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Shot noise of single-electron tunneling in one-dimensional arrays

K. A. Matsuoka and K. K. Likharev
Department of Physics, State University of New York, Stony Brook, New York 11794-3800

~Received 20 January 1998!

We have used numerical modeling and a semianalytical calculation method to find the low-frequency value
SI(0) of the spectral density fluctuations of current through one-dimensional arrays of small tunnel junctions,
using the ‘‘orthodox’’ theory of single-electron tunneling. In all three array types studied, at low temperature

(kBT!eV) increasing current induces a crossover from the Schottky valueSI(0)52e^ Ī & to the ‘‘reduced

Schottky value’’SI(0)52e^ Ī &/N ~whereN is the array length! at some crossover currentI c . In uniform arrays
over a ground plane,I c is proportional to exp(2lN/3), wherel21 is the single-electron soliton length. In
arrays without a ground plane,I c decreases slowly with bothN andl. Finally, we have calculated the statistics
of I c for ensembles of arrays with random background charges. The standard deviation ofI c from the ensemble
averagê I c& is quite large, typically between 0.5 and 0.7 of^I c&, while the dependence of^I c& on N or l is so
weak that it is hidden within the random fluctuations of the crossover current.@S0163-1829~98!05023-1#
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I. INTRODUCTION

Single-electron tunneling~for general reviews, see Refs.
and 2! is one of the most active areas of solid-state phys
research, but it has several key problems that have not
been addressed in detail. One of these problems is the
lemma of the discreteness and continuity of electric cha
transfer.1 Several single-electron tunneling phenomena
be understood as an interplay betweendiscrete transfer of
electric charge via electron tunneling, andcontinuoustrans-
fer in ordinary diffusive conductors. For example, a tunn
junction biased by a dc current may generate single-elec
tunneling~SET! oscillations with average frequency3

f S5
^I &
e

. ~1!

This effect may be interpreted as a gradual accumulatio
continuous charge on the junction capacitance, followed
the abrupt passage of one electron through the junction
soon as the accumulated charge has reached a thre
level3 Qt 56e/2.

However, if the charge transfer in the external circuit~fix-
ing the currentI ) is discrete, SET oscillations do not exis
This can be seen from the following general formula for t
SET oscillation linewidth:1,3

GS5S p

e D 2

SI~0! ~GS! f S!, ~2!

whereSI( f ) is the spectral density of the bias current flu
tuations. For example, if the current is fixed using anot
tunnel junction, then at low temperatures the fluctuatio
obey the Schottky formula

SI~0!52e^I &, ~3!

andGS> f S ; that is, SET oscillations are completely smear
by the current fluctuations.1 On the other hand, in macro
scopic diffusive conductors, the current noise may be m
lower than the Schottky value, and SET oscillations~and
570163-1829/98/57~24!/15613~10!/$15.00
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very similar ‘‘Bloch’’ oscillations4! may have a relatively
narrow bandwidth—see, e.g., experimental measuremen
Ref. 5.

More generally, discreteness of charge transfer will c
tainly be one of the central issues facing the emerging na
electronics. This is why it is important to formulate the co
ditions under which the transport of charge through
conductor may be considered as~quasi!continuous, i.e., hav-
ing the discretenessdQ!e. The definition ofdQ can be
most readily introduced in the most interesting case of n
ligible thermal and quantum fluctuations

kBT!@e^V&,eVt#, ~4!

G!
e2

h
, ~5!

whereVt is the Coulomb blockade threshold of the condu
tor, andG its effective conductance. However, even in th
simplest case, the definition depends essentially on the c
acteristic time scalet of an experiment.

~A! If f St@1 ~i.e., either the time scalet is large, or the
dc current is high, or both!, dQ may be defined as follows:

dQ

e
5

SI~0!

2e^I &
. ~6!

In fact, if the chargeQ transferred through a system may b
presented as a Poissonian series of jumps of fixed heightdQ,
then, repeating the well-known derivation of the Schott
formula, we arrive at Eq.~6!. If the jump height is random as
well, Eq. ~6! is still applicable as an estimate of the avera
jump height.

~B! In the opposite limit, whent is much shorter than the
average spacing between the charge jumps (f S

21), we are
essentially dealing with the Coulomb blockade regime.
this case an adequate definition ofdQ is as follows:

dQ5Ce fVt , ~7!

whereCe f is the effective input capacitance of the system
interest. (dQ given by this formula is the fraction of the
15 613 © 1998 The American Physical Society
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15 614 57K. A. MATSUOKA AND K. K. LIKHAREV
initial electric charge of the system which cannot relax, d
to the Coulomb blockade; for a diffusive conductordQ→0,
while for a single tunnel junctiondQ5e/2.!

