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Interaction of surface acoustic waves with a narrow electron channel in a piezoelectric material
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The interaction between a surface acoustic wave~SAW! of wave numberk and frequencyv and a two-
dimensional electron gas in a piezoelectric semiconductor can be expressed in terms of the longitudinal
conductivitysxx(k,v) and an effective electromechanical coupling coefficient. The resulting velocity change
and the attenuation of the transmitted SAW intensity are well known. In a recent paper, Simon@Phys. Rev. B
54, 13 878 ~1996!# calculated the fractional energy changeDU/U for a SAW interacting with a two-
dimensional sheet embedded in a semi-infinite piezoelectric material and obtained a relationship with the
results for the attenuation coefficient and the fractional velocity change. In this paper,DU/U is calculated for
a narrow channel of widthr' (kr'!1) at a distanced below the surface of a slab of piezoelectric material of
finite thickness when an elastic wave is launched on the surface.DU/U is given as a closed-form expression
in terms of the velocity of the elastic wave, the elastic constants, and the piezoelectric tensor. Numerical results
are presented forDU/U as a function ofkd for several values of the thickness of a slab of GaAs/AlxGa12xAs.
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I. INTRODUCTION AND BACKGROUND

It is well known that the velocity of a surface acous
wave~SAW! in piezoelectric crystals can be modified by t
electrical conductivity of conductors that are in the
vicinity.1–3 Attenuation of the SAW takes place when the
is dissipation in the conductors.1 Ingebrigtsen2 and others3–5

have shown that the fractional velocity changeDvs /vs and
attenuation coefficientK of an acoustic wave of wave vecto
k that is launched on the surface of asemi-infinitepiezoelec-
tric material and interacts with a thin~two-dimensional! con-
ducting layer is given by

Dvs

vs
2

iK

k
5

a2/2

11 isxx~k,v!/sm
5

DU

U
, ~1!

wheresxx(k,v) is the longitudinal conductivity of the two
dimensional~2D! gas and botha and sm depend on the
material parameters such as an effective dielectric cons
the SAW velocity, and the piezoelectric stress tensor6–8

Also, DU/U is the fractional energy change of the SAW,
derived by Simon.5 Recently, there has been a considera
amount of interest in the interaction of a SAW with a 2DE
in a GaAs/AlxGa12xAs heterostructure.5–16 Simon5 pre-
sented a detailed microscopic theory forDU/U when the
conducting conditions are changed from a 2D sheet w
finite conductivity to the case when the conductivity is in
nite. Simon’s result forDU/U is for a wave that travels on
the surface of a semi-infinite piezoelectric material for wh
the attenuation is due to a loss of energy through Joule h
570163-1829/98/57~3!/1654~10!/$15.00
nt,

e

h
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ing of the two-dimensional electron gas~2DEG! embedded
within the material. Consequently, the result forDU/U is
complex representing the effect of the energy loss and its
and imaginary parts coincide with the fractional veloc
change and the attenuation coefficient, respectively, given
Eq. ~1!. Knäbchen, Levinson, and Entin-Wohlman9 calcu-
lated the absorption of SAW’s by a quantum dot. The pres
paper extends the work of Simon5 for DU/U of a narrow
channel of widthr' (kr'!1) of 2DEG in a slab of thickness
L when an elastic wave is launched on one of the surfa
Such a quasi-one-dimensional system has been produced
GaAs/AlxGa12xAs 2DEG by means of a split gate.10,12 A
schematic representation of the geometry is shown in Fig
Our results show that the real and imaginary parts ofDU/U
are also related to the fractional velocity change and the
tenuation coefficient of the elastic wave, respectively, wh
the dispersion law is linear for thin (kL!1) and thick (kL
@1) slabs, so that both the phase and group velocities
the same. Our theory is linear, which is valid when t
acoustic wave amplitude is small. The attenuation of
SAW in the piezoelectric heterostructure allows experim
talists to study conducting properties of the 2DEG at
operating frequency of the SAW without any contacts be
applied to the sample@see Eq.~1!#. This has been exploited
to study the transport properties of 2DEG systems in an
plied magnetic field in both the low-field limit12 as well as
the quantum Hall regime. Willetet al.15 found evidence of
geometric resonances of the cyclotron motion of compo
fermions with SAW wavelengths in a 2DEG near1

2 filling
factor.
1654 © 1998 The American Physical Society
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57 1655INTERACTION OF SURFACE ACOUSTIC WAVES WITH . . .
Another class of problems has been concerned with n
linear acoustoelectric effects due to the drag of 2D electr
by the SAW.17 The ac current generated provides a meas
of the response of the carriers. It was predicted by Fal’
Meshkov, and Iordanski17 that the current flowing through
channel due to the drag of the electrons by nonequilibri
phonons should be quantized in analogy to conducta
quantization. However, in an experiment, Shiltonet al.10

showed that the behavior of the acoustoelectric current
quasi-one-dimensional ballistic channel is qualitatively d
ferent from the conductance and there is no quantization
the current as a function of the gate voltagevg . Specifically,
when the acoustoelectric current is plotted as a function
vg , there are giant oscillations with minima at those g
voltages that show plateaus in the conductance. This
explained by observing that only electrons close to the Fe
energy contribute to the drag current.

