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Shot noise of single-electron tunneling in one-dimensional arrays
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We have used numerical modeling and a semianalytical calculation method to find the low-frequency value
S,(0) of the spectral density fluctuations of current through one-dimensional arrays of small tunnel junctions,
using the “orthodox” theory of single-electron tunneling. In all three array types studied, at low temperature
(kgT<<eV) increasing current induces a crossover from the Schottky val(@)=2e<l_) to the “reduced
Schottky value”S,(O)=2e(I_>/N (whereN is the array lengthat some crossover curreinpt. In uniform arrays
over a ground pland,. is proportional to expt\N/3), where\ ! is the single-electron soliton length. In
arrays without a ground plank, decreases slowly with botk and\ . Finally, we have calculated the statistics
of I, for ensembles of arrays with random background charges. The standard deviatidroof the ensemble
averag€gl ) is quite large, typically between 0.5 and 0.7(bf), while the dependence ¢F.) onN or \ is so
weak that it is hidden within the random fluctuations of the crossover cufi®@d163-182¢08)05023-1

I. INTRODUCTION very similar “Bloch” oscillations’) may have a relatively
narrow bandwidth—see, e.g., experimental measurements in
Single-electron tunnelinffor general reviews, see Refs. 1 Ref. 5.

and 2 is one of the most active areas of solid-state physics More generally, discreteness of charge transfer will cer-
research, but it has several key problems that have not yéainly be one of the central issues facing the emerging nano-
been addressed in detail. One of these problems is the délectronics. This is why it is important to formulate the con-
lemma of the discreteness and continuity of electric chargditions under which the transport of charge through a
transfert Several single-electron tunneling phenomena carconductor may be considered @giasjcontinuous, i.e., hav-
be understood as an interplay betweatiacretetransfer of ing the discretenes§Q<e. The definition of 6Q can be
electric charge via electron tunneling, acontinuoustrans-  most readily introduced in the most interesting case of neg-
fer in ordinary diffusive conductors. For example, a tunnelligible thermal and quantum fluctuations
junction biased by a dc current may generate single-electron

tunneling(SET) oscillations with average frequerity keT<[&(V),eV], (4)
() e
fo=-t. (D) Gt 5)

This effect may be interpreted as a gradual accumulation ofhereV. is the Coulomb blockade threshold of the conduc-

continuous charge on the junction capacitance, followed byef, andG its effective conductance. However, even in this

the abrupt passage of one electron through the junction, a%mpl_es_t case, the definition depgnds essentially on the char-

soon as the accumulated charge has reached a thresh@gferistic time scale of an experiment.

leveP Q, = *+e/2. (A) If fg7>1 (i.e., either the time scale is large, or the
However, if the charge transfer in the external cir¢fik- ~ dC current is high, or both 6Q may be defined as follows:

ing the current) is discrete, SET oscillations do not exist.
This can be seen from the following general formula for the 6Q S(0) ©6)

SET oscillation linewidth:3 e 2e(l)

-2 In fact, if the chargeQ transferred through a system may be

Is= (E) S(0) (Is<fg), (2)  presented asa Poissonian series ofj:um.ps of fixed hé@ht
then, repeating the well-known derivation of the Schottky
formula, we arrive at Eq6). If the jump height is random as

where S;(f) is the spectral density of the bias current fluc- well, Eq. (6) is still applicable as an estimate of the average
tuations. For example, if the current is fixed using anotherump height.

