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Changing thin-film growth by modulating the incident flux

Nicolas Combe and Pablo Jensen*
Département de Physique des Mate´riaux, UniversitéClaude Bernard Lyon-1, 69622 Villeurbanne Ce´dex, France

~Received 12 September 1997; revised manuscript received 1 December 1997!

Thin films are usually obtained by depositing atoms with a continuous flux. We show that using a chopped
flux leads to different morphologies or growth regimes. For example, growth cannot be simply understood by
replacing the chopped flux by its average~or instantaneous! value and using the usual growth theories:
different regimes appear, and in one of them the diffusion constant has no effect on the saturation island
density, contrary to what is observed in all theories with continuous fluxes. We present a simple scaling
analysis to predict how the island densities change as a function of the frequency of the chopped flux in several
growth regimes:irreversible aggregation with mobile islands,reversible aggregation~critical island size
greater than 1!. These predictions are confirmed by computer simulations. The model is useful to study growth
over a larger range of growth conditions, especially for the growth of thin films prepared bypulsedsources.
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The technological importance of thin films has given im
petus to an intense effort for understanding their grow
these last 30 years. One of the main characteristics of gro
in usual deposition conditions is that the structure of
deposited films is to a large extent determined by kine
factors, as opposed to thermodynamic equilibrium. T
complicates the analysis of the growth since one cannot s
ply try to find the state of lowest free energy. Instead, it
necessary to follow in detail how atoms behave after rea
ing the surface and how they incorporate into the film. A fi
step in this direction was first accomplished by Zinsmeis1

using a mean-field approach to establish rate equation
growth. Further help originated from two technological d
velopments: experimentally, scanning tunneling microsco
permits now to check atomic models of growth by givin
images of the growing film at the atomic scale2–4 and theo-
retically, rapid computer simulations are now feasible to
vestigate the effects of given atomic processes.5,6 While this
kinetic control of the film structure complicates its study, t
advantage is that one can ‘‘play games’’9 with the different
growth parameters~incident flux of particles, diffusion coef
ficient of an adatom, etc.! in order to obtain different film
morphologies. A simple example is given by the quantity
islands grown on a perfect substrate at low enough temp
tures: it is known that the number of islands at saturat
scales as (F/D)1/3 ~Refs. 10–12! whereF is the incident flux
andD the diffusion coefficient. Then, by increasing the flu
or decreasing the diffusion constant~by lowering the sub-
strate temperature!, one can adjust the saturation number
islands grown on the substrate. In this sense, each kin
factor is a ‘‘handle’’ on the system, allowing to control th
morphology of the films. We introduce here a new kine
handle, which should enable a larger control over fi
growth : thechoppingof the incident flux. We note that thi
flux modulation is intrinsic to other deposition techniqu
such as cluster laser vaporization~the laser is pulsed13!. It is
therefore important to understand how growth proceeds
the presence of a modulated flux if one is to be able
interpret experiments performed in these conditions. For
ample, one may wonder whether the usual grow
570163-1829/98/57~24!/15553~8!/$15.00
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theories10–12can be used by replacing the continuous flux
the average value of the chopped flux over a cycle. In
following, we will show that this is not the case, and that t
growth of the film is profoundly changed by the modulatio
of the incident flux. We will analyze growth in two differen
limits : the irreversible aggregation limit, including mobile
islands, and the case ofreversibleaggregation.

The basic idea is that if instead of using a continuous fl
we use achoppedflux to grow a film, the number of island
formed on a substrate will depend on the chopping freque
f and ond, the fraction of the period the flux is ‘‘on’’~see
Fig. 1!. This dependence is due to the fact that the free p
ticle concentration on the surface does not reach its ste
state concentration instantaneously, but only after a cha
teristic time which we will calltm . Then, if the timescale of
the chopping~1/f! is much smaller thantm , the system only
sees the average flux. In the contrary case, everything
pens as if the instantaneous flux was used instead. T
there will be a transition from one behavior to the other a
chopping frequency close to 1/tm .

