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Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires

J. A. Reyes
Liquid Crystal Institute, Kent State University, Kent, Ohio 44242

M. del Castillo-Mussot ;
Instituto de Fsica, Universidad Nacional Autonoma de Aitso, Apartado Postal 20-364, 01000 Meo, D.F., M&ico
(Received 24 January 1997; revised manuscript received 25 August 1997

We analyze a Wannier-Mott exciton in which the electron and hole are constrained to move in two separated
and parallel quantum wires. We expand the electron-hole interaction potential in terms of multipoles by
assuming that both the electron and hole experience transverse harmonic confinemenisandiyedirec-
tions, both being in their respective transverse ground states. For the regudipgndent Schdinger equa-
tion, we calculate in detail eigenenergies and eigenfunctions for the exciton ground and first excited states as
functions of the transverse dimension of the wires and their separation distance. Also, we calculate the higher
eigenenergies and eigenfunctions approximately by using a WKB formdl&pi.63-18207)04048-4

I. INTRODUCTION the other hand, there is a related relevant theoretical work in
three dimensions on layer structures, and near an interface of
The electronic properties of highly inhomogeneous systwo media for small and large electron-hole separdtion.
tems such as confined systems have received much attention In the pioneering theoretical work of Loundban a 1D
due, among other reasons, to the possibility of growing highhydrogen atom, anomalous behaviors of both eigenfunctions
quality nanostructures with prescribed configurations, allowand eigenenergies were found due to a nonphysical elec-
ing the control of physical properties such as carrier densitronic distribution, since the transverse dimensions of the
ties, band gaps and bandwidths, and even dimensionality. Iwire were neglected. Later Banyat al.” took into account
the case of quasi-one-dimensional systems or quantum wire#e finite width of the wire, and made use of parametrized
the Fermi energy is comparable to the interlevel energy sepa-
ration associated with the strong transverse configuration. In
strictly one dimensional (1Dsystems, the carrier density is
such that only the levels associated with the ground-state L
energy of the transverse confinement are occupied. For ex- ,4
perimental and theoretical reviews on these systems, see /
Refs. 1 and 2, respectively. 7 / \
The purpose of this paper is to present model calculations /
of large excitons in a structure consisting of two parallel 1. \
strictly 1D quantum wires, with the electron being confined / ]
in one wire and the hole being confined in another parallel
wire (see Fig. 1L We shall calculate the eigenenergies and I
eigenfunctions as a function of the distance that separates !
both wires. Here we do not address the issue of how this kind 7‘ 0 -k f -
of system could be induced, but in analogy to 2D cases we
think of different ways of favoring such an arrangemet: T /
etching a 2D double quantum well to make it 1@) plac-
ing a quantum wire in the neighborhood of the interface of /
two media to produce electrostatic image forces; &iid 1 l
applying an electric field to increase tunneling and thus «—Q0—
physical separation between electron and holes.
Some studies of 2D systems with spatial separation be-
tween the electron andsholes were reported in the fol'lowing FIG. 1. Diagram of a section of the system formed by two
papers. Beresfordet al” studied type-ll heterojunctions jxfinite parallel quantum wires where their centers are separated by
based upon materials such as InAs and GaSb, where neigfjstanced. Both electrone and holeh experience transverse har-
boring layers of electrons and holes were produced. Brumyonic potential confinements in tieandy directions(of which we
and Ferraracalculated the ground exciton state of the GaSbonly show schematically the potential y). The dimensions of the
InAs-GaSb heterostructure, in which electrons and holes argires are given in terms of standard deviatiens and oy, (v=1
present in spatially separated regions. The dielectric functioand 2) of both electron and hole as defined in the text. These con-
and collective modes of 2D interacting bosofexcitong  stants are inversely proportional to the stiffness of the harmonic
were theoretically investigated by Kachintev and URc@n  potential.
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trial electron-hole potential to adjust the effective potential(which is the exciton wave vector for the electron-hole pair

numerically. in the z direction, u=m;m,/(m;+m,) its reduced mass,
This paper is structured as follows; in Sec. |l we deriveand ¢(z) the wave function part associated with the relative

the effective 1D interaction potential between two particlescoordinate. In the same way as Bangail.” did, we calcu-

