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Diffraction characterization of rough films formed under stable
and unstable growth conditions

J. Wollschläger, E. Z. Luo, and M. Henzler
Institut für Festkörperphysik, Universita¨t Hannover, Appelstrasse 2, D-30167 Hannover, Germany

~Received 28 July 1997!

Characterizing the roughness of epitaxial films by diffraction techniques with respect to the step density and
the rms roughness is well established. For self-affine surfaces the morphology of growing films, however, is
often characterized by the correlation lengthj of the height-height correlation and the roughness exponenta
governing the behavior at small lateral distances. Recently, it has been emphasized that for unstable growth
conditions, characteristic lengths~average pyramid sizes! appear that produce an oscillating character of the
height-height correlation. Here we investigate the influence of both kinds of correlations on the diffraction
spots. The oscillating correlation causes a splitting of the diffuse shoulder into satellites. The satellite position
and half-width show characteristic oscillations depending on the scattering condition. From the latter one can
determine the roughness exponenta. The correlation lengthj and the characteristic length can be evaluated
from the satellite half-width and position at the out-of-phase scattering condition taking into account the rms
heightw. This model has been applied to the statistical growth of Ag adlayers on Ag~111! at low temperatures
where the satellites of the diffuse shoulder point to the formation of pyramids. From the phase dependence we
obtain the roughness exponenta5

1
2. The step density and the correlation lengthj increase with increasing

coverage while no coarsening of the pyramid sizes is observed.@S0163-1829~98!13419-7#
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I. INTRODUCTION

There is a steadily increasing interest in studying the
itaxial growth of thin films. On one hand, this great deal
interest is based upon the fact that even on a scale of
few nanometers the perfection of thin films becomes m
and more technologically important. On the other hand, fr
the physicist’s point of view the growth of thin films offer
the opportunity to study systems far from equilibrium f
which a systematic statistical description is not available
the moment.

Several growth modes~layer-by-layer, island, or Stransk
Krastanov growth modes! have been proposed and report
for heteroepitaxial adlayers due to the interplay between
terface and surface energies if the growth process is
formed close to equilibrium conditions.1,2 Applying the same
considerations to the growth of homoepitaxial films, one
pects that the film grows in the layer-by-layer growth mo
so that the film roughness~rms heightw) should oscillate
with increasing coverage betweenw50 for the perfectly
closed film after depositing an integral number of atom
layers and the maximum roughnessw5d/2 in between (d
denotes the step height!. The films, however, are deposite
mostly far away from equilibrium conditions so that kinet
effects dominate the morphology. Thus different grow
modes such as the multilayer and the random growth m
are observed where the film roughness is between the
layer-by-layer (w<d/2) and island growth modes (w}Q)
whereasQ denotes the coverage~average film thickness!.3–5

These kinetic effects on the film growth are an exte
sively increasing field of investigations. Especially, it h
been proposed that the film morphology shows scaling
havior of self-affine surfaces~kinetic roughening!: both the
rms heightw and the correlation lengthj ~characterizing the
570163-1829/98/57~24!/15541~12!/$15.00
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vertical and lateral roughness, respectively! follow power
lawsw}Qb andj}Q1/z.6 Recently it has been reported th
additional barriers at atomic steps~Ehrlich-Schwoebel bar-
rier! cause an uphill diffusion so that the film morphology
unstable since pyramidlike structures and mounds devel7

This growth mode has been studied by Monte Carlo~MC!
simulations and Langevin equations and it has been sh
that the slope of the pyramids is constant for the long ti
limit while the average pyramid size follows the scaling la
^L&}Qn.8–12 This coarsening of the films has been observ
for both semiconductor13,14 and metal epitaxy.15–18

For these investigations, scanning tunneling microsco
~STM! and diffraction techniques such as helium atom sc
tering ~HAS!, low-energy electron diffraction~LEED!, or re-
flection high-energy electron diffraction~RHEED! are used
mostly. Both techniques probe different properties of s
faces. STM records directly images of the film surface. Fr
these images one has to evaluate the height-height cor
tion, which can been analyzed with respect to the rms he
w, the correlation lengthj, or the average mound size^L&.
On the other hand, the analysis of diffraction patterns
based directly upon correlation functions such as the p
correlation and the phase correlation. All correlation fun
tions will be defined and explained in more detail in Sec.
Thus it seems on first sight that the microscopic techniq
have large disadvantages compared to diffraction techniq
However, the situation is slightly more complicated becau
the shape of the diffraction spots is directly related to
scaling parameter’s rms height and correlation length o
close to the in-phase condition~constructive interference o
the beam diffracted at all terraces!, where the spot splits into
a strong central component and a weak diffuse shoulde19

On one hand, at this scattering condition one can easily
tract the rms height from the intensity of the central comp
15 541 © 1998 The American Physical Society
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15 542 57J. WOLLSCHLÄGER, E. Z. LUO, AND M. HENZLER
nent. On the other hand, the diffuse shoulder is mostly
weak that its analysis with respect to the correlation lengt
difficult.

Diffraction techniques are most sensitive to the late
surface roughness at the out-of-phase scattering cond
where the beam diffracted from adjacent terraces interfe
destructively. Therefore, this scattering condition is mos
used to investigate the film morphologyduring growth
conditions.20 Here, from the diffuse shoulder one obtains t
information about the terrace size distribution.21,22 Because
of the out-of-phase projection, this analysis is independen
the vertical distribution of layers~which may be character
ized by the rms heightw).23 On the other hand, the laye
distribution has a large impact on the spot profiles for sc
tering conditions between in-phase and out-of-phase. At
out-of-phase condition the diffuse scattering shows a sin
shoulder centered at the center of the Brillouin zone
broad terrace size distributions. On the other hand, the s
ting into satellites~characterized by the spot positionk0

out and
the half-width kout) is observed for sharp terrace siz
distributions.24,25

Therefore, there is a demand to combine the informat
obtained from both techniques, the height-height correla
~parametrized by the correlation lengthj and the character
istic wave vectorq0) and the diffraction analysis~satellite
position k0

out and half-widthkout at the out-of-phase condi
tion!. Up to now models have been developed only for
limiting case of submonolayer coverages and for surfa
with infinite rms height~implying also an infinite correlation
length!. In the first case the diffuse shoulder has a cons
shape for all scattering conditions.26–29 In the second case
the spots do not show any central component, rather
shape of the spots depends on the scattering condition.27,30

Assuming that the surface hasN exposed layers, it ha
been shown that the diffuse shoulder consists in principle
N21 independent single shoulders.26,27 The deconvolution
of the diffuse shoulder with respect to the single contrib
tions is too difficult. From the experimental point of view
is easier to describe the diffuse shoulder by phase-depen
parameters such as the satellite position and half-width
this study we will evaluate the phase dependence of both
intermediate rough surfaces withd!w!` from the expo-
nentially attenuated oscillating height-height correlation
pected for rough surfaces~unstable growth conditions!.

