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Interaction of surface acoustic waves with a narrow electron channel in a piezoelectric material
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The interaction between a surface acoustic we&W) of wave numbek and frequencyw and a two-
dimensional electron gas in a piezoelectric semiconductor can be expressed in terms of the longitudinal
conductivity o (k,w) and an effective electromechanical coupling coefficient. The resulting velocity change
and the attenuation of the transmitted SAW intensity are well known. In a recent paper, [$hmn Rev. B
54, 13878 (1996] calculated the fractional energy changdJ/U for a SAW interacting with a two-
dimensional sheet embedded in a semi-infinite piezoelectric material and obtained a relationship with the
results for the attenuation coefficient and the fractional velocity change. In this gepéd is calculated for
a narrow channel of width, (kr, <1) at a distancel below the surface of a slab of piezoelectric material of
finite thickness when an elastic wave is launched on the surfddéU is given as a closed-form expression
in terms of the velocity of the elastic wave, the elastic constants, and the piezoelectric tensor. Numerical results
are presented fakU/U as a function okd for several values of the thickness of a slab of GaAgta |, As.
[S0163-18298)09403-X

I. INTRODUCTION AND BACKGROUND ing of the two-dimensional electron gé3DEG) embedded
within the material. Consequently, the result fdtJ/U is
It is well known that the velocity of a surface acoustic complex representing the effect of the energy loss and its real
wave (SAW) in piezoelectric crystals can be modified by the and imaginary parts coincide with the fractional velocity
electrical conductivity of conductors that are in their change and the attenuation coefficient, respectively, given by
vicinity.'~* Attenuation of the SAW takes place when there Eq. (1). KnZbchen, Levinson, and Entin-Wohinfasalcu-
is dissipation in the conductotdngebrigtsefiand other$™®  |ated the absorption of SAW’s by a quantum dot. The present
have shown that the fractional velocity chanfjes/vs and  paper extends the work of Simofor AU/U of a narrow
attenuation coefficier of an acoustic wave of wave vector channel of widthr, (kr, <1) of 2DEG in a slab of thickness
k that is launched on the surface ofemi-infinitepiezoelec- L when an elastic wave is launched on one of the surfaces.
tric material and interacts with a thitwo-dimensionalcon-  Such a quasi-one-dimensional system has been produced in a
ducting layer is given by GaAs/ALGa _,As 2DEG by means of a split gat&? A
schematic representation of the geometry is shown in Fig. 1.
Avs K a?2 _ AU Our results show that the real and imaginary partd off U
Vs Tk 1+iow(kw)loy NV @) are also related to the fractional velocity change and the at-
tenuation coefficient of the elastic wave, respectively, when
where oy, (K, w) is the longitudinal conductivity of the two- the dispersion law is linear for thirk(<1) and thick kL
dimensional(2D) gas and bothe and o, depend on the >1) slabs, so that both the phase and group velocities are
material parameters such as an effective dielectric constanthe same. Our theory is linear, which is valid when the
the SAW velocity, and the piezoelectric stress tefisbr. acoustic wave amplitude is small. The attenuation of the
Also, AU/U is the fractional energy change of the SAW, asSAW in the piezoelectric heterostructure allows experimen-
derived by Simon. Recently, there has been a considerablealists to study conducting properties of the 2DEG at the
amount of interest in the interaction of a SAW with a 2DEG operating frequency of the SAW without any contacts being
in a GaAs/AlGa,_,As heterostructurg:’® Simor® pre- applied to the samplesee Eq(1)]. This has been exploited
sented a detailed microscopic theory ftJ/U when the to study the transport properties of 2DEG systems in an ap-
conducting conditions are changed from a 2D sheet wittplied magnetic field in both the low-field linttt as well as
finite conductivity to the case when the conductivity is infi- the quantum Hall regime. Wille¢t alX® found evidence of
nite. Simon'’s result fod U/U is for a wave that travels on geometric resonances of the cyclotron motion of composite
the surface of a semi-infinite piezoelectric material for whichfermions with SAW wavelengths in a 2DEG negfilling
the attenuation is due to a loss of energy through Joule heafactor.
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[100] tain the fractional energy change for a narrow chanke| (
<1) in a piezoelectric slab of finite thickneks This result
is expressed in terms of the conductivity of the channel and

: L oy T the electric field potential due to the elastic wave. In Sec. Ill,

i d we solve the wave equation in a nonpiezoelectric material
: ‘L and use this result to calculate the induced potential in a
“ piezoelectric material in Sec. IV. We also present numerical

results for the velocity dependence of the surface wave on
the wave vector. Section IV also contains numerical results
l ------------------------ for the magnitude of the induced electric potential. A brief

summary of our results and some concluding remarks are
given in Sec. V.

