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Density modulation and electrostatic self-consistency in a two-dimensional electron gas
subject to a periodic quantizing magnetic field
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We calculate the single-particle states of a two-dimensional electro(2GdsG) in a perpendicular quan-
tizing magnetic field, which is periodic in one direction of the electron layer. We discuss the modulation of the
electron density in this system and compare it with that of a 2DEG in a periodic electrostatic potential. We take
account of the induced potential within the Hartree approximation, and calculate self-consistently the density
fluctuations and effective energy bands. The electrostatic effects on the spectrum depend strongly on the
temperature and on the ratio between the cyclotron ragliuend the length scale;, of the density variations.
We find thata;, can be equal to the modulation periadbut also much smaller. F&t.~a, the spectrum in
the vicinity of the chemical potential remains essentially the same as in the noninteracting system, while for
R.<a;, it may be drastically changed by the Hartree potential: For noninteger filling factors the energy
dispersion is reduced, like in the case of an electrostatic modulation, whereas for even-integer filling factors, on
the contrary, the dispersion may be amplifiE80163-182¢28)02903-§

[. INTRODUCTION a description in terms of Landau levels is adequate; we de-
note byl = V#/eBy and bywy=eBy/m the magnetic length
The interest in nonuniform magnetic fields, with spatialand the cyclotron frequency associated with the uniform field
variations on a nanometer scale, has been stimulated by seB;. For a fixed mean electron densipy, the number of
eral recent experimental realizations, like magnetic quanturielevant Landau levels is of the order of the filling factor
wells' or magnetic superlatticés? In the quasiclassical re- = (2712)p, and thus inversely proportional to the average
gime of low magnetic fields, the theoretical investigationsmagnetic field.
have concentrated on the commensurability oscillations of \we first note that classically a magnetic field — modu-
the resistivity)™® which are equivalent to the Weiss |ated or not — has no influence in thermodynamic equilib-
oscillations®**that occur in the presence of a periodic elec-rium because it drops out of the integral over momenta in the
trostatic potential. partition function (Bohr—van Leeuwen theoréfi. Espe-
The quantum regime of nonuniform magnetic fields withcially a magnetic modulation does not lead to a position
a strong variation of the ordeff & T within a distance of a dependence of the electron energy, which remaies/2,
few hundred nanometers is now experimentally acces¥ible. and does not affect the equilibrium electron density. In con-
For this regime single-particle quantum mechanical calculatrast one expectge.g., from Thomas-Fermi theorythat
tions, concerning the tunneling through magnetic barriers omodulation by an electrostatic potential should lead also to a
the bound states in magnetic wells, have recently been pemodulation of the densityp(X) = —[Vex{X)/ u1po, Whereu
formed by Peeters, Matulis, and Vasilopoutdd? Coulomb is the chemical potential. In the classical limit, i.e., for low
interaction effects have been discussed by Wu and Yloa average magnetic field withwy,<kgT, the density response
who studied the electron-density distribution and the collecof the 2DEG to electrostatic and to magnetic modulations is
tive excitations in a magnetic superlattice with a short pethus very different. A pure magnetic modulation classically
riod, comparable to the average magnetic length. They foun€l0€s not give rise to electrostatic effects, whereas an external
that the periodic magnetic field gives rise to an electron-€lectrostatic potential is screened by the induced Hartree po-
density modulation, which is reduced due to the counteracttential.
ing induced electric field. However, in the quantum regime of low filling factors the
In the present paper, we consider a two-dimensional eledwo types of modulation affect the density in a very similar
tron gas(2DEG) in a perpendicular magnetic field of the manner: Both lift the degeneracy of the Landau levels and
form B=B,+ B,,q Where B, is a homogeneous part and lead to dispersive bands. The homogeneous Bgrof the
Bimod iS, in the plane of the 2DEG, periodic in one direction magnetic field restricts the spatial extent of the relevant wave
with zero average. We describe in detail the charge-densitfynctions to the order of the cyclotron radiug.
response to the periodic part and the effects of the associatedll ovV2ng+ 1 whereng is the index of the Landau level at
electrostatic potential. It will be very instructive to comparethe chemical potentialthat is ng is the largest integer
this situation with the modulation by a unidirectional peri- smaller tharw/gs; we assume spin degeneragy=2 in this
odic electrostatic potentia¥,,(x) (we include the charge work). If ng is small, the modulation is typically slowly
—e in the definition of the electrostatic potentials, which are,varying on the scaldk, and we can represent the Landau
therefore, rather potential energie¥he homogeneous part levels as functiong,(x), varying on the same length scale as
of the magnetic field is assumed to be strong enough so th#te modulation. The width €, of these bands is of the order
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of AeAB/m or AV, whereAB andAV stand for the ampli-
tude of the modulation of magnetic field and electrostatic
potential, respectively. In this situation we expect that the . o
density is determined by a “local” filling factorn(x)  With L, being a normalization length arky the center co-
=03, f[€,(x)], wheref(€) denotes the Fermi function. For ordinate. The functlonabnxo(x) are the eigenvectors of the
temperatures satisfyingsT<<Ae,, this must lead to a den- one-dimensional Hamiltonian