when each one is in one of the parallel quantum wires anghte the bracket /2 y9y(zem) |H| 423 (zem) H(2)), Where
when both partlples experience a harmonic potential for thie_| is given by Eq.(2.1). This leads to the expression
transverse confinement. Then we proceed to make a multi-
polar expansion in which the zeroth-order solutioriisthe
case of the electron-hole paitoundon’s anomalous solu- 12 &2
tion. In Sec. 1l we solve the resulting Wannier-Mott exciton e _ 1D

equation, in Sec. IV we explicitly present our results in terms 2pu dZ Ve 2)$(z)=ET4(2), 9
of typical parameters of a semiconductor heterostructure, and

in Sec. V we present a brief analysis of the higher eigenes-

tates and eigenenergies of the system by using the WKBrhere the effective potentiaV o for the one-dimensional
approximation. Finally, Sec. VI is devoted to summarizingproblem is defined as

our work and presenting our results.

Il. EFFECTIVE INTERWIRE INTERACTION . * * *
Ver@= [ axi [ | dyi [ ay,

We will consider the general case of two particles con-
fined to move in a semiconductor heterostructure in such a
way that each particle lies in one of the two parallel and
infinite (or very large quantum wires. We depict this situa-
tion in Fig. 1 for the case of an electron and a hole. If wegpg
neglect all possible variations and defects which could be
present in the quantum wire walls, the Hamiltonian of the
system can be written as (hk)2

ElD:E_Et _Et _ 7
10 20 2M ’

X|o(1)|?#0(2)|2V in(r1—T2)  (2.6)

2.7

H:H]_'i‘ﬂz“l‘\’\/mt, (21)

where I3|V, with »=1 and 2 (we can use in general the
labels 1 and 2 for particlgs; andp,, but later we will study
the particular case of an electron and a hodee defined as

where E is the eigenenergy of the whole system, and
M=m;+m, is the total mass. Notice that,; is simply an
average over the transverse coordinates of both electron and
N S ~ 9 hole, and depends only on the relative coordiratBanyai
Ho= Tt Tyt TuatValX ), 2.2 et al.” established an expression similar\g(z), and ad-
whereT,;, withi=Xx, y, andz, is the kinetic energy and,,  justed it numerically to the trial potenti&,y= 1/(|z|+ y) by
is the transverse confinement potential of each carrier. On thedequately choosing the parametgerAlthough this proce-
other hand, the electric interaction potential is given by  dure provides a global behavior ®(2), it does not take
into account correctly the spatial distributions of the density
U (Fimi) 010,/ € probabilities of both charge carriers in the vicinity of the
inl M= 12)= > > 5 origin; in fact theirV,q; has a discontinuity of its first deriva-
VOa=x)"+ (1= y2) + (1= 22) (2.3 five thatis not shown bW (2) given here.

' In order to use the density probabilities explicitly, we pro-
where € is the appropriate dielectric screening of the semi-ceed to perform a multipolar expansion\éf. At this point
conductor media, and; and g, are the magnitude of the itis necessary to know the transverse confinement explicitly.
charges of particlep; andp,. We shall restrict our model to harmonic potentials mainly for

In order to find one-dimensional eigenfunctions of thetwo reasons: in the first place it could represent either soft or
Hamiltonian given by Eq(2.1), let us assume that the trans- hard confinements, and, second, all the moments of the har-
verse dimensions of the wires are small enough so that themonic oscillator calculated in the ground-state can be ex-
associated ground-state energies are the only relevant levgisessed in terms of the powers of its standard deviation.
for the energy range we consider. We also suppose that thdéowever, our treatment is valid for any transverse confine-
wave function is variable separable; thus it can be written asnent potential whose moment integrals are well defined and

known, and for any pair of particlgs, andp, (although in
U= P2(X1,Y1) ¥3(X2,Y2) Y(Z o) B(2), (2.4 this work we will apply it to the exciton problem, o and
_ p, will be the electron and the hgle
wherez ., andz are the usual mass center and relative co- To find the multipolar expansion it is useful to write the

ordinate deflnedo aSZem= (Omlzl+m222)/(ml+m2) and ground-state joint density probability of the bidimensional
2=2,= 2. Hereyi(xy,y1) $a(X2,y2) andi(zcy) are func-  parmonic oscillator in terms of its standard deviations
tions such that T, + T,y +V,) y9=E,o¢y, (the index 0 de- g, =((x*)?)o and a,=((y"))o, With v=1 and 2 (which
notes a ground-state and (@?%/d zzcm) Y(zem) =[(hK)?/  are inversely proportional to the fourth power of the stiffness
2m]y(z ), k being the wave vector of the pap;—p,  of the harmonic potentiglas follows:




1692 J. A. REYES AND M. del CASTILLO-MUSSOT 57

[0(1,212=[¢o(1)]?| ho(2)|? | (0y1,0%2,0y1,0y,) in terms of thel function, we arrive at

5 ) 5 , the following general expression fify;:
— [y1/(oy1)?] = [X3/(ox1)?]
e 1%y 1

_ TOy10 “ C(041,0%2)D(0y1,0,0) TT(dId?+ 22
’ V=192 2. o2\n+m+172 '
o ya—d)2 212 2 n,m (2n+2m)!(d“+z°)
e~ [y2= )/ (ay2)] = [X5/(042)°] 213
X . (2.8 :

TOTy20x2 where we have seh=k+| and introduced the abbreviations

Hered is the distance between the center of the wires, a€(oy1,0y2) andD(oy;,0y,) defined as
shown in Fig. 1, and the indexes 1 and 2 indicate particles

p; andp,. It is well known that ,(v)|? tends to the Dirac’s .

(—=1)!n!P2y(0)

— Pt i1 H 1
8 function asoy,, a,,—0. Then we can approximate the C(UXI’UXZ)_EO 2 I(n=j=2)I(+2)
electrostatic potential as a Taylor expansion around the _ _
maximum of | 4(1,2)|? with respect to its four transverse X (1) 2" I (ay0), (2.19

variables. This yields
m

o (—-1)'(2m-1/2)!
_ %0 [(0x1,0%1,0y2,0y2) gtk D(Uylvo'yZ):lgo N 2" (m—1—3)

Y, — —
e M itk syl ayhaxkax, o
XTI+ 5) (o)™ (0y2)', (2.19
X[(%1= %)+ (Y1~ Y2)? e .
27— 12 wherel is the gamma function. Note that expansi@il3
(21— 2)7] |Xz:xlzyz:0’y1:d' (2.9 is valid for any values of the length parametersand the

four o’s. However, wherd=0 and all thes’s are nonvan-
ishing, this expansion is just valid fa@> max o}, so that
our procedure cannot describe the eigenfunctions in the spe-

where | (0y1,04,,0y1,0y,) are the moments of the joint
density probability of the ground-state given by

© oo (o (o cial case whem=0.
[(0x1,0%2,0y1,0y2) = J j f dx;dx,dy,dy, For the sake of simplicity we assume in what follows that
CEeTEe e the confinements are chosen in such way that= o, and
| ¢0(1,2)|2yi1(y2—d)ix'§x'2. ay1= 0y, and we keep only the dominant term of the poten-

tial and the first correcting term which takes into account the
(210 finite wire dimensions. This yields

The calculation ofl(oyq,00,0y1,0y7) is straightfor-

4
ward, and we rewrite the multiple partial derivative involved __ 1% _ 3.160, (2.16
in Eq. (2.9 in terms of orthogonal polynomials. By using the N d?| " (Z2+d?)?) '
generating function of the Legendre polynomials, it is easily
shown that Since we are interested in solving the exciton problem, we
setq;0,= —e? from now on. It is important to remark that in
gt ) ) S the casesr,; =0y, and oy;=0,, the bipolar term of this
LX)+ (Y1 Y2) *+ (21-22)*] x —xp-0 expansion vanishes, since it is proportional to the difference
IX19% of thickness of both wirexSrXi 1= 0.2, SO the first nonvanish-
(—D)I(i+])! Pi.;(0) ing correcting term is proportional @ (quadrupolar term
T Ty (2.1 as shown in Eq(2.16. Also, to this order of approximation
[(Y1=y2) "+ (21— 2)7] Vst does not depend o, .
whereP,, are the Legendre polynomialea€0,1,...).Since
P,(0)=0 for oddn, in what follows we set A=i+j. If we lll. 1D SCHRO DINGER EQUATION FOR THE EXCITON

now take the partial derivatives of E(.11) with respect to
y; andy,, and write the resulting expression in terms of the =
Gegenbauer polynomials by means of its generating292~