The basic model studied in this paper includes the follo
ing: ~1! Deposition. Particles are deposited at randomly ch
sen positions of the surface at a fluxFi during the ‘‘on’’
fraction of a cycle (d,1). During the rest of the cycle, no

FIG. 1. Illustration of the chopped flux.
15 553 © 1998 The American Physical Society
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15 554 57NICOLAS COMBE AND PABLO JENSEN
particle reaches the surface~see Fig 1!. The average flux
reaching the surface is thusFav5dFi . ~2! Diffusion. Entities
can move in a random direction by one diameter, or o
lattice spacing, which we will take as our unit length. W
denote byt the characteristic time between diffusion step
~3! Aggregation. If two adatoms come to occupy neighborin
sites, they stick to form an island. This is the basic mo
that we will study in two limiting cases.

First, in the limit of irreversibleaggregation, we suppos
that monomers cannot detach from islands and cannot
fuse on the edges of islands, butwe allow islands to move:
the case of immobile islands has already been studied
previous paper.14 More precisely, we only allow islands o
size smaller thani max to move, and their diffusion coefficien
is inversely proportional to their mass6 ~i.e., its number of
particles! as discussed below. The inclusion of island mob
ity is motivated by the fact that many researchers have s
gested that island diffusion can be an important proces
film growth.12,15–17It was therefore important to include th
possibility in the model. One could argue that island diff
sion occurs via atomic diffusion along the island edge a
that moving the islands as arigid entity is not realistic. How-
ever, the precise mechanism of island diffusion is not imp
tant here, and we only need to know how fast islands
move. The only possible problem is that islands moving
edge diffusion are compact, whereas our islands rem
ramified, but this is not important forsmall islands~in the
present study the largest clusters allowed to move con
seven sites!. Concerning the size dependence of the isla
diffusion, in the absence of any universal law observed
perimentally~the laws vary fromDN;N20.5 to DN;N21.5

depending on the precise diffusion mechanisms7,8! we
choose a reasonable inverse mass law. Since we only a
obtainingscaling laws, the detailed value of this expone
should not be critical.

The effects of island mobility for irreversible aggregatio
are studied in next section. Section II deals with the oppo
case ofreversibleaggregation where we suppose that ev
particle can move with a probability which is an expone
tially decreasing function of its number of neighbors.18 This
means that islands can break up, which is the most com
situation experimentally, as soon as the growth tempera
is not too low, and that diffusion on the island edge is
lowed. Thus, including bothirreversible and reversibleag-
gregation allows to have a broad view on many differe
experimental situations.

I. IRREVERSIBLE AGGREGATION

We start with the simplest case of irreversible aggrega
and immobileislands (i max51). This situation has been ana
lyzed previously14 and we only summarize here the ma
results. The analysis is simple because the only ‘‘activ
particles for island nucleation are the monomers and th
fore the only relevant time scale is the time during which
monomers can nucleate a new island, which is the sam
the time between their deposition and their incorporation i
a pre-existing island.19 Since, in the absence of evaporatio
the monomers disappear mainly by diffusing randomly u
they aggregate with an island,10 their mean lifetime on the
surface is given bytm; l 2/D where 2l is the mean distance
e

.

l

if-

a

-
g-
in

-
d

r-
n
y
in

in
d
-

at

te
y
-

on
re
-

t

n

’’
e-
e
as
o
,
il

between islands andD the diffusion constant of the mono
mers. We obtaintm;1/(DN) whereN is the island concen-
tration. We can predict three regimes of behavior, depend
on the relative magnitude oftm , d/ f and 1/f .

For low chopping frequencies (tm!d/ f ), the monomer
concentration reaches its steady-state concentrationrss

5Fitm almost instantaneously in the time scale of a peri
After the flux is turned off, the monomer concentration go
back to 0 also almost instantaneously (tm!d/ f !1/f ). Then,
between two successive ‘‘flux on’’ periods, nothing happe
since only the monomers can move, and there is no mono
left. Therefore, growth proceeds as if we had a continu
flux Fi and the island concentration at saturation for lo
frequencies Nsat

l f satisfies the well-known resultNsat
l f

;(Fi /D)x, with x;0.36 for fractal islands.10

We then cross to the regime of high frequencies (tm

@1/f ), where many deposition cycles are carried out dur
the monomer equilibration, and the system only sees the
erage fluxFav5Fid. Then the island concentration at satur
tion for high frequenciesNsat

h f satisfies Nsat
h f;(Fav/D)x

5dxNsat
l f !Nsat

l f .
In the intermediate case (d/ f !tm!1/f ), a more complex

analysis must be done and one obtainsNsat;(Fid/ f )1/2.
Computer simulations14 are in very good agreement wit

these predictions.