For self-affine surfaces with monotonic height-height c
relations, Sinhaet al. have evaluated spot profiles for th
diffraction at continuous self-affine surfaces.31 Recently,
Yang et al. have extended the diffraction spot analysis
self-affine surfaces of epitaxial films with monoatomic ste
including the periodicity of the spot profiles with respect
the vertical scattering conditionK' .32,33 Their analysis em-
phasizes that the spot profile half-width at the out-of-ph
condition is time invariant if the growth process follows sc
ing laws.

Figure 1 shows an idealized surface with regularly
ranged pyramids. On a mesoscopic scale the pyramids
smooth facets. A closer microscopic view of the fac
@circle in Fig. 1~a!#, however, shows atomic steps. Both fe
tures have impact on the diffraction pattern at different sc
tering conditions. Close to the in-phase condition (K'

in

52pn/d), satellites with periodicity 2p/L are observed
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while the periodicity shifts to 2p/G at the out-of-phase con
dition @K'

out5(2n11)p/d#. Here L and G denote the
mound-mound distance and the step-step distance, res
tively.

Here, the satellites point apparently to oscillating corre
tion functions instead of the monotonic correlation functio
for self-affine surfaces. For realistic growth conditions, ho
ever, the arrangement of steps and pyramids will not be
perfect that the diffraction pattern is smeared out and
oscillations of the correlation function are attenuate
Equivalent nonmonotonic height-height correlation functio
with a maximum due to the characteristic pyramid distan
have been reported assuming that the diffusion across s
is hindered by a Ehrlich-Schwoebel barrier.9–12,18

Therefore, here we present a phenomenological mode
cluding also oscillating correlations. One goal is to fin
simple relations for the phase dependence of the diffu
shoulder. It will be demonstrated that the roughness par
eter a governing the correlation for short distances can
determined from the phase dependence of the single shou
or the satellite half-width. This enables us to combine
information from the out-of-phase condition where one h
easy experimental access to the diffuse shoulder and the
rameters characterizing the height-height correlation. T
we present a way to determine the basic parameters use
the analysis of different growth models~including pyramidal
growth! also from diffraction experiments.

The remainder of this paper is organized as follows. In
next section we define the basic correlation functions nec
sary for the evaluation of the spot profiles from the heig
height correlation. We evaluate the profile of the diffu
shoulder for both nonoscillating and oscillating height-heig
correlations in Sec. III. In Sec. IV we apply our analysis
Ag films grown on Ag~111! at low temperature. Finally we

FIG. 1. ~a! Schematic drawing of a surface with regular pyr
mids and~b! the diffraction pattern obtained from it. On a mes
scopic scale the pyramids have smooth sides~facets! that, however,
have atomic steps on a microscopic scale~see enlarged area in th
circle!. Close to the in-phase condition the diffraction pattern
sensitive only to the largest height differences so that one obse
the periodicityL of the average pyramid-pyramid distance. At th
out-of-phase condition the diffraction pattern is only sensitive to
atomic steps so that the step-step distanceG governs the diffraction
pattern.
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57 15 543DIFFRACTION CHARACTERIZATION OF ROUGH . . .
discuss our results and compare them with reported inve
gations.

II. BASIC CORRELATIONS FOR ROUGH SURFACES

One major tool for the morphology analysis of surfac
are correlation functions. In this section we will remind t
reader of the definition and the basic properties of those
relation functions mostly used for the morphology analys
Furthermore, we will present a simple relation between
height-height correlation defined by

H~r !5^@h~r 81r !2h~r 8!#2&5(
h

h2d2C~r ,h! ~1!

and the phase correlation upon which the evaluation of
fraction spots is based. The height-height correlation is o
used to characterize the surfaces morphology obtained
microscopic techniques or MC simulations. Hereh(r ) is the
height of the surface at the lateral positionr . The bracketŝ &
denote averaging with respect tor 8. The last equality of Eq.
~1! shows that the height-height correlation can also
evaluated from the pair correlationC(r ,h) ~the probability
that two surface atoms with lateral distancer have a height
difference ofhd, whered denotes the step height andh is an
integer!.

From Eq.~1! it can be demonstrated that the height-heig
correlation has the limiting valuesH(0)50 and H(`)
52w2, where w denotes the rms height~asperity height!
defined byw25^h2(r 8)&2^h(r 8)&2. Therefore, Eq.~1! can
also be presented by

H~r !52w2@12g~r !# ~2!

with the autocorrelationg(r ) @implying g(0)51 and
g(`)50#.6 For self-affine surfaces, the height-height cor
lation has the asymptotic behavior

H~r !j!.2w2S r

j D 2a

~3!

introducing the roughness parametera. It is related to the
exponentsb andz presented previously for the scaling law
of self-affine surfaces viaa5zb. To adapt phenomenologi
cally the behavior ofH(r ) for short and long distances, th
autocorrelation

g~r !5expF2S r

j D 2aG ~4!

has been proposed and used by different authors.31–33

Figure 2~a! illustrates these properties fora50.5 assum-
ing that g(r ) is a monotonically decreasing functio
(jq050! as presented in Eq.~4! or is modified by cos(q0r) to
mimic oscillating correlations (jq052).