One of the most interesting systems capable of quasic
tinuous charge transfer is the one-dimensional~1D! array of
small tunnel junctions—see, e.g., the review in Ref. 6. T
key property of such an array8 is that each additional electro
inserted into one of its islands creates a series of gradu
decreasing polarization charges, and hence may be co
ered as a ‘‘single-electron soliton’’ with a characteristic s
M which may be much larger than one island. As a res
when an electron drifts along the array, tunneling betwe
the neighboring islands, the effective chargeQ transferred
through the external electrodes—which is essentially w
interests us—changes in jumps of scaledQ;e/M , which
may be much smaller thane.

This does not mean, however, that the conditionM@1 is
sufficient for the quasicontinuous transfer of charge in
arrays. In fact, the calculation of the Coulomb blocka
threshold for arrays with uniform8 and random9–11 back-
ground charges have shown that, under definition~B!, charge
transport in uniform arrays with vanishing backgrou
chargecannot be considered as continuous (dQ;e). The
reason is that a relatively strong Coulomb blockage res
from the pinning of single-electron solitons by the sha
edges of the array. Presently, we know only two cases w
charge transport through a uniform array is quasicontinu
(dQ!e) according to the definition~B!.

~1! An array with arbitrary capacitances, but with th
background charge of all the islands equal to6e/2. ~In this
case the Coulomb blockade threshold vanishes, anddQ→0.!

~2! An array with 1!N!2M and random backgroun
charges.~In this case,10,11 Vt'0.5eN1/2/C, whereC is the
tunnel junction capacitance, whileCe f5C/N, and hence
dQ/e'1/2N1/2!1.!

However, even in these cases, the charge transfer is
automatically continuous in the sense of criterion~A!. If the
Coulomb blockade is finite, and the array is driven with
voltageV slightly above the blockade thresholdVt , one of
the junctions presents a bottleneck to the single-electron
ton drift along the array. As a result, the passage of an e
tron consists of a long wait at the bottleneck junction, f
lowed by a rapid burst of transitions through the remain
junctions of the array. AtV→Vt the statistics of these burs
is always Poissonian, and the charge transferred by e
burst is equal toe, so that the shot noise is well described
the Schottky formula.

Thus current noise in 1D arrays presents an impor
problem. To our knowledge, this problem has previou
only been solved12 for a very particular case of uniform ar
rays with M→` ~zero stray capacitance! and zero back-
ground charge. The objective of this work was to calcul
SI(0) ~and hence the effective discreteness of charge tran
for long time intervals! for a much broader range of arra
parameters.

II. BASIC FORMULAS

We have considered arrays consisting ofN21 small me-
tallic islands connected byN tunnel junctions, and flanked a
either end by dc voltage-biased electrodes~Fig. 1!. Under
e

n-

e

lly
id-

t,
n

t

e

ts

n
s

ot

li-
c-
-
g

ch

nt
y

e
fer

these conditions, expressed by Eqs.~4! and ~5!, we can ig-
nore the effects of cotunneling and thermally activated t
neling. Current flow in single-electron arrays may be an
lyzed in terms of the junction tunneling ratesG i j . According
to the orthodox theory,8 1 at zero temperature,

G i j 5H GDWi j

e2
, DWi j .0

0, DWi j ,0,

~8!

where DWi j is the drop in the free~electrostatic! energy,
caused by the tunneling event. The drop in energy due to
electron tunneling from islandi to island j can be written as

DWi j 5e2Ci j
212

e2Cii
211e2Cj j

21

2
1e@f~ j !2f~ i !#, ~9!

where fW is the vector of the electrostatic potential of th
islands before the jump, and the matrixC21 of inverse ca-
pacitances is defined by the following equation:

f i5 (
j P isl

Ci j
21~qj1q̃ j !, q̃ j[ (

kPext
C̃jkVk . ~10!

Here the matrixC̃ represents capacitances between isla
and external terminals with potentialsVk .

If these potentials do not change in time, the probabi
that the system preserves its charge state can be expre
explicitly,

P~ t !5exp@2G~ t2to!#, ~11!

whereto is the time of the preceding tunneling event, wh
G is the total rate for all possible tunneling events:

G5 (
$ i j %P jct

G i j . ~12!