Channel II. GENERAL FORMULATION OF THE PROBLEM

FIG. 1. Schematic of the narrow channel of width at a dis- We now describe the formalism that will be used to obtain
tanced below the surface of a slab of AGa, -As of thicknesd.. a generalization of Eq1) for a narrow channel within a slab
The geometry is relevant for a split gate with Ohmic contacts on theof piezoelectric material of thickneds The channel is at a
surface where an acoustic wave is launched by transducers. distanced below the surfacez=0 where the SAW is
launched. Suppose the SAW propagates along ttieaction

Another class of problems has been concerned with NONVith the narrow 2D channel of width, oriented parallel to

linear acoustoelectric effects due to the drag of 2D electrong_‘ex axis. The SAW produces an electric field in the dielec
17 : . -
by the SAW.’ The ac current generated provides a measur ric material described by the electric potente(k, o:2),

of the response of the carriers. It was predicted by Fal'ko . :
Meshkov, and lordansk that the current flowing through a Wh.erek IS the wave ngmber of the SAW with frequenoy
This potential gives rise to an induced fluctuation charge

channel due to the drag of the electrons by nonequilibrium

phonons should be quantized in analogy to conductancgensnyn(k’“’;y’z) in the channgl. I t?e plasma thickness is
quantization. However, in an experiment, Shiltenal® ignored, then we could s&t=d in ¢*andn and omit the

showed that the behavior of the acoustoelectric current in g_);)pl)hmédepen(;jelnce on thethc?ct)rr]dmftm;hereve; It Is pos- th
guasi-one-dimensional ballistic channel is qualitatively dif—S'h €. lu_r rT][ﬁ € gssu,:nes. a t('a (tat(ejcgonﬂ:no lon acrossf €
ferent from the conductance and there is no quantization of1annet in ey direction IS restricted by e presence o
the current as a function of the gate voltage Specifically walls for which the electron distribution in thedirection is

when the acoustoelectric current is plotted as a function ngprqximate?( b¥ a_Gauisian SO that thi induced charge
vg, there are giant oscillations with minima at those gatedeNSIy Nk, @:y) = ping(k,@) wly),  where  w(y)
voltages that show plateaus in the conductance. This was &P Y72r1)/(2zr7)™* andr, is the channel width. The

explained by observing that only electrons close to the Fernffhoice ofw(y) is rather arbitrary in doing model calculations
energy contribute to the drag current. but a specific form for it is made for the purpose of simpli-
An interesting problem that deserves further theoreticafy'”g_the analytical calculgtlons. A more reahs_tlc distribution
investigation concerns the low-field geometric resonances dpinction could be used if numerical calculations are to be
electron cyclotron modes with the wavelength of a SAW in ah€avily relied upon. The assumption we make is that the
high mobility 2DEG. These were clearly seen in experiment§ensity profile in the channei(y) is a constant throughout
by Shiltonet al*® when the acoustoelectric current inducedthe calculation and is never allowed to change even when an
in the 2DEG by the SAW was measured as a function of th@xternal potential is applied. This approximation corresponds
magnetic field. The data show that as the magnetic field inf® the flow of current in one direction onlisee Eq.(10)
creases, the acoustoelectric current increases substantialR?'OW]; ] )
thereby providing the dependence of the conductivity on the [N linear response theory, the induced charge density
magnetic field. More specifically, the frequency and wave-Pind(K. @) is related to the external potentiaf(k,w) by
vector-dependent conductivity could be extracted from these B ox
experiments. We would like to determine how the oscilla- pind(K,®) =Kok, 0) o™k, ), @

tions in the low-field limit are related to the commensurabil-\yhere Kook, ) is the density-density response function.
ity between the channel width and the cyclotron radius of therne induced charge density fluctuatiogk,w;y) gives rise
electrons at the Fermi energy. Results for the commensurgy the induced Coulomb potentiai™(k,w;y) in the chan-

bility osgi_llzgtions ina modulgged 2DEG have beenne| The total potential within the channel is the sum of the
reported:®~?’Recently, Rocket al** have introduced anew  gyternal and induced potentials. Following Sinfowg can

form of band-gap engineering by exposing a direct-gap seMizg|ate charge fluctuations, 4(k, ) to the total potentiapt®.

conductor quantum well to a moving potential s_uperlattice,:Or sufficiently narrow channels whém, <1, one can write
accompanying a SAW. It is shown that the confinement ofis relation in the form

photogenerated electron-hole pairs to the 2DEG under the
influence of the moving lateral superlattice gives rise to re- ping(K, @) =TToo( K, @) (K, ), 3)
versible charge separation.