An interesting problem that deserves further theoret
investigation concerns the low-field geometric resonance
electron cyclotron modes with the wavelength of a SAW in
high mobility 2DEG. These were clearly seen in experime
by Shilton et al.10 when the acoustoelectric current induc
in the 2DEG by the SAW was measured as a function of
magnetic field. The data show that as the magnetic field
creases, the acoustoelectric current increases substan
thereby providing the dependence of the conductivity on
magnetic field. More specifically, the frequency and wa
vector-dependent conductivity could be extracted from th
experiments. We would like to determine how the oscil
tions in the low-field limit are related to the commensurab
ity between the channel width and the cyclotron radius of
electrons at the Fermi energy. Results for the commens
bility oscillations in a modulated 2DEG have bee
reported.18–22Recently, Rockeet al.23 have introduced a new
form of band-gap engineering by exposing a direct-gap se
conductor quantum well to a moving potential superlatt
accompanying a SAW. It is shown that the confinement
photogenerated electron-hole pairs to the 2DEG under
influence of the moving lateral superlattice gives rise to
versible charge separation.

The rest of this paper is organized as follows. In Sec.
we describe the linear response function formalism and

FIG. 1. Schematic of the narrow channel of widthr' at a dis-
tanced below the surface of a slab of Al0.3Ga0.7As of thicknessL.
The geometry is relevant for a split gate with Ohmic contacts on
surface where an acoustic wave is launched by transducers.
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tain the fractional energy change for a narrow channel (kr'

!1) in a piezoelectric slab of finite thicknessL. This result
is expressed in terms of the conductivity of the channel a
the electric field potential due to the elastic wave. In Sec.
we solve the wave equation in a nonpiezoelectric mate
and use this result to calculate the induced potential i
piezoelectric material in Sec. IV. We also present numer
results for the velocity dependence of the surface wave
the wave vector. Section IV also contains numerical res
for the magnitude of the induced electric potential. A br
summary of our results and some concluding remarks
given in Sec. V.

II. GENERAL FORMULATION OF THE PROBLEM

We now describe the formalism that will be used to obta
a generalization of Eq.~1! for a narrow channel within a slab
of piezoelectric material of thicknessL. The channel is at a
distance d below the surfacez50 where the SAW is
launched. Suppose the SAW propagates along thex direction
with the narrow 2D channel of widthr' oriented parallel to
thex axis. The SAW produces an electric field in the diele
tric material described by the electric potentialwext(k,v;z),
wherek is the wave number of the SAW with frequencyv.
This potential gives rise to an induced fluctuation cha
densityn(k,v;y,z) in the channel. If the plasma thickness
ignored, then we could setz5d in wext andn and omit the
explicit dependence on the coordinatez wherever it is pos-
sible. Our model assumes that the electron motion across
channel in they direction is restricted by the presence
walls for which the electron distribution in they direction is
approximated by a Gaussian so that the induced cha
density n(k,v;y)5r ind(k,v) w(y), where w(y)
5exp(2y2/2r'

2 )/(2pr'
2 )1/2 andr' is the channel width. The

choice ofw(y) is rather arbitrary in doing model calculation
but a specific form for it is made for the purpose of simp
fying the analytical calculations. A more realistic distributio
function could be used if numerical calculations are to
heavily relied upon. The assumption we make is that
density profile in the channelw(y) is a constant throughou
the calculation and is never allowed to change even when
external potential is applied. This approximation correspo
to the flow of current in one direction only@see Eq.~10!
below#.

In linear response theory, the induced charge den
r ind(k,v) is related to the external potentialwext(k,v) by

r ind~k,v!5K00~k,v!wext~k,v!, ~2!

where K00(k,v) is the density-density response functio
The induced charge density fluctuationn(k,v;y) gives rise
to the induced Coulomb potentialw ind(k,v;y) in the chan-
nel. The total potential within the channel is the sum of t
external and induced potentials. Following Simon,5 we can
relate charge fluctuationsr ind(k,v) to the total potentialw tot.
For sufficiently narrow channels whenkr'!1, one can write
this relation in the form

r ind~k,v!5P00~k,v!w tot~k,v!, ~3!

wherew tot(k,v)5w tot(k,v;y50) andP00(k,v) is the po-
larization function. We then have

e
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w tot~k,v!5wext~k,v!1v~k!r ind~k,v!, ~4!

wherev(k) is defined by

v~k!5
1

2pE2`

`

dky v~kuu! f ~ky!, ~5!

with kuu5Ak21ky
2 and

f ~ky![E
2`

`

dy e2 ikyyw~y!