III. NOISE COMPUTATION

The preceding relations were incorporated into our m
computational tool, a C11 program calledMSO7 that uses a
Monte Carlo algorithm8 to simulate the flow of current in dc
voltage-biased 1D arrays. The basic unit of calculation
MSO is the ‘‘current run,’’ in which charge flows through th

FIG. 1. 1D array of tunnel junctions:~a! general schematic,~b!
‘‘ground plane’’ or ‘‘tridiagonal model’’ schematic.
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57 15 615SHOT NOISE OF SINGLE-ELECTRON TUNNELING IN . . .
array until a user-specified total chargeQ is transferred. To
calculateSI(0), MSO loops through a user-specified numb
Nr of current runs, each starting with the same initial cha
state and ending when the total charge transferred equaQ.
The same random number generators13 for time and jump
location are used continuously through all loops. To the
tent that the random numbers constitute a ‘‘good’’ quasir
dom series, the ensemble of current runs represents a s
tical ensemble of independent, initially identical systems.

FIG. 2. Convergence ofSI(0)/2eI calculated byMSO as a func-
tion of Nr , the number of current runs in the statistical ensemb
for various values of total transferred chargeQ. Results for an array
near the ground plane,N520 andl50.5, at crossover current.

FIG. 3. Parametric plots ofSI(0)/2eI vs I . The crossover cur-
rent I c is defined as the current at whichSI(0)/2eI51/AN. Circles:
array near a ground plane. Squares: array without a ground p
Diamonds and triangles: arrays with random background cha
Dotted lines are only guides for the eye.
e

-
-
tis-The statistics of timesTQ of each run allows us to calcu
late SI(0) as12

SI~0!

2e^ Ī &
'

Q

e

Var~TQ!

^TQ&2
, ~13!

whereĪ 5Q/TQ , and the angle brackets and variance refe
our statistical ensemble of current runs. Equation~13! is ex-
act only for infiniteQ andNr ; since the jumps are not com
pletely independent, the accuracy of this formula should
determined experimentally. Figure 2 shows a typical dep
dence of SI(0)/2e^ Ī & on Q and Nr . The results forQ
*1000e andNr*1000 seem to be accurate to within 10%
the asymptotic value. In this paper, we used the parame
Q51000e andNr51000 for calculating shot noise in array
without background charge, and assigned 10% error bar
these numbers.

For arrays with random background charge, each po
was calculated for 50 different realizations of the backgrou
charge for each circuit, using the parametersQ5200e and
Nr5200, to keep the simulation time within reasonable lim
its. Although these calculations are therefore less accur
perhaps only to within 20% of their asymptotic value, th
inaccuracy was overshadowed by the overall spread in
noise values among the different background charge rea
tions.

Calculation~CPU! times inMSO scale as;NaQNr , with
a slightly larger than 2. A typical calculation withN520,

,

e.
e.

FIG. 4. Crossover currentI c as a function of theNl, the ratio of
array length to charge soliton length, in arrays near the gro
plane with no background charge.
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TABLE I. Conduction diagram in a Monte Carlo simulation of an array near a ground plane with no background charge, symm
biased near threshold,N540 andl50.96. The first column is the time of the tunneling event, and subsequent columns show the re
charge configuration. In one case~the last two lines!, two events correspond to the same stated time; this means that the last
~electon-hole annihilation! follows the previous one so rapidly that the time resolution shown is insufficient to distinguish them.

