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Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires
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We analyze a Wannier-Mott exciton in which the electron and hole are constrained to move in two separated
and parallel quantum wires. We expand the electron-hole interaction potential in terms of multipoles by
assuming that both the electron and hole experience transverse harmonic confinements in thex and y direc-
tions, both being in their respective transverse ground states. For the resultingz-dependent Schro¨dinger equa-
tion, we calculate in detail eigenenergies and eigenfunctions for the exciton ground and first excited states as
functions of the transverse dimension of the wires and their separation distance. Also, we calculate the higher
eigenenergies and eigenfunctions approximately by using a WKB formalism.@S0163-1829~97!04048-4#
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I. INTRODUCTION

The electronic properties of highly inhomogeneous s
tems such as confined systems have received much atte
due, among other reasons, to the possibility of growing hi
quality nanostructures with prescribed configurations, allo
ing the control of physical properties such as carrier de
ties, band gaps and bandwidths, and even dimensionalit
the case of quasi-one-dimensional systems or quantum w
the Fermi energy is comparable to the interlevel energy se
ration associated with the strong transverse configuration
strictly one dimensional (1D! systems, the carrier density
such that only the levels associated with the ground-s
energy of the transverse confinement are occupied. For
perimental and theoretical reviews on these systems,
Refs. 1 and 2, respectively.

The purpose of this paper is to present model calculati
of large excitons in a structure consisting of two para
strictly 1D quantum wires, with the electron being confin
in one wire and the hole being confined in another para
wire ~see Fig. 1!. We shall calculate the eigenenergies a
eigenfunctions as a function of the distance that separ
both wires. Here we do not address the issue of how this k
of system could be induced, but in analogy to 2D cases
think of different ways of favoring such an arrangement:~i!
etching a 2D double quantum well to make it 1D;~ii ! plac-
ing a quantum wire in the neighborhood of the interface
two media to produce electrostatic image forces; and~iii !
applying an electric field to increase tunneling and th
physical separation between electron and holes.

Some studies of 2D systems with spatial separation
tween the electron and holes were reported in the follow
papers. Beresfordet al.3 studied type-II heterojunction
based upon materials such as InAs and GaSb, where ne
boring layers of electrons and holes were produced. Br
and Ferrara4 calculated the ground exciton state of the GaS
InAs-GaSb heterostructure, in which electrons and holes
present in spatially separated regions. The dielectric func
and collective modes of 2D interacting bosons~excitons!
were theoretically investigated by Kachintev and Ulloa.5 On
570163-1829/98/57~3!/1690~8!/$15.00
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the other hand, there is a related relevant theoretical wor
three dimensions on layer structures, and near an interfac
two media for small and large electron-hole separation.6

In the pioneering theoretical work of Loundon8 on a 1D
hydrogen atom, anomalous behaviors of both eigenfuncti
and eigenenergies were found due to a nonphysical e
tronic distribution, since the transverse dimensions of
wire were neglected. Later Banyaiet al.7 took into account
the finite width of the wire, and made use of parametriz

FIG. 1. Diagram of a section of the system formed by tw
infinite parallel quantum wires where their centers are separate
distanced. Both electrone and holeh experience transverse ha
monic potential confinements in thex andy directions~of which we
only show schematically the potential iny). The dimensions of the
wires are given in terms of standard deviationssxn andsyn (n51
and 2) of both electron and hole as defined in the text. These
stants are inversely proportional to the stiffness of the harmo
potential.
1690 © 1998 The American Physical Society
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57 1691WANNIER-MOTT EXCITON FORMED BY ELECTRON AND . . .
trial electron-hole potential to adjust the effective poten
numerically.

This paper is structured as follows; in Sec. II we deri
the effective 1D interaction potential between two particl
when each one is in one of the parallel quantum wires
when both particles experience a harmonic potential for
transverse confinement. Then we proceed to make a m
polar expansion in which the zeroth-order solution is~in the
case of the electron-hole pair! Loundon’s anomalous solu
tion. In Sec. III we solve the resulting Wannier-Mott excito
equation, in Sec. IV we explicitly present our results in ter
of typical parameters of a semiconductor heterostructure,
in Sec. V we present a brief analysis of the higher eigen
tates and eigenenergies of the system by using the W
approximation. Finally, Sec. VI is devoted to summarizi
our work and presenting our results.