sity modulation of orderdy/27l 3) for both electric and mag-

Yox (0 Y) =Ly Yo X Mag . (%), @

netic modulations. 12 g2 1 s 2
. . s . 0 _ 0 .
For an electric modulation it is known that, due to this = H%(Xg)=fiwg| — 5 —+ —z(x—xo+ — sin Kx) :
strong effect of the Landau-level dispersion on the density, 2.dx? 215 K

the inclusion of the Coulomb interaction in the Hartree ap- (©))
proximation (which we will refer to as the electrostatically

self-consistent systenchanges drastically the spectrum of where s=B;/By will be referred to as the modulation
the system for low filling factors. Wulf, Gudmundsson, andstrength.

GerhardtY’ found that, for filling factors not too close to an ~ For the homogeneous systens=0, the functions
even-integer value, the self-consistent result corresponds todnx(X) are oscillator wave functions centered Xg, also

nearly perfect screening of the modulating external potentiaknown as Landau wave functiOﬁxoy associated with the

and the Landau bands are flat within the ordekgf. If for _ 1
even-integer filling factor the chemical potential lies in aQegenerate Landau levels=(n+ 3)#wo. The degeneracy

gap, the screening is much weaker although still consider™ lifted for s#0, and the resulting energy banég(Xo),

able. For potentials strong enough to yield overlappin together with the corresponding wave functions, can be ob-

bands|A e, >% w, the screening around even-integer fillin Hained by diagonalizing the reduced Hamiltonig in the

g . . .
factors becomes nonlinear, featuring two bands touching th%:s\::ﬂz;t:zls_andau wave functions. The matrix elements can

Fermi level, and the width of the bamg therefore locked to
fLwo.

The width of the Landau band at the Fermi level, how- (gthO|H°(XO)|got,Xo>
ever, is the basic element for understanding transport

measurements'*®and a major aim of this work is to inves- ) s :
tigate its behavior for a magnetic modulation when electro- = #@0] (N+32) dnn+ 5o [Enn (2) + VAN'En- 1 -1(2)
static self-consistency is properly accounted for.

The paper is organized as follows. In Sec. Il we describe D+ N
our model and the self-consistency problem in detail. In Sec. —N(N+1)(n"+1DEpi1r41(2)]C08 KXo+ (n—n )E
], (4)

[l we treat the case of low filling factors, corresponding to a )
magnetic modulation varying slowly on the length sdaje N s
In Sec. IV we discuss the regime of lower average magnetic 8z
fields, where the cyclotron radius is not small against the

period of the modulation. The numerical results we presenfyherez= (Kl,)2/2. We have used the notation
are obtained using the material parameters of GaAs, namely,

the effective massn=0.067, and the dielectric constant

xk=12.4. The average electron density is fixedpip=2.4 E ,(z)=(
x 10" cm™2, chosen such thatB,= 10 T, the period of the "
modulation isa=800 nm and we consider values Bf be- nen’
tween 10 and 0.1 T corresponding to cyclotron radii between =(=1) Enn(2), ®)
7 and 740 nm.

an
Sont — Enn,(4z)cos< 2KXp+(n— n’)5>

n’!

1/2
! _ o n—n’
- ) e 2/22(n n )/2Ln’ (Z)

with L'(z) being a Laguerre polynomial. Applying first-
Il. DESCRIPTION OF THE MODEL order pertgrbatlon theory we get from E@) the energy
levels as simple cosine-shaped bands

We consider an idealized 2DEG confined to the plare
(x,y)} and subject to a magnetic fielB(r)=[0,0B(x)] GETI(XO):ﬁwO[(n+%)+S Gy(2) cogKXo)] 6)

which,”~®5 within the plane, is directed in the direction,
does not deperfd on y, and has a simple periodic depen-
dence orx: P y pep PEN” \where the factor hwoGh(z) = shwge ?2LL(2)
—L%2)] has an oscillatory dependence on the ratio
B(x)=By+ B, cosKx (1) lov2n+1/a which is the basic reason for the commensura-

bility oscillations seen in transport experimeftsThe limits
whereK =2m/a is the wave vector of the modulation. we Of validity of Eq. (6) will be discussed below.
start with the noninteracting 2DEG described by the standard The single-particle density is given by the formula
single-electron Hamiltoniakl®= (p+eA)?/2m in which we
use the Landau gauge for the vector potential;x)
=(0,Box+ (B, /K)sinKx,0). The eigenfunctions oH° de- p(X)=
pend ony only through a plane-wave prefactor, 2

Us — [+
2 | ax fretolonol. @
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wheref(e) denotes the Fermi function argi=2 accounts cal diagonalization requires a large matri4) and the
for spin degeneracy. Landau-level mixing is strong, exceptsf—0. This compli-

The density determines the electrostdtitartreg poten-  cation does not occur for the electric modulati¢i0) for
tial, which we treat by Fourier expansiovM(x) which the Landau wave functions diagonalize the matrix in

