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Density modulation and electrostatic self-consistency in a two-dimensional electron gas
subject to a periodic quantizing magnetic field

Ulrich J. Gossmann, Andrei Manolescu,* and Rolf R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Federal Republic of Germany

~Received 8 April 1997!

We calculate the single-particle states of a two-dimensional electron gas~2DEG! in a perpendicular quan-
tizing magnetic field, which is periodic in one direction of the electron layer. We discuss the modulation of the
electron density in this system and compare it with that of a 2DEG in a periodic electrostatic potential. We take
account of the induced potential within the Hartree approximation, and calculate self-consistently the density
fluctuations and effective energy bands. The electrostatic effects on the spectrum depend strongly on the
temperature and on the ratio between the cyclotron radiusRc and the length scaleadr of the density variations.
We find thatadr can be equal to the modulation perioda, but also much smaller. ForRc;adr the spectrum in
the vicinity of the chemical potential remains essentially the same as in the noninteracting system, while for
Rc!adr it may be drastically changed by the Hartree potential: For noninteger filling factors the energy
dispersion is reduced, like in the case of an electrostatic modulation, whereas for even-integer filling factors, on
the contrary, the dispersion may be amplified.@S0163-1829~98!02903-8#
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I. INTRODUCTION

The interest in nonuniform magnetic fields, with spat
variations on a nanometer scale, has been stimulated by
eral recent experimental realizations, like magnetic quan
wells1 or magnetic superlattices.2–5 In the quasiclassical re
gime of low magnetic fields, the theoretical investigatio
have concentrated on the commensurability oscillations
the resistivity,6–9 which are equivalent to the Weis
oscillations10,11 that occur in the presence of a periodic ele
trostatic potential.

The quantum regime of nonuniform magnetic fields w
a strong variation of the order of 1 T within a distance of a
few hundred nanometers is now experimentally accessib12

For this regime single-particle quantum mechanical calcu
tions, concerning the tunneling through magnetic barriers
the bound states in magnetic wells, have recently been
formed by Peeters, Matulis, and Vasilopoulos.13,14 Coulomb
interaction effects have been discussed by Wu and Ullo15

who studied the electron-density distribution and the coll
tive excitations in a magnetic superlattice with a short
riod, comparable to the average magnetic length. They fo
that the periodic magnetic field gives rise to an electr
density modulation, which is reduced due to the counter
ing induced electric field.

In the present paper, we consider a two-dimensional e
tron gas~2DEG! in a perpendicular magnetic field of th
form B5B01Bmod where B0 is a homogeneous part an
Bmod is, in the plane of the 2DEG, periodic in one directio
with zero average. We describe in detail the charge-den
response to the periodic part and the effects of the assoc
electrostatic potential. It will be very instructive to compa
this situation with the modulation by a unidirectional pe
odic electrostatic potentialVext(x) ~we include the charge
2e in the definition of the electrostatic potentials, which a
therefore, rather potential energies!. The homogeneous pa
of the magnetic field is assumed to be strong enough so
570163-1829/98/57~3!/1680~10!/$15.00
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a description in terms of Landau levels is adequate; we
note byl 05A\/eB0 and byv05eB0 /m the magnetic length
and the cyclotron frequency associated with the uniform fi
B0. For a fixed mean electron densityr0, the number of
relevant Landau levels is of the order of the filling factorn
5(2p l 0

2)r0 and thus inversely proportional to the avera
magnetic field.

We first note that classically a magnetic field — mod
lated or not — has no influence in thermodynamic equil
rium because it drops out of the integral over momenta in
partition function ~Bohr–van Leeuwen theorem16!. Espe-
cially a magnetic modulation does not lead to a posit
dependence of the electron energy, which remainsmv2/2,
and does not affect the equilibrium electron density. In co
trast one expects~e.g., from Thomas-Fermi theory! that
modulation by an electrostatic potential should lead also
modulation of the densitydr(x)52@Vext(x)/m#r0, wherem
is the chemical potential. In the classical limit, i.e., for lo
average magnetic field with\v0!kBT, the density response
of the 2DEG to electrostatic and to magnetic modulations
thus very different. A pure magnetic modulation classica
does not give rise to electrostatic effects, whereas an exte
electrostatic potential is screened by the induced Hartree
tential.

However, in the quantum regime of low filling factors th
two types of modulation affect the density in a very simil
manner: Both lift the degeneracy of the Landau levels a
lead to dispersive bands. The homogeneous partB0 of the
magnetic field restricts the spatial extent of the relevant w
functions to the order of the cyclotron radiusRc

5 l 0A2nF11 wherenF is the index of the Landau level a
the chemical potential~that is nF is the largest integer
smaller thann/gs ; we assume spin degeneracygs52 in this
work!. If nF is small, the modulation is typically slowly
varying on the scaleRc and we can represent the Landa
levels as functionsen(x), varying on the same length scale
the modulation. The widthDen of these bands is of the orde
1680 © 1998 The American Physical Society
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57 1681DENSITY MODULATION AND ELECTROSTATIC SELF- . . .
of \eDB/m or DV, whereDB andDV stand for the ampli-
tude of the modulation of magnetic field and electrosta
potential, respectively. In this situation we expect that
density is determined by a ‘‘local’’ filling factorn(x)
5gs(nf @en(x)#, wheref (e) denotes the Fermi function. Fo
temperatures satisfyingkBT!Den , this must lead to a den
sity modulation of order (gs/2p l 0

2) for both electric and mag
netic modulations.