The rest of this paper is organized as follows. In Sec. llwhere ¢k, w) = ¢"(k,w;y=0) and Ik, w) is the po-
we describe the linear response function formalism and oblarization function. We then have
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¢"(k,0)= ™k, ) +v(K)ping(K, @), 4
wherev (k) is defined by

1 o)
v(k)=EJ_wdky v (k) f(k,), (5
with k= k*+ ky2 and
f(kp= [ dy e "my)

2.2
=~ kyrl/Z_ (6)

In Eq. (5), v(k)) is the Fourier transform of the Coulomb
potential for interacting electrons within the 2D plane em-

bedded in a slab of dielectric material of thicknessvith

dielectric constang, which is assumed isotropic, surrounded

by a material with dielectric constant,. The expression for

v(k;) can be obtained using the method of images and

given by

2
v(k))= ?;:H,B(kH){qu e K19+ 26~ 2L 4 rg2K|(L—dn

()

wheree;=4mege and
() r— 8
§=8+8b’ '8( ||)=1_§2e*2kHL' ( )

Equationg5)—(8) jointly yield an explicit result for the Fou-
rier transform of the effective Coulomb potentiglk) in a
narrow channel. From Eq$2)—(4), it follows that

Kog(k,)=TIog(k,0)—v (k). (9)

Our result is a generalization of Simon’s resuit the case of
a narrow channel.

We now proceed to derive an expression for the density-

density response functidfg(k,w) in Eq. (9) in terms of the

conductivity o(k,w) of the channel. For this, we make use

of the continuity equation

an(r,t)
a

V- J(r,t)+ 0, (10

relating the currend(r,t) to the density fluctuations. Taking

the Fourier transform of this equation with respecixtand
integrating ovety, we obtain

k2o (K, ) (K, ») — i wping(K, ) =0, (11
where the relation
J(k,0)=0o(k,0)E®(k,w;y=0) (12)

between the total current in the chandék, w) and the total
electric fieldE®(k,w;y=0)=—ik¢"(k,») was used, and
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Making use of Eq(13) in Eqg. (9) and settingn=v ¢k where
vg is the SAW velocity, we obtain

1
Kodboo) == M-ty (0lo k]
where
Us
o (k)= ko (k) a3

The next step is to calculate the additional energy induced
in the slab due to the interaction of the induced charge den-
sity fluctuations in the channel with the electric potential
induced by the SAW propagating in the piezoelectric mate-
rial. The time-averaged expression for this energy per unit

i Ssurface area is given by

SU=3ne®™t*, (16)

This is a complex energy with its real and imaginary parts
directly related to the change of the velocity and dissipation
of the SAW?® For our geometry, it is more appropriate to
calculate the induced energy per unit length along the chan-
nel. Integrating Eq(16) in they direction and using Eq%2)
and(14), we obtain

50__ |(Pext|2
— 2v(k)[1—ioy(K)/o(kw)]

(17

Following the approach of Ingebrigtsérgne can calculate
the energy change with respect to its value der ©, which
is

o |§Dext|2
)= S Fioka)o K]’
(18

SU=6U(o)—8U(c=

In 2D, the fractional energy chang®)/U, whereU is the
SAW energy per unit surface area of the sample, can be
directly related to the change of the SAW velocity and at-
tenuation of the transmitted SAW intensity; see Bq. This
interaction between this SAW and 2DEG was considered in
detail by Ingebrigtsehand Krasheninnikov and Chaplfg.
Measurements are usually done in a perpendicular magnetic
field where the case,,# > corresponds to a measurement
in a finite magnetic field whereas,,=c when there is no
magnetic field applied to a high-mobility 2D g&&

For a 1D channel, the conductivity(k,w) can be varied
by changing the width of the channel through the split-gate
potential. In this case, the fractional energy change is deter-

o(k,w) is the 1D channel conductivity. This approximation mined as

is valid for narrow channels whekr, <1. From Egs.(3)
and(11), it follows that

Ko (K, w)