15 744 633 . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
18 323 351 e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 323 404 . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 323 421 . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 324 125 . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 324 519 . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 325 252 . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 325 886 . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 328 733 . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 338 541 . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 349 735 . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 447 549 . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 617 542 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 998 896 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . h
18 998 943 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . h .
18 998 961 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . h . .
18 998 964 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . h . . .
18 998 991 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . h . . . .
18 998 995 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . h . . . . .
19 002 159 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . h . . . . . .
19 003 772 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . h . . . . . . .
19 022 463 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . h . . . . . . . .
19 060 051 . . . . . . . . . . . e . . . . . . . . . . . . . . . . . h . . . . . . . . .
19 081 761 . . . . . . . . . . . e . . . . . . . . . . . . . . . . h . . . . . . . . . .
19 184 115 . . . . . . . . . . . e . . . . . . . . . . . . . . . h . . . . . . . . . . .
19 264 089 . . . . . . . . . . . .e . . . . . . . . . . . . . . h . . . . . . . . . . .
19 952 026 . . . . . . . . . . . . .e . . . . . . . . . . . . . h . . . . . . . . . . .
20 014 001 . . . . . . . . . . . . .e . . . . . . . . . . . . h . . . . . . . . . . . .
20 059 997 . . . . . . . . . . . . . .e . . . . . . . . . . . h . . . . . . . . . . . .
20 244 920 . . . . . . . . . . . . . .e . . . . . . . . . . h . . . . . . . . . . . . .
20 254 506 . . . . . . . . . . . . . . .e . . . . . . . . . h . . . . . . . . . . . . .
20 254 635 . . . . . . . . . . . . . . .e . . . . . . . . h . . . . . . . . . . . . . .
20 255 384 . . . . . . . . . . . . . . . .e . . . . . . . h . . . . . . . . . . . . . .
20 255 791 . . . . . . . . . . . . . . . .e . . . . . . h . . . . . . . . . . . . . . .
20 256 013 . . . . . . . . . . . . . . . .e . . . . . h . . . . . . . . . . . . . . . .
20 256 224 . . . . . . . . . . . . . . . .e . . . . h . . . . . . . . . . . . . . . . .
20 256 267 . . . . . . . . . . . . . . . . .e . . . h . . . . . . . . . . . . . . . . .
20 256 272 . . . . . . . . . . . . . . . . . .e . . h . . . . . . . . . . . . . . . . .
20 256 295 . . . . . . . . . . . . . . . . . . .e . h . . . . . . . . . . . . . . . . .
20 256 301 . . . . . . . . . . . . . . . . . . .e h . . . . . . . . . . . . . . . . . .
20 256 301 . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
e
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Q51000e, andNr51000 takes around 400 s of CPU tim
on an AlphaStation 250~266 MHz Alpha, Digital Unix 4.0b,
Digital cxx! or around 950 s on a Linux PC~120 MHz Pen-
tium, RedHat Linux 2.0.30, Gnu c11!.

IV. CROSSOVER CURRENT

Varying the bias voltage across an array, we have ca
lated the average current and spectral density as function
applied voltage and have made parametric plots
SI(0)/2e^ Ī & vs ^ Ī & ~Fig. 3!. We will refer to these plots asS-
I curves.
u-
of
f

The most immediate, universal result of our calculatio
is the crossover ofSI(0)/2e^ Ī & from 1 to 1/N with increas-
ing current. This result can be understood as follows.
argued in Sec. I,SI(0) near threshold is dominated by th
Poissonian statistics of tunneling through a single bottlen
junction, and is thus given by the Schottky formula

SI~0!

2e^ Ī &
U

I→0

→1. ~14!

At high voltages, however, a large number of charge sta
becomes available for tunneling through each juncti
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57 15 617SHOT NOISE OF SINGLE-ELECTRON TUNNELING IN . . .
Though the tunneling rate for each of these states may
affected by the state of neighboring junctions, these effe
are averaged out, since the voltage dependence of the ra
tunneling through each junction is linear atDWi j .0 @see Eq.
~8!#. Under these conditions, current noise through e
junction is described by the Schottky formula,SI

(1)(0)

52e^ Ī &. Since we can transfer from current noise to volta
noise by the square of the dynamic resistance~which at V
→` just equalsR), we write the voltage noise of a singl
junction as

SV
~1!~0!u I→`52e^ Ī &R2.

The total voltage noiseSV is the simple sum of the noise o
the individual junctionsSV

(1) , while the total current noise is
finally obtained fromSV via the total array resistanceNR:

SV~0!u I→`52e^ Ī &R2N, ~15!

SI~0!u I→`5
SV~0!

~NR!2
5

2e^ Ī &
N

. ~16!

~For the particular caseN52, this equation was discussed
Ref. 14.! Thus the crossover inSI(0)/2e^ Ī & from 1 to 1/N
with increasing current could be expected; what was re
surprising for us is that in most cases this crossover ta
place very close to the Coulomb blockade threshold, wh
the arrayI -V curve is still not quite linear, and hence th
arguments given above cannot be taken too seriously.

FIG. 5. G vs time for a Monte Carlo simulation of an array ne
a ground plane with no background charge, symmetrically bia
near threshold,N520 andl50.55. Slow points occur before th
first charge enters the array~a!, and when either charge is;N/3
junctions away from the nearest edge@~b! and~c!#. The dotted line
is only a guide for the eye.
be
ts
of

h

e

ly
es
re

In order to describe the crossover quantitatively, we m
define the crossover current Ic as a value at which
SI(0)/2e^ Ī & is midway between these two limits, on a log
rithmic scale:

SI~0!

