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Characterizing the roughness of epitaxial films by diffraction techniques with respect to the step density and
the rms roughness is well established. For self-affine surfaces the morphology of growing films, however, is
often characterized by the correlation lendtlof the height-height correlation and the roughness expoaent
governing the behavior at small lateral distances. Recently, it has been emphasized that for unstable growth
conditions, characteristic lengtiiaverage pyramid sizesppear that produce an oscillating character of the
height-height correlation. Here we investigate the influence of both kinds of correlations on the diffraction
spots. The oscillating correlation causes a splitting of the diffuse shoulder into satellites. The satellite position
and half-width show characteristic oscillations depending on the scattering condition. From the latter one can
determine the roughness exponentThe correlation lengtly and the characteristic length can be evaluated
from the satellite half-width and position at the out-of-phase scattering condition taking into account the rms
heightw. This model has been applied to the statistical growth of Ag adlayers ¢hlAgat low temperatures
where the satellites of the diffuse shoulder point to the formation of pyramids. From the phase dependence we
obtain the roughness exponent % The step density and the correlation lengtincrease with increasing
coverage while no coarsening of the pyramid sizes is obsef&&163-182¢08)13419-7

[. INTRODUCTION vertical and lateral roughness, respectiyelgllow power
lawswo ®F and £ @12° Recently it has been reported that
There is a steadily increasing interest in studying the epadditional barriers at atomic stegghrlich-Schwoebel bar-
itaxial growth of thin films. On one hand, this great deal ofrier) cause an uphill diffusion so that the film morphology is
interest is based upon the fact that even on a scale of vemynstable since pyramidlike structures and mounds develop.
few nanometers the perfection of thin films becomes mor&his growth mode has been studied by Monte CARILT)
and more technologically important. On the other hand, fromsimulations and Langevin equations and it has been shown
the physicist’s point of view the growth of thin films offers that the slope of the pyramids is constant for the long time
the opportunity to study systems far from equilibrium for limit while the average pyramid size follows the scaling law
which a systematic statistical description is not available atA )= ®".8-*2This coarsening of the films has been observed
the moment. for both semiconductdf'*and metal epitaxy® 8
Several growth modesayer-by-layer, island, or Stranski- For these investigations, scanning tunneling microscopy
Krastanov growth modg¢save been proposed and reported(STM) and diffraction techniques such as helium atom scat-
for heteroepitaxial adlayers due to the interplay between intering (HAS), low-energy electron diffractiofLEED), or re-
terface and surface energies if the growth process is peflection high-energy electron diffractiofRHEED) are used
formed close to equilibrium conditiorts Applying the same  mostly. Both techniques probe different properties of sur-
considerations to the growth of homoepitaxial films, one ex{faces. STM records directly images of the film surface. From
pects that the film grows in the layer-by-layer growth modethese images one has to evaluate the height-height correla-
so that the film roughnessms heightw) should oscillate tion, which can been analyzed with respect to the rms height
with increasing coverage betweem=0 for the perfectly w, the correlation lengtlf, or the average mound sizd ).
closed film after depositing an integral number of atomicOn the other hand, the analysis of diffraction patterns is
layers and the maximum roughness=d/2 in between based directly upon correlation functions such as the pair
denotes the step heighfThe films, however, are deposited correlation and the phase correlation. All correlation func-
mostly far away from equilibrium conditions so that kinetic tions will be defined and explained in more detail in Sec. Il.
effects dominate the morphology. Thus different growthThus it seems on first sight that the microscopic techniques
modes such as the multilayer and the random growth modeave large disadvantages compared to diffraction techniques.
are observed where the film roughness is between the putéowever, the situation is slightly more complicated because
layer-by-layer (v=d/2) and island growth modeswvf®) the shape of the diffraction spots is directly related to the
whereas® denotes the coveradaverage film thicknegs™  scaling parameter’s rms height and correlation length only
These kinetic effects on the film growth are an exten-close to the in-phase conditiq@onstructive interference of
sively increasing field of investigations. Especially, it hasthe beam diffracted at all terragesvhere the spot splits into
been proposed that the film morphology shows scaling bea strong central component and a weak diffuse shodfter.
havior of self-affine surfaceginetic rougheniny both the  On one hand, at this scattering condition one can easily ex-
rms heightw and the correlation length (characterizing the tract the rms height from the intensity of the central compo-
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nent. On the other hand, the diffuse shoulder is mostly so d
weak that its analysis with respect to the correlation length is (a) drirgt)elxjr?ce terrace
difficult. A size
Diffraction techniques are most sensitive to the lateral |
surface roughness at the out-of-phase scattering condition
where the beam diffracted from adjacent terraces interferes
destructively. Therefore, this scattering condition is mostly
used to investigate the film morphologyuring growth
conditions?® Here, from the diffuse shoulder one obtains the

