thicknessd(Q) of the shell is assumed to be depende
on the polar angleQ. This angular dependence of the lay
thickness is essential, otherwise there would be no hyb
ization. The physical reason is that the electric field ins
the quantum dot created by the Frenkel exciton in the s
corresponds to the field created by a uniformly polariz
sphere. This is identically zero. Thus, in order to get hybr
ization, one has to break the spherical symmetry. The ra
motion of the exciton is restricted to the rangeRD,r ,RD
1d(Q) and the wave function is assumed to vanish at
shell boundaries. We are looking for solutions of the form

cF~rW !5F~Q!
1

A4p
A 2

d~Q!

sinF p

d~Q!
~r 2RD!G

r
.

~A2!

Inserting Eq.~A2! into the Schro¨dinger equation~A1! and
averaging over the radial dependence, we obtain

05
2mRD

2

\2 FE2
\2p2

2md2~Q!
GF~Q!

1
1

sin Q

]

]QFsin Q
]F~Q!

]Q G . ~A3!

We representd(Q) in the form

d~Q!5d0@11d~Q!#, ~A4!

and assume a small deviation from the perfect sphere;
we demand thatud(Q)u!1. This angular dependence ma
correspond, e.g., to the roughness of the interface betw
the organic layer and the inorganic quantum dot. The
term in Eq.~A4! leads to a perturbation term on the righ
hand side of the Schro¨dinger equation:

1

sin Q

]

]QFsin Q
]F~Q!

]Q G1
2mRD

2

\2 FE2
\2p2

2md2~Q!
GF~Q!

52
2RD

2 p2

d0
2

d~Q!F~Q!. ~A5!

We expandd(Q) in terms of Legendre polynomials,

d~Q!5 (
l 51

`

d l Pl ~cosQ!, ~A6!

d l 5
2l 11

2 E
0

p

dQsin QPl ~cosQ!d~Q!, ~A7!

and look for the wave functionF(Q) in the form

F~Q!5
1

A2
1 (

l 51

`

a l Pl ~cosQ!. ~A8!

The energy eigenvalue of the lowest exciton state is given
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E5
\2p2

2md0
2 @11O~d2!#. ~A9!

In first-order perturbation theory ind we get, for the coeffi-
cientsa j ,

a j5
A2RD

2 p2

d0
2

d j

1

j ~ j 11!
. ~A10!

As a result we obtain the eigenfunction

cF~r ,Q!5
1

A4p
A 2

d~Q!

sinF p

d~Q!
~r 2RD!G

r

3F 1

A2
1 (
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APPENDIX B: CALCULATION OF THE HYBRIDIZATION
PARAMETER

The hybridization parameterG is given by Eq.~1!. The
excitonic states are
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wheref(rWe2rWh) is the lowest wave function for the relativ
motion of electron and hole in the quantum dot andc100(RW )
is the lowest wave function of the center-of-mass motion
the two particles:
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The quantum numbers~100! have the following meaning
the first number, heren51, labels the number of the zeros
the spherical Bessel function16 j l (knl RD) for a given value
of l . \l is the angular momentum of the center of mass a
\m is the projection of the angular momentum along a c
tain direction. In the casel 50 the roots areknl RD
5np,(n51,2, . . . ).
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Inserting the above expressions into the definition ofG,
we obtain
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The integral over the dot is formally the potential at the po
rW8 created by the ‘‘charged’’ quantum dot with spherica
symmetric distribution of charge, Eq.~B2!. This is justQ/r 8
whereQ is given by
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As the radiusRD of the quantum dot is assumed to be co
siderably larger than the thicknessd0 of the layer,G can be
written as
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here we assumed that all the dipole moments point in a gi
direction, which we took as thez direction. The function in
the brackets is, up to a factor 1/2, the Legendre polynom
second-orderP2(cosQ). Inserting the expression for th
wave function of the Frenkel excitons@Eq. ~A11!# and using
the orthonormality of the Legendre polynomials, we obta
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The hybridization parameter is determined by some intrin
properties of the excitons, such as the Bohr radiusaB of the
Wannier-Mott exciton, the volumeVcell of a cell of the or-
ganic lattice, and the transition dipole moments of the ex
tons. In addition, the hybridization parameter depends a
on the thicknessd0 of the organic layer and the radiusRD of
the quantum dot. The interaction strength between the
excitons can, therefore, be controlled by changing exp
mental parameters.17 In order to give a numerical value forG
we take mWM'mF'1D, e'7, d0 /RD'1/200, aB
'80 Å, aorg'5 Å andd251/10. Using these values w
obtainG'5 meV.
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