Mook, ) = —— (13

AU 1
oL, = oL, PV @l dU(o)lk@] @9
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wherelL, is the transverse size of the region where the SAWensor are obtained from the symmetry properties given
propagates. If the SAW dispersion is linear, direct calcula-above. A general solution of Eq0g and(20b) for a semi-
tion of the attenuation coefficiefit= Re(J* E*Y21), wherel infinite medium was given by Campbell and Jofesiere,

is the intensity of the SAW and the velocity change showswe obtain the solution of these equations for a slab of finite
that Eqg. (1) is still valid with the evident changedvs  thickness. In the next section, we solve the wave equation for
=vgim—vglr@, K=AK=K|@w—K];@ and the fractional a nonpiezoelectric medium. The solution for the lattice dis-
energy change in Eq.(1) must be replaced bjxU/UL, . It placement vector will be employed in Sec. IV to obtain the
is shown below in Sec. Il that in general for a slab of finite electric field in Eq.(20) that is produced by this lattice dis-
thicknessL the dispersion relation of the elastic wave is placement in a piezoelectric material. This solution is
nonlinear and the velocity ¢ defined above ag/k is the  equivalent to neglecting the effect the electric field has on
phase rather than the group velocity of the wave. Howeverthe material displacement and is valid to the lowest order in
for thin (kL<1) and thick kL>1) slabs, the linear disper- the piezoelectric coupling.

sion law is restored and both the phase and group velocities

are the same. Finally, with all the above mentioned restric-

tions, Eq.(1) still has a rather broad range of validity. How- ;| ELASTIC WAVES IN A NONPIEZOELECTRIC SLAB

ever, although the imaginary part AlU/U gives the attenu- OF EINITE THICKNESS

ation of the wave, the assignment of the real part to be the

fractional velocity shift may not be true in general for a Let us now consider elastic waves in a nonpiezoelectric
nonlinear velocity dispersion. This is a difficult problem that slab of finite thicknes& with cubic crystal symmetry. These
may have some bearing on the experiments for certain SAWaves obey the wave equatit20a with e, ;;=0 and in this
wavelengths. case Eq(2039 reduces to the well-known equation for elastic

The electric potentiab®™" and the energy) in Egs.(18)  waves in cubic crysta-22The boundary conditions in Eq.
and(19) can be obtained by solving the equations describing22) yield

the propagation of elastic waves in a piezoelectric medium.
These equations &

92Uy PP Pu Ol | 2z =0 (239

j - . - il
i = Jz X
Cllkl X 0Xi * ek’” OXIX; p 0t2 0, (2069 z=0,L

4 P V2=0 (20b) au, o
Te (= & =0, u u
Tkl X, 0X; s e AR =0, (23b)
0z ay 2=0.L
which must be solved subject to the mechanical boundary
conditions and the electrostatic boundary conditions obtained
from the continuity of the potential as well as the normal au, duy  duy
component of the electric displacement vedioat the sur- Crgy T o T oy =0. (230
faces az=0, L, for which z=0L
D,=— 83@ +4me, %, 0<z<L, (213  We now consider the case when the elastic wave propagates
9z 2N on the(100 surface of a cubic crystal in t{®11] direction
o and for which we take the solution in the following form:
DZ=—47Teost, z<0, z>L. (21b
u/~\2
Mechanical boundary conditions corresponding to the free w2 - _—
surfaces az=0, L give us the following equations: u= e~ kQzglk(xy)/\Z-ivgkt, (24)
uZ
auk (7(]')
Cizk|(9—xl+ek,iz(9—xk =0. (22)

z=0L

corresponding to a wave with wave vectoand frequency
In this notation,c;j, is the elastic tensor witlt;jy; = Cj; w=vK, where the velocity s could be wave-vector depen-
=Cjjik =Cyiij » thereby reducing the number of independentdent, as we discuss below. Coordinate axes are chosen along
constants to 2%¢ €ij is the piezoelectric tensor withy ; the principal crystallographic axes of the crystal although we
=@y ji » Uk is thekth component of the lattice displacement, assumed the wave to propagate alongsthdirection in the
andp is the mass density of the medium. Crystals with cubicgeneral formulation of the problem in the preceding section.
symmetry such as GaAs and,Sa_,As have only three This form of solution corresponds to the experimental geom-
independent nonzero components @y, , i.€., C11=Cyxx  ©€try when the launched wave has only one in-plane compo-
=Cyyyy=Crzzs C12=Cxxyy=Cyyz7=Crzxxs» aNd C4s=Cyyy,  Nent of the displacement wave vector along the direction of
=Cy,y7~ Csxzx All other nonzero components of the elastic propagation andi is the amplitude of this displacement.
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Substituting Eq(24) into the wave equation, we obtain Q2+Qz_c44(c44—pv§)+c11(c11— pv3) = (C1pt Cap)?
. 2_ L)
(pri—c{1+CQ?U—i(C1+Ca)Q U, =0, (259 ! C11C44 (263