2eIc
[

1

AN
. ~17!

We have written a Perl script calledSICURVE to automate the
extraction crossover currentI c from the S-I curves. While
invoking MSO, SICURVE continuously adjusts the change
bias voltage between successive points, in an attempt to
duce a series of evenly spaced points in theSI(0)/2e^I & vs
^I & plane ~see Fig. 3!. This is an important practical tech
nique for generatingS-I curves on circuits with random
background charge, since the relationship between volt
current, and spectral density can be quite irregular.

V. MODEL 1: ARRAYS NEAR A GROUND PLANE

Our first case was the simplest model8 of a uniform, sym-
metrically biased array near a ground plane with no ba
ground charges@Fig. 1~b!#. The direct capacitance matrix i
this model is tridiagonal, and is described by one dimensi
less parameter, the ratioC0 /C, whereC is the junction ca-
pacitance, andC0 is the ‘‘stray’’ capacitance between a
island and the ground plane. In this model, the recipro
length scalel51/M of the single-electron soliton is dete
mined as

l5cosh21~C0/2C11!; ~18!

in the most interesting limit ofC0!C, M5AC/C0@1.
Surprisingly, our numerical results~Fig. 4! show that for

all values ofl and N, data for I c fall roughly on a single

d

FIG. 6. Array, without a ground plane, between parallel pla
externals.~a! Schematics.~b! Geometric model with surfaces di
vided into panels for geometric capacitance calculation.~c! Closeup
of a single island paneling.
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TABLE II. Partial capacitance matrices generated byFASTCAP for a cubic array withN520 cubes between large parallel plates. Row

and 2 belong toC̃, and rows 3–21 belong toC. By convention, allC̃i j .0. The array parameters area51.0, d50.04.

3 4 5 6 7 8 9 10 11 12
1 2.995 25 0.331 24 0.250 56 0.208 43 0.180 08 0.158 21 0.139 97 0.124 53 0.110 55 0.09
2 0.004 56 0.014 29 0.023 83 0.033 47 0.043 19 0.053 14 0.063 33 0.074 41 0.085 73 0.09

3
4 2.565 53
5 20.018 17 2.593 39
6 20.006 65 20.028 76 2.598 38
7 20.003 19 20.011 99 20.031 72 2.600 29
8 20.001 81 20.006 32 20.013 91 20.033 03 2.601 22
9 20.001 15 20.003 85 20.007 64 20.014 85 20.033 72 2.601 74
10 20.000 70 20.002 67 20.004 73 20.008 34 20.015 37 20.034 12 2.602 05
11 20.000 50 20.001 72 20.003 23 20.005 31 20.008 74 20.015 67 20.034 34 2.602 23
12 20.000 37 20.001 22 20.002 28 20.003 57 20.005 62 20.008 97 20.015 84 20.034 48 2.602 31
13 20.000 29 20.000 97 20.001 63 20.002 59 20.003 87 20.005 76 20.009 02 20.015 95 20.034 52 2.602 31
14 20.000 22 20.000 77 20.001 30 20.001 86 20.002 70 20.004 05 20.006 11 20.009 06 20.015 91 20.034 47
15 20.000 17 20.000 55 20.000 96 20.001 42 20.002 00 20.002 81 20.004 07 20.005 85 20.009 10 20.015 85
16 20.000 13 20.000 41 20.000 73 20.001 07 20.001 49 20.002 03 20.002 76 20.004 00 20.005 80 20.008 97
17 20.000 10 20.000 32 20.000 55 20.000 80 20.001 10 20.001 49 20.001 97 20.002 76 20.003 82 20.005 62
18 20.000 09 20.000 26 20.000 41 20.000 57 20.000 76 20.001 00 20.001 37 20.001 90 20.002 65 20.003 65
19 20.000 02 20.000 11 20.000 25 20.000 42 20.000 63 20.000 88 20.001 21 20.001 21 20.001 54 20.002 23
20 20.000 02 20.000 08 20.000 15 20.000 23 20.000 33 20.000 46 20.000 63 20.000 69 20.000 92 20.001 24
21 20.000 01 20.000 03 20.000 05 20.000 07 20.000 10 20.000 14 20.000 19 20.000 21 20.000 28 20.000 37
in
he
xe
c
e
s

in

r,

be

nt
ergy
ten-
oth
universal curve, withI c}exp(2Nl/3) for l*10. For a fixed
productNl, there is a relatively weak decrease ofI c with
increasingN.