=E,,>1V'; cos(xKx). Here, the long-period limit for anyw ,, and first-order perturbation
) theory gives theexactenergy spectrum for—0, namely*®
e” a 1 a €nx.=(N+3)wg+V cosKXy).
H_ _ I 2 nXg 2 0
Va dmegk m Py n2m aB(ZWIO py)hwo, ®)

Instead of using standard perturbation theory with respect
to the modulation strengtk, we can handle the Hamiltonian
(3) by performing a Taylor expansion of the potential term
(ﬁwOIZIg)[x—XO+(s/K) sinKx]? around its minimumx,
given by

with p(x)=2,-0p, cos(Kx) andag the effective Bohr ra-
dius. For GaAs, zZr ag~63 nm. We assume that the system
is electrically neutral such that the average dengjydoes
not contribute tovH but only determines the chemical poten-
tial contained in the Fermi function. The Hartree potential

has to be added to the Hamiltonié8) and gives a contribu- Xy =Xo— ; sinKX;. (12)
tion
For fixed KX, and |s|<1 this has a unique solutiokX;
<<Phxo|VH(X)|€DrL1/xO>:E VOEnn (7%2) with X;=X, for KX,=0,7. The parabolic approximation
K reads
, r
XCOS( KXo+ (n=n")z ], (9 12 d2  (1+s cosKX;)?2
HOXo)=hwo| = 5 — + ——————(x=X)?|,

to the matriceq4). The strongest influence on the induced dx 215

potential originates from the low Fourier components of the (13
density, which are related to the long-range charge fluctua-

! X . - with an error term of ordes % wyKl[ (x—X;)/15]> from
tions. We diagonalize the HamiltoniaH°(X,)+ V" self- . O 0 .
consistently with Eq(7) by a numerical iterative scheme. which we can show that Eq13) yields the eigenvalues and

To understand the way the System achieves seIfEhe density for low filling factors correct to leading order in
consistency, we occasionally consider also a 2DEG subjec%lo' The Hamﬂtoman(lB) |fs equivalent to the unpertulrbed
to a homogeneous magnetic fiel) and a cosine electro- one, Eq.(3), blf with modified center coordinateé,, cyclo-

static potential tron frequencywy= wg[ 1+s cosKX;)] and magnetic length

To=lo/\1+s cosKX;). The main effect of the magnetic
V1(x)=V; cogKx) (10 modulation on the wave functions is the shift2) of their
center of weight. We see that, sinké€X,—X,) is indepen-
dent ofK, the absolute shifK;— X, increases with increas-
ing modulation period K — 0) at equivalent positions within
the period(i.e., for fixedKX) except forKXy,=0,7. This
PT _ 1 explains the difficulties with the standard perturbation theor
€n Xo)=had(n+3)+v1 Fa(2) cogkXo)], (11 WhFi)Ch expands the shifted Landau fungtions with cente¥
with F(2)=e ?2L(2). X1(Xo) in the basis of Landau functions centered aroXgd
The Landau bands resulting from Ed.3) are

with modulation strength; =V, /fiw, instead of the mag-
netically modulated system{1). First-order perturbation
theory yields for the electric modulatiqi0) the spectrum

lll. THE LIMIT OF LONG PERIOD
. . . . . €n(Xo)=hwo{l+s cog KXy (Xo)I}(n+3). (14
In this section we deal with a long-period magnetic modu-

lation, with a strong average magnetic field, such 8§  The appearance of; instead ofX, in Eq. (14) leads to a
<1 andR:~1, (but not necessarily witB,<Bg). Approxi-  substantial deviation of the simple cosine band shape pre-
mate analytical results for both electric and magnetic modudicted by first-order perturbation theory; the bandwidth is,
lations will be developed for a better understanding of thenowever, given correctly by Ed6). In calculating the den-
energy spectra and electron density. We first describe th&ty, the indicated replacement bf by T, leads to correc-

properties of the noninteracting system. tions of higher order irKl, and, since this order is not in-
cluded correctly, is not to be used. We therefore insert just

A. Noninteracting electrons shifted Landau functions into Eq7) and obtain
Treating the magnetic modulation as a perturbation pre-
sents some difficulties in this limit, since for nonvanishig Os L )
and z—0 the matrix elements(¢y, x [H%(Xo)|@pm x,) p(X)= Zwlg; dXo fLen(Xo) Il @ x,(xo) (X!
given by Eq.(4) diverge form=0,=1, while those withm
==+2 are finite and those withm|>2 vanish. Thus the Js Xo L 5
Hamiltonian matrix becomes band diagonal, and the diver- = _27_”2; f dxld_xl f{enl Xo(X0) IHen x,(0)|%.
0

gent elements cancel in a complicated way in order to yield
finite eigenvalues. Therefore, f&il ;<1 an accurate numeri- (15
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From Eq.(12) we havedXy/dX;=1+s cosKX;) and with
Eq. (14) for the energy spectrum we finally get

Js
277'%

p(X)= ; JdX1[1+s cogKX;)]

X f{hwo[1+s codKX)](n+3)} ep x, (X%
(16)

Both results(14) and (16) turn out to be reliable within a
relative accuracy of{ KR.) . They can also be derived by a

simple variational approach, using a set of translated oscilla- <3 50 [

tor state&p,ﬁlxow(x) as trial wave functions and taking the
limit z—0 after minimizing the expectation value of the

energy?® The numerical results that we shall present are ob-

tained from a diagonalization of E¢4), however.