A. Scaling laws„ i max52…

In this section, we will try to make some predictions f
the growth in the different regimes in the casei max52: only
monomers and dimers can move. We show that introduc
dimer motion changes the exponents in the three regi
evoked above. It is already known that the motion of t
dimers changes the scaling laws from the casei max51 in the
case of a continuous flux.10,15,17

Let us callr1 the monomer concentration,r2 the dimer
concentration,N the island concentration,D1 the monomer
diffusion coefficient, andD2 the dimer one. We will assume
that D1 and D2 have the same order of magnitude but a
different. As in the casei max51 ~immobile islands!, we call
f the frequency of the chopping flux andd the fraction of the
cycle the flux is ‘‘on.’’ We have also to introducet1
51/D1N the average time the monomers need to aggreg
on an island, andt251/D2N the average time the dimer
need to disappear from the substrate by dimer-island ag
gation . SinceD1.D2, t1.t2.

We can now investigate the different regimes of grow
depending on the relative magnitude oft1, t2, d/ f , 1/f .

For low frequency chopping (t1 ,t2!d/ f ), the monomer
and dimer concentrations reach their steady value almos
stantaneously when the flux is ‘‘on’’ and vanish instan
neously when the flux is ‘‘off.’’ So, as in the casei max51,
the system behaves as if the flux were continuous wit
valueFi and the scaling law giving the island concentrati
at saturationNsat is

10

Nsat;S Fi
2

D1D2
D 1/5

. ~1!
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This equation is valid only when dimer diffusion is hig
enough to change island density~see Ref. 10 for a more
detailed analysis!.

For high frequency chopping (1/f !t1 ,t2), as in the case
i max51 and for the same reasons, the system behaves
the flux were continuous with the average value:Fav5Fid.
And so the scaling law is

Nsat;S ~Fid!2

D1D2
D 1/5

. ~2!

For intermediate regime (d/ f !t1 ,t2!1/f ), we have to
perform a more careful analysis. For this, the usual me
field equations are1,10,12,20,21

dr1

dt
.F~ t !2D1~r1!22D1r1N2~D11D2!r1r2 , ~3!

dr2

dt
.D1~r1!22D2r2N2~D11D2!r1r22D2~r2!2,

~4!

dN

dt
.~D11D2!r1r21D2~r2!2. ~5!

In Eq. ~3!, the first term of the right-hand size denotes t
flux of monomers on the surface, the second and third te
represent, respectively, the loss of monomers by monom
monomer and monomer-island aggregation, the fourth re
sents the loss of monomers by monomer-dimer aggrega
and take in account motions of monomers and dimers. Eq
tions ~4! and ~5! have similar terms.

To solve these equations, we make two hypothesis:
assume thatr1!N andr2!r1. This leads to

dr1

dt
.F~ t !2D1r1N, ~6!

dr2

dt
.D1~r1!22D2r2N, ~7!

dN

dt
.~D11D2!r1r2 . ~8!

Solving Eqs.~6! and~7! during one period@with the con-
dition r1(t50)5r2(t50)5r1(t51/f )5r2(t51/f )
50#, and calculating the increaseDNcycle5*cycle(D1
1D2)r1r2dt of islands during the same time, one finds

DNcycle5~Fid/ f !3
1

N2F11
d

f t1
1S d

f t1
D 2S 11

t1

t2
D G . ~9!

And sinced/ f !t1 ,t2!1/f , we have

DNcycle
3 '~Fid/ f !3. ~10!