To understand this unexpected result, we began look
for an analytic expression for current noise for the case w
each electron passage along the array consists of a fi
repeated sequence of tunneling events. If such a sequen
repeatedn5Q/e times, we can write the average total tim
as a sum of average times for each jump in the fixed
quence

^TQ&5n(
i 51

N

^dt i&5
Q

e(
i 51

N

G i
21 , ~19!

whereG is the total rate at each stage of the process. S
the time of each jump follows Poissonian statistics,

Var~dt i !5G i
22 , ~20!
e

g
n
d,

e is

e-

ce

and since the jump times are independent of one anothe

Var~TQ!5
Q

e(
i 51

N

Var~dt i !5
Q

e(
i 51

N

G i
22 , ~21!

we arrive at a simple formula

SI~0!

2e^ Ī &
5

( i 51
N G i

22

~( i 51
N G i

21!2
. ~22!

This formula was obtained earlier12 for a particular case
C050. In particular, it shows that the spectral density can
dominated by bottleneck points, where the rateG i is much
lower than average.

In order to find these bottleneck points for our curre
case of arrays near a ground plane, let us examine the en
profile these arrays create for tunneling charges. The po
tial created by an electron in an array with externals at b
ends is15
fs~n,n8!5
e

Ce f f
H e2un2n8ul2

e2nl sinh@~N2n8!l#1e2~N2n!l sinh~nl!

sinh~Nl! J , ~23!
ed
wherenP$0,1, . . . ,N% is the position of the electron in th
array, n8 is the measurement position, andCe f f

[AC0
214CC0. For our symmetric bias (V252V15V/2),

the potential created by the external electrodes is15
fe~n!5
V

2

sinh@~N/22n!l#

sinh~Nl/2!
. ~24!

Numerical simulations show that in symmetrically bias
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arrays withl*1, the basic tunneling scenario near thresh
is the passage of electron-hole pairs. The components o
pair enter at opposite ends of the array, move toward e
other, then annihilate near the center~see Table I!. We can
write the energy of the electron-hole pair as

W~n1 ,n2!5Wo~n1!2efe~n1!1Wo~n2!1efe~n2!

2efs~n1 ,n2!, ~25!

wheren1 andn2 are the positions of the electron and ho
respectively, and

Wo~n!5
efs~n,n!

2

5
e

2Ce f f
F12

cosh@~N22n!l#2e2Nl

sinh~Nl! G ~26!

is the self-energy of an electron or hole.
Figure 4 shows the results of calculation of the crosso

current using Eqs.~25! and ~22! in a fixed scenario picture
where the electron and hole enter the array one right after
other, and then take turns tunneling toward each other
symmetric manner. ForNl*15, the results of this semiana
lytical calculation match the Monte Carlo results ve
closely. ~For Nl&15, a difference appears, increasing w

FIG. 7. Crossover current vs inverse soliton length for arr
without a ground plane between parallel plate externals. Res
from Monte Carlo calculations using geometric modeling v
FASTCAP ~top!, and from a fixed-scenario calculation using the he
ristic electron-electron interaction formula~27! ~bottom!.
d
he
ch

,

r

he
a

N.! This means that we can analyze our problem, at le
approximately, by examining the energy profile in our fix
scenario. A straightforward analysis of Eq.~25! shows that,
for Nl@1, there is a slow point~a minimum inDWi j ) when
both electron and hole are;N/3 islands from their respec
tive edge of the array. Here both members of the electr
hole pair are far from the edges, and cannot be pus
strongly by the external voltage, yet not close enough
attract each other strongly, either. At this point,G scales as
exp(2Nl/3). According to Eq.~22!, this leads to a similar
dependence ofI c , at least in the limitNl@1.

Some difference between the fixed-scenario calculati
and the Monte Carlo simulations can be readily explained
the observation that frequently the tunneling process

s
lts

-

FIG. 8. Crossover current as a function of inverse soliton len
in arrays near a ground plane with random background cha
Each point with its error bars represents the average and stan
deviations over ensembles of 50 different random backgro
charge distributions. Error bar widths are scaled for readability:
narrowest forN510, and the widest forN540.