The analysis of diffraction spots is based upon the lat
factor

G~K !5E dreiK irF~r ,K'!, ~5!

whereK i and K' denote the components of the scatteri
vector K parallel and perpendicular to the surface, resp
ti-
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tively. Equation~5! shows that the lattice factor is the two
dimensional Fourier transform of the phase correlation

F~r ,K'!5^eiK'[h~r81r !2h~r8!]&5(
h

C~r ,h!eiK'hd, ~6!

where the bracketŝ& denote again averaging with respect
r 8. The spot profiles split into a diffuse shoulder and a sh
d-function-like central component with intensityG0(K')
for surfaces with finite rms heightw.26,34 Therefore, the
phase correlation has the limitsF(`,K')5G0(K') and
F(0,K')51 so that Eq.~6! can be rearranged to

F~r ,K'!5G0~K'!1@12G0~K'!#w~r ,K'!. ~7!

Here w(r ,K') is the two-dimensional Fourier transform
of the diffuse shoulder. Figure 2~b! shows the phase correla
tion functions for the monotonic and the oscillating heigh
height correlation from Fig. 2~a! at the out-of-phase condi

FIG. 2. ~a! Schematic drawings for monotonic nonoscillatin
~solid line! and oscillating~dot-dashed line! height-height correla-
tions. Both start atH(0)50 and approach asymptotically 2w2

~dashed line!. The oscillating correlation has an overshoot wi
maximum close to 2p/q0. ~b! Phase correlation for the heigh
height correlation following Eq.~10! reflecting the nonoscillating
~solid line! and oscillating behavior~dot-dashed line!, respectively.
~c! Diffuse shoulder from Fourier transform of Eq.~10!. While the
shoulder has its maximum at the center of the Brillouin zone for
nonoscillating correlation~solid line! it splits into satellites for the
oscillating correlation~dot-dashed line!.
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15 544 57J. WOLLSCHLÄGER, E. Z. LUO, AND M. HENZLER
tion. While the shoulder is a single Lorentzian centered atK i
for the monotonic height-height correlation, the line sc
splits into two satellites for the oscillating correlation@see
Fig. 2~c!#.

Comparing Eq.~1! and Eq. ~6! shows that the height
height correlation cannot be transformed into the phase
relation in a simple way except by use of the pair correlati
Therefore, in many studies one assumes a special~more or
less realistic! vertical dependence ofC(r ,h) on h, e.g., a
Gaussian formC(r ,h)5exp@2h2/l(r )#/A2pl(r ). This an-
satz, however, has the disadvantage that one does not o
a closed-form analytic relation between the height-hei
correlation and the phase correlation.33

Therefore, we assume here that the pair correlation ca
described by the convolution

C~r ,h!5(
l

p~r ,h1 l !p~r ,l !. ~8!

The functionsp(r ,h) introduced here can be interprete
easily for r→`: in this limit they denote the distribution o
exposed layers. On the other hand, they must have the
p(r ,h)5dh,0 ~Kronecker symbol! for r50. For the Gaussian
pair correlation described above, thep(r ,h) are also Gauss
ians withl(0)50 andl(`)5w/d.

Often, however, the distribution of exposed layers is
governed by a Gaussian but by an asymmetric distributio12

Since a Poisson distribution of exposed layers is repo
often from experiments, we assume also a Poisson shap

p~r ,h!5
lh~r !

h!
e2l~r !. ~9!

Since this impliesH(r )52l(r ), we obtain the simple
analytic relation

F~r ,K'!5exp@22H~r !~12cosK'd!#

5exp$2h~K'!@12g~r !#% ~10!

between the height-height correlation and the ph
correlation. The scattering condition enters viah(K')
52~w2/d2)(12cosK'd) including the rms heightw. Since
this expression will be the basic parameter for our stud
we denote it as acombined scattering condition. A similar
relation has also been proposed by Villainet al. for vicinal
surfaces.35

The central component has the intensity

G0~K'!5expF22
w2

d2
~12cosK'd!G ~11!

due to the Poisson distribution of exposed layers.36 Finally,
we would like to mention that the Poisson statistics does
automatically mean that the rough surface is produced by
statistical growth mode. This growth mode is characteriz
additionally byw/d5AQ while we do not apply any restric
tions to the relation between rms height and coverage.

It has been shown that the simple relationw(r ,K'.K'
in)

.g(r ) is valid for scattering conditions close to the in-pha
condition DK'5K'2K'

in!2p/d approximating the expo
nential of Eq.~10! by the first order Taylor approximation.19
n
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Thus for these scattering conditions the phase correlation
be transformed directly to the height-height correlation. T
procedure, however, is difficult since the intensity is ve
weak for this scattering condition. Therefore, there are la
experimental errors to determine the height-height corre
tion. Since the diffuse scattering dominates the spot profil
the out-of-phase condition, we will develop in the followin
how this information can be used to evaluate the heig
height correlation.

III. EVALUATION OF THE DIFFUSE SHOULDER

In diffraction experiments during the early stages
multilayer growth one often observes isotropic diffuse sho
ders of the diffraction spots with single Lorentzian or rin
like profiles. Sometimes also broadened satellites close to
fundamental spots are reported where both the half-w
and the position of the satellites depend on the scatte
condition.4,17,18,37–39

The isotropy of the diffuse scattering implies that also t
phase correlation is isotropic. Therefore, for Lorentzian rin
like shoulders the phase correlationw(r ,K') can be approxi-
mated well by the ‘‘experimental’’ phase correlatio
wexp(r, K') defined by

wexp~r ,K'!5e2kr cos~k0r ! ~12!

with r 5ur u, where both parametersk5k(K') and k0
5k0(K') depend on the scattering condition and the surf
roughness. Consequently, we obtain the phase correlatio

Fexp~r ,K'!5G0~K'!1@12G0~K'!#e2kr cos~k0r !.
~13!

This exponentially attenuated oscillating shape of the d
fuse shoulder has also been confirmed evaluating the
profile for sharp terrace size distributions assuming that
size of the adjacent terraces are not correlated. Both
profile parameters can be interpreted easily for the out
phase scattering condition:25

kout5k~K'
out!.

p2

2^G&S s

^G& D
2

~14!

and

k0
out5k0~K'

out!.
p

^G&F12
p2

6 S s

^G& D
4G , ~15!

where ^G& and s denote the average terrace size and
standard deviation of the terrace size distribution, resp
tively.

The attenuated oscillation of the phase correlation imp
that also the pair correlation shows equivalent oscillatio
Therefore, we modify the autocorrelation of Eq.~4! by

g~r !5expF2S r

j D 2aGcos~q0r ! ~16!

to include these oscillations. We obtain the height-hei
correlation

H~r !52w2@12e2~r /j!2a
cos~q0r !# ~17!
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and the phase correlation

F~r ,K'!5exp$2h~K'!@12e2~r /j!2a
cos~q0r !#%.