5e2ky
2r'

2 /2. ~6!

In Eq. ~5!, v(kuu) is the Fourier transform of the Coulom
potential for interacting electrons within the 2D plane e
bedded in a slab of dielectric material of thicknessL with
dielectric constant«, which is assumed isotropic, surround
by a material with dielectric constant«b . The expression for
v(kuu) can be obtained using the method of images and
given by

v~kuu!5
2p

«skuu
b~kuu!$11ze22kuud1z2e22kuuL1ze22kuu~L2d!%,

~7!

where«s[4p«0« and

z[
«2«b

«1«b
, b~kuu![

1

12z2e22kuuL
. ~8!

Equations~5!–~8! jointly yield an explicit result for the Fou-
rier transform of the effective Coulomb potentialv(k) in a
narrow channel. From Eqs.~2!–~4!, it follows that

K00
21~k,v!5P00

21~k,v!2v~k!. ~9!

Our result is a generalization of Simon’s result5 to the case of
a narrow channel.

We now proceed to derive an expression for the dens
density response functionK00(k,v) in Eq. ~9! in terms of the
conductivity s(k,v) of the channel. For this, we make us
of the continuity equation

¹•J~r ,t !1
]n~r ,t !

]t
50, ~10!

relating the currentJ(r ,t) to the density fluctuations. Takin
the Fourier transform of this equation with respect tox and
integrating overy, we obtain

k2s~k,v!w tot~k,v!2 ivr ind~k,v!50, ~11!

where the relation

J~k,v!5s~k,v!Etot~k,v;y50! ~12!

between the total current in the channelJ(k,v) and the total
electric fieldEtot(k,v;y50)52 ikw tot(k,v) was used, and
s(k,v) is the 1D channel conductivity. This approximatio
is valid for narrow channels whenkr'!1. From Eqs.~3!
and ~11!, it follows that

P00~k,v!5
k2s~k,v!

iv
. ~13!
-

is

-

Making use of Eq.~13! in Eq. ~9! and settingv5vsk where
vs is the SAW velocity, we obtain

K00~k,v!52
1

v~k!@12 is1~k!/s~k,v!#
, ~14!

where

s1~k!5
vs

kv~k!
. ~15!

The next step is to calculate the additional energy indu
in the slab due to the interaction of the induced charge d
sity fluctuations in the channel with the electric potent
induced by the SAW propagating in the piezoelectric ma
rial. The time-averaged expression for this energy per u
surface area is given by

dŨ5 1
2 nwext * . ~16!

This is a complex energy with its real and imaginary pa
directly related to the change of the velocity and dissipat
of the SAW.5 For our geometry, it is more appropriate
calculate the induced energy per unit length along the ch
nel. Integrating Eq.~16! in they direction and using Eqs.~2!
and ~14!, we obtain

dŨ52
uwextu2

2v~k!@12 is1~k!/s~k,v!#
. ~17!

Following the approach of Ingebrigtsen,2 one can calculate
the energy change with respect to its value fors5`, which
is

dU5dŨ~s!2dŨ~s5`!5
uwextu2

2v~k!@11 is~k,v!/s1~k!#
.

~18!

In 2D, the fractional energy changedU/U, whereU is the
SAW energy per unit surface area of the sample, can
directly related to the change of the SAW velocity and
tenuation of the transmitted SAW intensity; see Eq.~1!. This
interaction between this SAW and 2DEG was considered
detail by Ingebrigtsen2 and Krasheninnikov and Chaplik.24

Measurements are usually done in a perpendicular magn
field where the casesxxÞ` corresponds to a measureme
in a finite magnetic field whereassxx5` when there is no
magnetic field applied to a high-mobility 2D gas.6–8

For a 1D channel, the conductivitys(k,v) can be varied
by changing the width of the channel through the split-g
potential. In this case, the fractional energy change is de
mined as

DU

ULy
[

1

ULy
@dU~s!ur

'
~1!2dU~s!ur

'
~2!# , ~19!
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57 1657INTERACTION OF SURFACE ACOUSTIC WAVES WITH . . .
whereLy is the transverse size of the region where the SA
propagates. If the SAW dispersion is linear, direct calcu
tion of the attenuation coefficientG5Re(J* Etot/2I ), whereI
is the intensity of the SAW and the velocity change sho
that Eq. ~1! is still valid with the evident changesDvs
5vsur