The number of cycles done is a function of the surfa
coverageu ~the number of occupied sites divided by the to
number of sites of the lattice!: ncycle5u f /Fid. We stop simu-
lations when the island concentration reaches its maxim
if

n-
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e

e
l

:

we have checked that it occurs foru50.15 as for the con-
tinuous flux.6,20 So we finally obtain the scaling law for th
intermediate regime:

Nsat;S Fid

f D 2/3

. ~11!

B. Computer simulations

We now perform Monte Carlo simulations to check the
calculations. As explained in the introduction, our progra
includes the following:6,14,20 Deposition. Monomers are
dropped on the lattice at random positions with a fluxFi
during the ‘‘on’’ fraction of the cycle. During the rest of th
cycle, no monomer reaches the surface.Diffusion. Every is-
land ~including monomers! of size smaller thani max can
move in a random direction by one lattice site.Aggregation.
When two islands~or monomers! meet, they stick irrevers-
ibly to form a single island.

More precisely, the algorithm is written in the followin
way. Each loop we increase the time bydt51/D1(FiL

2

1NCluef f), where NCluef f is the number of mobile specie
~monomers and islands of size smaller thani max) at that time,
L is the lattice size and 1/D1 is the diffusion time of a mono-
mer from a lattice site to a neighbor. Within this loop, w
perform only one operation: diffusion or deposition.

~i! The probability of moving a particle isNCluef f /(FiL
2

1NCluef f): we randomly choose an island or a monom
amongNCluef f and move it by one lattice site according to i
mobility. In the absence of any systematic law observed
perimentally~see above!, we chose a simple law for the mo
bility of the clusters: diffusion coefficient proportional to th
inverse of the mass of the island.

~ii ! The probability of deposition is FiL
2/(FiL

2

1NCluef f): an empty site of the lattice is chosen at rando
and we deposit a new particle there. It can easily be chec
that these probabilities reproduce the physical definitions
the flux and the diffusion we want to simulate.

We now analyze the dependence of the saturation isl
concentration on the chopping frequency. Figure 2 shows
results obtained fori max52 on a square lattice for differen
values ofd ~fraction of the period the flux is ‘‘on’’!. We can
first note that the three regimes predicted are actu
present. Moreover, the dependence on the frequencyf in the
intermediate regime is in good agreement with the pred
tion: the solid line is a fit of the (d50.0001) curve and has
slope 0.70 whereas the prediction is 2/3. Moreover, we
check that the ratio of island concentration between high
low frequencies regimes agrees with the predicted ratiod2/5.

Figure 3 shows the saturation island density as a func
of the rescaled flux (F/D) for different values of the fre-
quency. We can check that in the low- and high-frequen
regimes, the slopes of the curves are in good agreement
the predicted ones 2/5. Moreover, for intermediate f
quency, we can point out three different parts of the cur
for high and low fluxes, the curves tend asymptotically
wards the low- and high-frequency regimes, and for the
termediate one, the system is in fact in the regimed/ f
!t1 ,t2!1/f , and we can check that the dashed line of slo
2/3 fits the data quite well~a fit would give a slope of 0.62!.
Note that here, the change of regime for the intermed
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15 556 57NICOLAS COMBE AND PABLO JENSEN
value of f ( f 5331025) is not due to a change of frequenc
as in the previous figure, but to the decrease of the
which causes the decrease of the island density, and the
increase of the timest1'1/(D1N) andt2'1/(D2N).

In Fig. 4 we show the saturation island concentration a
function of the frequency for different values ofi max. In each
curve, the three regimes are present, and the biggeri max, the
smaller the island density. This is easy to understand s
small islands can aggregate with bigger islands, thus decr

FIG. 2. Computer simulation of the saturation island dens
~obtained for a coverage of 10%! as a function of the rescale
chopping frequencyf d/D. The rescaled flux isFi /D51027, and
each curve corresponds to a different value ofd: d50.1 ~diamonds!
~lattice sizeL5400), d50.001 ~squares!~lattice sizeL5400), d
50.0001~circles!~lattice sizeL51500). The solid line is a fit of the
curve and has a slope 0.70 in excellent agreement with the pred
slope of 2/3.