For an electric modulation it is known that, due to th
strong effect of the Landau-level dispersion on the dens
the inclusion of the Coulomb interaction in the Hartree a
proximation ~which we will refer to as the electrostaticall
self-consistent system! changes drastically the spectrum
the system for low filling factors. Wulf, Gudmundsson, a
Gerhardts17 found that, for filling factors not too close to a
even-integer value, the self-consistent result corresponds
nearly perfect screening of the modulating external poten
and the Landau bands are flat within the order ofkBT. If for
even-integer filling factor the chemical potential lies in
gap, the screening is much weaker although still consid
able. For potentials strong enough to yield overlapp
bands,uDenu.\v0, the screening around even-integer fillin
factors becomes nonlinear, featuring two bands touching
Fermi level, and the width of the bandnF therefore locked to
\v0.

The width of the Landau band at the Fermi level, ho
ever, is the basic element for understanding transp
measurements6,3,18 and a major aim of this work is to inves
tigate its behavior for a magnetic modulation when elect
static self-consistency is properly accounted for.

The paper is organized as follows. In Sec. II we descr
our model and the self-consistency problem in detail. In S
III we treat the case of low filling factors, corresponding to
magnetic modulation varying slowly on the length scaleRc .
In Sec. IV we discuss the regime of lower average magn
fields, where the cyclotron radius is not small against
period of the modulation. The numerical results we pres
are obtained using the material parameters of GaAs, nam
the effective massm50.067me and the dielectric constan
k512.4. The average electron density is fixed tor052.4
31011 cm22, chosen such thatnB0510 T, the period of the
modulation isa5800 nm and we consider values ofB0 be-
tween 10 and 0.1 T corresponding to cyclotron radii betwe
7 and 740 nm.

II. DESCRIPTION OF THE MODEL

We consider an idealized 2DEG confined to the plane$r5
(x,y)% and subject to a magnetic fieldB(r )5@0,0,B(x)#
which,7–9,15 within the plane, is directed in thez direction,
does not depend19 on y, and has a simple periodic depe
dence onx:

B~x!5B01B1 cosKx, ~1!

whereK52p/a is the wave vector of the modulation. W
start with the noninteracting 2DEG described by the stand
single-electron HamiltonianH05(p1eA)2/2m in which we
use the Landau gauge for the vector potential,A(x)
5„0,B0x1(B1 /K)sinKx,0…. The eigenfunctions ofH0 de-
pend ony only through a plane-wave prefactor,
c
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cnX0
~x,y!5Ly

21/2e2 iX0y/ l 0
2
fnX0

~x!, ~2!

with Ly being a normalization length andX0 the center co-
ordinate. The functionsfnX0

(x) are the eigenvectors of th
one-dimensional Hamiltonian

H0~X0!5\v0F2
l 0
2

2

d2

dx2
1

1

2l 0
2S x2X01

s

K
sin KxD 2G ,

~3!

where s5B1 /B0 will be referred to as the modulatio
strength.

For the homogeneous system,s50, the functions
fnX0

(x) are oscillator wave functions centered onX0, also

known as Landau wave functionswnX0

L , associated with the

degenerate Landau levels«n
L5(n1 1

2 )\v0. The degeneracy
is lifted for sÞ0, and the resulting energy bandsen(X0),
together with the corresponding wave functions, can be
tained by diagonalizing the reduced Hamiltonian~3! in the
basis of the Landau wave functions. The matrix elements
be written as

^wnX0

L uH0~X0!uwn8X0

L &

5\v0H ~n1 1
2 !dnn81

s

2z
@Enn8~z!1Ann8En21,n821~z!

2A~n11!~n811!En11,n811~z!#cosS KX01~n2n8!
p

2 D
1

s2

8z Fdnn82Enn8~4z!cosS 2KX01~n2n8!
p

2 D G J , ~4!

wherez5(Kl 0)2/2. We have used the notation

Enn8~z!5S n8!

n! D 1/2

e2z/2z~n2n8!/2Ln8
n2n8~z!

5~21!n2n8En8n~z!, ~5!

with Ln
m(z) being a Laguerre polynomial. Applying first

order perturbation theory we get from Eq.~4! the energy
levels as simple cosine-shaped bands

en
PT1~X0!5\v0@~n1 1

2 !1s Gn~z! cos~KX0!# ~6!

where the factor 2s\v0Gn(z) 5 s\v0 e2z/2@2Ln
1(z)

2Ln
0(z)# has an oscillatory dependence on the ra

l 0A2n11/a which is the basic reason for the commensu
bility oscillations seen in transport experiments.3,8 The limits
of validity of Eq. ~6! will be discussed below.

The single-particle density is given by the formula

r~x!5
gs

2p l 0
2 (

n50

` E
2`

1`

dX0 f @en~X0!#ufnX0
~x!u2, ~7!
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1682 57GOSSMANN, MANOLESCU, AND GERHARDTS
where f (e) denotes the Fermi function andgs52 accounts
for spin degeneracy.