'
(1)2vsur

'
(2), K→DK5Kur

'
(1)2Kur

'
(2) and the fractional

energy change in Eq.~1! must be replaced byDU/ULy . It
is shown below in Sec. III that in general for a slab of fin
thicknessL the dispersion relation of the elastic wave
nonlinear and the velocityvs defined above asv/k is the
phase rather than the group velocity of the wave. Howe
for thin (kL!1) and thick (kL@1) slabs, the linear disper
sion law is restored and both the phase and group veloc
are the same. Finally, with all the above mentioned rest
tions, Eq.~1! still has a rather broad range of validity. How
ever, although the imaginary part ofDU/U gives the attenu-
ation of the wave, the assignment of the real part to be
fractional velocity shift may not be true in general for
nonlinear velocity dispersion. This is a difficult problem th
may have some bearing on the experiments for certain S
wavelengths.

The electric potentialwext and the energyU in Eqs.~18!
and~19! can be obtained by solving the equations describ
the propagation of elastic waves in a piezoelectric mediu
These equations are25

ci jkl

]2uk

]xl]xi
1ek,i j

]2f

]xk]xi
2r

]2uj

]t2
50, ~20a!

4pei ,kl

]2uk

]xl]xi
2«s¹

2f50, ~20b!

which must be solved subject to the mechanical bound
conditions and the electrostatic boundary conditions obtai
from the continuity of the potential as well as the norm
component of the electric displacement vectorD at the sur-
faces atz50, L, for which

Dz52«s

]f

]z
14pez,kl

]uk

]xl
, 0,z,L, ~21a!

Dz524pe0«b

]f

]z
, z,0, z.L. ~21b!

Mechanical boundary conditions corresponding to the f
surfaces atz50, L give us the following equations:

cizkl

]uk

]xl
1ek,iz

]f

]xk
U

z50,L

50. ~22!

In this notation,ci jkl is the elastic tensor withci jkl 5cjikl
5ci j lk 5ckli j , thereby reducing the number of independe
constants to 21,26 ek,i j is the piezoelectric tensor withek,i j
5ek, j i , uk is thekth component of the lattice displacemen
andr is the mass density of the medium. Crystals with cu
symmetry such as GaAs and AlxGa12xAs have only three
independent nonzero components ofci jkl , i.e., c115cxxxx
5cyyyy5czzzz, c125cxxyy5cyyzz5czzxx, and c445cxyxy
5cyzyz5czxzx. All other nonzero components of the elas
-

s

r,

es
-

e

t
W

g
.

ry
d

l

e

t

c

tensor are obtained from the symmetry properties giv
above. A general solution of Eqs.~20a! and~20b! for a semi-
infinite medium was given by Campbell and Jones.25 Here,
we obtain the solution of these equations for a slab of fin
thickness. In the next section, we solve the wave equation
a nonpiezoelectric medium. The solution for the lattice d
placement vector will be employed in Sec. IV to obtain t
electric field in Eq.~20! that is produced by this lattice dis
placement in a piezoelectric material. This solution
equivalent to neglecting the effect the electric field has
the material displacement and is valid to the lowest orde
the piezoelectric coupling.

III. ELASTIC WAVES IN A NONPIEZOELECTRIC SLAB
OF FINITE THICKNESS

Let us now consider elastic waves in a nonpiezoelec
slab of finite thicknessL with cubic crystal symmetry. Thes
waves obey the wave equation~20a! with ek,i j 50 and in this
case Eq.~20a! reduces to the well-known equation for elas
waves in cubic crystals.26–28The boundary conditions in Eq
~22! yield

]ux

]z
1

]uz

]x G
z50, L

50, ~23a!

]uy

]z
1

]uz

]y G
z50, L

50, ~23b!

Fc11

]uz

]z
1c12S ]ux

]x
1

]uy

]y D G
z50,L

50. ~23c!

We now consider the case when the elastic wave propag
on the~100! surface of a cubic crystal in the@011# direction
and for which we take the solution in the following form:

u5S u/A2

u/A2

uz
D e2kQzeik~x1y!/A22 ivskt, ~24!

corresponding to a wave with wave vectork and frequency
v5vsk, where the velocityvs could be wave-vector depen
dent, as we discuss below. Coordinate axes are chosen a
the principal crystallographic axes of the crystal although
assumed the wave to propagate along thex direction in the
general formulation of the problem in the preceding secti
This form of solution corresponds to the experimental geo
etry when the launched wave has only one in-plane com
nent of the displacement wave vector along the direction
propagation andu is the amplitude of this displacemen
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Substituting Eq.~24! into the wave equation, we obtain

~rvs
22c1181c44Q

2!u2 i ~c121c44!Q uz50, ~25a!