tunnel junction, then at low temperatures the fluctuations (B) In the opposite limit, wher is much shorter than the
obey the Schottky formula average spacing between the charge jumis'), we are

essentially dealing with the Coulomb blockade regime. In
Si(0)=2e(l), (3 this case an adequate definitiond® is as follows:

andl's=fg; that is, SET oscillations are completely smeared 50=C..V (7)
. . Q efVits
by the current fluctuations.On the other hand, in macro-
scopic diffusive conductors, the current noise may be muchvhereC,; is the effective input capacitance of the system of
lower than the Schottky value, and SET oscillatidiasd  interest. ¢Q given by this formula is the fraction of the
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initial electric charge of the system which cannot relax, due Exornal Funnel
to the Coulomb blockade; for a diffusive conduct&®—0, =Sl ©;/G) Island
while for a single tunnel junctiodQ=e/2.)
One of the most interesting systems capable of quasicona) V1°—| E H E E E 3 § H E H |—°\§
tinuous charge transfer is the one-dimensiqidl) array of
small tunnel junctions—see, e.g., the review in Ref. 6. The
key property of such an arriijs that each additional electron
inserted into one of its islands creates a series of gradually

decreasing polarization charges, and hence may be consic f‘ E E § E ﬂ § E
" e s i

N Junctions

ered as a “single-electron soliton” with a characteristic size b)

M which may be much larger than one island. As a result, v = CTTTT T T =V
when an electron drifts along the array, tunneling between Gromnd Planc 3 § Ground Plane IJ
the neighboring islands, the effective chai@etransferred

through the external electrodes—which is essentially what
interests us—changes in jumps of sc#®@~e/M, which
may be much smaller thagm

This does not mean, however, that the condifiof1 is  hase conditions, expressed by EG8. and (5), we can ig-
sufficient for the quasicontinuous transfer of charge in the, e the effects of cotunneling and thermally activated tun-
arrays. In fact, the calculation ??J the CO“'?%”_"B blockadengjing. Current flow in single-electron arrays may be ana-
threshold for arrays with uniforfand rando_ back- lyzed in terms of the junction tunneling rateg . According
ground charges have shown that, under definit®n charge  J the orthodox theor§,1 at zero temperature,
transport in uniform arrays with vanishing background

FIG. 1. 1D array of tunnel junctionga) general schematicb)
“ground plane” or “tridiagonal model” schematic.

chargecannotbe considered as continuous@—~e). The GAW..

reason is that a relatively strong Coulomb blockage results —2” AW;;>0

from the pinning of single-electron solitons by the sharp Iij= e (8)
edges of the array. Presently, we know only two cases when 0, AW; <0,

charge transport through a uniform array is quasicontinuous ] . )

(8Q<e) according to the definitiokB). where AWj; is the drop in the fredelectrostatit energy,

(1) An array with arbitrary capacitances, but with the caused by the tunneling event. The drop in energy due to an
background charge of all the islands equatte/2. (In this  €lectron tunneling from islandto islandj can be written as
case the Coulomb blockade threshold vanishes,saheb0.) 2014 g20-1

(2) An array with I<N<2M and random background AW =e2C 1 eCj ey Fe[b() - (D], (©
charges.(In this caseé?™ V,~0.5eN"?/C, whereC is the 1 ] 2 1

tunnel junction capacitance, whil€.;=C/N, and hence - . .
8Qle~1/2NY2<1) yvhere ¢ is the vector of the electrostatic potential of the

However, even in these cases, the charge transfer is nét@nds before the jump, and the matfx * of inverse ca-
automatically continuous in the sense of criteri@). If the ~ Pacitances is defined by the following equation:
Coulomb blockade is finite, and the array is driven with dc
voltageV slightly above the blockade threshold, one of b= > Cﬁl(qj+aj)v 9= > CiVk. (10
the junctions presents a bottleneck to the single-electron soli- jeisl keext
ton drift along the array. As a result, the passage of an elec- = . .
tron consists of a long wait at the bottleneck junction, fol- Here the matrGC.repres.ents capa_lcnances between islands
lowed by a rapid burst of transitions through the remaining2Nd €xternal terminals with potentialg . .
junctions of the array. AV—V, the statistics of these bursts If these potentials do not change in time, the probability
is always Poissonian, and the charge transferred by eadhat the system preserves its charge state can be expressed

burst is equal t@, so that the shot noise is well described by EXPlicitly;
the Schottky formula. _

Thus current noise in 1D arrays presents an important P)=ex ~T'(t=1,)], (1)
problem. To our knowledge, this problem has previouslywheret, is the time of the preceding tunneling event, while
only been solvetf for a very particular case of uniform ar- T is the total rate for all possible tunneling events:
rays with M—o (zero stray capacitangeand zero back-
ground charge. The objective of this work was to calculate
S,(0) (and hence the effective discreteness of charge transfer
for long time intervals for a much broader range of array
parameters.