We note that for the electric modulatiq0) the results
corresponding to Eqgs(12), (14), and (16) read X;=X,
+v1KI2 sinKX,,

en(Xo) =fiwo{n+3+0v1[1—(3)(n+3)(Klg)?Jcog KX,)}

(17)
and
p0= 2> fdxl[l—vlmo)z cogKXy)]
Zwlg n
X f{hwoln+3+vy cogKXy) B ep x, (]2
(18

The error term in the Taylor expansion arouXdis here of
orderv, hwg(Klg) [ (x—X,)/15]° and permits inclusion of
the (Klo)? terms. The total width of the bands from H4.7)
is also obtained from the result1) of perturbation theory by
expansion aroun&l,=0 up to order Kl)?.

We see from Eqs(17) and (18) that for a long-period
cosine electric modulation the bands follow the potential
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FIG. 1. Densityp(x) in units of 1/2712 for a magnetic modu-
lation of amplitudeB;=0.1 T in average field8,=2.5-1.7 T
corresponding to filling factore=4—6. The temperature i5=1
K. The dashed lines are for the noninteracting system; the results
for v=4 and 6 are marked with circles. The lines between these
two show the successive filling of the=2 level whenv is in-
creased in steps éf The solid lines display the results for the same
filling factors after establishing electrostatic self-consistency.

In the corresponding result for the electric modulation, the
factors is replaced by-v,(Kly)? which has a different sign
and vanishes foKl;— 0. The persistence of an finite density
modulation at even-integer filling factors for a period much
longer than the magnetic length constitutes a major differ-

with constant width and the states are not changed by thence between the two types of modulation for strong average
modulation; consequently the density is only affected by thenagnetic fields. Note that the res(li9) can also be written
dispersion of the levels via the argument of the Fermi funcin the form p(x)=v/271%(x) (v small and evenwhere

tion. In contrast, for anagneticmodulation according to Eg.
(14) the widths of the Landau bands increase linearly with

and theX;-dependent prefactor of the Fermi function in Eq.

(16) does not decrease with increasing period.

I(x) = V#/eB(x) is the magnetic length corresponding to the
local field B(x). This means that we can in the long-period
limit think of the magnetic modulation as changing the local
degeneracy of the Landau levels, thus leading to a modulated

In Fig. 1 the dashed lines show the modulation of thedensity even for spatially constant filling facton this work
density of the noninteracting system with a magnetic moduwe use the notion of ar-dependent filling factow(x) as

lation of amplitudeB;=0.1 T for different values of the
filling factor between 4 and 6 obtained by sweephg the
temperature is 1 K, so th&T is much smaller thas? w.
The density is given in units of 1/¢2 S) so that the mean
value of each line equals. The lines for the even-integer
values of the filling factor,y=4 and 6, are marked with

just counting the number of locally occupied bands, which
makes sense of course only in the long-period [mit

The dashed lines between the ones with circles in Fig. 1
show the behavior of the density while tlme=2 level is
successively filled. Due to the energy disperdib4) and the
low temperature, the=2 states aroun&X,= 7 are occu-

circles. They show a cosine form, where the amplitude isied first, forming a region with local filling factop(x)

larger forv=6 than forv=4. This behavior is easily derived

=6 while aroundK Xy= 0,27 we still haver(x) =4 until the

from Eq.(16); since here the chemical potential lies in a gap,total filling closely approaches 6. Since the spatial extent of
the Fermi function is either O or 1, and the integral gives tothe wave functions is small compared to the perigcthe

leading order irkl,

6p(X) | » small and ever— (SV/2 é)COS KX (19

difference in density between these two regions is of order
gS/(Zﬂ-Ig). We observe, however, that within a region of
constant local filling factor the density is not constant but
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Therefore, the generated Hartree potential, which is maxi-
mum at maximum electron density, will act teducethe
dispersion of the not fully occupied band with index. The
self-consistent solution yields then a very fldpinned”)
band with deviations of only the order &;T from the
chemical potential, and the local filling factor is fractional
over the whole period. This situation is shown in Figa)2

for an odd-integer average filling factar=5. The self-
consistent potential here has to cancel the dispersion of the
not fully occupied levehg, which is larger than the disper-
sion of the levels witm<ng. Thus, the potential i&H(x)
~—s hwy (Ng+ 3)cosKx and the dispersion of the levels
with n<ng is reversed in sign.