information about the terrace size distributfdrf? Because (b) 2—15

of the out-of-phase projection, this analysis is independent of 2n atthe
the vertical distribution of layeréwhich may be character- A phase
ized by the rms heighwv).?® On the other hand, the layer condition
distribution has a large impact on the spot profiles for scat- I \ in_p‘;}ggg o o

tering conditions between in-phase and out-of-phase. At the
out-of-phase condition the diffuse scattering shows a single
shoulder centered at the center of the Brillouin zone for . . ,
broad terrace size distributions. On the other hand, the split- /G- 1. (& Schematic drawing of a surface with regular pyra-
ting into satellitescharacterized by the spot ositibgf’t and mlds_ and(b) the dlffrac_tlon pattern obtaln_ed from it. On a meso-
9 . . y potp . scopic scale the pyramids have smooth sidiesets that, however,
the _half'w'dahzé‘ouf) is observed for sharp terrace size have atomic steps on a microscopic soalee enlarged area in the
distributions®* ) ) ) _ circle). Close to the in-phase condition the diffraction pattern is
Therefore, there is a demand to combine the informationensitive only to the largest height differences so that one observes
obtained from both techniques, the height-height correlatiomhe periodicityA of the average pyramid-pyramid distance. At the
(parametrized by the correlation lengghand the character- out-of-phase condition the diffraction pattern is only sensitive to the
istic wave vectorqgp) and the diffraction analysissatellite  atomic steps so that the step-step distangmverns the diffraction
position k" and half-width x,; at the out-of-phase condi- pattern.
tion). Up to now models have been developed only for the
limiting case of submonolayer coverages and for surfacewhile the periodicity shifts to 2/I" at the out-of-phase con-
with infinite rms heightimplying also an infinite correlation dition [K%'=(2n+1)w/d]. Here A and I'" denote the
length. In the first case the diffuse shoulder has a constaniound-mound distance and the step-step distance, respec-
shape for all scattering conditioA%:?° In the second case tively.
the spots do not show any central component, rather the Here, the satellites point apparently to oscillating correla-
shape of the spots depends on the scattering condftin.  tion functions instead of the monotonic correlation functions
Assuming that the surface h&$ exposed layers, it has for self-affine surfaces. For realistic growth conditions, how-
been shown that the diffuse shoulder consists in principle oéver, the arrangement of steps and pyramids will not be so
N—1 independent single shouldéfs’ The deconvolution perfect that the diffraction pattern is smeared out and the
of the diffuse shoulder with respect to the single contribu-oscillations of the correlation function are attenuated.
tions is too difficult. From the experimental point of view it Equivalent nonmonotonic height-height correlation functions
is easier to describe the diffuse shoulder by phase-dependepnith a maximum due to the characteristic pyramid distance
parameters such as the satellite position and half-width. linave been reported assuming that the diffusion across steps
this study we will evaluate the phase dependence of both fag hindered by a Ehrlich-Schwoebel barfet?18

parallel scattering vector ——>

intermediate rough surfaces with€ew<o from the expo- Therefore, here we present a phenomenological model in-
nentially attenuated oscillating height-height correlation excluding also oscillating correlations. One goal is to find
pected for rough surfacdsinstable growth conditions simple relations for the phase dependence of the diffuse