{iitejet

[ll. NOISE COMPUTATION

The preceding relations were incorporated into our main
computational tool, a €+ program calledvso’ that uses a

We have considered arrays consisting\of 1 small me-  Monte Carlo algorithfito simulate the flow of current in dc
tallic islands connected iy tunnel junctions, and flanked at voltage-biased 1D arrays. The basic unit of calculation in
either end by dc voltage-biased electrodBfy. 1). Under  Msois the “current run,” in which charge flows through the

II. BASIC FORMULAS
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FIG. 2. Convergence d8(0)/2el calculated byvso as a func- -
tion of N, , the number of current runs in the statistical ensemble, 10
for various values of total transferred chai@eResults for an array
near the ground plan®&=20 and\ =0.5, at crossover current. 10°
—7 1 1 1 1 1 1 1
array until a user-specified total char@eis tran;fgrred. To 10 0 5 10 15 20 25 130 35 40
calculateS;(0), Mso loops through a user-specified number NA

N, of current runs, each starting with the same initial charge . )

state and ending when the total charge transferred equals FIG. 4. Crossover currerl}@ as afunctlc_m of thé&\\, the ratio of
The same random number genera@t%)rfsr time and jump  &Tay Ie_ngth to charge soliton length, in arrays near the ground
location are used continuously through all loops. To the exPlane with no background charge.

tent that the random numbers constitute a “good” quasiran- h - i f h I |
dom series, the ensemble of current runs represents a statis—T € statlztzlcs of time3 q of each run allows us to calcu-
tical ensemble of independent, initially identical systems. ate 5(0) a

S(0) _Q Var(Tg)
2e(l) € (To)®

(13

0

10
wherel =Q/Tq, and the angle brackets and variance refer to
our statistical ensemble of current runs. Equatidg) is ex-

act only for infiniteQ andN; ; since the jumps are not com-
pletely independent, the accuracy of this formula should be
determined experimentally. Figure 2 shows a typical depen-

dence ofS;(0)/2e(l1) on Q and N,. The results forQ
=100C andN,=1000 seem to be accurate to within 10% of
the asymptotic value. In this paper, we used the parameters
Q=100C andN,=1000 for calculating shot noise in arrays
without background charge, and assigned 10% error bars to
these numbers.

For arrays with random background charge, each point
was calculated for 50 different realizations of the background
;| charge for each circuit, using the parametés 200 and
e S e e T T N, =200, to keep the simulation time within reasonable lim-
10 10 10 10 10 its. Although these calculations are therefore less accurate,
perhaps only to within 20% of their asymptotic value, this

FIG. 3. Parametric plots o (0)/2el vs |. The crossover cur- inaccuracy was overshadowed by the overall spread in shot
rentl, is defined as the current at whi&y0)/2el=1/\N. Circles: ~ noise values among the different background charge realiza-
array near a ground plane. Squares: array without a ground pIanBOnS-

Diamonds and triangles: arrays with random background charge. Calculation(CPU) times inMso scale as~N?QN, , with
Dotted lines are only guides for the eye. a slightly larger than 2. A typical calculation witN= 20,