The density determines the electrostatic~Hartree! poten-
tial, which we treat by Fourier expansionVH(x)
5(h>1Vh

H cos(hKx). Here,

Vh
H5

e2

4pe0k

a

h
rh5

1

h

a

2p aB
~2p l 0

2 rh!\v0 , ~8!

with r(x)5(h>0rh cos(hKx) andaB the effective Bohr ra-
dius. For GaAs, 2p aB'63 nm. We assume that the syste
is electrically neutral such that the average densityr0 does
not contribute toVH but only determines the chemical pote
tial contained in the Fermi function. The Hartree potent
has to be added to the Hamiltonian~3! and gives a contribu-
tion

^wnX0

L uVH~x!uwn8X0

L &5(
h

Vh
HEnn8~h2z!

3cosS hKX01~n2n8!
p

2 D , ~9!

to the matrices~4!. The strongest influence on the induc
potential originates from the low Fourier components of
density, which are related to the long-range charge fluc
tions. We diagonalize the HamiltonianH0(X0)1VH self-
consistently with Eq.~7! by a numerical iterative scheme.

To understand the way the system achieves s
consistency, we occasionally consider also a 2DEG sub
to a homogeneous magnetic fieldB0 and a cosine electro
static potential

V1~x!5V1 cos~Kx! ~10!

with modulation strengthv15V1 /\v0 instead of the mag-
netically modulated system~1!. First-order perturbation
theory yields for the electric modulation~10! the spectrum

en
PT1~X0!5\v0@~n1 1

2 !1v1 Fn~z! cos~KX0!#, ~11!

with Fn(z)5e2z/2Ln(z).

III. THE LIMIT OF LONG PERIOD

In this section we deal with a long-period magnetic mod
lation, with a strong average magnetic field, such thatKl 0
!1 andRc; l 0 ~but not necessarily withB1!B0). Approxi-
mate analytical results for both electric and magnetic mo
lations will be developed for a better understanding of
energy spectra and electron density. We first describe
properties of the noninteracting system.

A. Noninteracting electrons

Treating the magnetic modulation as a perturbation p
sents some difficulties in this limit, since for nonvanishings
and z→0 the matrix elementŝ wn X0

L uH0(X0)uwn1m X0

L &
given by Eq.~4! diverge form50,61, while those withm
562 are finite and those withumu.2 vanish. Thus the
Hamiltonian matrix becomes band diagonal, and the div
gent elements cancel in a complicated way in order to y
finite eigenvalues. Therefore, forKl 0!1 an accurate numeri
l
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cal diagonalization requires a large matrix~4! and the
Landau-level mixing is strong, except ifs→0. This compli-
cation does not occur for the electric modulation~10! for
which the Landau wave functions diagonalize the matrix
the long-period limit for anyv1, and first-order perturbation
theory gives theexactenergy spectrum forz→0, namely,18

enX0
5(n1 1

2 )\v01V cos(KX0).
Instead of using standard perturbation theory with resp

to the modulation strengths, we can handle the Hamiltonia
~3! by performing a Taylor expansion of the potential ter
(\v0/2l 0

2)@x2X01(s/K) sinKx#2 around its minimumX1

given by

X15X02
s

K
sin KX1 . ~12!

For fixed KX0 and usu,1 this has a unique solutionKX1
with X15X0 for KX050,p. The parabolic approximation
reads

H0~X0!'\v0F2
l 0
2

2

d2

dx2
1

~11s cosKX1!2

2l 0
2 ~x2X1!2G ,

~13!

with an error term of orders \v0Kl 0@(x2X1)/ l 0#3 from
which we can show that Eq.~13! yields the eigenvalues an
the density for low filling factors correct to leading order
Kl 0. The Hamiltonian~13! is equivalent to the unperturbe
one, Eq.~3!, but with modified center coordinateX1, cyclo-
tron frequencyṽ05v0@11s cos(KX1)# and magnetic length
l̃ 05 l 0 /A11s cos(KX1). The main effect of the magneti
modulation on the wave functions is the shift~12! of their
center of weight. We see that, sinceK(X12X0) is indepen-
dent ofK, the absolute shiftX12X0 increases with increas
ing modulation period (K→0) at equivalent positions within
the period~i.e., for fixed KX0) except forKX050,p. This
explains the difficulties with the standard perturbation the
which expands the shifted Landau functions with cen
X1(X0) in the basis of Landau functions centered aroundX0.

The Landau bands resulting from Eq.~13! are

en~X0!5\v0$11s cos@KX1~X0!#%~n1 1
2 !. ~14!

The appearance ofX1 instead ofX0 in Eq. ~14! leads to a
substantial deviation of the simple cosine band shape
dicted by first-order perturbation theory; the bandwidth
however, given correctly by Eq.~6!. In calculating the den-
sity, the indicated replacement ofl 0 by l̃ 0 leads to correc-
tions of higher order inKl 0 and, since this order is not in
cluded correctly, is not to be used. We therefore insert
shifted Landau functions into Eq.~7! and obtain

r~x!5
gs

2p l 0
2(n

E dX0 f @en~X0!#uwn,X1~X0!
L ~x!u2

5
gs

2p l 0
2(n

E dX1

dX0

dX1
f $en@X0~X1!#%uwn,X1

L ~x!u2.