FIG. 3. Computer simulation of the saturation island dens
~obtained for a coverage of 10%! as a function of the rescaled flu
F/D. The value ofd is d50.01, the lattice size isL5400 and each
curve corresponds to a different value of the chopping frequen
f 51021 ~diamonds!, 331025 ~squares!, f 51028 ~circles!. The
dashed line has a slope 2/3 and the solid line has a slope 2/5.
x
the

a
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ing the total island density. Moreover, the decrease of
saturation island density leads to an increase of the m
aggregation time between the mobile species and the isla
(t i;1/Nsat wheret i is the characteristic time for the island
of i particles to disappear from the substrate by aggrega
on islands!, which explains qualitatively the fact that th
transition happens earlier wheni max is bigger~the transition
frequency is inversely proportional to this aggregation tim!.

II. REVERSIBLE AGGREGATION

The irreversible aggregation limit does not allow particl
to leave an island: this is only realistic when the activati
energy for a particle to detach is higher than thermal ene
kBT.

We will now study a model in which particles are allowe
to leave the islands. We will assume that each particle h
bonding energyEs with the substrate; and a bonding ener
En with each neighbor. We assume that when a part
moves from one site to another, the particle goes throug
transition state~Fig. 5! that has an energy independent of t
initial and final states, and which we take as the origin
energies. Therefore, the activation energy for a particle
leave a lattice site isEs1 jEn , where j is the number of
neighbors of the particle: we assume that only the ini
number of neighbors is relevant. The probability for that p
ticle to move is taken proportional toe2(Es1 jEn)/kBT. This is
a classical ‘‘bond counting’’ model22–24 as recently used by
Ratschet al.18 The detailed balance is verified since the ra
of probabilities satisfies

p1→2

p2→1
5e2[ ~n12n2!En]/kBT,

wherep1→2 is the probability for going from a state 1~hav-
ing n1 neighbors! to a state 2~having n2 neighbors! and
p2→1 is the probability for going from state 2 to state 1.

y

ted

y

y:

FIG. 4. Saturation island density~obtained for a coverage o
10%! as a function of the rescaled chopping frequencyf /D. The
rescaled flux is 1027, the value ofd, 0.1, the lattice size,L5400
and each curve corresponds to a different value ofi max: i max51
~circles!, i max52 ~squares!, i max53 ~diamonds!, i max54 ~triangles
up!, i max55 ~triangles left!, i max57 ~triangles down!.
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In the next section we will predict the behavior of th
saturation island concentration for this model, including
presence of a chopped flux.

A. Scaling laws

To be able to perform simple calculations, we assume
only dimers can split to give two monomers, while all th
bigger islands are stable. This simplification will be shown
lead to rather good predictions. We can give two plausi
reasons to explain this: first, most particles belonging
large islands are multiply connected and will therefore
leave the island as easily as particles in dimers~which have
only one neighbor! and second, the number of monome
~which our simplification underestimates since we negl
large island breaking! is in great part determined by the in
cident flux that is not affected by our simplified treatmen

The equations of the system then become

dr1

dt
.F~ t !2D1r1N1

r2

tb
2D1r1

22D1r1r2 , ~12!

dr2

dt
.D1r1

22
r2

tb
2D1r1r2 . ~13!

These equations are almost the same as the ones obt
for the irreversible limit, but we have added to Eq.~12! a
term of creation of monomers by disaggregation of dimers
a characteristic timetb ~rigorously we should have pu
2r2 /tb , but as we are only interested by scaling laws,
drop all geometrical factors!; tb is related to the probability
of breaking a single bond and therefore is proportional
e2(En /kT). Also, we have ignored certain process such as
motion of dimer due to shearing: we expect that such a p
cess does not affect the exponent of the scaling laws.

Making the assumptions thatr2!r1!N and tb!1/F,
which seems physically plausible if the incident flux is lo
enough, we obtain the simplified equations

dr1

dt
.F~ t !2

r1

t1
, ~14!

dr2

dt
.D1r1

22
r2

tb
. ~15!