—i(C12+Ca)Q U+ (pv2+c11Q%—Cyy)u,=0, (25b , 2 2
(Cll_pvs)(c44_pvs)

. . QIQ3= : (26b)
wherec,;=C44+ (C11+ C1p)/2, for which the determinant of C11C44
the coefficients in Eq(25) must be zero for a nontrivial
solution. This yields a bigquadratic equation f@rwith four Making use of the results given above, we obtain the gen-
roots + Q; and * Q,, which satisfy eral solution of Eq(25) as

uy /\2 u, /2

u= u1/\/§ e~ kQuzgik(x+y)/\2Z-ivekt | u2/\/§ ekQizgik(x+y)/ 2~ ivgkt

YaU1 — y1Us
u3/\/§ u4/\/§
+ u3/\/§ e~ kQazgik(x+y)/\2-ivgkt u4/\/§ eszzeik(x+y)/\s§—iuSkt, (27)
Y2U3 — Y2Uy
where
i(C12tCa0) Q12
Y12= > 2 (28)
€11Q7 2~ Cast pug
andu; (i=1,...,4) arearbitrary amplitudes.

Equation (27) and the boundary conditions of E@3) give the following system of equations for after a straightforward
but lengthy calculation:

an —an ais —ais up
ay Az ays ay3 u;
—kQqL kQ,L —kQ,L kQ,L =
ape Ut —a et aje it —a,ef® ug | =0 (29)
—KkQ,L KkQ,L —kQ,L kQ,L
age & ayek aye K e Uy
where
an=iy1—Q1, ap=iy,—Qy, (30a
ap1=C1pti7y1Q1C11,  Ap3=CyptiyQ,Cy;. (30b)

The determinant of the coefficient matrix in E§9) must be zero for a nontrivial solution. This condition, in conjunction with
Eq. (28) for vy, gives the following result fovg as a function okL:

[Q1(C11Q7+ Ciot pv3) (C12pvE— C1oCas— €11€44Q5) + Qo(C11Q5+ C1o+ pv2) (CropvE— C1oCas— C11€44Q%) 1%SiNN(KQ; L)
X Sin(KQ,L) —4Q1Q,(€11Q% + €1+ pv2) (€11Q5+ Ciot pu3)(C12pv 2 — C15C44— C11C44Q7)

k(Ql‘;Qz)L) ~0

X (C12pv5— C1oCas— C11C44Q5) SINIP (31)
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FIG. 2. Plot of the velocity as a function okL for a slab of 0.6 T D)
Aly Ga -As of thicknesd.. The parameters used in the calculation 0.5 L = . i
. . . : hhgt< 2 LITRITTITTTITTTTIVILE
for the elastic stiffness constants and the crystal density for an alu- Lt
minum concentratiox=0.3 are given in the text. 04 - : .
S g5l ' i
£ 0.3

WhenkL<1, our calculation shows that in the lowest order )
of this small parameter, there is only one solution for the 02r N
velocity, independent dfL and given by

5 :
C11C1;—C1y o 2 4 6 8 10
|
vl'= Y, T (32 KL
11

FIG. 3. Plot of the real and imaginary parts@f as a function
f kL for a slab of A} ;Ga, 7As of thicknesd.. The parameters used
n the calculation for the elastic stiffness constants and the crystal
density for an aluminum concentratiar= 0.3 are given in the text.