~15!
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57 1683DENSITY MODULATION AND ELECTROSTATIC SELF- . . .
From Eq.~12! we havedX0 /dX1511s cos(KX1) and with
Eq. ~14! for the energy spectrum we finally get

r~x!5
gs

2p l 0
2 (

n
E dX1@11s cos~KX1!#

3 f $\v0@11s cos~KX1!#~n1 1
2 !%uwn,X1

L ~x!u2.

~16!

Both results~14! and ~16! turn out to be reliable within a
relative accuracy of (s KRc) . They can also be derived by
simple variational approach, using a set of translated osc
tor stateswn,X01u

L (x) as trial wave functions and taking th

limit z→0 after minimizing the expectation value of th
energy.20 The numerical results that we shall present are
tained from a diagonalization of Eq.~4!, however.

We note that for the electric modulation~10! the results
corresponding to Eqs.~12!, ~14!, and ~16! read X15X0

1v1Kl 0
2 sinKX1,

en~X0!5\v0$n1 1
2 1v1@12~ 1

2 !~n1 1
2 !~Kl 0!2#cos~KX1!%

~17!

and

r~x!5
gs

2p l 0
2(n

E dX1@12v1~Kl 0!2 cos~KX1!#

3 f $\v0@n1 1
2 1v1 cos~KX1!#%uwn,X1

L ~x!u2.

~18!

The error term in the Taylor expansion aroundX1 is here of
order v1 \v0(Kl 0)3@(x2X1)/ l 0#3 and permits inclusion of
the (Kl 0)2 terms. The total width of the bands from Eq.~17!
is also obtained from the result~11! of perturbation theory by
expansion aroundKl 050 up to order (Kl 0)2.

We see from Eqs.~17! and ~18! that for a long-period
cosine electric modulation the bands follow the potenti
with constant width and the states are not changed by
modulation; consequently the density is only affected by
dispersion of the levels via the argument of the Fermi fu
tion. In contrast, for amagneticmodulation according to Eq
~14! the widths of the Landau bands increase linearly withn
and theX1-dependent prefactor of the Fermi function in E
~16! does not decrease with increasing period.

In Fig. 1 the dashed lines show the modulation of t
density of the noninteracting system with a magnetic mo
lation of amplitudeB150.1 T for different values of the
filling factor between 4 and 6 obtained by sweepingB0; the
temperature is 1 K, so thatkBT is much smaller thans\v0.
The density is given in units of 1/(2p l 0

2) so that the mean
value of each line equalsn. The lines for the even-intege
values of the filling factor,n54 and 6, are marked with
circles. They show a cosine form, where the amplitude
larger forn56 than forn54. This behavior is easily derive
from Eq.~16!; since here the chemical potential lies in a ga
the Fermi function is either 0 or 1, and the integral gives
leading order inKl 0

dr~x!un small and even5~sn/2p l 0
2!cosKx . ~19!
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In the corresponding result for the electric modulation, t
factors is replaced by2v1(Kl 0)2 which has a different sign
and vanishes forKl 0→0. The persistence of an finite densi
modulation at even-integer filling factors for a period mu
longer than the magnetic length constitutes a major diff
ence between the two types of modulation for strong aver
magnetic fields. Note that the result~19! can also be written
in the form r(x)5n/2p l 2(x) (n small and even! where
l (x)5A\/eB(x) is the magnetic length corresponding to t
local field B(x). This means that we can in the long-perio
limit think of the magnetic modulation as changing the loc
degeneracy of the Landau levels, thus leading to a modul
density even for spatially constant filling factor@in this work
we use the notion of anx-dependent filling factorn(x) as
just counting the number of locally occupied bands, wh
makes sense of course only in the long-period limit#.

The dashed lines between the ones with circles in Fig
show the behavior of the density while then52 level is
successively filled. Due to the energy dispersion~14! and the
low temperature, then52 states aroundKX05p are occu-
pied first, forming a region with local filling factorn(x)
56 while aroundKX050,2p we still haven(x)54 until the
total filling closely approaches 6. Since the spatial exten
the wave functions is small compared to the perioda, the
difference in density between these two regions is of or
gs /(2p l 0

2). We observe, however, that within a region
constant local filling factor the density is not constant b

FIG. 1. Densityr(x) in units of 1/2p l 0
2 for a magnetic modu-

lation of amplitudeB150.1 T in average fieldsB052.5– 1.7 T
corresponding to filling factorsn54 – 6. The temperature isT51
K. The dashed lines are for the noninteracting system; the res
for n54 and 6 are marked with circles. The lines between th
two show the successive filling of then52 level whenn is in-
creased in steps of13. The solid lines display the results for the sam
filling factors after establishing electrostatic self-consistency.
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1684 57GOSSMANN, MANOLESCU, AND GERHARDTS
follows the cosine shape imposed by Eq.~19! with n re-
placed by the appropriate local filling factorn(x).

B. Self-consistent system

Since the density profiles of the noninteracting syst
correspond, according to Eq.~8!, to electrostatic potentials
with amplitudes larger than\v0, we expect substantia
changes in the spectrum when we take electrostatic s
consistency properly into account, as we do now. The res
ing densities are plotted as solid lines in Fig. 1 and sh
much smaller fluctuations. In Fig. 2 we show results fo
magnetic modulation ofB150.1 T at filling factors~a! n
55, ~b! n54, and ~c! n514.3 corresponding to averag
fieldsB052.0, 2.5, and 0.7 T, respectively. The upper pa
displays the self-consistent spectra for temperaturesT51 K
and T50.1 K together with the noninteracting spectra, t
lower panel shows the corresponding self-consistent de
ties. More data for the self-consistent bandwidths and
density amplitudes in this regime are also displayed in F
5 and 6 which are discussed in Sec. IV B.