_
oI
5
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TABLE I. Conduction diagram in a Monte Carlo simulation of an array near a ground plane with no background charge, symmetrically
biased near thresholti=40 and\ =0.96. The first column is the time of the tunneling event, and subsequent columns show the resulting
charge configuration. In one casthe last two lines two events correspond to the same stated time; this means that the last event
(electon-hole annihilatigrfollows the previous one so rapidly that the time resolution shown is insufficient to distinguish them.
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Q=100C, andN,=1000 takes around 400 s of CPU time The most immediate, universal result of our calculations
on an AlphaStation 25®66 MHz Alpha, Digital Unix 4.0b, s the crossover o§(0)/2e(1) from 1 to 1N with increas-
Digital cxx) or around 950 s on a Linux PA20 MHz Pen-  ing current. This result can be understood as follows. As
tium, RedHat Linux 2.0.30, Gnu-e+). argued in Sec. 1S,(0) near threshold is dominated by the
Poissonian statistics of tunneling through a single bottleneck
IV. CROSSOVER CURRENT junction, and is thus given by the Schottky formula

Varying the bias voltage across an array, we have calcu- S,(0)
lated the average current and spectral density as functions of P —1 (14
applied voltage and have made parametric plots of &) 1—0

S|(O)/2e<l_> S (I_> (Fig. 3). We will refer to these plots & At high voltages, however, a large number of charge states
| curves. becomes available for tunneling through each junction.
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ided into panels for geometric capacitance calculationCloseup
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FIG. 5. T vs time for a Monte Carlo simulation of an array near
a ground plane with no background charge, symmetrically biase
near thresholdN=20 and\ =0.55. Slow points occur before the
first charge enters the arrdg), and when either charge isN/3
junctions away from the nearest eddb) and(c)]. The dotted line
is only a guide for the eye.

In order to describe the crossover quantitatively, we may
define the crossover current | as a value at which

S,(O)/2e(l_> is midway between these two limits, on a loga-

Though the tunneling rate for each of these states may bathmic scale:
affected by the state of neighboring junctions, these effects
are averaged out, since the voltage dependence of the rate of S(0) _ i (17)

tunneling through each junction is linear&%;; >0 [see Eq. 2el; B N

(8)]. Under these conditions, current noise through eacf\1N h it Perl script callelCURVE L ; te th
junction is described by the Schottky formulsfl)(O) € have written a erl script ca 0 automate the

—_ ) extraction crossover curreht from the S-1 curves. While
=2¢(l). Since we can transfer from current noise to voltag

- . - : €nvoking Mso, SICURVE continuously adjusts the change in
noise by the square of the dynamic resistatwhich atV  pias voltage between successive points, in an attempt to pro-

— Just equalsR), we write the voltage noise of a single gy,ce a series of evenly spaced points in §0)/2e(1) vs
junction as (1) plane (see Fig. 3 This is an important practical tech-
_ nique for generatingS-l curves on circuits with random
SM(0)],_.=2e(1)R2 background charge, since the relationship between voltage,
current, and spectral density can be quite irregular.
The total voltage nois&,, is the simple sum of the noise of

the individual junctionsSﬁ,l), while the total current noise is V. MODEL 1: ARRAYS NEAR A GROUND PLANE
finally obtained fromS,, via the total array resistand¢R:

Our first case was the simplest mdtlef a uniform, sym-
o T D2 metrically biased array near a ground plane with no back-
S/(0)]i—-=2e(HRN, (15 ground chargefFig. 1(b)]. The direct capacitance matrix in
_ this model is tridiagonal, and is described by one dimension-
Sv(0)  2¢(l) less parameter, the rati®,/C, whereC is the junction ca-
(NR)Z_ N (16) pacitance, andC, is the ‘“stray” capacitance between an
island and the ground plane. In this model, the reciprocal
(For the particular casd = 2, this equation was discussed in /€ngth scalex=1/M of the single-electron soliton is deter-

Ref. 14) Thus the crossover i (0)/2e(1) from 1 to 1N~ Mined as
with i_ngreasing current c_ould be expected_; what was really A =cosh (Cy/2C+1); (18)
surprising for us is that in most cases this crossover takes

place very close to the Coulomb blockade threshold, wher& the most interesting limit o€,<C, M= {C/Cy>1.

the arrayl-V curve is still not quite linear, and hence the  Surprisingly, our numerical result&ig. 4) show that for
arguments given above cannot be taken too seriously. all values of\ andN, data forl. fall roughly on a single

S|(0)||_,m=
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TABLE II. Partial capacitance matrices generatedrhgrcapfor a cubic array withN=20 cubes between large parallel plates. Rows 1
and 2 belong t&C, and rows 3—21 belong t6. By convention, alf:ij>0. The array parameters ase=1.0,d=0.04.