For even-integer filling factor, however, according to Eq.
(19) the regions of increased density correspond to maxima
of the Landau bands, since bgilix) ande,(X,) follow the
shape of the magnetic modulation with positive sign. Conse-
quently, the potential generated by the density modulation
(19) increaseghe dispersion of the highest occupied baipd

€,(X,) [meV]

& instead of acting against the modulation broadening. If the
x magnetic modulation is sufficiently weak, the resulting self-
N;c_ s consistent potential can be calculated by combining Egs.
o (16), (18), and(8) asV"(x)=V,, cosKx (v small and even
» where
0 2 n0 /2 n0 w2 r
Kx
FIG. 2. Results for a magnetic modulation of amplituBe V.= SWh wov (20)
=0.1 T at(a) v=5 (By=2.0 1), (b) v=4 (By=2.5T), and(c) v "1t w(KIg)2

=14.3 B,=0.7 T). The upper panel displays the spedtiashed

lines, noninteracting; solid lines, self-consistent solutioiiat K; dw=a/2 1. This li behavior b k h
dash-dotted lines, self-consistent solutioat0.1 K; the horizon- andw=a/2mag>1. This linear behavior breaks down, how-

. . . - N
tal straight line with dots indicates the position of the chemical®Ver: if the resulting bandwidthA e,_|=2s% wo(ne + 3)

potential which, to the accuracy of the figure, is the same in all+ 2'\7H exceedsfiw,. In this case, the next-higher band
three cases The lower panel shows the density fluctuation in units regches the chemical potential aroutd,= 7 and the self-
of 1/2’7T|(2) for the self-consistent situationghe solid line is for  cgnsistent solutiofishown in Fig.2b) for v=4] features a
T=1K and the dash-dotted line far=0.1 K). region aroun X, = 0,27 where the band is pinned tou,

a region aroundk Xo= 7 where the bana+1 is pinned to
follows the cosine shape imposed by EG9) with v re- 4 and a region in between where the chemical potential lies
placed by the appropriate local filling factefx). in a gap and the density still follows the cosine shap@).

As described in Sec. |, similar effects of electrostatic self-
consistency are obtained for an electrically modulated
systemt’ but there the bandwidth of the highest occupied
Since the density profiles of the noninteracting systenband is always reduced compared to the noninteracting re-
correspond, according to EEB), to electrostatic potentials sults. Then, a modulation strength>1 is needed to pro-
with amplitudes larger tharhw, we expect substantial duce the formation of pinned regions at even-integer filling
changes in the spectrum when we take electrostatic selfactors, whereas in the magnetic case asly~1 must be
consistency properly into account, as we do now. The resultsatisfied.
ing densities are plotted as solid lines in Fig. 1 and show For the parameters of Fig(@ the bands of the noninter-
much smaller fluctuations. In Fig. 2 we show results for aacting system do overlap at the Fermi level due to the linear
magnetic modulation oB;=0.1 T at filling factors(a) » increase of their width witm. In this situation the density
=5, (b) v=4, and(c) »v=14.3 corresponding to average fluctuations and the induced potentials consist mainly of
fieldsBy=2.0, 2.5, and 0.7 T, respectively. The upper panehigher Fourier components. The corresponding wavelengths
displays the self-consistent spectra for temperatlired K 27/ 5K, with >1, are comparable tB., even thougtR,
and T=0.1 K together with the noninteracting spectra, the<<a is still satisfied. We therefore cannot discuss the effects
lower panel shows the corresponding self-consistent denséf the Hartree potential here within the limit of a long period
ties. More data for the self-consistent bandwidths and théut instead, we have to consider the density response for
density amplitudes in this regime are also displayed in Figselectric modulations witta~R,. This is done in the next
5 and 6 which are discussed in Sec. IV B. section. We observe, however, that in Figc)Zhe spectrum
When the total filling factor is small and not too close to around the Fermi level remains essentially unchanged al-
an even-integer value, the regions of increased density cothough we can tell from the behavior of the lowest level that
respond to the minima of the Landau bands. Fig. 1). a considerable electrostatic potential does exist.

B. Self-consistent system
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FIG. 3. Bandwidth at the Fermi level and amplitude of the induced density fluctuations for the noninteracting systems under a weak
magnetic modulatio®;=0.01 T and an electric modulatior, =0.27 meV(leading to comparable maximal bandwidth at the Fermi level,
i.e.,v1=A, s) for average fields 18B,>0.125 T. The data are plotted vs inverse average field indicated on theaxp. The bottonx
axis displays the ratio R, /ax Bgl. (a) shows the width of the band at the Fermi leysblid line for the magnetic, dashed line for the
electric modulation; the dash-dotted lingii®,). The amplitude of the density fluctuation in units of&lé is shown in(b) for the magnetic
and in(c) for the electric modulation. The solid lines are flor1 K and the dashed lines f@=0.1 K and the values for even-integer filling
factors are marked with circles or diamonds, respectively(c)nthe dash-dotted line displays the prediction of Thomas-Fermi theory

|Ap[=2(V1/ ) po.