When the total filling factor is small and not too close
an even-integer value, the regions of increased density
respond to the minima of the Landau bands~cf. Fig. 1!.

FIG. 2. Results for a magnetic modulation of amplitudeB1

50.1 T at~a! n55 (B052.0 T!, ~b! n54 (B052.5 T!, and~c! n
514.3 (B050.7 T!. The upper panel displays the spectra~dashed
lines, noninteracting; solid lines, self-consistent solution atT51 K;
dash-dotted lines, self-consistent solution atT50.1 K; the horizon-
tal straight line with dots indicates the position of the chemi
potential which, to the accuracy of the figure, is the same in
three cases!. The lower panel shows the density fluctuation in un
of 1/2p l 0

2 for the self-consistent situations~the solid line is for
T51 K and the dash-dotted line forT50.1 K!.
lf-
lt-
w

l

si-
e
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r-

Therefore, the generated Hartree potential, which is ma
mum at maximum electron density, will act toreduce the
dispersion of the not fully occupied band with indexnF . The
self-consistent solution yields then a very flat~‘‘pinned’’ !
band with deviations of only the order ofkBT from the
chemical potential, and the local filling factor is fraction
over the whole period. This situation is shown in Fig. 2~a!
for an odd-integer average filling factorn55. The self-
consistent potential here has to cancel the dispersion of
not fully occupied levelnF , which is larger than the disper
sion of the levels withn,nF . Thus, the potential isVH(x)
'2s \v0 (nF1 1

2 )cosKx and the dispersion of the level
with n,nF is reversed in sign.

For even-integer filling factor, however, according to E
~19! the regions of increased density correspond to max
of the Landau bands, since bothr(x) anden(X0) follow the
shape of the magnetic modulation with positive sign. Con
quently, the potential generated by the density modulat
~19! increasesthe dispersion of the highest occupied bandnF
instead of acting against the modulation broadening. If
magnetic modulation is sufficiently weak, the resulting se
consistent potential can be calculated by combining E
~16!, ~18!, and~8! asVH(x)5ṼH cosKx (n small and even!
where

ṼH5
sw\v0n

11w~Kl 0!2n
, ~20!

andw5a/2paB@1. This linear behavior breaks down, how
ever, if the resulting bandwidthuDenF

u52s\v0(nF1 1
2 )

12ṼH exceeds\v0. In this case, the next-higher ban
reaches the chemical potential aroundKX05p and the self-
consistent solution@shown in Fig.2~b! for n54] features a
region aroundKX050,2p where the bandnF is pinned tom,
a region aroundKX05p where the bandnF11 is pinned to
m and a region in between where the chemical potential
in a gap and the density still follows the cosine shape~19!.
As described in Sec. I, similar effects of electrostatic se
consistency are obtained for an electrically modula
system,17 but there the bandwidth of the highest occupi
band is always reduced compared to the noninteracting
sults. Then, a modulation strengthv1.1 is needed to pro-
duce the formation of pinned regions at even-integer filli
factors, whereas in the magnetic case onlysw;1 must be
satisfied.

For the parameters of Fig. 2~c! the bands of the noninter
acting system do overlap at the Fermi level due to the lin
increase of their width withn. In this situation the density
fluctuations and the induced potentials consist mainly
higher Fourier components. The corresponding waveleng
2p/hK, with h.1, are comparable toRc , even thoughRc
!a is still satisfied. We therefore cannot discuss the effe
of the Hartree potential here within the limit of a long perio
but instead, we have to consider the density response
electric modulations witha;Rc . This is done in the next
section. We observe, however, that in Fig. 2~c! the spectrum
around the Fermi level remains essentially unchanged
though we can tell from the behavior of the lowest level th
a considerable electrostatic potential does exist.
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FIG. 3. Bandwidth at the Fermi level and amplitude of the induced density fluctuations for the noninteracting systems under
magnetic modulationB150.01 T and an electric modulationV150.27 meV~leading to comparable maximal bandwidth at the Fermi lev
i.e., v15Am s) for average fields 10.B0.0.125 T. The data are plotted vs inverse average field indicated on the topx axis. The bottomx
axis displays the ratio 2Rc /a}B0

21. ~a! shows the width of the band at the Fermi level~solid line for the magnetic, dashed line for th
electric modulation; the dash-dotted line is\v0). The amplitude of the density fluctuation in units of 1/2p l 0

2 is shown in~b! for the magnetic
and in~c! for the electric modulation. The solid lines are forT51 K and the dashed lines forT50.1 K and the values for even-integer fillin
factors are marked with circles or diamonds, respectively. In~c! the dash-dotted line displays the prediction of Thomas-Fermi the
uDru52(V1 /m)r0.
th

te

e

m
rm

ne

e

d

tic

t
s
at

la-
we

-
e
-

the
rst
For the lower temperatureT50.1 K the density traces in
Fig. 2~b! and very pronounced in 2~c! show also superim-
posed short-period oscillations. These have their origin in
nodes and maxima of the wave functions and can also
reproduced by Eq.~16! with the Landau functionswn

L(x).