If we insert Eq.(2.16 into Eq. (2.5 for the case
—e?, and write it in terms of the dimensionless vari-

function® we find that able {=z\-2uEP/%, the effective exciton 1D Scho
dinger equation for the electron-hole relative coordinate
PN (y1—y2) 2+ (2.—2,)%] (20 turns out to be
K oy,
Y19y y;=0,y,=d d?¢ Y [ B
—+ 5 1+ >5|—1]4=0, 3.
Ik dg? \NE+G ()7
(D2 (k+ =120 d
Jm(d2 2 ke | ) where {o=d\—2uE;"lfi, B=—3.08 —2uE} o, /1%,

(2.12) and yE(eZ/eﬁ)\/—Z,u/EnID are dimensionless parameters.

' Note that, as expected, Ed3.1) reduces to the one-
WhereTﬁ+I denotes the Gegenbauer polynomials. By substidimensional Loundon®hydrogen atom whe and ¢, are
tuting Eq. (2.12 into Eq. (2.9 and expressing to be taken to be zero. This limit case is an anomalous one
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since, as Lounddhshowed, it has an infinite ground-state gng suppose thﬁéDmmeV(Which is the typical magnitude
binding energy and exhibits degeneration between odd angrder of the exciton energyto obtain that{,=0.1 and
even states. If we introduce the variables /(% + 502 and  3=0.05, which are indeed small values.

f(u)=¢(u)e", then Eq.(3.1) takes the following form Since 5 and 8 are small quantities we can approximate
5 ) the coefficientsE andF iteratively, by using the recurrence
2 28 7_ﬂf+§2 _att (2 }) df relation ofuL}(u), valid when both¢3 and 8 are zero, so
du? du' 7 u o du? u/du that Eqg.(3.4) can be written as a three-term recurrence rela-

tion. We will not use the same approximation to calculate the
1 coefficientD since Eq.(3.4) would reduce to a two-term

- ( 1+5/11=0. (32 recurrence relation and then the associated eigenenergies

would be the same as the one obtained by Loufdenthis
It is necessary to point out that although E¢&2 and W&y, the three-term recurrence relation has the saraedB

(3.3 have the necessary structures to be treated by the cof©€fficients, but now the third coefficieal’ is given by

ventional time-independent perturbation method, this method

cannot be performed due to the fact that the corresponding ¢/ _ ,2( _5_op_ (y—2n—4)(n+3)(n+5)

unperturbed ground-state eigenenergy and eigenfunction 0 (n+3)(n+4)—§§

({o=pB=0) are anomalous, as mentioned above. The former

f

is infinite, and the latter is the Dirac'’ function® B (y=2n—=6)(y—2n—4)

Notice that Eq.(3.2) can only describe the even eigen- [(n+4)(n+5)—Z2][(n+3)(n+4)— 2]
states of the system, since the variabls an even function
of £, so we have to use another equation for describing the (3.5

odd eigenstates. To this end let us introduce the functiofro establish the equations for determining the eigenenergies,
g=1f(\/{"+ {p)/ ¢, which is itself an odd function of. Thus,  we use each of our three-term recurrence relation to find their

by using the definition ofi, Eq. (3.1) turns out to be associated continued fractidh|eading to the expressions
d’g dg VB B B
u2— —2u(1+u) — +(y—2)ug+ — - ! =0. 3.6
a0 ( qut (v gt 39 A, Ci, (3.9
, A+ cB
d<g 1) dg 1 2b3
2 _ =% il B Apgt —— 23
o du? 2+ U) du <1+ u)gl ? At C3B,4
S Ve
=0. 3.3

The solutions of these transcendental equations provides all
Now, both Egs(3.2) and(3.3) can be solved by using a the eigenenergies of the system.
Frobenius series since, as can be shown directly, their coef-
ficients do not present any fundamental singularity. Then by IV. NUMERICAL RESULTS
expanding both a$ andg as=;C,u" """ (where 5 is an
index whose value is found to be equal to zero to satisfy the For the sake of brevity, let us calculate only the ground-
conditionsf,g—0 as|¢|—=), we can easily show that their StateEg” and first excitecE;” binding energies by expand-

recurrence relations are of the form ing Egs.(3.6) in powers of{% and B around zero to yield
Cp 1A+ CoB +Cpy D'+ Cp B+ C o 5F =0, 0 6%
EgP=— :