which corresponds to a pure longitudinal wave propagatin
in a thin crystal sheet. For arbitrary valueskdf, Eq. (31),
together with Eq.(26), must be solved numerically farg,
which subsequently yields the dispersion relatios vk . .
and the amp?itudegl/i ¥rom Eq. (29).pFor kL>1, Eq. (351) the results are given by = (4 /A_)ul forj=2, 3, 4 where
reduces to a cubic equation derived in E2B) of Ref. 29 for ~&j andA are defined as follows:
a semi-infinite geometry anfD11] propagation of surface . R
waves. In this limiting case, Eq&26) and Eq.(31) give one  A,=2|ayy|%a}, [eXQ Qb+ KQuFQIL_g 2kl 17
real solution forvg corresponding to the uncoupled SAW'’s (333
localized near the top or bottom surface of the slab. Sapriel
et al3° have used Brillouin and Ramar_1 scattering to Measure ,— (|a,,|2ay,— ailazl)(eleL_ef leL)(ekaL—e*leL),
v Of an ALGa _,As alloy as a function of the aluminum (33b)
concentration. We have solved Eq31) for vg for
Al,Ga _,As for which the elastic stiffness constants are (A2 % 2 kQil _ o—kQiL
given by the following linear relationshipd:c,,(x)=11.88 Ay= (a5, +[an"az) (€7 — e
+0.14X, C15(X)=5.38+0.32 and cy(X) =5.94-0.05 in X(eka’IL_ekalL) (339
units of 13°N/m?. The crystal density for an aluminum con- '
centration x is given by p(x)=(5.36-1.6x) x10° kg/ . . . .
m3. We chosex=0.3 and in Fig. 2, we have plotted the '\
solutionsvg as a function ofkL. In general, there are two 0008 1 Y kd=1
real solutions fow ¢ as a result of the interaction of the sur- L~
face elastic modes of the top and bottom surfaces of the slab. ]
However, for smallkL, there is only one mode with
vs=4981 m/s in agreement with E¢B2). For largekL, the
two modes merge and;=2983 m/s. Our numerical calcu-
lations show tha@; is the complex conjugate @,. In Fig. 0.004 4
3, we have plotted the real and the imaginary part® pfas ! ! ! )
a function ofkL for Al,Gg _,As with x=0.3. Figure 4 is a 2 4 8 8 10
plot of o4(k) defined in Eq.(15) as a function ofkL for kL
e=(13.18- 3.12),* ep=1, kd=1.0, andr, /L=0.1. In FIG. 4. Plot of/(r, €?/h) as a function okL for a slab of
Fig. 5, we ploto (k) a.S a function okd, for a variable depth AlyGa -As of thicknessL, kd=1.0 and a channel with, /L
of the 2D layer and fixe&L andr, /L=0.1 . —0.1. The parameters used in the calculation for the elastic stiff-
Under the conditionsQ,=Q7 and, as a consequence, ness constants and the crystal density for an aluminum concentra-
v.=—1v7 , we have solved Eq29) for the eigenvector and tion x=0.3 are given in the text.

0.006 - ;

o,/(r e?th)
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FIG. 5. Plot ofo, /(r, €%/h) as a function ofkd for a slab of
Al Ga -As of thicknessL with kL=10.0 and a channel with
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where J(kL) is given in the Appendix. For a semi-infinite
slab, direct calculation shows that

Q29— Qi—iv
Lo A QI +ivi
(40)

and U(k,L) in Eqg. (39) reduces to the expression ftt
given by Simor?.

Combining Eqs(17), (19), and(39), we obtain the frac-
tional energy change in a narrow channel as

r, /L=0.1. The parameters used in the calculation for the elastic

stiffness constants and the crystal density for an aluminum concen-

tration x= 0.3 are given in the text.
A=lay|%al[ekQu+ QDL e KQ+QT)L 4 gk(Q1— Q7 )L
+e KQImQDL_4]4 g*2a, [kt

+e KQ1mQIIL_ gk(Q1F QYL _ g=k(Qu+Q)L],

(34

AU _az/zj 1
UL, Ly [1+io(K)/oyko)|
1

1 |
C1+io(R/oyk o) o
1

(41)

where

In general, the energy density associated with the elastic

wave can be written 4827

E=ZCiju Ui U, (39

where the strain tensor is defined as
_1( au;  du; 36
=2l ox ) 39

From Egs.(24) and (36), it follows that u,,=uy,=u,, and

Uy,= Uy, . Using these results and the symmetry properties of

the elastic tensor, E¢35) becomes

E=2C11|Uxd >+ 3C11l U, )%+ 2C RE(UyyU3,) +4C 4 Uy 2.

When Eq.(27) is substituted into Eq(36), the following
results for the elastic strain tensor are obtained:

ik
uxxzﬁ

U= k{— ¥1Q1(use™*A%+ ue¥A?) + yF QF (uze™ kQpz

Uy,

(38a

+ u4ekQ1’ Z)}eik(x+y)/\@—ivskt' (380

k . —kQqz kQqz H *
szzﬁ{(lyl_Ql)(ule YUt —(iy1 +Q1)
X (uge KU Z— U,k 7)) ek 2 ivgkt (389

Substituting Eq.(38) into Eq. (37) and then integrating

from z=0 to z=L, we obtain the energy density per unit

surface area as

U(k,L)=Kk|u|?ReJ(KL), (39

a2 | (Pext|2

2 20(K)K|ug|2Re (kL)

(42

In the following section, we calculate the potentif due
to an elastic wave launched on the surface of a piezoelectric
material.