3 4 5 6 7 8 9 10 11 12
2.995 25 0.33124 0.250 56 0.208 43 0.180 08 0.158 21 0.139 97 0.124 53 0.110 55 0.097 74
0.004 56 0.014 29 0.023 83 0.033 47 0.043 19 0.053 14 0.063 33 0.074 41 0.085 73 0.097 68

2.565 53
—0.01817 2.59339
—0.006 65 —0.02876 2.598 38
—0.00319 —-0.01199 —-0.03172 2.60029
—0.00181 —-0.00632 —0.01391 —-0.03303 2.60122
—0.00115 —0.00385 —0.00764 —0.01485 —0.03372 2.60174
10 -0.00070 —0.00267 —0.00473 —0.00834 —0.01537 —-0.03412 2.60205
11 -0.00050 —0.00172 —0.00323 —0.00531 —0.00874 —0.01567 —0.03434 2.602 23
12 —-0.00037 —0.00122 -0.00228 —0.00357 —0.00562 —0.00897 —0.01584 —0.03448 2.60231
13 -0.00029 —0.00097 —-0.00163 —0.00259 —0.00387 —0.00576 —0.00902 —0.01595 —0.03452 2.60231
14 -0.00022 —-0.00077 —0.00130 —0.00186 —0.00270 —0.00405 —0.00611 —0.00906 —0.01591 —0.03447
15 -0.00017 —0.00055 —0.00096 -—-0.00142 —0.00200 —0.00281 —0.00407 —0.00585 —0.00910 —0.01585
16 —0.00013 —0.00041 -0.00073 —0.00107 —0.00149 -0.00203 —0.00276 —0.00400 —0.00580 —0.00897
17 -0.00010 —0.00032 —-0.00055 —0.00080 —0.00110 —0.00149 —-0.00197 —0.00276 —0.00382 —0.00562
18 -0.00009 —0.00026 —0.00041 -—-0.00057 —0.00076 —0.00100 —0.00137 —0.00190 —0.00265 —0.00365
19 -0.00002 —0.00011 —-0.00025 —0.00042 —0.00063 —0.00088 —0.00121 —0.00121 —0.00154 —0.00223
20 —0.00002 —0.00008 —0.00015 —0.00023 —-0.00033 —0.00046 —0.00063 —0.00069 —0.00092 -—0.00124
21 -0.00001 —-0.00003 —0.00005 —0.00007 —0.00010 —0.00014 -0.00019 —0.00021 —-0.00028 -—0.00037

©O© oo ~NOO O bh W N -

universal curve, with ;<exp(—N\/3) for A\=10. For a fixed ~and since the jump times are independent of one another,

productN\, there is a relatively weak decrease Igfwith 0 N Q N

increasingN. _ _ Var(TQ)z—E Var(st)=—~>, I'?, (21
To understand this unexpected result, we began looking ei=1 e’=1

for an analytic expression for current noise for the case whee arrive at a simple formula

each electron passage along the array consists of a fixed,

repeated sequence of tunneling events. If such a sequence is S,(0) Ei’\':lri‘z
repeatech=Q/e times, we can write the average total time 2ell) = SN -1z’ (22
as a sum of average times for each jump in the fixed se- &) (Edi)
quence This formula was obtained earlférfor a particular case
N 0 N Co=0. In particular, it shows that the spectral density can be
_ N X -1 dominated by bottleneck points, where the rRteis much
(Te) ”;1 (o) egl L (19 lower than average.