2 i ~c121c44!Q u1~rvs
21c11Q

22c44!uz50, ~25b!

wherec1185c441(c111c12)/2, for which the determinant o
the coefficients in Eq.~25! must be zero for a nontrivia
solution. This yields a biquadratic equation forQ with four
roots6Q1 and6Q2, which satisfy
Q1
21Q2

25
c44~c442rvs

2!1c11~c118 2rvs
2!2~c121c44!

2

c11c44
,

~26a!

Q1
2Q2

25
~c118 2rvs

2!~c442rvs
2!

c11c44
. ~26b!

Making use of the results given above, we obtain the g
eral solution of Eq.~25! as
ith
u5S u1 /A2

u1 /A2

g1u1
D e2kQ1zeik~x1y!/A22 ivskt1S u2 /A2

u2 /A2

2g1u2
D ekQ1zeik~x1y!/A22 ivskt

1S u3 /A2

u3 /A2

g2u3
D e2kQ2zeik~x1y!/A22 ivskt1S u4 /A2

u4 /A2

2g2u4
D ekQ2zeik~x1y!/A22 ivskt, ~27!

where

g1,25
i ~c121c44!Q1,2

c11Q1,2
2 2c441rvs

2
, ~28!

andui ( i 51, . . . ,4) arearbitrary amplitudes.
Equation ~27! and the boundary conditions of Eq.~23! give the following system of equations forui after a straightforward

but lengthy calculation:

S a11 2a11 a13 2a13

a21 a21 a23 a23

a11e
2kQ1L 2a11e

kQ1L a13e
2kQ2L 2a13e

kQ2L

a21e
2kQ1L a21e

kQ1L a23e
2kQ2L a23e

kQ2L
D S u1

u2

u3

u4

D 50, ~29!

where

a115 ig12Q1 , a135 ig22Q2 , ~30a!

a215c121 ig1Q1c11, a235c121 ig2Q2c11. ~30b!

The determinant of the coefficient matrix in Eq.~29! must be zero for a nontrivial solution. This condition, in conjunction w
Eq. ~28! for g, gives the following result forvs as a function ofkL:

@Q1~c11Q1
21c121rvs

2!~c12rvs
22c12c442c11c44Q2

2!1Q2~c11Q2
21c121rvs

2!~c12rvs
22c12c442c11c44Q1

2!#2sinh~kQ1L !

3sinh~kQ2L !24Q1Q2~c11Q1
21c121rvs

2!~c11Q2
21c121rvs

2!~c12rvs
22c12c442c11c44Q1

2!

3~c12rvs
22c12c442c11c44Q2

2!sinh2S k~Q11Q2!L

2 D50. ~31!
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WhenkL!1, our calculation shows that in the lowest ord
of this small parameter, there is only one solution for t
velocity, independent ofkL and given by

vs
~ l !5Ac11c118 2c12

2

rc11
, ~32!

which corresponds to a pure longitudinal wave propaga
in a thin crystal sheet. For arbitrary values ofkL, Eq. ~31!,
together with Eq.~26!, must be solved numerically forvs ,
which subsequently yields the dispersion relationv5vsk
and the amplitudesui from Eq. ~29!. For kL@1, Eq. ~31!
reduces to a cubic equation derived in Eq.~28! of Ref. 29 for
a semi-infinite geometry and@011# propagation of surface
waves. In this limiting case, Eqs.~26! and Eq.~31! give one
real solution forvs corresponding to the uncoupled SAW
localized near the top or bottom surface of the slab. Sap
et al.30 have used Brillouin and Raman scattering to meas
vs of an AlxGa12xAs alloy as a function of the aluminum
concentration. We have solved Eq.~31! for vs for
Al xGa12xAs for which the elastic stiffness constants a
given by the following linear relationships:31 c11(x)511.88
10.14x, c12(x)55.3810.32x and c44(x)55.9420.05x in
units of 1010N/m2. The crystal density for an aluminum con
centration x is given by r(x)5(5.3621.6x)3103 kg/
m3. We chosex50.3 and in Fig. 2, we have plotted th
solutionsvs as a function ofkL. In general, there are two
real solutions forvs as a result of the interaction of the su
face elastic modes of the top and bottom surfaces of the s
However, for small kL, there is only one mode with
vs54981 m/s in agreement with Eq.~32!. For largekL, the
two modes merge andvs52983 m/s. Our numerical calcu
lations show thatQ1 is the complex conjugate ofQ2. In Fig.
3, we have plotted the real and the imaginary parts ofQ1 as
a function ofkL for Al xGa12xAs with x50.3. Figure 4 is a
plot of s1(k) defined in Eq.~15! as a function ofkL for
«5(13.1823.12)x,31 «b51, kd51.0, and r' /L50.1. In
Fig. 5, we plots1(k) as a function ofkd, for a variable depth
of the 2D layer and fixedkL and r' /L50.1 .