II. EFFECTIVE INTERWIRE INTERACTION

We will consider the general case of two particles co
fined to move in a semiconductor heterostructure in suc
way that each particle lies in one of the two parallel a
infinite ~or very large! quantum wires. We depict this situa
tion in Fig. 1 for the case of an electron and a hole. If
neglect all possible variations and defects which could
present in the quantum wire walls, the Hamiltonian of t
system can be written as

Ĥ5Ĥ11Ĥ21V̂ int , ~2.1!

where Ĥn , with n51 and 2 ~we can use in general th
labels 1 and 2 for particlesp1 andp2, but later we will study
the particular case of an electron and a hole!, are defined as

Ĥn5T̂nx1T̂ny1T̂nz1V̂n~xn ,yn!, ~2.2!

whereTn i , with i 5x, y, andz, is the kinetic energy andVn

is the transverse confinement potential of each carrier. On
other hand, the electric interaction potential is given by

V̂ int~rW12rW2!5
q1q2 /e

A~x12x2!21~y12y2!21~z12z2!2
,

~2.3!

wheree is the appropriate dielectric screening of the sem
conductor media, andq1 and q2 are the magnitude of the
charges of particlesp1 andp2.

In order to find one-dimensional eigenfunctions of t
Hamiltonian given by Eq.~2.1!, let us assume that the tran
verse dimensions of the wires are small enough so that t
associated ground-state energies are the only relevant le
for the energy range we consider. We also suppose tha
wave function is variable separable; thus it can be written

c5c1
0~x1 ,y1!c2

0~x2 ,y2!c~z cm!f~z!, ~2.4!

wherez cm and z are the usual mass center and relative
ordinate defined asz cm5(m1z11m2z2)/(m11m2) and
z5z12z2. Herec1

0(x1 ,y1) c2
0(x2 ,y2) andc(z cm) are func-

tions such that (T̂nx1T̂ny1V̂n)cn
05En0

t cn
0 , ~the index 0 de-

notes a ground-state! and (d2/dzcm
2 )c(zcm)5@(\k)2/

2m#c(z cm), k being the wave vector of the pairp12p2
l

,
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~which is the exciton wave vector for the electron-hole pa!
in the z direction, m5m1m2 /(m11m2) its reduced mass
andf(z) the wave function part associated with the relati
coordinate. In the same way as Banyaiet al.7 did, we calcu-
late the bracket̂ c1

0c2
0c(zcm)uĤuc1

0c2
0c(zcm)f(z)&, where

Ĥ is given by Eq.~2.1!. This leads to the expression

2
\2

2m

d2f

dz2
1V eff~z!f~z!5E1Df~z!, ~2.5!

where the effective potentialV eff for the one-dimensiona
problem is defined as

V eff~z!5E
2`

`

dx1E
2`

`

dx2E
2`

`

dy1E
2`

`

dy2

3uc0~1!u2uc0~2!u2V̂ int~rW12rW2! ~2.6!

and

E1D5E2E10
t 2E20

t 2
~\k!2

2M
, ~2.7!

where E is the eigenenergy of the whole system, a
M5m11m2 is the total mass. Notice thatVeff is simply an
average over the transverse coordinates of both electron
hole, and depends only on the relative coordinatez. Banyai
et al.7 established an expression similar toVeff(z), and ad-
justed it numerically to the trial potentialVadj51/(uzu1g) by
adequately choosing the parameterg. Although this proce-
dure provides a global behavior ofVeff(z), it does not take
into account correctly the spatial distributions of the dens
probabilities of both charge carriers in the vicinity of th
origin; in fact theirVadj has a discontinuity of its first deriva
tive that is not shown byVeff(z) given here.

In order to use the density probabilities explicitly, we pr
ceed to perform a multipolar expansion ofVeff . At this point
it is necessary to know the transverse confinement explic
We shall restrict our model to harmonic potentials mainly
two reasons: in the first place it could represent either sof
hard confinements, and, second, all the moments of the
monic oscillator calculated in the ground-state can be
pressed in terms of the powers of its standard deviat
However, our treatment is valid for any transverse confi
ment potential whose moment integrals are well defined
known, and for any pair of particlesp1 andp2 ~although in
this work we will apply it to the exciton problem, sop1 and
p2 will be the electron and the hole!.