~18!

This simple model shows the main features reported
surfaces with mounds: the asymptotic behaviorH(r !j)
}(r /j)2a and a maximum of the height-heigh
correlation.9,10

The parameterq0 causes the height-height correlation
oscillate. Following our previous discussion of Fig. 1, th
implies that the characteristic wave vector is related to
characteristic length~average pyramid sizêL&) via q0
52p/^L&. Such oscillations of the height-height correlatio
have been observed in different MC simulations of epitax
growth including an Ehrlich-Schwoebel barrier.9,11,12,18

We would like to remark that the parametersj and
q0 depend exclusively on the morphology while the diffra
tion parametersk(K') and k0(K') include explicitly
the scattering condition. Therefore, we will study in the fo
lowing how the morphology parameters determine these
fraction parameters. For this purpose we will compare
exactly evaluated phase correlationF(r ,K') of Eq. ~18!
with the approximated phase correlationFexp(r,K') of
Eq. ~13! for different combined scattering condition
h(K')52(w2/d2)(12cosK'd) ~including the rms heightw
of the surface!, correlation lengthsj, and characteristic wave
vectorsq0.

Figure 3 shows the results having fitted the phase co
lations calculated by Eq.~18! ~open symbols! for roughness
exponenta50.5 to the approximation~solid line! following
Eq. ~13! for different periodicitiesjq0 and combined scatter
ing conditionsh(K'). Obviously the agreement between t
approximation motivated by the experimental results and
exact shape is excellent.

A. Nonoscillating correlations

The open symbols of Fig. 4 show the scaled half-wid
jk(K') obtained from fitting the phase correlation of E
~18! for jq050 with the approximated phase correlation
Eq. ~13! for differenta. For this analysis we used the fittin
range 0<r<10j. As expected, one obtains the asympto
behaviorjk(K').1 for h(K')!1. On the other hand, th
scaled half-width increases drastically for the opposite ca
The linear slope of the log-log plot demonstrates that
half-width follows a power law for largeh(K')@1 with
crossover to the constant half-width ath(K').1. The expo-
nent of the power law depends on the roughness exponea.

The only adjustable parameter of Eq.~13! is the half-
width k(K') since the rms roughnessw and the scattering
conditionK' fix the value of the phase correlation for infi
nite lateral distance toG05e2h(K')5e22(w2/d2)(12cosK'd). A
proper way to obtaink(K') is to require that both the ap
proximation form of Eq.~13! and the exact form of Eq.~18!
must be identical forr 5k21 @where we havewexp(k

21)
5e21#. Thus we have the criterion

F~k21,K'!5Fexp~k21,K'! ~19!

which can only be fulfilled for
r

e

l

f-
e

e-

e

e.
e

jk~K'!5@ lnh~K'!2 lnln~12e211eh~K'!21!#21/2a.
~20!

The solid lines of Fig. 4 demonstrate that the predic
behavior of Eq.~20! follows exactly the fitting result for the
whole investigated range ofh(K'). Equation~20! has the
asymptotic behavior jk(K').1 for h(K')!1 and
jk(K').@h(K')#1/2a for h(K')@1.

Equation~20!, however, is quite complicated to describ
the approximated phase dependence of the half-wi
Therefore, from the practical point of view, it is desirable
simplify Eq. ~20! by a phenomenological relation describin
exactly the same asymptotic behavior. The dashed line
Fig. 4 demonstrates that

jk~K'!5F h~K'!

12e2h~K'!G 1/2a

5F2~w2/d2!~12cosK'd!

12e22~w2/d2!~12cosK'd!G 1/2a

~21!

fulfills excellently this demand so that we base the followi
considerations on this result.

FIG. 3. Comparison of the phase correlation evaluated from
~17! ~open symbols! and the least square fit following Eq.~18! for
different scattering conditions~a! h(K')50.5, ~b! h(K')51, ~c!
h(K')52 and scaled characteristic wave vectorsjq0. The defini-
tion of the symbols shown in~c! applies also to~a! and ~b!.
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Of course the main goal of this analysis is to study h
the surface morphology influences the diffuse scattering
different scattering conditions. Therefore, Fig. 5 shows
phase dependence of the scaled half-widthjk(K') of the
diffuse shoulder for different rough surfaces~roughness ex-
ponenta50.5). The open dots are again the result of
fitting procedure described before, while the solid lines
obtained from Eq.~21!. Obviously the agreement is alway
excellent for rough surfaces while Eq.~21! overestimates the
half-width for smooth surfaces.

This, in fact, is an inherent feature of our model due to
assumed vertical dependence of the pair correlation. T
for instance, our model cannot be applied well to the grow
morphology in the submonolayer range implying a two-le

FIG. 4. Dependence of the diffraction spot half-width~scaled
with respect to the correlation lengthj) on the combined scatterin
condition h(K'). The open symbols are obtained from fitting th
‘‘exact’’ phase dependence of Eq.~18! with the ‘‘experimental’’
phase correlation Eq.~13!. While both are identical for small scat
tering conditions, they show a different behavior for large scatte
conditions. Additionally, the comparison of the fitting result wi
Eq. ~20! and Eq.~21! is shown. The agreement is excellent.

FIG. 5. Dependence of the scaled half-width on the scatte
phasedK'/2p for roughness exponenta50.5 and constant corre
lation lengthj but varying the rms heightw. The solid lines show
the predicted dependence from Eq.~21! while the open dots are
from the fitting procedure. In contrast to the scattering close to
in-phase condition, where the half-width does not depend on
rms roughness or the scattering condition, the half-width increa
drastically close to the out-of-phase condition with increasing r
roughness. Note the logarithmic scale. The agreement betwee
~21! and the exactly evaluated half-width increases with increas
rms roughnessw.
r
e

e
e

e
s,
h
l

roughness~substrate and islands!. It is well known that
for this surface the shape of the diffuse shoulder does
depend on the scattering condition. It has the constant v
k5j21.19,26 Therefore, our model overestimates the ha
width close to the out-of-phase condition for too smooth s
faces.