) i In order to find these bottleneck points for our current
wherel" is the total rate at each stage of the process. Sincgase of arrays near a ground plane, let us examine the energy
the time of each jump follows Poissonian statistics, profile these arrays create for tunneling charges. The poten-

5 tial created by an electron in an array with externals at both

e e ™ sinH(N—n")N]+e N"MX sin(n))
¢e(nn’)=z—je I mh—
C

eff sinh(N\ ) ’

(23

wherene{0,1, ... N} is the position of the electron in the V sinH (N/2—n)\]
array, n’ is the measurement position, an@. be(N) == TSnhNNZ) (24

E\/C02+4CCO. For our symmetric biasM,=—V;=V/2),
the potential created by the external electrod&s is Numerical simulations show that in symmetrically biased
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charge distributions. Error bar widths are scaled for readability: the
, narrowest folN =10, and the widest foN=40.
10_ L L
0.0 0.5 1.0 .
by N.) This means that we can analyze our problem, at least

approximately, by examining the energy profile in our fixed
FIG. 7. Crossover current vs inverse soliton length for arraysscenario. A straightforward analysis of E@5) shows that,
without a ground plane between parallel plate externals. Resultfor NA>1, there is a slow pointa minimum iNAW;;) when
from Monte Carlo calculations using geometric modeling via both electron and hole are N/3 islands from their respec-
FASTCAP (top), and from a fixed-scenario calculation using the heu-tjye edge of the array. Here both members of the electron-
ristic electron-electron interaction formu{a7) (bottom). hole pair are far from the edges, and cannot be pushed
) ) . _ strongly by the external voltage, yet not close enough to
arrays withh =1, the basic tunneling scenario near threshold,siyact each other strongly, either. At this poifitscales as

is the passage of electron-hole pairs. The components of tr@(p(_N)\B). According to Eq.(22), this leads to a similar
pair enter at opposite ends of the array, move toward eac@ependence df_, at least in the limitNA>1.

other, then annihilate near the cenfsee Table). We can

. . Some difference between the fixed-scenario calculations
write the energy of the electron-hole pair as

and the Monte Carlo simulations can be readily explained by

the observation that frequently the tunnelin rocess is
W(N1,12) =Wo(Ny) — €6e(Ng) +Wo(p) +egbe(ny) auenty 9P

—edy(ny,Ny), (25 40
wheren; andn, are the positions of the electron and hole,
respectively, and 20 +

ed4(n,n) O

W,(n)= ST E 00 |
e cosh(N—2n)A]—e NA
_ [ coshi( _ IN] 26) N

2Ces1l sinh(N\) 2.0

is the self-energy of an electron or hole.