34 O [(8\2ued¥e?h) +1.342ulh)¥ 25213
where +=e and o (even and odd, respectivelyand 4.1
A®=(2+n)(n+1)—¢3,  A°=(n+1)(n+4)—73, BS° -
=y—2n, D*°=-[§(2n+5), E®=-(§(n+5)(n-3), o_ pl2 (el eh)
andF®°= 8. Note that the last three of these coefficients are ~1 — 8 b o 1 N 2
proportional to the paramete{,’é and B, which are also pro- 1+ 3 (ude’/eh®)"+ 1_5(M‘Txe leh?)
portional tod and o, the distance between wires and their (4.2
transverse dimensions along thdirection. Furthermore, the
solution of Eq. (3.4 reduces toulL}(u) where L}(u), Note that up to this order of approximation, the expres-

(n=1,2,...) are thessociated Laguerre polynomial when sion for Eg° andE" depend onr, and not oro, . This fact
both gé and 8 are to be taken to be zero. This limit case is reasonable since a larger front afésger o) increases
corresponds to a 1D exciton or hydrogen afbm. the Coulomb interaction between both wires, whereas a
Here, to be consistent with the few-term expansiogf  variation of o, does not significantly change the average
given by Eq.(2.16), we restrict ourselves to take into account distance between the centers of charge of the two particles.
only small values of the length parametégsand 3, which Finally, let us calculate the ground and first excited eigen-
amounts to having small values défando, . Let us numeri- functions¢, and¢,. By inserting the eigenenergi&s° and
cally estimate/, and 3, by takingd=100 A ando=30 A, E}D into the recurrence relation, we find the coefficients of
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In | E:Dl (mev)

w\ . R (,&)

I 20 40 80 100
2 \‘“\\\

FIG. 4. Same as Fig. 2, but for the first excited state with only
one panel.

In Figs. 2 and 3 we plot the absolute values of the ground-
state for various parameters. For instance, dQr=30 A,
w=0.05m, (M, is the electron magse= 12, andd=100 A
(corresponding to the last point in Fig),2we find that
|[E3P|=0.73 meV. This value is larger than the ones ob-
tained for a three-dimensional exciton with the same reduced
= d(A) mass and dielectric screening constant, and smaller than the
10 ones associated with the one-wire exciton for whithO.
These plots show hoWE;P| would take their largest values
_ for d=0 regardless of the values of,. Notice also that
values ofo, . We assume the same confinement for the electron anﬁ;w . ible thaer1D| for small values ofi. since
hole (o,,=0y, and oy;=0y,). In panel(a we plot INE;Y for =0 | is more sensi 1 . L
o,=10 A (solid line), o,=30 A (dotted ling, and or,=45 A it changes by two orders of magnitude from its value at
(discontinuous ling Panel(b) is the same as pané&d), but for a d=100 A. o 1Dl -
minor range ofd in the vicinity of the origin. On the other hand, in Figs. 4 and B; ] is plotted as a
function of o, andd. |E3P| and|E1"| tend to constant values
the Frobenius series dfandg, and then the eigenfunctions as o,—0 by keepingd fixed. The dependence of the
¢o and ¢4. These eigenfunctions, to first nonvanishing ordereigenenergies od is stronger than the dependence @n

0 2 4 6 8

FIG. 2. Ground-state eigenenergies as functiod &dr various

in 5(2) and 8, turn out to be For these eigenenergies increasingalso increases the elec-
trostatic interaction, since there is a larger front surface be-
5 B v tween the wires.
—Qmul 2, 7 7
bo=Se ( 4 viot 10 u)’ 4.3 We plot the normalized probability density of the ground-

states(Figs. 6 and Y and first excited state$-igs. 8 and
5 |#o|? only has a maximum in the origin, and decays expo-
¢$1=95' §e”< —Zvt 197 —) , (4.4 nentially far away from it, and is narrower for smaller values
of d since the interaction is stronger and the charges tend to
where S and S’ are normalization constants such thatbe as close as possible. On the other haugl?> has a node
I~ Sdgzl andf” fdgzl, respectively. in the origin and two equal-distanced maxima around it. For
We have assumed that the screening dielectric constant isstance, for d=100 A those maxima are located at
the same inside and outside the quantum wires. This approxi,= +1.3. These two maxima cause dipolar moments at an

mation is valid when the ratia, /e, is close to 1. Banyal angle 2 =arctan3, as measured relative to the wire direc-
etal.” studied the 1D excitonic ground-state energy andion, which could be observed when the exciton is on its first

eigenfunction for one isolated quantum wire using the valugyyited state. This angle is reduced for smaller values. of
€1 /62: 1.3.