FIG. 9. Typical charge distribution in array with random bac

ground chargesqW 0. N520 andl52. Filled bars representqW 0, solid
lines represent the sandpile atV5Vt , and dotted lines represen
conduction charges in a simple alternatinge-h scenario.



e

r

15 620 57K. A. MATSUOKA AND K. K. LIKHAREV
FIG. 10. Histograms of the in-
verse total tunneling rate 1/G at I
5I c for an array near a ground
plane (N540,l50.995) with
several different random charg
distributions.r q is the seed given
to the random number generato
for background charges.
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somewhat more complicated than the exactly alterna
electron and hole motion sequence—see Table I. Figu
shows a typical pattern of the total tunneling rates.

These figures show that sometimes there are three~rather
then one! slow points with lowG. The first slow point is
before any charge enters the array@see labels~a! in Fig. 5#.
After the first charge enters the array, the external volt
pushes it quickly away from the edge. There is then typica
a second slow point when that charge reaches a distanc
roughly N/3 islands from the external it emerged from@see
labels ~b! in Fig. 5#. Then the opposite charge enters t
array from the other side, also hopping quickly away fro
the edge. The third slow point usually follows when the o
posite charge is roughlyN/3 islands away from its externa
@see labels~c! in Fig. 5#. Only the first and the last points ar
taken into account in our fixed scenario. Since the sec
slow point is frequently important, the good agreement
tween our Monte Carlo and fixed scenario calculations
somewhat puzzling.

VI. MODEL 2: ARRAYS WITHOUT GROUND PLANE

Here we examine the case of an array with islands
tween semi-infinite external electrodes@Fig. 6~a!#, without a
ground plane. In the absence of a ground plane, mutua
pacitances other than the junction capacitances may bec
important.
g
5

e
ly

of

e

-

nd
-

is

e-

a-
me

To model the electrostatics of such arrays, we have u
two methods. In the first method, we create a geome
model of the island and external electrodes@Fig. 6~b!#, and
use it to calculate the full capacitance matrix for the ar
numerically using FASTCAP.16 Since the electrostatics i
rather insensitive to the exact shape of the islands,17 they
may be modeled by cubes of sidea. The resulting capaci
tance matrix~see, e.g., Table II! was used for the Monte
Carlo simulation of noise, as described above.

In the second method, we used a simple heuristic appr
mation for the single-electron soliton potential at distan
m5un2n8u in a long array, found in Ref. 17,

fs~m!5
e

aH al exp~2klm!1
1

m
@12exp~2klm!#J ,

~27!

with a'k'1. This formula describes a crossover from
exponential decay at short distance (lm,1) to a Coulomb-
law 1/r decay at large distance. The effect of the exter
electrodes was described by the usual image charge me
in our case, with two electrodes, it involves an infinite ser
of images. As a result, the full single-electron poten
fs

h(n,n8) may be expressed as the sum of an infinite se
over all image charge contributions, and the self energy
be written as
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whereWa5efs.On the other hand, the form of the extern
potential is quite simple,

fe
h~n!.eV~N22n!/2N.

The energy for an electron-hole pair can then be written
as in Eq.~25!. This energy was used for the fixed-scena
calculation of noise, similar to that described in Sec. V.

Results from both methods are shown in Fig. 7. T
Monte Carlo simulation shows that, unlike in arrays nea
ground plane,I c does not follow a universal dependence
Nl. Rather,I c values follow a common curve dependin
mostly onl alone, decreasing weakly with the array leng
N. Even thel dependence is weak, compared to the res
for arrays near ground plane: forN520 in the range ofl
from 0.25 to 1,I c drops by a factor of;3 in arrays with no
ground plane, whereas it drops by more than two decade
arrays with ground plane~Fig. 4!.

The fixed-scenario results forI c match the Monte Carlo
results fairly well in terms of thel dependence of the curve
For N510, the magnitude of the results are also in fai
close agreement. However, the fixed-scenario results ex
a stronger decline withN than the Monte Carlo results. Fo
N560, the fixed-scenario values ofI c are between 3 and 8
times smaller than the corresponding Monte Carlo value

Generally, it is easy to understand why the fixed-scena
values for I c fall below the values calculated with Mont
Carlo simulation: randomness of jump location, which is
nored in the fixed-scenario calculation, can be thought o
an additional source of noise. As the general level of nois
the crossover region increases, so does the crossover cu
However, we are still in need of a simple interpretation of t
N and l dependence of the shot noise in arrays with
ground plane.