To solve these equations, we must take into account
five time scalesd/ f ,1/f ,t1 ,tb ,tN , wheretN is the charac-
e

at

e
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t

t
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e
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e
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e

teristic time of evolution of the islands concentration~since
the typical time needed to reach saturation is a fraction o
monolayer, an estimate of this time istN.N/Fi ; see also the
preceding section!. We will assume thattN is bigger than all
other time scales. Let’s study what happens as a functio
d and f for the different values oft1 andtb .

In the caset1!d/ f , the monomer concentration reach
its steady value almost instantaneously:

0,t,d/ f , r1~ t !5
Fi

D1N
, ~16!

d/ f ,t,1/f , r1~ t !50. ~17!

And so we can solve Eq.~15!:

0,t,d/ f , r2~ t !5tbD1S Fi

D1ND 2

~12e2t/tb!, ~18!

d/ f ,t,1/f , r2~ t !5tbD1S Fi

D1ND 2

~12e2d/ f tb!e2t/tb .

~19!

FIG. 5. Illustration of the energy landscape as seen by a dif
ing particle. The energy barrier for a given jump depends only
the initial number of bonds (n). This automatically satisfies the
detailed balance~see text!.
TABLE I. Scaling law for the different regimes.

tb!d/ f
d/ f !tb!1/f

1/f !tb
tb!t1t1!tb

t1!d/ f S tb

D1
D1/4

Fi
1/2 S d

D1f D
1/4

Fi
1/2 S tb

D1
D 1/4

d1/4Fi
1/2

d/ f !t1!1/f ~tbD1!
1/2

Fid

f
~tbD1!1/2

Fid

f S Fid

f D 2/3 S Fid

f D 2/3

~tbf !1/3

1/f !t1 S tb

D1
D1/4

~Fid!1/2 S tb

D1
D 1/4

~Fid!1/2 S tb

D1
D 1/4

~Fid!1/2
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SinceN increases each cycle byDNcycle5*D1r1r2dt, we
obtain the following scaling laws@the number of cycles is a
function of the coverageu: ncycle5u f /Fid, see the preceding
section#: if tb!d/ f then

Nsat;S tb

D1
D 1/4

Fi
1/2; ~20!

if d/ f !tb!1/f then

Nsat;S d

D1f D
1/4

Fi
1/2. ~21!

If 1/ f !tb then the dimer concentration has not enou
time to vanish at the end of the period. It reaches an alm
constant value during the period :r25dtbD1(Fi /D1N)2.
The saturation island concentration becomes

Nsat;S tb

D1
D 1/4

d1/4Fi
1/2. ~22!

We can check that these three results are compatible
other: for instance, iftb→d/ f , Eq. ~20! gives Eq. ~21!
changingtb by d/ f .

In the case d/ f !t1!1/f , we have to solve exactly Eqs
~14! and ~15! and we finally obtain the following: iftb
!d/ f then

Nsat;S Fid

f D 2/3

~tbf !1/3, ~23!

if d/ f !tb!1/f then

t1!tb , Nsat;S Fid

f D 2/3

, ~24!

tb!t1Nsat;~D1tb!1/2
Fid

f
; ~25!

if 1/ f !tb then

Nsat;S Fid

f D 2/3

~tbf !1/3. ~26!

In the case1/f !t1, the monomer concentration is almo
constant during each period and, since the dimer concen
tion is entirely controlled by the monomer one, the dim
concentration is also almost constant, and then we obtain
same scaling law for all the casestb!d/ f ,d/ f !tb!1/f and
1/f !tb :

Nsat;S tb

D1
D 1/4

~Fid!1/2. ~27!

This relation is similar to Eq.~28! of Ref. 10
We let the reader check the compatibility of all these

sults, which we have summarized in Table I.
This table present all the regimes found, but some of th

are not very physical or unreachable by simulations. For
stance, the case 1/f !t1 andtb!d/ f would represent a sys
tem where particles would leave islands very quickly, an
would take a very long time to obtain some large islan
and, moreover, simulations in this case would be very exp
h
st

ch

ra-
r
he

-

m
-

it
;

n-

sive in computer time. On the other hand, in our predictio
we made the assumption thatt1 ,tb!tN , and we must take
care to stay with in these hypothesis in simulations: o
could show that the caset1!d/ f and 1/f !tb is very hard to
reach by simulations, and we will not see it.