The roughness parametera influences also the phase d
pendence of the half-width close to the out-of-phase sca
ing condition due to the power law for largeh(K'). Com-
paring the phase dependence fora50.5 anda51.0, Fig. 6
illustrates the influence of the rms height. Here the ha
width at the out-of-phase condition is identical for all curv
implying that the step density is identical. Again the op
symbols are obtained from the fitting analysis and the so
lines from the phenomenological Eq.~21!. The agreement
is perfect so that Eq.~21! can be considered as well esta
lished to describe the phase dependence for surfaces
different roughness parametersa. Figure 6 demonstrate
that the phase dependence becomes smoother fora51 so
that the ratio between out-of-phase half-width and in-ph
half-width increases. Therefore the phase dependence o
half-width offers the possibility to determine the roughne
parametera.

We have just described how the phase dependence o
half-width can be concluded from Eq.~21!. However, one
can also interpret this relation with respect to differe
roughness parameters for the out-of-phase condition:

kout5k~K'
out!5

~2w/d!1/a

j
. ~22!

It has been shown fora50.5 ~Lorentzian shoulder due to
a geometric terrace size distribution! that the half-width at
the out-of-phase condition depends on the step densityr51/
^G& via kout52r.40 Assuming that the half-width is purely
determined by the step density, Eq.~22! can be interpreted a

r5
~2w/d!1/a

2j
. ~23!

g

g

e
e

es
s
q.

g

FIG. 6. Comparison of the half-width for different roughne
exponents (a50.5 anda51.0) and constant half-width at the ou
of-phase condition. The open symbols are obtained from the fit
procedure and the solid lines show the behavior predicted by
~21!. The phase dependence is smoother for larger roughness e
nents. Equivalent to the result illustrated by Fig. 5, the half-width
the in-phase condition increases with decreasing rms roughnesw.
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Yanget al. have reported a similar relation.32,33Addition-
ally, they pointed out that the half-width is invariant for th
self-affine surfaces of thick films due to the scaling relatio
w}Qb andj}Qb/a.

B. Oscillating correlations

After the analysis of pure exponential correlation fun
tions, we extend our study to the oscillating correlation fun
tions of Eq.~16! with some preferential characteristic wav
vector jq0.0. Therefore, the second parameterk0(K') is
introduced to solve the approximation problem to fit Eq.~13!
to the exact form of Eq.~18!.

Because of the former consideration concerning
equivalence of the height-height correlation and the ph
correlation for scattering conditions close to the in-pha
condition, it is clear thatk(K')5j21 and k0(K')5q0 for
h(K'),1 ~equivalent touK'2K'

inu,w21). Thus we will
proceed studying the other asymptotic behavior forh(K')
@1.

In this case of large rms heightw with scattering condi-
tions not too close to the in-phase condition, we concent
our analysis on small lateral distances since the phase c
lation vanishes forr @j. We substitute the height-height co
relation in Eq.~18! by its asymptotic form so that we obtai

F~r ,K'!.expF2h~K'!S r

j D 2a

2h~K'!
q0

2

2
r 2G . ~24!

Equivalently, the ‘‘experimental’’ phase correlation ca
be approximated by

Fexp~r ,K'!.expF2k~K'!r 2
1

2
k0

2~K'!r 2G ~25!

sinceG0(K')!1. Here we have approximated additiona
the cosine of Eq.~13! by the equivalent Gaussian cosk0r
.exp@21

2k0
2r2# valid for r ,q0

21 so that Eq.~25! can be com-
pared directly with Eq.~24!.

Applying the matching criterion F(k21,K')
5Fexp(k

21,K') of Eq. ~19! does not lead to a clear resu
since we have to determine two parameters for the diffr
tion spot. Therefore, we propose that the linear and the q
dratic term ofFexp(k

21,K') may be adjusted independent
to the terms}r 2a and}r 2 of F(k21,K') so that we obtain

jk~K'!5@h~K'!#1/2a ~26!

and

k0~K'!5q0Ah~K'!. ~27!

Equation~26! is identical to the asymptotic behavior o
the half-width for nonoscillating correlations. Surprisingl
the roughness exponenta does not have any impact on th
relation between the satellite position and the character
wave vector.

Equivalent to the examination of the nonoscillating cor
lations, we proved the validity of Eq.~26! and Eq.~27! fit-
ting the ‘‘experimental’’ phase correlationFexp(r,K') to
F(r ,K') in the range 0<r<10j. Figure 7 shows the result
obtained forjq052 and different roughness exponentsa.
For h(K').3, the h(K') dependence of Eq.~26! fits ex-
s
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cellently the behavior of the half-widthk for all roughness
exponents. In contrast to Eq.~27!, the satellite position does
not scale exactly withAh(K') but we obtain exponents from
0.5 to 0.6@solid lines in Fig. 7~b!#.

Figure 8 presents the phase dependence of the sat
position and half-width for rough surfaces with exponenta
50.5 and constant correlation lengthj. Here the open dots
are the data obtained from the fitting procedure~equivalent
to Fig. 7!.

These results are compared to the phenomenolog
equations

jk~K'!5F h~K'!

12e2h~K'!G 1/2a

~28!

and

k0~K'!5q0A h~K'!

12e2h~K'!
~29!

adapted from Eq.~21!.
The solid lines in Fig. 8 show that the agreement is e

cellent for rough surfaces (w>2d). Obviously the satellite

FIG. 7. Dependence of the satellite~a! half-width and~b! posi-
tion on the scattering condition for rough surfaces with oscillat
correlations. The half-width follows the power lawjk(K')
}@h(K')#1/2a as the solid lines show. For the satellite position o
obtains k0(K')}@h(K')#x ~with x50.520.6). The inset of~b!
shows the dependence of the ratio from satellite half-width a
position on the scattering condition. Only fora50.5 does one ob-
tain a nonconstant dependence.
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position is overestimated by Eq.~29! for smoother surfaces
while the dependence of the half-width Eq.~28! still fits
well.