For the lower temperaturé=0.1 K the density traces in 10>B;>0.125 T. Starting from high fields &,=10 T we
Fig. 2(b) and very pronounced in(@ show also superim- have firstne,=0 and the bandwidth is# wy. When the field
posed short-period oscillations. These have their origin in thés Iowered,|AenF| increases in steps ofsBw, at even-
nodes and maxima of the wave functions and can also bgyeger filling factors, that is wheng jumps by one, as fol-

reproduced by Eq(16) with the Landau functiongy(x). lows from Eq.(14). When R./a becomes larger than about
3 the increase ofAenF| becomes visibly slower and goes
IV. R, COMPARABLE WITH PERIOD over into an oscillatory behavior with the first maximum at

C1about R.=0.6a. This can be understood with the resi}
of first-order perturbation theory. Using the asymptotic rela-
tion between Laguerre polynomials and Bessel functions we

average fieldB, is lowered so that we enter the regime . "o “tne bandwidth at the Fermi level from HE) the
whereR; is no longer small compared to the periadn this formula®

case the approximation of the modulation by the first terms
of a Taylor series breaks down and its actual functional form Ae. |~125 hwe A J.(KR 21
becomes important. However, the numerical method outlined |Ancl~| @0 Am J1(KRo)], @

in Sec. Il is still valid provided thas<1, i.e., the total mag- whereJ; is the Bessel function of order R,=1ov2ne+1,
netic fieldB(x) is nowhere vanishing. We consider first the 5,4 AmZ(Rc/K|S)- Equation(21) describes well the band-

honinteracting system. widths (also for small filling factorsas long as the average

field is strong enough to ensuse 1. It has zeros at approxi-
A. Noninteracting electrons mately

In this section we discuss properties of the modulate
system obtained when for fixed modulation amplitiiethe

The quantity we are most interested in is the amplitude
AenF of the Landau levehg at the Fermi energy. In Fig.(8
(solid line) this bandwidth is shown for a weak magnetic corresponding to a flat band with vanishing dispersion at the
modulationB;=0.01 T and average field3, in the range Fermi level® For our parameters we encounter only the first

KRe=(\+14)m, \=12,..., (22
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FIG. 4. Bandwidth at the Fermi level and amplitude of density modulation for the noninteracting system as in Fig. 3 but under a stronger
magnetic modulation of amplitud®,=0.1 T. In(a) the solid line is the width of the band at the Fermi level and the dash-dotted lkneyis
(b) displays the amplitude of the density; the solid line is Terl K and the dashed line fof=0.1 K; the circles and diamonds mark the
values for even-integer filling factors.

(A=1) of these magnetic flat-band situations aroByf  ing case at temperaturds=1 K and T=0.1 K in Fig. 3b)
=6.2 T 1. From Eq.(21) we infer further that the maxi- for a weak magnetic modulation not leading to band overlap
mum values of the bandwidth at the Fermi level are of ordeiand in Fig. 4b) for a stronger modulation with overlapping
2shwoAy, rather than 8fwg. If we replace inR; the dis- bands. The lower temperature=0.1 K corresponds to
crete g+ 1 by v, the factorA,, becomes|a’p,/7gs and kgT=8.6x10"2 meV which in the displayed range &,
depends thus only on the period and mean density; typicallgan be considered as small compared &g, whereas for the
we haveA;,>10, e.g., for our parameters,=15.6. Conse- higher temperatur@=1 K the finite size ofkgT becomes
quently a seemingly weak modulation strengtt (1/Am)  important for abouB, 1>3 T~1. The results for the density
<1 is sufficient to yield forKR; around a maximum of the  can pe summarized as follows: If the bands around the Fermi
Bessel function); a bandwidth|Ae,_|>% o which means  |eyel do not overlap andigT is small againstiw, and also
that the bands around the Fermi level do overlap. In Fi@. 4 against the gap between the bamgsand ng+ 1, then for
the bandwidth at the Fermi level for a modulation Bf  even-integer filing factor the density is cosine shaped
=0.1T is plotted,; it is larger thafiwg for Bo<1 T. For this  §p(X)|, even=Srm(KR:)cosKx). This is due to the distortion
stronger modulation the spectra show, at fiéBgs<0.25 T,  of the occupied wave functions by the modulated magnetic
also substantial deviations from the first-order expressiofield. The amplituder, is for KR,.—0 equal to the total
(6), because the modulation strengththen becomes too densityp, [see Eq(19)] and shows for lower fields oscilla-
large. The bands around the Fermi level are not cosinéons in KR, with zeros at both electric and magnetic flat-
shaped in this regime but have extrema away frkig, band situations. During the filling of each band, i.e., when
=0,7. As a consequence, the bandwidth does not go througthe filling factor is not an even integer, an additional density
a zero at the flat-band conditio@22) although its behavior fluctuation of the order of (1/213) is produced due to the
still resembles the oscillations described by E2f). dispersion of the bands, like in Fig. 1. Both effects have a
For an electric modulation the result corresponding to Eqtendency to cancel each otherkiT is not small compared
(21) is [Aen |=|2v1fiwdo(KR.)| with zeros atkR.=(N  to iw, or to the gap between the bands andng+1, this
-1, A=1,2,... (these are the electric flat-band situa- cancellation becomes almost perfect and the resulting density
tions) and the bandwidth is always smaller thamZw,. In  modulation is minute. If the bands around the Fermi level do
Fig. 3(@ the bandwidth at the Fermi level for an electric overlap[as in Fig. 4b) for Bo<<1 T], the density has a com-
modulation of amplitude V,;=0.27 meV=A,, (ie/m) plicated shape with several extrema and its amplitude shows
X 0.01 T isshown as dashed line; the modulation amplitudean irregular dependence on the filling factor. HogT
is chosen such that the bandwidths are comparable to th€# wy the amplitude of the density fluctuations is still of the
ones induced by the magnetic modulation also depicted iorder of 1/27I(2, (but not largey whereas for a higher tem-
this figure. perature again no appreciable modulation of the density is
In describing the induced density fluctuatiord(x) produced.
= p(x) — po we face the difficulty that these have in general We see thus that the modulated magnetic field affects the
no simple shapé¢see Fig. 1L As a measure of their magni- density only ifR; is small compared to the modulation pe-
tude we therefore concentrate on their amplitilg|. This  riod or if the temperature is very low; in any case the result-
guantity is displayed in units of (142 S) for the noninteract- ing density modulation is limited in amplitude tgg/ZwIS.
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FIG. 5. Self-consistent results for a magnetic modulation of ampliBide0.01 T for 10>B,>0.18 T plotted againstR./a. The upper
two panels show fofa) T=1 K and(b) for T=0.1 K the bandwidthA enF| at the Fermi leveldashed lines with diamongand the amplitude
of the self-consistent potentiahV"| (dashed lines with circlgs The filling factor was increased in steps J5;)1‘30 that each symbol
corresponds to a calculated value and the lines are only guides to the eye. The dash-dottethlia@drib) is 7wy and the solid line
displays the noninteracting bandwidth at the Fermi level for comparisdie) the amplitude of the self-consistent densities are shown; here
the solid line with circles is fof=1 K and the dashed line with diamonds f6+0.1 K.