Under the conditionsQ25Q1* and, as a consequenc
g252g1* , we have solved Eq.~29! for the eigenvector and

FIG. 2. Plot of the velocityvs as a function ofkL for a slab of
Al0.3Ga0.7As of thicknessL. The parameters used in the calculati
for the elastic stiffness constants and the crystal density for an
minum concentrationx50.3 are given in the text.
r
e

g

el
re

b.

the results are given byuj5(D j /D)u1 for j 52, 3, 4 where
D j andD are defined as follows:

D252ua11u2a21* @ek~Q1* 2Q1!L1e2k~Q1* 1Q1!L2e22kQ1L21#,
~33a!

D35~ ua11u2a212a11
2 a21* !~ekQ1L2e2kQ1L!~ekQ1* L2e2kQ1L!,

~33b!

D45~a11
2 a21* 1ua11u2a21!~ekQ1L2e2kQ1L!

3~e2kQ1* L2e2kQ1L!, ~33c!

FIG. 4. Plot ofs1 /(r'e2/h) as a function ofkL for a slab of
Al0.3Ga0.7As of thicknessL, kd51.0 and a channel withr' /L
50.1. The parameters used in the calculation for the elastic s
ness constants and the crystal density for an aluminum conce
tion x50.3 are given in the text.

u-

FIG. 3. Plot of the real and imaginary parts ofQ1 as a function
of kL for a slab of Al0.3Ga0.7As of thicknessL. The parameters use
in the calculation for the elastic stiffness constants and the cry
density for an aluminum concentrationx50.3 are given in the text.
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D5ua11u2a21* @ek~Q11Q1* !L1e2k~Q11Q1* !L1ek~Q12Q1* !L

1e2k~Q12Q1* !L24#1a11*
2a21@ek~Q12Q1* !L

1e2k~Q12Q1* !L2ek~Q11Q1* !L2e2k~Q11Q1* !L#. ~34!

In general, the energy density associated with the ela
wave can be written as26,27

E5 1
2 ci jkl ui j ukl* , ~35!

where the strain tensor is defined as

ui j 5
1

2S ]ui

]xj
1

]uj

]xi
D . ~36!

From Eqs.~24! and ~36!, it follows that uxx5uyy5uxy and
uyz5uxz . Using these results and the symmetry propertie
the elastic tensor, Eq.~35! becomes

E52c118 uuxxu21 1
2 c11uuzzu212c12Re~uxxuzz* !14c44uuxzu2.

~37!

When Eq. ~27! is substituted into Eq.~36!, the following
results for the elastic strain tensor are obtained:

uxx5
ik

A2
ux , ~38a!

uzz5k$2g1Q1~u1e2kQ1z1u2ekQ1z!1g1* Q1* ~u3e2kQ1* z

1u4ekQ1* z!%eik~x1y!/A22 ivskt, ~38b!

uxz5
k

2A2
$~ ig12Q1!~u1e2kQ1z2u2ekQ1z!2~ ig1* 1Q1* !

3~u3e2kQ1* z2u4ekQ1* z!%eik~x1y!/A22 ivskt. ~38c!

Substituting Eq.~38! into Eq. ~37! and then integrating
from z50 to z5L, we obtain the energy density per un
surface area as

U~k,L !5kuu1u2ReJ~kL!, ~39!

FIG. 5. Plot ofs1 /(r'e2/h) as a function ofkd for a slab of
Al0.3Ga0.7As of thicknessL with kL510.0 and a channel with
r' /L50.1. The parameters used in the calculation for the ela
stiffness constants and the crystal density for an aluminum con
tration x50.3 are given in the text.
tic

f

whereJ(kL) is given in the Appendix. For a semi-infinit
slab, direct calculation shows that

lim
L→`

D2

D
,

D4

D
50, lim

L→`

D3

D
5e2iq, e2iq52

Q12 ig1

Q1* 1 ig1*
~40!

and U(k,L) in Eq. ~39! reduces to the expression forU
given by Simon.5

Combining Eqs.~17!, ~19!, and ~39!, we obtain the frac-
tional energy change in a narrow channel as

DU

U~k,L !Ly
5

a2/2

Ly
H 1

11 is~k!/s1~k,v!
U

r
'
~1!