IV. THE PIEZOELECTRIC EFFECT
IN A SLAB OF FINITE THICKNESS

For a piezoelectric medium, the electromagnetic and elas-
tic solutions are coupled, as seen from E@g$). For a cubic
crystal, the piezoelectric tensor has only one nonzero inde-
pendent element given k8 ,,=e, ,,= €, ,=€14 as well as
those elements obtained by interchanging the second and
third subscript€® We now solve Eq(20) when the piezo-
electric coupling is small, for which the potential in E§0)
may be solved using perturbation theory, i.e., we solvefor
in Eqg. (20b) by making use of the result for the displacement
vector obtained by solving E¢208 when the piezoelectric
tensor is neglected. In this approximation, the potential is a
solution of

877814( &ZUX &zuz
gs | Xz ox2
0, z<O,

, O<z<L
Vigp= (43

z>L,

where the displacement vector is given by E(&7) and
(33. A straightforward calculation shows thap(r,t)
=P (z)ekxty2-ivekt \yhered satisfies the equation
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d*®d ) 3 A, Ay« Ay s
SSE_SSk2¢:4W|el4kU1{2 _kQ]_(e KQuz Ielez) _kQ’I(Te leZ— Xelez
: _ Ay Az orr Az o
+ik yl<e kQuz Xelez> _ﬁ(fe kQuz_ Xelez . (44)

This equation has the particular solution

47Tie14ul K Az
[ il —kQuz__ < okQ;z
®y(2) o C(e A e
A A *
+C* fe‘lez—felez”, (45
where
iy1—2
c= —gz fl. (46)
-

Therefore, the general solution for the slab of thickness

D ,(2)+Be*+Be ¥, O=z<L

B(2)= Bse®4, z=0 (47)
Be k%, z=L

The continuity conditions of the potential and the normal

Co=1{[e+(eQ;—ep)Cle ¥t +[e+(eQy+ep)C]

A As o
XU e+ (6Qf —ep)CH T e KU [e

Ay o
+(8Q’{+£b)C*]X46kQ1L . (490

In the limit kL>1, making use of Eq40) in Egs.(45)—(49)
yields ¢® derived by Simon for a semi-infinite slab. The
potential in Eq.(47) yields

477iel4u1

™= (d)= F(kd), (50)

S

where
F(kd)=Ce *Qud— %CelefH—%C* e kQid

A e -
—X“c* ekQUd 1 B ekd+ B ek, (51)

component of the displacement vector at the surfaceSubstituting Eq(50) into Eq. (42

z=0, L together give the coefficients in E@7). Since we
are interested in the potential within the film, we only present a?

our results forB; andB,. Our calculations show that

_Amieyu Ci(ep,—e)e K-—Cy(epte)

€s (sb—s)zefkl‘—(sb-f-s)zekl‘

B;

47Tiel4ul~

R L

(489

47Ti€14U1 Cz(Sb_S)_C1(8b+ 8)ekL _47Tiel4ul,§

Bz— =
&s  (gp—e)’e Kt—(gy+e)%ekt €s

2

(48b)

where

A
Ci=—{[s+(ep+8QuC]+[e+(sQ1~8y)Cl 5

A3 A4
o+ (eQ} +25)CF 5 +[e+(5QF ~en)CH I,

(493

. B (52
2 2u(K)keZReZ(KL) '