For not too low temperatures the Thomas-Fermi predictionpurposes is the fact that in any case R>a/4 there exists

namely, no modulation of the density, holds to good accuan appreciable modulation of the density, whose main part is

racy as soon aR.>a/4. a wave-function effect and follows the electrostatic potential
The density amplitudes resulting from an electric modu-linearly, independent of the spectrum at the Fermi level. Due

lation are shown in Fig. ®). As discussed in Sec. Ill A, we to the linearity inV, it is clear that this applies also to the

find for R,<a/8 density fluctuations of ordegslzwlg if the  density response to those higher Fourier components of a

level ng is partially occupied, and essentially no modulationnoncosine electrostatic potential whose wave vecittssat-

of the density at even-integer filling factors. For lower fieldsisfy nKR.>1.

Bo, however, the density modulation becomes dominated by

a cosine contribution whose amplitude is not related to B. Self-consistent system

2 _ .
gs/2lo but rather equals the Thomas-Fermi value Having discussed the density response induced by modu-

Spre(X) = — [V 1] po. (23) lated magnetic and electric fields, we now proceed with the
investigation of the effects of electrostatic self-consistency

Since dp1¢ is independent 0B, it appears in the plotted for the magnetically modulated system. In Figs. 5 ala 6
guantity 277I§|Ap| as a linearly increasing background. For and b) the bandwidth at the Fermi level of the self-
the higher temperature we find that fdR.>a/4 the consistent system and the amplitude of the Hartree potential
density is described accurately by E3), i.e, Sp(X) |AVH| are shown for the same parameters as used in Figs. 3
=—(vifiwg/ ;) po cOSKX). For the lower temperature, de- and 4, respectively. The bandwidth of the noninteracting sys-
viations from this result appear, which are of similar magni-tem andz w, are also shown for comparison. We can clearly
tude as the corresponding deviations from zero for the magdistinguish the high-field regiméimited by R.<a/4) dis-
netic modulation(except that at even-integer filling factors cussed in Sec. Il where the spectrum around the Fermi level
they do not vanish at the magnetic flat-band condition buts dominated by the electrostatic effects: Instead of the mo-
only at the electric one The density modulation for the low notonous increase in the noninteracting system the band-
temperature and even-integer filling factor is entirely due towidth at the Fermi level here is of ordkgT when the filling
the distortion of the occupied wave functions and followsfactor is not close to an even-integer value and has at even-
very well the formula derived by Aleiner and Glazmian integer filling factors sharp maxima with a height of the or-
from first-order perturbation theory. Most important for our der# wg [this value is reached only for the stronger modula-
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FIG. 6. Self-consistent results for a magnetic modulation of ampliByde0.1 T and average fields 2B,>0.3 T. The other parameters
and the meaning of the lines is the same as in Fig. 5.

tion in Fig. 6, while in Fig. 5 Eq(20) remains valid. The For the stronger modulation displayed in Fig. 6, the non-
amplitude of the potential equals the difference of the selfinteracting bandwidth at the Fermi level is recovered as soon
consistent and noninteracting bandwidths, reflecting the faas it gets larger thafiw,. Since the bands at the Fermi level
that electrostatic self-consistency is achieved by adjustinghen overlap, the density modulation consists mainly of
the spectrum. higher Fourier components with wave vectay&, n>1.