IV. Rc COMPARABLE WITH PERIOD

In this section we discuss properties of the modula
system obtained when for fixed modulation amplitudeB1 the
average fieldB0 is lowered so that we enter the regim
whereRc is no longer small compared to the perioda. In this
case the approximation of the modulation by the first ter
of a Taylor series breaks down and its actual functional fo
becomes important. However, the numerical method outli
in Sec. II is still valid provided thats,1, i.e., the total mag-
netic fieldB(x) is nowhere vanishing. We consider first th
noninteracting system.

A. Noninteracting electrons

The quantity we are most interested in is the amplitu
DenF

of the Landau levelnF at the Fermi energy. In Fig. 3~a!

~solid line! this bandwidth is shown for a weak magne
modulationB150.01 T and average fieldsB0 in the range
e
be

d

s

d

e

10.B0.0.125 T. Starting from high fields atB0510 T we
have firstnF50 and the bandwidth iss\v0. When the field
is lowered, uDenF

u increases in steps of 2s\v0 at even-

integer filling factors, that is whennF jumps by one, as fol-
lows from Eq.~14!. When 2Rc /a becomes larger than abou
1
4 the increase ofuDenF

u becomes visibly slower and goe
over into an oscillatory behavior with the first maximum
about 2Rc50.6a. This can be understood with the result~6!
of first-order perturbation theory. Using the asymptotic re
tion between Laguerre polynomials and Bessel functions
obtain for the bandwidth at the Fermi level from Eq.~6! the
formula9

uDenF
u'u2 s \v0 Am J1~KRc!u, ~21!

whereJ1 is the Bessel function of order 1,Rc5 l 0A2nF11,
and Am5(Rc /Kl 0

2). Equation~21! describes well the band
widths ~also for small filling factors! as long as the averag
field is strong enough to ensures!1. It has zeros at approxi
mately

KRc5~l11/4!p, l51,2, . . . , ~22!

corresponding to a flat band with vanishing dispersion at
Fermi level.6 For our parameters we encounter only the fi



stronger

e

1686 57GOSSMANN, MANOLESCU, AND GERHARDTS
FIG. 4. Bandwidth at the Fermi level and amplitude of density modulation for the noninteracting system as in Fig. 3 but under a
magnetic modulation of amplitudeB150.1 T. In~a! the solid line is the width of the band at the Fermi level and the dash-dotted line is\v0.
~b! displays the amplitude of the density; the solid line is forT51 K and the dashed line forT50.1 K; the circles and diamonds mark th
values for even-integer filling factors.
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(l51) of these magnetic flat-band situations aroundB0
21

56.2 T21. From Eq. ~21! we infer further that the maxi-
mum values of the bandwidth at the Fermi level are of or
2s\v0Am rather than 2s\v0. If we replace inRc the dis-
crete 2nF11 by n, the factorAm becomesAa2r0 /pgs and
depends thus only on the period and mean density; typic
we haveAm.10, e.g., for our parametersAm515.6. Conse-
quently a seemingly weak modulation strengths;(1/Am)
!1 is sufficient to yield forKRc around a maximum of the
Bessel functionJ1 a bandwidthuDenF

u.\v0 which means
that the bands around the Fermi level do overlap. In Fig. 4~a!
the bandwidth at the Fermi level for a modulation ofB1
50.1 T is plotted; it is larger than\v0 for B0,1 T. For this
stronger modulation the spectra show, at fieldsB0,0.25 T,
also substantial deviations from the first-order express
~6!, because the modulation strengths then becomes too
large. The bands around the Fermi level are not cos
shaped in this regime but have extrema away fromKX0
50,p. As a consequence, the bandwidth does not go thro
a zero at the flat-band condition~22! although its behavior
still resembles the oscillations described by Eq.~21!.

For an electric modulation the result corresponding to
~21! is uDenF

u5u2v1\v0J0(KRc)u with zeros atKRc5(l

21/4)p, l51,2, . . . ~these are the electric flat-band situ
tions! and the bandwidth is always smaller than 2v1\v0. In
Fig. 3~a! the bandwidth at the Fermi level for an electr
modulation of amplitude V150.27 meV5Am (\e/m)
30.01 T isshown as dashed line; the modulation amplitu
is chosen such that the bandwidths are comparable to
ones induced by the magnetic modulation also depicted
this figure.