For self-affine surfaces with monotonic height-height cor-shoulder. It will be demonstrated that the roughness param-
relations, Sinhaet al. have evaluated spot profiles for the eter @ governing the correlation for short distances can be
diffraction at continuous self-affine surfacsRecently, determined from the phase dependence of the single shoulder
Yang et al. have extended the diffraction spot analysis toor the satellite half-width. This enables us to combine the
self-affine surfaces of epitaxial films with monoatomic stepsinformation from the out-of-phase condition where one has
including the periodicity of the spot profiles with respect to easy experimental access to the diffuse shoulder and the pa-
the vertical scattering conditiold, .33 Their analysis em- rameters characterizing the height-height correlation. Thus
phasizes that the spot profile half-width at the out-of-phaseve present a way to determine the basic parameters used for
condition is time invariant if the growth process follows scal-the analysis of different growth modeliscluding pyramidal
ing laws. growth) also from diffraction experiments.

Figure 1 shows an idealized surface with regularly ar- The remainder of this paper is organized as follows. In the
ranged pyramids. On a mesoscopic scale the pyramids havext section we define the basic correlation functions neces-
smooth facets. A closer microscopic view of the facetssary for the evaluation of the spot profiles from the height-
[circle in Fig. Xa)], however, shows atomic steps. Both fea- height correlation. We evaluate the profile of the diffuse
tures have impact on the diffraction pattern at different scatshoulder for both nonoscillating and oscillating height-height
tering conditions. Close to the in-phase conditiok'( correlations in Sec. Ill. In Sec. IV we apply our analysis to
=2mn/d), satellites with periodicity /A are observed Ag films grown on Ag11l) at low temperature. Finally we
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discuss our results and compare them with reported investi-
gations.

II. BASIC CORRELATIONS FOR ROUGH SURFACES

One major tool for the morphology analysis of surfaces
are correlation functions. In this section we will remind the
reader of the definition and the basic properties of those cor-
relation functions mostly used for the morphology analysis.
Furthermore, we will present a simple relation between the
height-height correlation defined by

height-height correlation H(r)
N
el
9
o

H(r)=<[h(r’+r)—h(r')]2>=; h?d?C(r,h) (1)

and the phase correlation upon which the evaluation of dif-
fraction spots is based. The height-height correlation is often
used to characterize the surfaces morphology obtained by | | | |
microscopic techniques or MC simulations. Héi(g) is the 00 5 4 6 8 10
height of the surface at the lateral positiorThe bracketg ) scaled lateral distance r/é
denote averaging with respectrtb. The last equality of Eq.
(1) shows that the height-height correlation can also be
evaluated from the pair correlatiod(r,h) (the probability
that two surface atoms with lateral distarrcbave a height
difference ofhd, whered denotes the step height ahds an
integey.

From Eq.(1) it can be demonstrated that the height-height
correlation has the limiting value$i(0)=0 and H(«)
=2w?, wherew denotes the rms heighiasperity height

defined byw?=(h?(r’))—(h(r'))2. Therefore, Eq(1) can -4 =2 0 2 4
also be presented by scaled parallel scattering vector EK|

phase correlation @(r,K,)

diffuse intensity [arb. units]

— ow2r1 FIG. 2. (a) Schematic drawings for monotonic nonoscillating
H(n=2wT1-g(r] @ (solid line) and oscillating(dot-dashed lineheight-height correla-
with the autocorrelationg(r) [implying g(0)=1 and tions. Both start atH(0)=0 and approach asymptoticallyw2
g()=0].% For self-affine surfaces, the height-height corre-(dashed ling The oscillating correlation has an overshoot with

lation has the asymptotic behavior maximum close to Z/q,. (b) Phase correlation for the height-
height correlation following Eq(10) reflecting the nonoscillating

r2e (solid line) and oscillating behaviofdot-dashed ling respectively.