For lower fields withR,>a/4 the electrostatic corrections The induced potential therefore belongs already to the re-
to the bandwidth at the Fermi level become much less progime of validity of the linear relatiori23) although we still
nounced and the validity of Eq21) is eventually restored NaveRc<a/8. Therefore, the Hartree potential here reduces
well before the first magnetic flat-band situation. The mainthe density modulation in amplitude but does not much alter
reason for this is that now the Hartree potential is able td!S Shape, while the bands around the Fermi level remain
affect the density independently of the dispersion at thélominated by the cosine form imposed by the periodic mag-
Fermi level. Consequently, self-consistency can be achieved€!ic field.
without changindA e, |. We first discuss the weaker modu-

lation without band overlapg§Fig. 5. Here, for the higher
temperature, the density modulation produced by the peri-

odic magnetic field is already small without inclusion of the  \we have calculated the density response of a 2DEG in a
Hartree potential so that the self-consistent potential is a|SQuantizing magnetic fiel, to a magnetic cosine modula-
minute. But also for the lower temperature in Figbthe  tjgn B, cosKx) and compared it with the response to an
situation changes aroun;=a/4 and the bandwidths be- electric cosine modulation. We also included self-
come close to the noninteracting values, although the ampliconsistently the induced electrostatic potentials which reduce
tude of the self-consistent potential remains appreciablehe density fluctuations. We investigated in detail the
Around RC: (33/8) an electric flat-band condition is satis- Changes in the energy Spectrum brought about by the require_
fied and the first Fourier component of the Hartree-potentiament of electrostatic self-consistency. In contrast to the case
has no effect orlAe, _|. Therefore, here the change of the of an electric modulation, where the Hartree potential always
bandwidth at the Fermi level due to the Hartree potentiakends to decrease the width of the Landau bands, for a mag-
must be small but this is not reflected in the amplitudes ohetic modulation the Hartree potential may either decrease or
the self-consistent densities and potentials. For still loweincrease the band dispersion, depending on strength and pe-
fields, away from the electric flat-band situation, the Hartreaiod of the modulation and on the filling factor.

potential yields again noticeable corrections to the band- In any case, the produced density modulation depends
widths but the noninteracting curve remains essentially validcrucially on the temperature. ki T is not small compared to

V. CONCLUSION



57 DENSITY MODULATION AND ELECTROSTATIC SELF ... 1689

fhwgy the behavior of the density is quasiclassical, i.e., thehigh enoughB,, the dispersion of the energy levels is
periodic magnetic field does not lead to an appreciable derchanged drastically by the inclusion of electrostatic self-
sity modulation, while the density modulation induced by anconsistency. As in the case of a purely electrostatic modula-
electrostatic potential essentially follows the Thomas-Fermtion, for which similar screening effects are knownthe
formula. For temperatures satisfyikgT<f wy (Which we  effective Landau bands may be pinned to the Fermi level
assume in the remainder of this secjitwth types of modu- over regions comparable to the period. The nonuniform mag-
lation lead to an appreciable nonclassical inhomogeneity ofietic field affects the density also in regions where the
the density and thus to a nontrivial electrostatic self-chemical potential lies in a gap between two bands. In those
consistency problem. regions the density is not constant but reproduces the profile
We were mainly interested in the effect of the Hartreeof the magnetic field, since the latter alters the number of
potential on the spectrum around the chemical potential. Wstates in the vicinity of each center coordinate.
found that an important parameter is the ratio of the cyclo- If the cyclotron radius is not small enough agaiag},
tron radius to the length scaig;, of the density variation. If R.=a,,/4, the inclusion of electrostatic self-consistency
the bands in the vicinity of the Fermi level do not overlap wedoes not lead to an appreciable change of the dispersion of
have a;,~a, whereas for overlapping bands, the densitythe bands around the Fermi level. The behavior of the latter
fluctuations consists of higher Fourier componentsapds  in the regime wher®:.~a can therefore safely be calculated
significantly smaller than the period of the modulation. from the noninteracting system.
Concerning electrostatic effects we can clearly distinguish
two regimes by the conditionR.<a;,/4 and R;=a,/4.
This defines for fixed total density a distinction between high
and lower average magnetic fields. The valueBgfaround We thank Daniela Pfannkuche for fruitful discussions.
which the regime changes depends for a weak modulatio®ne of us(A.M.) is grateful to the Max-Planck-Institut fu
only on the period while for a sufficiently strong modulation Festkaperforschung, Stuttgart, for hospitality and support.
the transition takes place when the bands start to overlap. This work was supported by the German Bundesministerium
For a;, much larger than the cyclotron radius, i.e., for flr Bildung und ForschungBMBF), Grant No. 01BM622.
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