In|E”
InEZ)D[mev) |“1 | (rev)
_____ 10
-1
-2
, N
__________________ ._ o _' x[’x\)
10 20 30 40 50 4
FIG. 3. Ground-state eigenenergies as functioa,ofor various

values ofd. We plot IHEL"| for d=10 A (solid line), d=30 A
(dotted ling@, andd=45 A (discontinuous ling FIG. 5. Same as Fig. 3, but for the first excited state.
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¢'(107/4) ¢:(10°/4 )
0 4 A

2,01 10,

< _/_.‘_ B’ R ;Z(I&}
< . . Ty » z(A) 200 100 0 100 200
1150 4100 50 0 50 100 150

FIG. 8. Same as Fig. 6, but for the first excited state
FIG. 6. Ground-state normalized density for different values of

d and o,=30 A. We plot$3 for d=100 A (solid line), d=50 A
S(¢)= \/

(dotted ling, andd=30 A (discontinuous ling Y 1 B

J’_
VO+GL (P57
ELP are given by the quantization condition

So far the eigenenergies and eigenfunctions were calcu-
lated for only ground and first excited exciton states, the arcoos— 2o /y) m
purpose of this section is to study the higher-energy states of 250( J ol 46 (1o
the exciton within the WKB approximation. In this way we 0 cog 6
intend to present a global view of the system within the 4
limitations imposed by the WKB approximation. Clearly this oy arccos—¢o/y)  df cos 0
overall view is useful from the experimental side in ideal -15 d fo \/W
systems(pure materials, low temperatures, gtfor which 0
many eigenstates could be able to manifest themselves.

We shall describe both eigenfunctigh, and eigenvalues =
ELP of Eg. (3.1) by using the well known WKB
approximatiort? For instance, the evegi,, (n=0,2,4...)

-1. (5.2

V. WKB APPROXIMATION

1

n+§ T, (53)

where {={, tan §, and we have assumed thaj/d is a

are given by small number. Equatiofb.3) can be written in terms of the
first, second, and third class complete elliptic functidhs,
ef\fggrdg’iS(g’)\ K(#n), E(n), andII(yx,%), respectively, in the following
- 1Z1> ¢ way:
s VIS({) 5.1
n cod [¢,.de'S(¢)— wla ' 1 y+&) |1 &o (7+§o Y+
C, g 0eS) ), Z<¢, zm[ H(E’ 2y +[§+7}K 2y 2y
VS(2) .
oy a2 ) = 2 (5.4
with a similar expression involving sine instead of cosine for 2y Iy =42 d =(n+ ). 4
the odd statesp, (n=1,3...)%2 ¢,=\/y>— {2 yields the
return point positionC,, is a normalization constant, aisis Since the WKB approximation is valid for the higher en-
defined by ergy levels, we restrict our analysis to large valuesnof

Now, since a physical acceptable eigenendﬂgﬂ for an
electrostatic system should decreasenaicreases, then

-3
(10" /R)
A
.80t ¢
/’\‘. ../ \
¥ v, ol N
6.0 -t
. \N ol .
. 1 i A
(e \] ! -\
1+ 0 " .
1 h N A
.. I W 4 Y
, /. I A\
< . ~p 7(A) /. ol B
-100 -50 0 50 100 |
. . . «—— + > z(A)
FIG. 7. Ground-state normalized density for different values of 200 1100 0 100 200

o, andd=100 A. We plot¢Z for o,=10 A (solid line), o,=30 A
(dotted ling, ando,=45 A (discontinuous ling FIG. 9. Same as Fig. 7, but for the first excited state
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Lol y=|ELP|, and go(gx/d)4o<,/|EnID| must be small num- the behavior beyond a return point is, as shown in (Bdl),

bers for large values ai. Therefore, decaying one as ekp2{], which implies that the major
probability density is concentrated between the origin and