Finally, one can be surprised because in the casetb
→1`, we do not find the same results as in irreversib
aggregation;14 in fact, our assumptiontb!tN forbids tb→
1`.

B. Computer simulation

As in the irreversible limit, we use a Monte Carlo sim
lation, and we take into account only two processes:~i!
Deposition. Particles are dropped on the substrate with a fl
Fi when the flux is on, and no particle is dropped when
flux is off. ~ii ! Diffusion. Particles diffuse with a probability
that depends on the number of neighbors. More precisely,

FIG. 6. Saturation island density~obtained for a coverage o
10%! as a function of the rescaled frequency~a! and the corre-
sponding slope~b!. The value ofd is 0.001, the lattice size is
L5600 and each curves correspond to different values of ener
and flux: Es51.3, En50.5, Fi /D51027~squares!, Es51.42,
En50.4, Fi /D5631027 ~circles!. The solid lines have slopes
21/4 and22/3.
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probability for a particle withj neighbors to move is take
proportional toe2(Es1 jEn)/kBT.

To ensure this, the algorithm is written to have, for ea
loop, a probability of depositing a new particle:

Pdrop5
FiL

2t

FiL
2t1(

i

~62 i !

6
nie

2 iEn /kBT

~28!

and the probability to move a particle withi 0 neighbors:24

Pi 0
5

~62 i 0!

6
ni 0

e2 i 0En /kBT

FiL
2t1(

i

~62 i !

6
nie

2 iEn /kBT

, ~29!

wheret5n0
21eEs /kBT ~Refs. 18,24! is the diffusion time for

a particle without neighbors,n0 is a typical vibration fre-
quency (n051013 s21), ni is the number of particles with

FIG. 7. Saturation island density~obtained for a coverage o
10%! as a function of the rescaled frequency. The rescaled
(F/D) is 1027, d is 0.001, the lattice size isL5500 and values of
energy areEs51.3, En50.4. The solid line has a slope21.
.

h

i neighbors~we only allow to particles with less than fou
neighbors to move!, kB is the Boltzmann constant,T is the
temperature,L is the lattice linear size, and the facto
(62 i ) serve to accelerate the algorithm.25

As for the irreversible aggregation, we studied the satu
tion island density dependence on the chopping frequen
Figure 6 shows the results obtained for values ofEn andEs
such thatt1<tb andt1 /tb!d. We can first check that the
ratio between the island density in the low- and hig
frequency regimes corresponds tod1/2. According to Table I,
by increasing the frequency we should scan successively
regimes of slopes 0,21/4,22/3 ~or 21, sincet1 andtb are
very close! and finally 0. We can check in Fig. 6 that th
slope of the curve takes successively the values 0,21/4,
;20.64 and 0, in good agreement with the prediction.

Figure 7 shows the results obtained for values ofEn and
Es such thattb!t1. Here, increasing the frequency shou
lead to successive slopes of 0,21, 0. Figure 7 shows that th
three regimes are present.

In conclusion, these two figures confirm the theoreti
predictions with good accuracy taking into account the
proximations we have done to obtain Table I.

III. CONCLUSION

In this work, we have studied the influence of a chopp
flux in two models of deposition of atoms on a surface
model of irreversible aggregation with mobile islands, an
model of reversible aggregation more adapted for high te
peratures.

Mean-field-like equations have allowed us to calculate
different scaling laws verified by the saturation island de
sity as a function of the different parameters of the grow
Several regimes were obtained as a function of the chopp
frequency. These results were checked by Monte Carlo si
lations, leading to a very good agreement.

These results are useful for films grown with intrinsica
pulsed beams13 as well as for investigating new growth re
gimes with continuous sources equipped with a choppe
should be noted that chopping the flux permits to act on
kinetics of the growth just as temperature does but with
much more specific action, since temperature acts on all
tivated processes.
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