Figure 9 shows the impact of the roughness paramete
the phase dependence of the spot profile parametersjk and
jk0 for a surface with characteristic wave vectorjq052.
Here, we assumed an identical half-width and position for
curves at the out-of-phase condition. As mentioned bef
this is equivalent to identical terrace size distributions. F
ure 9~a! shows that the dependence of the satellite half-wi
becomes smoother with increasing roughness exponen
that the value at the in-phase condition increases more d
tically with respect to the exponent than to the rms roughn
w. On the other hand, Fig. 9~b! demonstrates that the beha
ior for the satellite position is vice versa. Here the roughn
exponent has almost no impact on the curve. Even the
roughness does not change the behavior drastically ex
for scattering conditions close to the in-phase condit
where the curves have the asymptotic valuek0

in/k0
out5d/2w.

Finally we would like to discuss the relation between t
characteristic parametersj and q0 of the height-height cor-
relation and the diffraction parameterskout and k0

out at the
out-of-phase condition. On one hand, we can directly use
~22! since Eq.~26! is identical to the equivalent relation fo
nonoscillating correlations. On the other hand, we obtain
the characteristic wave vector

k0
out5k0~K'

out!52
w

d
q0 . ~30!

FIG. 8. Phase dependence of both the satellite~a! half-width
~note the logarithmic scale! and~b! position fora50.5,jq052 and
different rms roughnessw. The phase dependence of the satel
half-width is described excellently by Eq.~21! as the solid line
shows. For the satellite position there are deviations for smo
surfacesw,2d.
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Although we recover Eq.~26! for the same relation be
tween half-width and correlation length as for the nonos
lating correlations, here the interpretation is different. For
self-affine surfaces the half-width of the shoulder is rela
to the step density@cf. Eq. ~23!#. Earlier we reported@cf. Eq.
~15!# that the satellite position is determined by the avera
terrace size sharp distributions. Therefore, we obtain the
density via

r5
1

^G&
5

2w

pd
q0 ~31!

neglecting the term}s4/^G&4 of Eq. ~15!.

IV. APPLICATION TO THE EPITAXIAL GROWTH OF Ag
ON Ag„111… AT LOW TEMPERATURE

In the following we will apply the diffraction analysis
presented in the preceding section to characterize rough
films grown on Ag~111! at 130 K. The Ag film was depos
ited on a 100-ML-thick Ag template layer that has be
grown on a Si~111! 737 sample. Spot profiles of the spec
lar beam were measured with a high-resolution low-ene
electron diffraction instrument with a transfer width of 10
nm. The experimental results concerning the growth mo
and the annealing behavior of the Ag film have been p
lished previously.39 Here we would like to concentrate ou

th

FIG. 9. Impact of the roughness exponenta51.0 anda50.5
~characteristic wave vectorjq052) on the phase dependence of t
satellite~a! half-width and~b! position with identical spot param
eters at the out-of-phase condition. The definition of the symbol
~a! applies also to~b!. The phase dependence of the half-width
governed by the roughness exponent since the rms roughnew
does not change the behavior drastically. Fora51.0 the depen-
dence is much flatter than fora50.5. The phase dependence of t
satellite position is only influenced by the rms roughness~solid
lines for w/d52 andw/d53, respectively!.
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analysis on the comparison of the experimental data with
theoretical approach for the diffraction from surfaces w
oscillating correlations developed here.

Figure 10 shows a contour plot of the specular~00! beam
recorded at the out-of-phase conditionK'd/2p52.5 from a
2.5 ML Ag film. Clearly one can distinguish six satellites
a distance ofk055% Bz from the central component. Sinc
we do not observe a single Lorentzian shoulder, rather sa
lites, the terrace size distribution cannot be a geometric
tribution. It must be sharper implyings,^G&. We have ob-
served this effect for the total investigated coverage ra
0.5 ML<Q<3.5 ML as Fig. 11 demonstrates. Figure 11~a!
presents the half-widthkout and the positionk0

out at the out-
of-phase condition. Both increase with increasing cover
following the power lawQ2/3 ~solid and dashed line, respe

FIG. 10. Contour plot of the~00! spot recorded at the out-of
phase conditionK'd/2p52.5 after deposition of 2.5 ML Ag. The
diffuse shoulder shows six satellites pointing to a sharp terrace
distribution. We used a cutoff for the central component to emp
size the diffuse satellites.

FIG. 11. ~a! Coverage dependence of the satellite positionk0
out

and half-widthkout . Both follow the power lawQ2/3 ~dashed and
solid line, respectively!. ~b! Coverage dependence of the avera
terrace sizê G& and the standard deviations of the terrace size
distribution. Both scale with increasing coverage so that they fol
the power lawQ22/3.
e

el-
s-

e

e

tively!. As described previously,25 this kind of diffuse spot
profile can be analyzed with respect to the average ter
size and the standard deviation of the terrace size distr
tion. The result is shown in Fig. 11~b!. According to the
power law for the spot profile parameterskout andk0

out, we
find that both^G& ands follow the power lawQ22/3. Thus
the terrace size distribution obeys a scaling law: it does
become broader or sharper with increasing coverage
scales with the average terrace size.

The main goal of this study, however, is to describe n
only the effect of the oscillating correlations during the e
lier stages of epitaxy on the diffraction pattern at the out-
phase condition, but to extend the analysis toall scattering
conditions. Therefore, we have analyzed spot profiles
corded for scattering conditions 2.5<K'd/2p<3.5, which
show always the typical splitting into a sharp central comp
nent and a diffuse isotropic ringlike shoulder for low cove
ages or a sixfold shoulder with satellites at larger coverag
The diffuse shoulder vanishes at the in-phase condit
which proves that it is caused by atomic steps.

Figure 12 presents the spot profile analysis with respec
the rms heightw. For all investigated coverages the scal
central spot intensityG0(K') follows Eq.~11! obtained for a
Poisson distribution of exposed layers~solid lines in the inset
of Fig. 12!. SinceG0(K') becomes sharper with increasin
coverage, the rms roughness increases. The detailed ana
demonstrates that the rms roughness followsw5dAQ ~solid
line!. From this behavior one can conclude that the interla
diffusion of the deposited Ag is prohibited, obviously due
a Schwoebel barrier at the step edges. For a pure statis
growth without any diffusion, we expect a much smaller a
erage terrace size than observed in Fig. 11. Therefore,
conclude that the intralayer diffusion on terraces cannot
neglected.