To find the multipolar expansion it is useful to write th
ground-state joint density probability of the bidimension
harmonic oscillator in terms of its standard deviatio
sxn5^(xn)2&0 andsyn5^(yn)2&0 , with n51 and 2~which
are inversely proportional to the fourth power of the stiffne
of the harmonic potential!, as follows:
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uc0~1,2!u25uc0~1!u2uc0~2!u2

5
e2 @y1

2/~sy1!2# 2 @x1
2/~sx1!2#

psy1sx1

3
e2 @~y22d!2/~sy2!2# 2 @x2

2/~sx2!2#

psy2sx2
. ~2.8!

Here d is the distance between the center of the wires,
shown in Fig. 1, and the indexes 1 and 2 indicate partic
p1 andp2. It is well known thatuc0(n)u2 tends to the Dirac’s
d function assxn , syn→0. Then we can approximate th
electrostatic potential as a Taylor expansion around
maximum of uc0(1,2)u2 with respect to its four transvers
variables. This yields

V eff5
q1q2

e (
i jkl

I ~sx1 ,sx1 ,sy2 ,sy2!

~ i 1 j 1k1 l !!

] i 1 j 1k1 l

]y1
i ]y2

j ]x1
k]x2

l

3@~x12x2!21~y12y2!2

1~z12z2!2#21/2ux25x15y250,y15d , ~2.9!

where I (sx1 ,sx2 ,sy1 ,sy2) are the moments of the join
density probability of the ground-state given by

I ~sx1 ,sx2 ,sy1 ,sy2!5E
2`

` E
2`

` E
2`

` E
2`

`

dx1dx2dy1dy2

3uc0~1,2!u2y1
i ~y22d! j x1

kx2
l .

~2.10!

The calculation of I (sx1 ,sx2 ,sy1 ,sy2) is straightfor-
ward, and we rewrite the multiple partial derivative involve
in Eq. ~2.9! in terms of orthogonal polynomials. By using th
generating function of the Legendre polynomials, it is eas
shown that9

] i 1 j

]x1
i ]x2

j
@~x12x2!21~y12y2!21~z12z2!2#21/2ux15x250

5
~21! j~ i 1 j !! Pi 1 j~0!

@~y12y2!21~z12z2!2#~11 i 1 j !/2
, ~2.11!

wherePn are the Legendre polynomials (n50,1, . . . ).Since
Pn(0)50 for oddn, in what follows we set 2n5 i 1 j . If we
now take the partial derivatives of Eq.~2.11! with respect to
y1 andy2, and write the resulting expression in terms of t
Gegenbauer polynomials by means of its genera
function,10 we find that

]k1 l@~y12y2!21~z12z2!2#2~1/2!2n

]y1
k]y2

l U
y150, y25d

5
~21! l2k1 l~k1 l 21/2!!

Ap~d21z2!n1 @~11k1 l !/2#
Tn

k1 lS d

Ad21z2D ,

~2.12!

whereTn
k1 l denotes the Gegenbauer polynomials. By sub

tuting Eq. ~2.12! into Eq. ~2.9! and expressing
s
s

e

y

g

i-

I (sx1 ,sx2 ,sy1 ,sy2) in terms of theG function, we arrive at
the following general expression forVeff :

V eff5q1q2(
n,m

` C~sx1 ,sx2!D~sy1 ,sy2!Tn
m~d/Ad21z2!

~2n12m!! ~d21z2!n1m11/2
,

~2.13!

where we have setm5k1 l and introduced the abbreviation
C(sx1 ,sx2) andD(sy1 ,sy2) defined as

C~sx1 ,sx2!5(
j 50

n
~21! jn! P2n~0!

p2
G~n2 j 2 1

2 !G~ j 1 1
2 !

3~sy1!2n2 j~sy2! j , ~2.14!

D~sy1 ,sy2!5(
l 50

m
~21! l~2m21/2!!

Ap
2mG~m2 l 2 1

2 !