Figure 4 shows the results of calculation of the crossover  —4.0 : : ‘
current using Eqs(25) and(22) in a fixed scenario picture, 0 3 10 15 2
where the electron and hole enter the array one right after the Istand number
other, and then take turns tunneling toward each other in a FIG. 9. Typical charge distribution in array with random back-
symmetric manner. FdWA = 15, the results of this semiana- ground chargeg,. N=20 and\ = 2. Filled bars represenf,, solid
lytical calculation match the Monte Carlo results very lines represent the sandpile ¥t=V,, and dotted lines represent
closely. (For N\ <15, a difference appears, increasing with conduction charges in a simple alternatiy scenario.
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somewhat more complicated than the exactly alternating To model the electrostatics of such arrays, we have used
electron and hole motion sequence—see Table |. Figure two methods. In the first method, we create a geometric
shows a typical pattern of the total tunneling rates. model of the island and external electrod€gy. 6(b)], and
These figures show that sometimes there are tfregBer  uyse it to calculate the full capacitance matrix for the array
then ong slow points with lowI". The first slow point is numerically usingrFAsTCAR® Since the electrostatics is
before any charge enters the arfage labelga) in Fig. 5.  rather insensitive to the exact shape of the isldddbey
After the first charge enters the array, the external voltagenay be modeled by cubes of side The resulting capaci-
pushes it quickly away from the edge. There is then typicallytance matrix(see, e.g., Table Jlwas used for the Monte
a second slow point when that charge reaches a distance gfrlo simulation of noise, as described above.
roughly N/3 islands from the external it emerged frgsee In the second method, we used a simple heuristic approxi-
labels (b) in Fig. 5]. Then the opposite charge enters themation for the single-electron soliton potential at distance
array from the other side, also hopping quickly away fromm=|n_n’| in a long array, found in Ref. 17,
the edge. The third slow point usually follows when the op-
posite charge is roughli)/3 islands away from its external e 1
[see labelgc) in Fig. 5]. Only the first and the last points are ~ ¢¢(m)= a a\ exp(— xk\m)+ E[l—exp(— kAm)]t,
taken into account in our fixed scenario. Since the second 27
slow point is frequently important, the good agreement be-
tween our Monte Carlo and fixed scenario calculations iSyjth o~ x~1. This formula describes a crossover from an
somewhat puzzling. exponential decay at short distanden{<1) to a Coulomb-
) law 1f decay at large distance. The effect of the external
VI. MODEL 2: ARRAYS WITHOUT GROUND PLANE electrodes was described by the usual image charge method,;
Here we examine the case of an array with islands bein our case, with two electrodes, it involves an infinite series
tween semi-infinite external electrodgsg. 6a)], without a  of images. As a result, the full single-electron potential
ground plane. In the absence of a ground plane, mutual caég(n,n’) may be expressed as the sum of an infinite series
pacitances other than the junction capacitances may beconeer all image charge contributions, and the self energy can
important. be written as
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o

e¢>z(0)+'21 Wa(2Ni)—{Wa[ZN(I_1)+22]+Wa(2N|_2n)} ,

Wh(n) =

whereW, = e¢s.0n the other hand, the form of the external general location of . among different instantiations @f, is

potential is quite simple, large enough to make the distinctions among different cross-
N ing points on a single curve irrelevant.
¢e(n)=eV(N—2n)/2N. Figure 8 shows the average valuelgfand its standard

The energy for an electron-hole pair can then be written jusfi€viation of ensembles of 50 differeqy realizations. Strik-

as in Eq.(25). This energy was used for the fixed-scenariol"d!Y: for A=1, I for all values ofN appears to fall on the

calculation of noise. similar to that described in Sec. V.  sa@me, almost flat curve. This behavior is in sharp contrast to
Results from both methods are shown in Fig. 7. The'esults for similar arrays without background cha(g. 4).

- . . -3
Monte Carlo simulation shows that, unlike in arrays near a NiS quasiuniversal value of is ~5x 10 “e/RC. Although
ground plane|, does not follow a universal dependence onthere appears to be a weak downward trend(lig with
N\. Rather, |, values follow a common curve depending increasing\ for A=1.5, this trend is virtually hidden within

mostly on\ alone, decreasing weakly with the array lengththe relatively large standard deviation. _
N. Even thex dependence is weak, compared to the results Lgt us try to comprehenq this resullt. Simulation shows
for arrays near ground plane: fot=20 in the range of\ that in such arrays the typical tunneling process near the

from 0.25 to 1,l, drops by a factor of-3 in arrays with no crossover is due to severéiather than oneelectron-hole

ground plane, whereas it drops by more than two decades fpers moving simultaneously in the arrajpue to this mul-

arrays with ground plan€Fig. 4). tiplicity, a fixed-scenario calculation of noise would not

The fixed-scenario results fog match the Monte Carlo make s_ens)e This effect is easy to explain. The electric po-
results fairly well in terms of thé dependence of the curves. tential induced by the background charges creates a series of