The analysis of the diffuse shoulder with respect to

ze
-

FIG. 12. Coverage dependence of the rms heightw obtained
from the analysis of the central component intensity. The r
roughness follows the power lawQ1/2 pointing to a statistical
growth ~Poisson growth! of the Ag adlayer without interlayer trans
port. The inset shows the phase dependence of the scaled ce
component intensityG0(K') for Q51.0 ML andQ53.5 ML. The
solid lines are least square fits of Eq.~11! to the experimental data
from which one obtains the rms heightw.
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15 550 57J. WOLLSCHLÄGER, E. Z. LUO, AND M. HENZLER
position k0 and the half-widthk of the satellites at various
scattering conditions is presented in Fig. 13 forQ53.5 ML.
Since the rms roughness of the film has been determ
independently from the central component intensity, the o
fitting parameter for the phase dependence of the sate
half-width is the roughness exponenta. Comparing the pre-
dicted phase dependence fora50.5 ~solid line! anda51.0
~dashed line! we conclude that the roughness is governed
the exponenta50.5.

Having determined the roughness exponenta50.5 from
the phase dependence, one can simply evaluate the co
tion length of the surface combining the rms roughnessw
~obtained from the analysis of the central component int
sity! and the satellite half-width at the out-of-phase condit
following Eq. ~22!. The result of this evaluation is presente
in Fig. 14~a!, where the dots are obtained from the evaluat
from the experimental results while the solid line shows
relation combining the power laws for the rms roughne
(w}Q1/2) and the spot half-width (kout}Q2/3). Therefore,
we obtain again a power law for the correlation lengthj
}Q1/3). Equivalently the characteristic wave vectorq0 can
be evaluated from Eq.~30!. It follows the power lawq0
}Q1/6. Therefore, we do not observe a strong coarsening
the pyramids. Their size is almost constant.

V. DISCUSSION AND CONCLUSION

On one hand, one goal of the study presented here wa
develop aphenomenologicaltheory for the diffraction from
multilevel surfaces with intermediate rms height. On t
other hand, we demonstrated that this model can be app
to investigate both self-affine and non-self-affine surfa
~characterized by the correlation lengthj and the character
istic wave vectorq0) from spot profiles recorded at the ou
of-phase condition~characterized by the satellite positionk0
and half-widthk).

For this purpose we evaluated spot profiles for oscillat
and nonoscillating correlations. Assuming a Poisson-l
vertical (h) dependence of the pair correlationC(r ,h) we

FIG. 13. Phase dependence of the satellite full width at h
maximum ~FWHM! and position forQ53.5 ML. The solid and
dashed lines are the expected phase dependence for roughne
ponentsa50.5 anda51.0, respectively, following Eq.~28!. Since
the rms roughness can be used as input, the only matching pa
eter is the FWHM at the out-of-phase condition. Equivalently, E
~29! has been used to fit the satellite position~second lower solid
line!.
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obtain simple analytic relations for both the satellite positi
and the half-width on the scattering conditions with min
mum at the in-phase condition (k in5j21 and k0

in5q0) and
maximum at the out-of-phase condition@kout5(2w/d)1/a/j
andk0

out52wq0 /d#.
The diffraction spots from surfaces with submonolay

adlayers split into a sharp central component and a diff
shoulder with constant half-width. The intensities of bo
depend on the scattering condition with maximum intens
of the sharp central component at the in-phase condition
minimum intensity at the out-of-phase condition. The pha
dependence changes drastically for infinite rough surfa
(w5`). For these surfaces the spots do not show any cen
component, rather the spots are broadened and the pro
depend on the scattering condition. Assuming that the s
of adjacent terraces are not correlated, the spots have Lo
zian profiles with half-widthk(K')}(12cosK'd) for a
geometric terrace size distribution.27,40

Our model shows a mixing of the properties of two-lev
and infinite-level surfaces. On one hand, we still observ
central component, although its intensity is very strong o
close to the in-phase conditions if the rms height is large.
the other hand, Eq.~21! shows that the half-width of the
shoulder has a cosine-like behavior close to the out-of-ph
condition for a50.5 ~exponential correlation implying a
geometric terrace size distribution! where the denominato
can be neglected due tow@d. Here, on first sight, the infi-
nite roughnessw5` seems to imply an infinite half-width
This is not the case since the infinite roughness causes
an infinite correlation lengthj so that the step densityr
52w2/j is finite.

Similar considerations are valid for oscillating correlatio
functions of infinite rough surfaces, which are caused

lf

ex-

m-
.

FIG. 14. Evaluation of the coverage dependence of~a! the cor-
relation lengthj and~b! the characteristic wave vectorq0 from the
satellite parameters at the out-of-phase condition. The correla
length j and the characteristic wave vectorq0 increase following
the power lawsQ1/3 andQ1/6, respectively~solid lines!.
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sharp terrace size distributions. For instance, for a modi
geometric terrace size distribution~cutting off small terrace
sizes! it has been reported that the spots split into satell
close to the out-of-phase condition while the splitting va
ishes close to the in-phase condition.24 This effect is in
agreement with our model as Eq.~30! demonstrates.

The roughness exponenta can be obtained from analyz
ing the phase dependence of the half-width of either
single shoulder for nonoscillating correlations or of the s
ellites for oscillating correlations. We would like to mentio
that the roughnessa50.5 is implied by the models with
noncorrelating next neighbor sizes. The interpretation t
the half-width of the~Lorentzian! shoulder at the out-of-
phase condition is proportional to the step densityr is based
upon these models. Therefore, it is an assumption that
interpretation holds still for larger roughness exponents u
also by other authors.32,33They have also shown that the ste
densityr is constant for self-affine surfaces.

Recently, Amar and Family have studied both the auto
variancew2g(r ) ~called structure factor in their study! and
the diffraction profiles at the out-of-phase condition in a M
simulation.41 Depending on the deposition condition, the
observed self-affine surfaces~obeying scaling laws! and non-
self-affine surfaces with peaks in the correlation functio
~attributed to average mound sizes! and in the diffraction
spots. They reported that also for the unstable growth
half-width of the out-of-phase satellites depends on
growth rate. Applying Eq.~22!, this effect may be explained
by different roughness exponents.