) the return point.
—a\2yloatimy—4.2,

%)4=(n+ Hr 65

wherea is given by VI. SUMMARY AND CONCLUSIONS
2 In summary, for a particlg, in a quantum wire and an-
a=—[II(3,H- IK(3)+E(})]=4.3. (5.6) other particlep, in another parallel quantum wire, we have
m found multipole analytic expression for the effective 1D
This means thaE.P can be written approximately as P1-P, interaction. We hope that this expansion can be useful
to study other similar problems in semiconductor hetero-
b (2€?/ eay) structures. Here in particular we used this expression for the
E, =~ (5.7 electron-hole interaction. The conditions we assumed were,

- / 172’ ; Ve ass .
[avd/ag+n+3] first, a transverse rectangular cross section with harmonic

wherea)= /% ue? is the 3D Bohr's radius of the exciton potential confinements for both transverse directions, and

which, for typical semiconductors, is of the order of 300 second, that both particles are in the transverse joint ground
times the atomic radiua,. Even forn=3 the ratioZ,/y is a state. Therefore, our multlpole expansion was performed in
small number, so Eq5.7) can be used for smafl. To show ~ Powers of the separation of the wirdsand in power of the

that Eq. (5.7) reduces to Loundon’s expressfofor the  four standard deviations or moment intervalg , 02,01,
eigenenergies whed=0, we recall thatV; diverges at andoy, which are of the order of the dimensions of the wires

£=0 in this limit. Thus, following the same reasoning asWhen the particles are in the transverse ground-states. It is
Loundon, any eigenfunction of E¢8.1) must vanish at =0 important to mention that our model can be applied to any
so that just the odd functions, with n=2j—1 (j=1,2,...) type of transverse confinement potentials whose moment in-
have to be considered and then E§.7) turns out to be (€gral are known.

E[P~ — e%2¢eayj? for odd states, which is the expression In _ord(?r t% o\k;\t/ain a r:/llatively_simplel_dlp Sckglrl;gedr
derived by Loundon for=0. equation for the Wannier-Mott exciton valid for smelllan

On the other hand, if we considde>a, the eigenenergy (assumingo = 041 = 0,), we approximated the particle-
' Qartlcle(or electron-holgpotential by keeping just the domi-
levels (or harmoniclike spectrupplus a constant term. This nant and the first correcting terms of the multipolar potential

constant term represents the electric stored energy of th pansion. Since we could hot use t.he usual pgrturbanon
charge distributions. theory to solve the corresponding Sctlirger equation, we

Equation(5.7) shows, in contrast to the lower eigenenergyhad to resort to a Frobenius series method to find analytical

levels, that the width of the quantum well®WSs), o, do expressions for the lowest eigenenergies and eigenfunctions,
l H X1

not affect the higher eigenenergy levels to this first approxi-WhiCh’ to the order of approximation we employed, obey the

mation order. However, it is possible to perform another it_following behavior:(i) surprisingly, they do not depend on

eration which involvesr, by substituting of Eq(5.7) into gy; (iizjthey deap_endt to first tc;]rder m?rnhd‘fx;tﬁnd("fi) tthe
the last term of the left-hand side of E¢.4) to obtain epenadence od IS stronger than owr. These three teatures
can be explained in terms of how the electrostatic energy of

the charge distributions varies as function of the parameters
1D (2e% eap) 16.8 0 /d)*(e* eaj)¥? of the system, as illustrated in our plots of the eigenenergies
= [av/d/aj+n+ %]2+ [avd/aj+n+ 113 ' and eigenfgnctions using typical va_lues of_ semiconqluctor
(5.8 quantum wires. We a!so calculated higher eigenenergies and
eigenfunctions by using the WKB approach yields and an
which gives a better description for real systems than Eqgeverall view of the solution of the 2QW system. We hope
(5.7). that this work on the calculation of exciton states can stimu-
For completeness, let us briefly discuss the main featureigte further experimental and theoretical work on the study of
of the corresponding eigenfunctions by analyzing the behavheterostructure systems that exhibit spatial separation be-
ior of the probability densitiefp|2. As can be seen from Eq. tween the electron and the hole.
(5.2), for the interval which ranges from one return point
— ¢, to the other return poing, , this consists of an oscilla-
tory square cosine or sine functions, whose number of oscil- ACKNOWLEDGMENTS
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