3G~ l 1 1
2 !~sx1!2m2 l~sx2! l , ~2.15!

whereG is the gamma function. Note that expansion~2.13!
is valid for any values of the length parametersd and the
four s ’s. However, whend50 and all thes ’s are nonvan-
ishing, this expansion is just valid forz. max$s%, so that
our procedure cannot describe the eigenfunctions in the
cial case whend50.

For the sake of simplicity we assume in what follows th
the confinements are chosen in such way thatsx15sx2 and
sy15sy2, and we keep only the dominant term of the pote
tial and the first correcting term which takes into account
finite wire dimensions. This yields

Veff5
q1q2

eAz21d2F12
3.16sx

4

~z21d2!2G . ~2.16!

Since we are interested in solving the exciton problem,
setq1q252e2 from now on. It is important to remark that in
the casessx15sx2 and sy15sy2, the bipolar term of this
expansion vanishes, since it is proportional to the differe
of thickness of both wiressxi1

5sxi2
, so the first nonvanish-

ing correcting term is proportional tosx
4 ~quadrupolar term!,

as shown in Eq.~2.16!. Also, to this order of approximation
Veff does not depend onsy .

III. 1D SCHRÖ DINGER EQUATION FOR THE EXCITON

If we insert Eq. ~2.16! into Eq. ~2.5! for the case
q1q252e2, and write it in terms of the dimensionless var
able z[zA22mEn

1D/\, the effective exciton 1D Schro¨-
dinger equation for the electron-hole relative coordin
turns out to be

d2f

dz2
1S g

Az21z0
2F11

b

~z21z0
2!2G21D f50, ~3.1!

where z0[dA22mEn
1D/\, b[23.06@22mEn

1Dsx2 /\2#2,
and g[(e2/e\)A22m/En

1D are dimensionless parameter
Note that, as expected, Eq.~3.1! reduces to the one
dimensional Loundon’s8 hydrogen atom whenb andz0 are
to be taken to be zero. This limit case is an anomalous
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since, as Loundon8 showed, it has an infinite ground-sta
binding energy and exhibits degeneration between odd
even states. If we introduce the variablesu[Az21z0

2 and
f (u)[f(u)eu, then Eq.~3.1! takes the following form

u2
d2f

du2
22u2

d f

du
1gu f1

gb f

u3
1z0

2F2
d2f

du2
1S 21

1

uD d f

du

2S 11
1

uD f G50. ~3.2!

It is necessary to point out that although Eqs.~3.2! and
~3.3! have the necessary structures to be treated by the
ventional time-independent perturbation method, this met
cannot be performed due to the fact that the correspon
unperturbed ground-state eigenenergy and eigenfunc
(z05b50) are anomalous, as mentioned above. The for
is infinite, and the latter is the Dirac’sd function.8

Notice that Eq.~3.2! can only describe the even eige
states of the system, since the variableu is an even function
of z, so we have to use another equation for describing
odd eigenstates. To this end let us introduce the func
g[ f (Az21z0

2)/z, which is itself an odd function ofz. Thus,
by using the definition ofu, Eq. ~3.1! turns out to be

u2
d2g

du2
22u~11u!

dg

du
1~g22!ug1

gb

u3
g

1z0
2F2

d2g

du2
1S 21

1

uD dg

du
2S 11

1

uD gG
50. ~3.3!

Now, both Eqs.~3.2! and ~3.3! can be solved by using
Frobenius series since, as can be shown directly, their c
ficients do not present any fundamental singularity. Then
expanding both asf and g as (0

`Cnu2n2h ~whereh is an
index whose value is found to be equal to zero to satisfy
conditionsf ,g→0 asuzu→`), we can easily show that the
recurrence relations are of the form

Cn21Ai1CnBi1Cn11D i1Cn12Ei1Cn13F i50,
~3.4!

where i5e and o ~even and odd, respectively! and
Ae5(21n)(n11)2z0

2, Ao5(n11)(n14)2z0
2, Be,o

5g22n, De,o52z0
2(2n15), Ee,052z0

2(n15)(n23),
andFe,o5b. Note that the last three of these coefficients
proportional to the parametersz0