2
1

11 is~k!/s1~k,v!
U

r
'
~2!

, ~41!

where

a2

2
5

uwextu2

2v~k!kuu1u2ReJ~kL!
. ~42!

In the following section, we calculate the potentialwext due
to an elastic wave launched on the surface of a piezoele
material.

IV. THE PIEZOELECTRIC EFFECT
IN A SLAB OF FINITE THICKNESS

For a piezoelectric medium, the electromagnetic and e
tic solutions are coupled, as seen from Eqs.~20!. For a cubic
crystal, the piezoelectric tensor has only one nonzero in
pendent element given byex,yz5ey,xz5ez,xy[e14 as well as
those elements obtained by interchanging the second
third subscripts.26 We now solve Eq.~20! when the piezo-
electric coupling is small, for which the potential in Eq.~20!
may be solved using perturbation theory, i.e., we solve fof
in Eq. ~20b! by making use of the result for the displaceme
vector obtained by solving Eq.~20a! when the piezoelectric
tensor is neglected. In this approximation, the potential i
solution of

¹2f5H 8pe14

«s
S 2

]2ux

]x]z
1

]2uz

]x2 D , 0,z,L

0, z,0, z.L,
~43!

where the displacement vector is given by Eqs.~27! and
~33!. A straightforward calculation shows thatf(r ,t)
5F(z)eik(x1y)/A22 ivskt, whereF satisfies the equation

ic
n-



57 1661INTERACTION OF SURFACE ACOUSTIC WAVES WITH . . .
«s

d2F

dz2
2«sk

2F54p ie14ku1H 2F2kQ1S e2kQ1z2
D2

D
ekQ1zD2kQ1* S D3

D
e2kQ1* z2

D4

D
ekQ1* zD G

1 ikFg1S e2kQ1z2
D2

D
ekQ1zD2g1* S D3

D
e2kQ1* z2

D4

D
ekQ1* zD G J . ~44!
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This equation has the particular solution

Fp~z!5
4p ie14u1

«s
FCS e2kQ1z2

D2

D
ekQ1zD

1C* S D3

D
e2kQ1* z2

D4

D
ekQ1* zD G , ~45!

where

C[
ig122Q1

Q1
221

. ~46!

Therefore, the general solution for the slab of thicknessL is

F~z!5H Fp~z!1B1ekz1B2e2kz, 0<z<L

B3ekz, z<0

B4e2kz, z>L .
~47!

The continuity conditions of the potential and the norm
component of the displacement vector at the surfa
z50, L together give the coefficients in Eq.~47!. Since we
are interested in the potential within the film, we only pres
our results forB1 andB2. Our calculations show that

B15
4p ie14u1

«s

C1~«b2«!e2kL2C2~«b1«!

~«b2«!2e2kL2~«b1«!2ekL

[
4p ie14u1

«s
B̃1 , ~48a!

B25
4p ie14u1

«s

C2~«b2«!2C1~«b1«!ekL

~«b2«!2e2kL2~«b1«!2ekL
[

4p ie14u1

«s
B̃2

~48b!

where

C152H @«1~«b1«Q1!C#1@«1~«Q12«b!C#
D2

D

1@«1~«Q1* 1«b!C* #
D3

D
1@«1~«Q1* 2«b!C* #

D4

D J ,

~49a!
l
s

t

C25H @«1~«Q12«b!C#e2kQ1L1@«1~«Q11«b!C#

3
D2

D
ekQ1L1@«1~«Q1* 2«b!C* #

D3

D
e2kQ1* L1@«

1~«Q1* 1«b!C* #
D4

D
ekQ1* LJ . ~49b!

In the limit kL@1, making use of Eq.~40! in Eqs.~45!–~49!
yields wext derived by Simon5 for a semi-infinite slab. The
potential in Eq.~47! yields

wext5F~d!5
4p ie14u1

«s
F~kd!, ~50!

where

F~kd!5Ce2kQ1d2
D2

D
CekQ1d1

D3

D
C* e2kQ1* d

2
D4

D
C* ekQ1* d1B̃1ekd1B̃2e2kd. ~51!

Substituting Eq.~50! into Eq. ~42!

a2

2
5

4pe14
2

2v~k!k«s
2ReJ~kL!

uF~kd!u2. ~52!