In describing the induced density fluctuationsdr(x)
5r(x)2r0 we face the difficulty that these have in gene
no simple shape~see Fig. 1!. As a measure of their magn
tude we therefore concentrate on their amplitudeuDru. This
quantity is displayed in units of (1/2p l 0

2) for the noninteract-
r

ly

n

e

h

.

e
he
in

l

ing case at temperaturesT51 K and T50.1 K in Fig. 3~b!
for a weak magnetic modulation not leading to band over
and in Fig. 4~b! for a stronger modulation with overlappin
bands. The lower temperatureT50.1 K corresponds to
kBT58.631023 meV which in the displayed range ofB0

can be considered as small compared to\v0 whereas for the
higher temperatureT51 K the finite size ofkBT becomes
important for aboutB0

21.3 T21. The results for the density
can be summarized as follows: If the bands around the Fe
level do not overlap andkBT is small against\v0 and also
against the gap between the bandsnF and nF11, then for
even-integer filling factor the density is cosine shap
dr(x)un even5srm(KRc)cos(Kx). This is due to the distortion
of the occupied wave functions by the modulated magn
field. The amplituder m is for KRc→0 equal to the total
densityr0 @see Eq.~19!# and shows for lower fields oscilla
tions in KRc with zeros at both electric and magnetic fla
band situations. During the filling of each band, i.e., wh
the filling factor is not an even integer, an additional dens
fluctuation of the order of (1/2p l 0

2) is produced due to the
dispersion of the bands, like in Fig. 1. Both effects have
tendency to cancel each other. IfkBT is not small compared
to \v0 or to the gap between the bandsnF andnF11, this
cancellation becomes almost perfect and the resulting den
modulation is minute. If the bands around the Fermi level
overlap@as in Fig. 4~b! for B0,1 T#, the density has a com
plicated shape with several extrema and its amplitude sh
an irregular dependence on the filling factor. ForkBT
!\v0 the amplitude of the density fluctuations is still of th
order of 1/2p l 0

2 ~but not larger! whereas for a higher tem
perature again no appreciable modulation of the densit
produced.

We see thus that the modulated magnetic field affects
density only if Rc is small compared to the modulation p
riod or if the temperature is very low; in any case the resu
ing density modulation is limited in amplitude bygs/2p l 0

2.
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FIG. 5. Self-consistent results for a magnetic modulation of amplitudeB150.01 T for 10.B0.0.18 T plotted against 2Rc /a. The upper
two panels show for~a! T51 K and~b! for T50.1 K the bandwidthuDenF

u at the Fermi level~dashed lines with diamonds! and the amplitude
of the self-consistent potentialuDVHu ~dashed lines with circles!. The filling factor was increased in steps of1

3 so that each symbo
corresponds to a calculated value and the lines are only guides to the eye. The dash-dotted line in~a! and ~b! is \v0 and the solid line
displays the noninteracting bandwidth at the Fermi level for comparison. In~c! the amplitude of the self-consistent densities are shown; h
the solid line with circles is forT51 K and the dashed line with diamonds forT50.1 K.
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For not too low temperatures the Thomas-Fermi predicti
namely, no modulation of the density, holds to good ac
racy as soon asRc.a/4.

The density amplitudes resulting from an electric mod
lation are shown in Fig. 3~c!. As discussed in Sec. III A, we
find for Rc,a/8 density fluctuations of ordergs/2p l 0

2 if the
level nF is partially occupied, and essentially no modulati
of the density at even-integer filling factors. For lower fiel
B0, however, the density modulation becomes dominated
a cosine contribution whose amplitude is not related
gs/2p l 0

2 but rather equals the Thomas-Fermi value

drTF~x!52@V~x!/m#r0 . ~23!

Since drTF is independent ofB0 it appears in the plotted
quantity 2p l 0

2uDru as a linearly increasing background. F
the higher temperature we find that forRc.a/4 the
density is described accurately by Eq.~23!, i.e, dr(x)
52(v1\v0 /m)r0 cos(Kx). For the lower temperature, de
viations from this result appear, which are of similar mag
tude as the corresponding deviations from zero for the m
netic modulation~except that at even-integer filling facto
they do not vanish at the magnetic flat-band condition
only at the electric one!. The density modulation for the low
temperature and even-integer filling factor is entirely due
the distortion of the occupied wave functions and follo
very well the formula derived by Aleiner and Glazman21

from first-order perturbation theory. Most important for o
,
-

-

y
o

-
g-

t

o

purposes is the fact that in any case forRc.a/4 there exists
an appreciable modulation of the density, whose main pa
a wave-function effect and follows the electrostatic poten
linearly, independent of the spectrum at the Fermi level. D
to the linearity inV, it is clear that this applies also to th
density response to those higher Fourier components
noncosine electrostatic potential whose wave vectorshK sat-
isfy hKRc.1.

B. Self-consistent system

Having discussed the density response induced by mo
lated magnetic and electric fields, we now proceed with
investigation of the effects of electrostatic self-consisten
for the magnetically modulated system. In Figs. 5 and 6~a!
and 6~b! the bandwidth at the Fermi level of the sel
consistent system and the amplitude of the Hartree pote
uDVHu are shown for the same parameters as used in Fig
and 4, respectively. The bandwidth of the noninteracting s
tem and\v0 are also shown for comparison. We can clea
distinguish the high-field regime~limited by Rc,a/4) dis-
cussed in Sec. III where the spectrum around the Fermi le
is dominated by the electrostatic effects: Instead of the m
notonous increase in the noninteracting system the ba
width at the Fermi level here is of orderkBT when the filling
factor is not close to an even-integer value and has at e
integer filling factors sharp maxima with a height of the o
der\v0 @this value is reached only for the stronger modu
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FIG. 6. Self-consistent results for a magnetic modulation of amplitudeB150.1 T and average fields 10.B0.0.3 T. The other parameter
and the meaning of the lines is the same as in Fig. 5.
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tion in Fig. 6, while in Fig. 5 Eq.~20! remains valid#. The
amplitude of the potential equals the difference of the s
consistent and noninteracting bandwidths, reflecting the
that electrostatic self-consistency is achieved by adjus
the spectrum.