2 andb, which are also pro-
portional tod andsx , the distance between wires and the
transverse dimensions along thex direction. Furthermore, the
solution of Eq. ~3.4! reduces touLn

1(u) where Ln
1(u),

(n51,2, . . . ) are theassociated Laguerre polynomial whe
both z0

2 and b are to be taken to be zero. This limit ca
corresponds to a 1D exciton or hydrogen atom.8

Here, to be consistent with the few-term expansion ofVeff
given by Eq.~2.16!, we restrict ourselves to take into accou
only small values of the length parametersz0 andb, which
amounts to having small values ofd andsx . Let us numeri-
cally estimatez0 andb, by takingd5100 Å ands530 Å,
nd

n-
d
g

on
er

e
n

f-
y

e

e

t

and suppose thatE0
1D'meV~which is the typical magnitude

order of the exciton energy! to obtain thatz050.1 and
b50.05, which are indeed small values.

Sincez0
2 and b are small quantities we can approxima

the coefficientsE andF iteratively, by using the recurrenc
relation of uLn

1(u), valid when bothz0
2 and b are zero, so

that Eq.~3.4! can be written as a three-term recurrence re
tion. We will not use the same approximation to calculate
coefficient D since Eq.~3.4! would reduce to a two-term
recurrence relation and then the associated eigenene
would be the same as the one obtained by Loundon.8 In this
way, the three-term recurrence relation has the sameA andB
coefficients, but now the third coefficientC8 is given by

C85z0
2S 2522n2

~g22n24!~n13!~n15!

~n13!~n14!2z0
2 D

1b
~g22n26!~g22n24!

@~n14!~n15!2z0
2#@~n13!~n14!2z0

2#
.

~3.5!

To establish the equations for determining the eigenenerg
we use each of our three-term recurrence relation to find t
associated continued fraction,11 leading to the expressions

B0

A0
2

B1

A11
C18B2

A21
C28B3

A31
C38B4

A41•••

50. ~3.6!

The solutions of these transcendental equations provide
the eigenenergies of the system.

IV. NUMERICAL RESULTS

For the sake of brevity, let us calculate only the groun
stateE0

1D and first excitedE1
1D binding energies by expand

ing Eqs.~3.6! in powers ofz0
2 andb around zero to yield

E0
1D52

62/3

@~8A2med2/e2\! 11.34~2m/\!3/2sx
2#2/3

,

~4.1!

E1
1D52

m/2 ~e2/e\!2

H 11
8

3 F ~mde2/eh2!21
1

15
~msxe

2/e\2!4G J 2 .

~4.2!

Note that up to this order of approximation, the expre
sion forE0

1D andE1
1D depend onsx and not onsy . This fact

is reasonable since a larger front area~larger sx) increases
the Coulomb interaction between both wires, wherea
variation of sy does not significantly change the avera
distance between the centers of charge of the two partic

Finally, let us calculate the ground and first excited eige
functionsf0 andf1. By inserting the eigenenergiesE0

1D and
E1

1D into the recurrence relation, we find the coefficients
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the Frobenius series off andg, and then the eigenfunction
f0 andf1. These eigenfunctions, to first nonvanishing ord
in z0

2 andb, turn out to be

f05Se2uS 2
5

4
gz0

21
b

10
2

g

uD , ~4.3!

f15S8ze2uS 2
5

4
gz0

21
b

10
2

g

uD , ~4.4!

where S and S8 are normalization constants such th
*2`

` f0
2dz51 and*2`

` f1
2dz51, respectively.

We have assumed that the screening dielectric consta
the same inside and outside the quantum wires. This appr
mation is valid when the ratioe1 /e2 is close to 1. Banyai
et al.7 studied the 1D excitonic ground-state energy a
eigenfunction for one isolated quantum wire using the va
e1 /e251.3.

FIG. 2. Ground-state eigenenergies as function ofd for various
values ofsx . We assume the same confinement for the electron
hole (sx15sx2 and sy15sy2). In panel ~a! we plot lnuE0

1Du for
sx510 Å ~solid line!, sx530 Å ~dotted line!, and sx545 Å
~discontinuous line!. Panel~b! is the same as panel~a!, but for a
minor range ofd in the vicinity of the origin.