VII. MODEL 3: ARRAYS WITH RANDOM
BACKGROUND CHARGE

Returning to arrays near ground plane, with their sim
electrostatics, we have explored the behavior of shot nois
the presence of random background charges on the isla
qW 0. These charges can represent, for example, the effec
charged impurities in a substrate. The chargeq0,i placed on
each island was randomly selected,13 using a uniform prob-
ability distribution between2e/2 ande/2. ~Any integer part
of the background charge is immediately compensated fo
trapping one or a few tunneling electrons or holes.!

The S-I curves which stem from the Monte Carlo sim
lation of such arrays still show the progression from s
noise to suppressed shot noise, but at larger values ofl tend
to feature strong, irregular peaks~Fig. 3!, where curves for
arrays without background charge were smooth. Occas
ally these peaks in theS-I curve cause it to cross the 1/AN
line more than once. In such cases, we arbitrarily defineI c as
the lowest crossing value. It turns out that the variation in
l
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general location ofI c among different instantiations ofqW 0 is
large enough to make the distinctions among different cro
ing points on a single curve irrelevant.

Figure 8 shows the average value ofI c and its standard
deviation of ensembles of 50 differentqW 0 realizations. Strik-
ingly, for l*1, I c for all values ofN appears to fall on the
same, almost flat curve. This behavior is in sharp contras
results for similar arrays without background charge~Fig. 4!.
This quasiuniversal value ofI c is ;531023e/RC. Although
there appears to be a weak downward trend in^I c& with
increasingl for l*1.5, this trend is virtually hidden within
the relatively large standard deviation.

Let us try to comprehend this result. Simulation sho
that in such arrays the typical tunneling process near
crossover is due to several~rather than one! electron-hole
pairs moving simultaneously in the array.~Due to this mul-
tiplicity, a fixed-scenario calculation of noise would n
make sense!. This effect is easy to explain. The electric p
tential induced by the background charges creates a seri
charge traps. As a result, as the applied voltage is increa
the first several charges to enter the array are trapped, fo
ing a ‘‘sandpile’’ ~Ref. 9! ~see Fig. 9!. The final energy pro-
file in the sandpile is still random, though the maximu
possible energy changeDWi j is now upper bound by
DWmax'e2/2C . The remaining disorder is, however, stron
enough to overcome the interaction of distant charges, wh
is exponentially weak in arrays over a ground plane.

This argument also explains why the crossover curren
independent of the array length. We are, however, still
need of an analytical theory which would explain the virtu
independence of the average crossover onl, and also would
predict its universal value cited above.

VIII. CONCLUSION

We have used both Monte Carlo and fixed-scenario te
niques to calculate the low-frequency noise for three diff
ent models of 1D single-electron-tunneling arrays. With
any of the three models, arrays display a crossover of
spectral density of current fluctuations,SI(0), from the
Schottky value 2e^ Ī &, to the ‘‘reduced Schottky’’ value
2e^ Ī &/N, with increasing current. The crossover can be w
characterized in terms of the crossover currentI c , which
may be said to mark the onset of quasicontinuous cha
transfer. The particular behavior ofI c as a function ofN and
l depends on the interaction of electrons within the ar
and on the interaction of electrons with the external field~see
Fig. 10!.

In arrays near a ground plane, with no background cha
the crossover current exhibits a universal behavior that
function of only the productNl, i.e., of the ratio of the array
length N to the lengthM5l21 of single-electron solitons
At Nl.10, the dependence is exponential:I c}exp
(2Nl/3). The analysis has shown that this behavior is



tio
th

t

e
on

e
th

an-
ich
en-
as

r
his

15 622 57K. A. MATSUOKA AND K. K. LIKHAREV
result of the exponential decrease of the soliton interac
with the external electrodes and its counterpart in
electron-hole pair.

In arrays without a ground plane,I c is almost independen
of N, and exhibits a nearly universal weak decrease withl.
The substantial effect of the ground plane removal was id
tified as a result of the long-range electrostatic interacti
which were screened by the ground plane.

Finally, in arrays with randomqW 0, we have found that the
crossover takes place at a nearly universal value of curr
I c;531023e/RC. The absence of noise dependence on
n

t

er
n
e

n-
s

nt,
e

array length can be readily explained as a result of the r
dom potential created by the background charges, wh
overwhelms long-range order in the arrays, but the indep
dence of noise on the single-electron soliton length still h
to be explained.
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