For lower fields withRc.a/4 the electrostatic correction
to the bandwidth at the Fermi level become much less p
nounced and the validity of Eq.~21! is eventually restored
well before the first magnetic flat-band situation. The m
reason for this is that now the Hartree potential is able
affect the density independently of the dispersion at
Fermi level. Consequently, self-consistency can be achie
without changinguDenF

u. We first discuss the weaker modu
lation without band overlaps~Fig. 5!. Here, for the higher
temperature, the density modulation produced by the p
odic magnetic field is already small without inclusion of t
Hartree potential so that the self-consistent potential is a
minute. But also for the lower temperature in Fig. 5~b! the
situation changes aroundRc5a/4 and the bandwidths be
come close to the noninteracting values, although the am
tude of the self-consistent potential remains apprecia
Around Rc5(3a/8) an electric flat-band condition is sati
fied and the first Fourier component of the Hartree-poten
has no effect onuDenF

u. Therefore, here the change of th
bandwidth at the Fermi level due to the Hartree poten
must be small but this is not reflected in the amplitudes
the self-consistent densities and potentials. For still low
fields, away from the electric flat-band situation, the Hart
potential yields again noticeable corrections to the ba
widths but the noninteracting curve remains essentially va
f-
ct
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For the stronger modulation displayed in Fig. 6, the no
interacting bandwidth at the Fermi level is recovered as s
as it gets larger than\v0. Since the bands at the Fermi lev
then overlap, the density modulation consists mainly
higher Fourier components with wave vectorshK, h.1.
The induced potential therefore belongs already to the
gime of validity of the linear relation~23! although we still
haveRc,a/8. Therefore, the Hartree potential here reduc
the density modulation in amplitude but does not much a
its shape, while the bands around the Fermi level rem
dominated by the cosine form imposed by the periodic m
netic field.

V. CONCLUSION

We have calculated the density response of a 2DEG
quantizing magnetic fieldB0 to a magnetic cosine modula
tion B1 cos(Kx) and compared it with the response to
electric cosine modulation. We also included se
consistently the induced electrostatic potentials which red
the density fluctuations. We investigated in detail t
changes in the energy spectrum brought about by the req
ment of electrostatic self-consistency. In contrast to the c
of an electric modulation, where the Hartree potential alwa
tends to decrease the width of the Landau bands, for a m
netic modulation the Hartree potential may either decreas
increase the band dispersion, depending on strength and
riod of the modulation and on the filling factor.

In any case, the produced density modulation depe
crucially on the temperature. IfkBT is not small compared to
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\v0 the behavior of the density is quasiclassical, i.e.,
periodic magnetic field does not lead to an appreciable d
sity modulation, while the density modulation induced by
electrostatic potential essentially follows the Thomas-Fe
formula. For temperatures satisfyingkBT!\v0 ~which we
assume in the remainder of this section! both types of modu-
lation lead to an appreciable nonclassical inhomogeneity
the density and thus to a nontrivial electrostatic se
consistency problem.

We were mainly interested in the effect of the Hartr
potential on the spectrum around the chemical potential.
found that an important parameter is the ratio of the cyc
tron radius to the length scaleadr of the density variation. If
the bands in the vicinity of the Fermi level do not overlap w
have adr;a, whereas for overlapping bands, the dens
fluctuations consists of higher Fourier components andadr is
significantly smaller than the perioda of the modulation.
Concerning electrostatic effects we can clearly distingu
two regimes by the conditionsRc!adr/4 and Rc*adr/4.
This defines for fixed total density a distinction between hi
and lower average magnetic fields. The value ofB0 around
which the regime changes depends for a weak modula
only on the period while for a sufficiently strong modulatio
the transition takes place when the bands start to overla

For adr much larger than the cyclotron radius, i.e., f
h

e

e
n-

i

of
-

e
-

h

h

n

high enoughB0, the dispersion of the energy levels
changed drastically by the inclusion of electrostatic se
consistency. As in the case of a purely electrostatic modu
tion, for which similar screening effects are known,17 the
effective Landau bands may be pinned to the Fermi le
over regions comparable to the period. The nonuniform m
netic field affects the density also in regions where t
chemical potential lies in a gap between two bands. In th
regions the density is not constant but reproduces the pro
of the magnetic field, since the latter alters the number
states in the vicinity of each center coordinate.

If the cyclotron radius is not small enough againstadr ,
Rc*adr/4, the inclusion of electrostatic self-consistenc
does not lead to an appreciable change of the dispersio
the bands around the Fermi level. The behavior of the la
in the regime whereRc;a can therefore safely be calculate
from the noninteracting system.

ACKNOWLEDGMENTS

We thank Daniela Pfannkuche for fruitful discussion
One of us~A.M.! is grateful to the Max-Planck-Institut fu¨r
Festkörperforschung, Stuttgart, for hospitality and suppo
This work was supported by the German Bundesministeri
für Bildung und Forschung~BMBF!, Grant No. 01BM622.
tt.
,

tt.

by
ys.
*Also at Institutul de Fizica s¸i Tehnologia Materialelor, C.P. MG-7
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