We now present numerical results faf/2, which deter-
mines the fractional energy change for a narrow channel em-
bedded at a distanakbelow the surface on which the SAW
is launched. In our calculations, we use the piezoelectric con-
stante;,= —0.16-0.065 (C/m?) for Al,Ga_,As>! The
results in Fig. 6 show that whem?/2L is plotted as a func-
tion of kd, the plots are very much dependent on the value
chosen forkL andr, . ForkL=5, there are two real eigen-
value solutions for the velocity and for which we have plot-
ted the corresponding values ef/2 in Fig. 6a). In Fig.
6(b), we setkL=10 for which the two surfaces at=0 and
z=L are still coupled causing the increasedf/2 as the
surface az=L is approached. In general, the resultsdéf2
for the 2DEG embedded below the surface are not exponen-
tial as obtained in other calculations for the half-space geom-
etry (kL>1) 532 Figure fc) is a plot forkL=50 when the
two surfaces are completely decoupled. The valuaZ2L
is larger for thin films than for thick films. From the com-
bined data in Figs. 1-6, we could now obtain the fractional
energy change of the SAW due to the interaction with a
narrow channel within a slab of piezoelectric material.
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0.00010 T T T T of the velocity of the SAW, the elastic constants and the
piezoelectric tensor by solving the set of coupled equations
0.00008 for the lattice and electric displacement vectors in [i&1]
direction on the(100 surface of a cubic crystal. We show
- 0.00006 that the fractional energy change depends on the parameters
3 a?l2 and o4, which are related to the channel conductivity
0.00004 . L :
and material characteristics. Numerical results are presented
0.00002 for the velocity of the SAW for AlGa, _,As as a function of
the thickness of the slab as well as as functions okd and
0.00000 kL. We also computer?/2 as a function okd for several
0 values of the thickness of a slab of GaAsB& _,As.
In conclusion, we note that split metal gates are used to
0.00012 produce a narrow con_dupting <_:hanne| within a 2DEG. Evi-
‘ dently, the piezoelectric field will be screened by the metal-
lized surface. However, our calculations do not include the
effects of screening by the metal gate on the interactions
0.00008 1 A between the electrons within the channel and the launched
& elastic wave. One method that could be used to reduce the
o : effect of screening is to increase the spatial separation be-
0.00004 - tween the gate and the surface where the wave is launched
by depositing a relatively thick insulating layer on the
surface’ Recently, this technique was successfully used by
0.00000 5 Rockeet al® These authors observed the interaction between
SAW's and a high-mobilty 2DEG in gated
GaAs/ALGa, _,As heterojunctions and were able to control
the carrier density in the 2D gas using gate electrodes.
30°F
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Y I S— ' APPENDIX
0 4 8 12 16

Kd In this appendix, we give the explicit form for the func-
tion J(kL) in Eq. (39). For convenience of notation, we

FIG. 6. /2L is plotted as a function dfd for r, /L=0.1 and  introduce the functior(Q,kL) defined by
a fixed value okL chosen a%a) 5, (b) 10, and(c) 50. The param-

eters used in the calculation for the piezoelectric constants, the elas- 1
tic stiffness constants, and the crystal density for an aluminum con- G(Q)=—=[1—e XL, (A1)
centrationx=0.3 are given in the text. Q

In the results presented below; for j=2, 3, 4 andA are

V. SUMMARY AND CONCLUDING REMARKS defined in Egs(33) and(34). Our calculations show that

In this paper, we have formulated a theory for the frac-
tional energy changdU/UL, for an elastic wave launched 1 ) ) .
on the surface of a piezoelectric quantum well structure that JkL)= W{Al[(w +]459)G(Q:+ Q1)

contains a narrow channel of width at a distancel below A

the surface. Free surface boundary conditions are used in +(JA512+]A4HG(—Q— Q) 1+ AL (A*A,
these calculations. The dependenceAd§/U on the wave

vector k and the 1D channel conductivity(k,w) is ob- +A3A7)G(Q7 — Q1) +A[AA3G(2Qy)
tained. The channel can be realized experimentally in a * % %
GaAs/ALGa, _,As 2DEG by means of a split gate. When the FA245G(—2Qu)]+Ay(AA; +4245)G(0)},
wave number and the thickneksare such that the two sur- (A2)

faces are coupled then two real solutions for the surface

wave velocity are obtained. When the dispersion relation igvhere

linear for a thin film L<1) or a thick film kL>1), the ,

real and imaginary parts @U/U are related to the velocity _C%u Cn 2., Cag. 12
change and the attenuation coefficient, respectively. The re- M=o 15 |71Quf* +iC1271 Qo+ 2 [72=Qul%,
sult for AU/U is given as a closed-form expression in terms (A3)
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Ay=cy1+Cq| y1Qa|?FiciA ¥1Q1— ¥1 QF) Au=Az—2c,iy1— Q)% (A6)

—Cadivi—Quf%, (A4) . _ _
The results in Eq(A1)—(A6) are used in the calculation of
As=C{1—C1175Q%+ 2ic1,¥1Q1 + Can(i 21— Q1)2, the relative change in energy for the wave launched on the
(A5) surface of a slab of thickneds
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