We now present numerical results fora2/2, which deter-
mines the fractional energy change for a narrow channel
bedded at a distanced below the surface on which the SAW
is launched. In our calculations, we use the piezoelectric c
stant e14520.1620.065x ~C/m2) for Al xGa12xAs.31 The
results in Fig. 6 show that whena2/2L is plotted as a func-
tion of kd, the plots are very much dependent on the va
chosen forkL andr' . For kL55, there are two real eigen
value solutions for the velocity and for which we have plo
ted the corresponding values ofa2/2 in Fig. 6~a!. In Fig.
6~b!, we setkL510 for which the two surfaces atz50 and
z5L are still coupled causing the increase ina2/2 as the
surface atz5L is approached. In general, the results fora2/2
for the 2DEG embedded below the surface are not expon
tial as obtained in other calculations for the half-space geo
etry (kL@1).5,32 Figure 6~c! is a plot forkL550 when the
two surfaces are completely decoupled. The value ofa2/2L
is larger for thin films than for thick films. From the com
bined data in Figs. 1–6, we could now obtain the fractio
energy change of the SAW due to the interaction with
narrow channel within a slab of piezoelectric material.
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V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have formulated a theory for the fra
tional energy changeDU/ULy for an elastic wave launche
on the surface of a piezoelectric quantum well structure
contains a narrow channel of widthr' at a distanced below
the surface. Free surface boundary conditions are use
these calculations. The dependence ofDU/U on the wave
vector k and the 1D channel conductivitys(k,v) is ob-
tained. The channel can be realized experimentally in
GaAs/AlxGa12xAs 2DEG by means of a split gate. When th
wave number and the thicknessL are such that the two sur
faces are coupled then two real solutions for the surf
wave velocity are obtained. When the dispersion relation
linear for a thin film (kL!1) or a thick film (kL@1), the
real and imaginary parts ofDU/U are related to the velocity
change and the attenuation coefficient, respectively. The
sult for DU/U is given as a closed-form expression in term

FIG. 6. a2/2L is plotted as a function ofkd for r' /L50.1 and
a fixed value ofkL chosen as~a! 5, ~b! 10, and~c! 50. The param-
eters used in the calculation for the piezoelectric constants, the
tic stiffness constants, and the crystal density for an aluminum c
centrationx50.3 are given in the text.
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of the velocity of the SAW, the elastic constants and t
piezoelectric tensor by solving the set of coupled equati
for the lattice and electric displacement vectors in the@011#
direction on the~100! surface of a cubic crystal. We show
that the fractional energy change depends on the param
a2/2 ands1, which are related to the channel conductivi
and material characteristics. Numerical results are prese
for the velocity of the SAW for AlxGa12xAs as a function of
the thickness of the slab as well ass1 as functions ofkd and
kL. We also computea2/2 as a function ofkd for several
values of the thickness of a slab of GaAs/AlxGa12xAs.

In conclusion, we note that split metal gates are used
produce a narrow conducting channel within a 2DEG. E
dently, the piezoelectric field will be screened by the met
lized surface. However, our calculations do not include
effects of screening by the metal gate on the interacti
between the electrons within the channel and the launc
elastic wave.7 One method that could be used to reduce
effect of screening is to increase the spatial separation
tween the gate and the surface where the wave is launc
by depositing a relatively thick insulating layer on th
surface.7 Recently, this technique was successfully used
Rockeet al.8 These authors observed the interaction betw
SAW’s and a high-mobility 2DEG in gated
GaAs/AlxGa12xAs heterojunctions and were able to contr
the carrier density in the 2D gas using gate electrodes.
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APPENDIX

In this appendix, we give the explicit form for the func
tion J(kL) in Eq. ~39!. For convenience of notation, w
introduce the functionG(Q,kL) defined by

G~Q!5
1

Q
@12e2kQL#. ~A1!

In the results presented below,D j for j 52, 3, 4 andD are
defined in Eqs.~33! and ~34!. Our calculations show that

J~kL!5
1

uDu2
$A1@~ uDu21uD3u2!G~Q11Q1* !

1~ uD2u21uD4u2!G~2Q12Q1* !#1A2~D* D2

1D3D4* !G~Q1* 2Q1!1A3@DD3* G~2Q1!

1D2D4* G~22Q1!#1A4~DD4* 1D2D3* !G~0!%,

~A2!

where

A1[
c118

2
1

c11

2
ug1Q1u21 ic12g1Q11

c44

2
u ig12Q1u2,

~A3!

s-
n-



f
the

57 1663INTERACTION OF SURFACE ACOUSTIC WAVES WITH . . .
A2[c1181c11ug1Q1u21 ic12~g1Q12g1* Q1* !

2c44u ig12Q1u2, ~A4!

A3[c1182c11g1
2Q1

212ic12g1Q11c44~ ig12Q1!2,
~A5!
A4[A322c44~ ig12Q1!2. ~A6!

The results in Eqs.~A1!–~A6! are used in the calculation o
the relative change in energy for the wave launched on
surface of a slab of thicknessL.
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