FIG. 3. Ground-state eigenenergies as function ofsx for various
values ofd. We plot lnuE0

1Du for d510 Å ~solid line!, d530 Å
~dotted line!, andd545 Å ~discontinuous line!.
r

t

is
xi-

d
e

In Figs. 2 and 3 we plot the absolute values of the grou
state for various parameters. For instance, forsx530 Å,
m50.05me (me is the electron mass!, e512, andd5100 Å
~corresponding to the last point in Fig. 2!, we find that
uE0

1Du50.73 meV. This value is larger than the ones o
tained for a three-dimensional exciton with the same redu
mass and dielectric screening constant, and smaller than
ones associated with the one-wire exciton for whichd50.
These plots show howuE0

1Du would take their largest value
for d50 regardless of the values ofsx . Notice also that
uE0

1Du is more sensible thanuE1
1Du for small values ofd, since

it changes by two orders of magnitude from its value
d5100 Å.

On the other hand, in Figs. 4 and 5uE1
1Du is plotted as a

function ofsx andd. uE0
1Du anduE1

1Du tend to constant value
as sx→0 by keeping d fixed. The dependence of th
eigenenergies ond is stronger than the dependence onsx .
For these eigenenergies increasingsx also increases the elec
trostatic interaction, since there is a larger front surface
tween the wires.

We plot the normalized probability density of the groun
states~Figs. 6 and 7! and first excited states~Figs. 8 and 9!.
uf0u2 only has a maximum in the origin, and decays exp
nentially far away from it, and is narrower for smaller valu
of d since the interaction is stronger and the charges ten
be as close as possible. On the other hand,uf1u2 has a node
in the origin and two equal-distanced maxima around it. F
instance, for d5100 Å those maxima are located
z0561.3. These two maxima cause dipolar moments at

angle/5arctan 1
2, as measured relative to the wire dire

tion, which could be observed when the exciton is on its fi
excited state. This angle is reduced for smaller values ofd.

d

FIG. 4. Same as Fig. 2, but for the first excited state with o
one panel.

FIG. 5. Same as Fig. 3, but for the first excited state.
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V. WKB APPROXIMATION

So far the eigenenergies and eigenfunctions were ca
lated for only ground and first excited exciton states,
purpose of this section is to study the higher-energy state
the exciton within the WKB approximation. In this way w
intend to present a global view of the system within t
limitations imposed by the WKB approximation. Clearly th
overall view is useful from the experimental side in ide
systems~pure materials, low temperatures, etc.! for which
many eigenstates could be able to manifest themselves.

We shall describe both eigenfunctionfn and eigenvalues
En

1D of Eq. ~3.1! by using the well known WKB
approximation.12 For instance, the evenfn , (n50,2,4, . . . )
are given by
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with a similar expression involving sine instead of cosine
the odd statesfn (n51,3 . . . ).12 z r5Ag22z0

2 yields the
return point position,Cn is a normalization constant, andS is
defined by

FIG. 7. Ground-state normalized density for different values
sx andd5100 Å. We plotf0

2 for sx510 Å ~solid line!, sx530 Å
~dotted line!, andsx545 Å ~discontinuous line!.

FIG. 6. Ground-state normalized density for different values
d and sx530 Å. We plotf0

2 for d5100 Å ~solid line!, d550 Å
~dotted line!, andd530 Å ~discontinuous line!.
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En
1D are given by the quantization condition
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where z5z0 tan u, and we have assumed thatsx /d is a
small number. Equation~5.3! can be written in terms of the
first, second, and third class complete elliptic functions10

K(h), E(h), and P(x,h), respectively, in the following
way:
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Since the WKB approximation is valid for the higher e
ergy levels, we restrict our analysis to large values ofn.
Now, since a physical acceptable eigenenergyuEn

1Du for an
electrostatic system should decrease asn increases, then

f

FIG. 8. Same as Fig. 6, but for the first excited statef1.