For N=10, the magnitude of the results are also in fairlycharge traps. As a result, as the applied voltage is increased

close agreement. However, the fixed-scenario results exhibﬁt‘e first several charges to enter the array are trapped, form-

a stronger decline witiN than the Monte Carlo results. For Ing a sandpile (_Ref_. 9 (_see Fig. 9. The final energy pro-
N=60, the fixed-scenario values bf are between 3 and 8 file in the sandpile is still rangom, though the maximum
times smaller than the corresponding Monte Carlo values. p?:/S'bIS glnzecrgy_rhchange_wij '3_ no(;/v L_Jppher bound tby
Generally, it is easy to understand why the fixed-scenari& max~ € - Iheremaining disorder IS, NOwever, strong
values forl, fall below the values calculated with Monte enough to overcome the interaction of distant charges, which

Carlo simulation: randomness of jump location, which is ig-IS iﬁ?gg?nﬂagn\{vgilz'gxarlgﬁ \?v\;]er tarlnegrcc;léggor\)/grngﬁrrent is
nored in the fixed-scenario calculation, can be thought of as 9 P Y

an additional source of noise. As the general level of noise iﬁndependent of the array length. We are, however, still in

the crossover region increases, so does the crossover curreﬂ?ed of an analytical theory which would explain the virtual

However, we are still in need of a simple interpretation of themdependence of the average crossovekpand also would

N and A dependence of the shot noise in arrays without”
ground plane.

redict its universal value cited above.

VIIl. CONCLUSION

VII. MODEL 3: ARRAYS WITH RANDOM

We have used both Monte Carlo and fixed-scenario tech-
BACKGROUND CHARGE

niques to calculate the low-frequency noise for three differ-

Returning to arrays near ground plane, with their simpleent models of 1D single-electron-tunneling arrays. Within
electrostatics, we have explored the behavior of shot noise iy of the three models, arrays display a crossover of the
the presence of random background charges on the islancgRectral density of current fluctuation§(0), from the

do. These charges can represent, for example, the effect &ichottky value 2(1), to the “reduced Schottky” value
charged impurities in a substrate. The chamgeplaced on  2e(1)/N, with increasing current. The crossover can be well
each island was randomly selectédjsing a uniform prob- characterized in terms of the crossover current which
ability distribution between-e/2 ande/2. (Any integer part may be said to mark the onset of quasicontinuous charge
of the background charge is immediately compensated for byransfer. The particular behavior bf as a function ofN and
trapping one or a few tunneling electrons or holes. N\ depends on the interaction of electrons within the array
The S-I curves which stem from the Monte Carlo simu- and on the interaction of electrons with the external fiskek
lation of such arrays still show the progression from shotFig. 10.
noise to suppressed shot noise, but at larger valuastend In arrays near a ground plane, with no background charge,
to feature strong, irregular peaksig. 3), where curves for the crossover current exhibits a universal behavior that is a
arrays without background charge were smooth. Occasiorfunction of only the produchl\, i.e., of the ratio of the array
ally these peaks in th&-1 curve cause it to cross they\]  length N to the lengthM =\ "1 of single-electron solitons.
line more than once. In such cases, we arbitrarily ddfires At NA>10, the dependence is exponentidl.xexp
the lowest crossing value. It turns out that the variation in thg—NA/3). The analysis has shown that this behavior is the
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result of the exponential decrease of the soliton interactiomrray length can be readily explained as a result of the ran-
with the external electrodes and its counterpart in thedom potential created by the background charges, which
electron-hole pair. overwhelms long-range order in the arrays, but the indepen-
In arrays without a ground plank, is almost independent dence of noise on the single-electron soliton length still has
of N, and exhibits a nearly universal weak decrease with to be explained.
The substantial effect of the ground plane removal was iden-
tified as a result of the long-range electrostatic interactions
which were screened by the ground plane.
Finally, in arrays with randorﬁo, we have found that the The authors thank D. V. Averin and A. N. Korotkov for
crossover takes place at a nearly universal value of currenfuitful discussions, and A. Hugq for technical assistance. This
I.~5%x10 3e/RC. The absence of noise dependence on thevork was supported in part by AFOSR and OER.
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