The roughness exponent is not involved in the phase
pendence of the satellite position for oscillating correlatio
~non-self-affine surfaces!. The oscillating height-height cor
relation implies the formation of pyramids and mounds
the surface.9,10 The average size of the pyramids^L& is at-
tributed to the first minimum of the autocorrelationg(r ).
Equivalently, we can identify the characteristic wave vec
by q052p/^L&. Since the scaling laŵL&}Qn is proposed
~similar to the correlation length for self-affine surfacesQ1/z)
we obtain the power lawk0

out}Qb2n for the satellite position
at the out-of-phase condition. Following Eq.~15! and Eq.
~31!, the satellite position is determined by the step den
for sharp terrace size distributions. Therefore, here we fin
constant step density forb5n as proposed by Siegertet al.8

Combining this with the relation for the out-of-phase s
ellite positions Eq.~30! and Eq.~15! ~for sharp terrace size
distributions!, we obtain d/^G&54(w/^L&). This implies
that the slope of the pyramid sidesm5w/^L& and the local
slope mlocal defined bymlocal5d/^G&5k0

outd/p are propor-
tional. This is expected for a surface with regular pyram
where the steps are either strictly upward or downward
Fig. 1 suggests. On the other hand, this simple relation
questionable for ‘‘real’’ surfaces with broader distributio
of both pyramid and terrace sizes~cf. Fig. 15!.

The key to this problem is that the satellite positions at
out-of-phase condition shift closer to the center of the B
louin zone for broader distributions as Eq.~15! shows.
Thereforep/k0

out overestimates the average terrace size.
would like to mention that equivalent considerations as
the satellite position evaluation from the parameters of
terrace size distributions can be applied also for the hei
height correlation of a surface with pyramids: the charac
d
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istic wave vector is smaller than 2p/^L& if the pyramid size
distribution is broad.42

We have applied our model to analyze diffraction da
obtained from the low temperature growth of homoepitax
Ag films deposited on Ag~111! substrates. This proves tha
many roughness parameters can be obtained from the
profile analysis. On one hand, it is well known that one o
tains the rms height from the intensity of the central comp
nent. Using this as an input into Eq.~22! and Eq.~30!, also
the characteristic parameters of the height-height correla
can be evaluated. The splitting of the diffuse scattering i
satellites shows that the film is grown under unstable gro
conditions and pyramids are formed. The phase depend
of the satellite half-width reveals the roughness param
a50.5, which we also obtain for the homoepitaxial grow
on other fcc substrates.43 This is different compared to MC
simulation results proposing that the roughness expon
is slightly smaller than one for homoepitaxial grow
on fcc~100! surfaces.9,10 Furthermore, in these and othe
studies18 a coarsening of the average pyramid size is repor
for fcc~100! epitaxy. On the other hand, our analys
yields an almost constant characteristic wave vector
Ag/Ag~111! revealing a constant average size of the py
mids. This has also been reported by Ammeret al.38

In conclusion, we derived a phenomenological model
the diffraction spot profile analysis of rough surfaces inclu
ing oscillating correlations in the intermediate roughne
range d!w!`. The diffraction spots split into a centra
component and a diffuse shoulder. Assuming a preser
vertical shape of the pair correlation, our analysis shows
not only the intensity of both, but also the parameters ch
acterizing the diffuse shoulder~satellite position and half-
width! depend on the scattering condition. This is confirm
by experiments. While one observes a single broad shou
for self-affine surfaces formed under stable growth con
tions, the diffuse scattering shows satellites or ringlike p
files for unstable growth conditions. From the phase dep
dence of the satellite half-width it is possible to obtain t
roughness parametera governing the height-height correla
tion for small lateral distances. The lateral roughness is
scribed by different length scales, the average pyram
pyramid distance~long wavelength!, and the average step
step distance~short wavelength!. The diffraction experiment
is sensitive to these different length scales at different s
tering conditions. While the pyramid-pyramid distance c
be obtained in principle from diffraction experiments pe

FIG. 15. Schematic drawing of pyramids with rough facets. T
dashed white line shows the slope of the pyramid. Atomic st
form additional terraces so that the average terrace sizeG is less
than the expected valueL/w for regular facets with pure upward o
downward staircases.



t
on

t

in-
-

th
le
s

e

ions
ent
er
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formed close to the in-phase condition, the experimen
sensitive to the step-step distances at the out-of-phase c
tion. Our analysis shows that both scales are mediated by
vertical roughnessw and the lateral roughness exponenta.
Since it is difficult to analyze spot profiles close to the
phase condition easily~because of the weak diffuse inten
sity!, these scaling laws provide a simple way to extract
long wavelength roughness from the out-of-phase profi
We applied our model to the analysis of rough Ag film
n

n

e

v.

et

.

s

es
3,
is
di-
he

e
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grown on Ag~111! at low temperature where it grows in th
statistical growth mode~vertical roughnessw}Q1/2). The
appearance of satellites points to unstable growth condit
forming pyramids. We determined the roughness expon
a50.5 for these surfaces. Combining this with the pow
laws observed for the lateral roughness (kout}k0

out}Q2/3), we
concluded an increasing correlation length (j}Q1/3) and
characteristic wave vector (q0}Q1/6) pointing to an almost
constant average pyramid size.
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25J. Wollschläger, Surf. Sci.383, 103 ~1997!.
26C. S. Lent and P. I. Cohen, Surf. Sci.139, 121 ~1984!.
27P. R. Pukite, C. S. Lent, and P. I. Cohen, Surf. Sci.167, 39

~1985!.
28J. M. Pimbley and T. M. Lu, J. Vac. Sci. Technol. A2, 457

~1984!.
29J. M. Pimbley and T. M. Lu, J. Appl. Phys.57, 1121~1984!.
30J. M. Pimbley and T. M. Lu, J. Appl. Phys.55, 182 ~1984!.
31S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. R

B 38, 2297~1988!.
32H. N. Yang, T. M. Lu, and G. C. Wang, Phys. Rev. Lett.68, 2612

~1992!.
33H. N. Yang, T. M. Lu, and G. C. Wang, Phys. Rev. B47, 3911

~1993!.
34R. Altsinger, H. Busch, M. Horn, and M. Henzler, Surf. Sci.200,

235 ~1988!.
35J. Villain, D. R. Grempel, and J. Lapujoulade, J. Phys. F15, 809

~1985!.
36G. Meyer, J. Wollschla¨ger, and M. Henzler, Surf. Sci.231, 64

~1990!.
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