FIG. 9. Same as Fig. 7, but for the first excited statef1.
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z0 /g }uEn
1Du, and z0(sx /d)4}AuEn

1Du must be small num-
bers for large values ofn. Therefore,

2pA2gz0a1 ipg24.2z0S sx

d D 4

5~ n1 1
2 !p ~5.5!

wherea is given by
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This means thatEn
1D can be written approximately as

En
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2 #2

, ~5.7!

wherea085 e\2/me2 is the 3D Bohr’s radius of the excito
which, for typical semiconductors, is of the order of 3
times the atomic radiusa0. Even forn53 the ratioz0 /g is a
small number, so Eq.~5.7! can be used for smalln. To show
that Eq. ~5.7! reduces to Loundon’s expression8 for the
eigenenergies whend50, we recall thatVeff diverges at
z50 in this limit. Thus, following the same reasoning
Loundon, any eigenfunction of Eq.~3.1! must vanish atz50
so that just the odd functionsfn with n52 j 21 ( j 51,2, . . . )
have to be considered and then Eq.~5.7! turns out to be
Ej

1D'2 e2/2ea08 j 2 for odd states, which is the expressi
derived by Loundon ford50.

On the other hand, if we considerd@a0 the eigenenergy
spectrum can be approximated as a set of equally sepa
levels~or harmoniclike spectrum! plus a constant term. Thi
constant term represents the electric stored energy of
charge distributions.

Equation~5.7! shows, in contrast to the lower eigenener
levels, that the width of the quantum wells~QWs!, sx , do
not affect the higher eigenenergy levels to this first appro
mation order. However, it is possible to perform another
eration which involvessx by substituting of Eq.~5.7! into
the last term of the left-hand side of Eq.~5.4! to obtain
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~5.8!

which gives a better description for real systems than
~5.7!.

For completeness, let us briefly discuss the main feat
of the corresponding eigenfunctions by analyzing the beh
ior of the probability densitiesufun

2 . As can be seen from Eq
~5.1!, for the interval which ranges from one return po
2z r to the other return pointz r , this consists of an oscilla
tory square cosine or sine functions, whose number of o
lation in this interval is determined by the principal quantu
numbern. These trigonometric function are modulated
the envelope 1/AS which, as usually found in the WKB ap
proximation, diverges as 1/Az at the return points. Finally
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the behavior beyond a return point is, as shown in Eq.~5.1!,
decaying one as exp@22z#, which implies that the major
probability density is concentrated between the origin a
the return point.

VI. SUMMARY AND CONCLUSIONS

In summary, for a particlep1 in a quantum wire and an-
other particlep2 in another parallel quantum wire, we hav
found multipole analytic expression for the effective 1
p1-p2 interaction. We hope that this expansion can be use
to study other similar problems in semiconductor hete
structures. Here in particular we used this expression for
electron-hole interaction. The conditions we assumed we
first, a transverse rectangular cross section with harmo
potential confinements for both transverse directions, a
second, that both particles are in the transverse joint gro
state. Therefore, our multipole expansion was performed
powers of the separation of the wiresd and in power of the
four standard deviations or moment intervalssx1 ,sx2 ,sy1 ,
andsy2 which are of the order of the dimensions of the wir
when the particles are in the transverse ground-states.
important to mention that our model can be applied to a
type of transverse confinement potentials whose moment
tegral are known.

In order to obtain a relatively simple 1D Schro¨dinger
equation for the Wannier-Mott exciton valid for smalld and
sx ~assumings5sx15sx2), we approximated the particle
particle~or electron-hole! potential by keeping just the domi
nant and the first correcting terms of the multipolar potent
expansion. Since we could not use the usual perturba
theory to solve the corresponding Schro¨dinger equation, we
had to resort to a Frobenius series method to find analyt
expressions for the lowest eigenenergies and eigenfuncti
which, to the order of approximation we employed, obey t
following behavior:~i! surprisingly, they do not depend o
sy ; ~ii ! they depend to first order ond andsx ; and~iii ! the
dependence ond is stronger than ons. These three features
can be explained in terms of how the electrostatic energy
the charge distributions varies as function of the parame
of the system, as illustrated in our plots of the eigenenerg
and eigenfunctions using typical values of semiconduc
quantum wires. We also calculated higher eigenenergies
eigenfunctions by using the WKB approach yields and
overall view of the solution of the 2QW system. We hop
that this work on the calculation of exciton states can stim
late further experimental and theoretical work on the study
heterostructure systems that exhibit spatial separation
tween the electron and the hole.
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