H(r<§)22w2 E) 3 (c) Diffuse shoulder from Fourier transform of E.0). While the

shoulder has its maximum at the center of the Brillouin zone for the

introducing the roughness parameter It is related to the honoscillating correlatiorsolid line) it splits into satellites for the
exponents3 andz presented previously for the scaling laws ©scillating correlatior{dot-dashed ling

of self-affine surfaces via=zpB. To adapt phenomenologi- ) _ ]
cally the behavior oH(r) for short and long distances, the tively. Equation(5) shows that the lattice factor is the two-

autocorrelation dimensional Fourier transform of the phase correlation
ry2e — /aiK [h(r"+1)=h(r)]\ — iK | hd
g(r)=exr{—(g) (4) d(r,K)=(e" >—; C(r,h)e'thd, (6)
has been proposed and used by different autHors. where the brackets) denote again averaging with respect to

Figure 2a) illustrates these properties far=0.5 assum- I’. The spot profiles split into a diffuse shoulder and a sharp
ing that g(r) is a monotonically decreasing function é-function-like central component with intensit§,(K, )
(£9,=0) as presented in E@4) or is modified by cosyr)to  for surfaces with finite rms heightv.?*3* Therefore, the
mimic oscillating correlations4gy=2). phase correlation has the limitd(~,K,)=Gy(K,) and

The analysis of diffraction spots is based upon the latticéP(0,K ) =1 so that Eq(6) can be rearranged to

factor
O(r,K ) =Go(K ) +[1=Go(K ) ]e(r,K,).  (7)

G(K):J dre'I'd(r.K)), (5) Here ¢(r,K,) is the two-dimensional Fourier transform

of the diffuse shoulder. Figurg® shows the phase correla-

whereK andK, denote the components of the scatteringtion functions for the monotonic and the oscillating height-
vector K parallel and perpendicular to the surface, respecheight correlation from Fig. @) at the out-of-phase condi-
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tion. While the shoulder is a single Lorentzian centerelljat Thus for these scattering conditions the phase correlation can

for the monotonic height-height correlation, the line scanbe transformed directly to the height-height correlation. This

splits into two satellites for the oscillating correlatippee  procedure, however, is difficult since the intensity is very

Fig. 2(c)]. weak for this scattering condition. Therefore, there are large
Comparing Eg.(1) and Eq.(6) shows that the height- experimental errors to determine the height-height correla-

height correlation cannot be transformed into the phase cotion. Since the diffuse scattering dominates the spot profile at

relation in a simple way except by use of the pair correlationthe out-of-phase condition, we will develop in the following

Therefore, in many studies one assumes a spétiafe or  how this information can be used to evaluate the height-

less realistig vertical dependence o€(r,h) on h, e.g., a height correlation.

Gaussian fornC(r,h) =exgd —h?A(r)]/v27\(r). This an-

satz, however, has the disadvantage that one does not obtain ||, EVALUATION OF THE DIFFUSE SHOULDER

a closed-form analytic relation between the height-height

correlation and the phase correlatfon. In diffraction experiments during the early stages of
Therefore, we assume here that the pair correlation can g8ultilayer growth one often observes isotropic diffuse shoul-
described by the convolution ders of the diffraction spots with single Lorentzian or ring-

like profiles. Sometimes also broadened satellites close to the
fundamental spots are reported where both the half-width
C(r,h)=2| p(r,h+1)p(r,1). (8 and the position of the satellites depend on the scattering

COﬂditiOﬂf"17'18‘37_3g

The functionsp(r,h) introduced here can be interpreted  The isotropy of the diffuse scattering implies that also the
easily forr—: in this limit they denote the distribution of Phase correlation is isotropic. Therefore, for Lorentzian ring-
exposed layers. On the other hand, they must have the forfke shoulders the phase correlatipfr,K, ) can be approxi-
p(r,h) = &, o (Kronecker symbolfor r=0. For the Gaussian mated well by the “experimental” phase correlation
pair correlation described above, thér,h) are also Gauss- Pexl» K.) defined by
ians withA (0)=0 andA(«)=w/d.

Often, h(ovaever, the (dis)tribution of exposed layers is not el KL )=€""" coskor) (12)
governed by a Gaussian but by an asymmetric distribdfion. with r=|r|, where both parameters=«(K,) and k,
Since a Poisson distribution of exposed layers is reported- ko(K,) depend on the scattering condition and the surface
often from experiments, we assume also a Poisson shape:roughness. Consequently, we obtain the phase correlation

(D) DT, K, ) =Go(K, ) +[1-Go(K, ) Je™*" cogkgr).
Since this impliesH(r)=2\(r), we obtain the simple This exponentially attenuated oscillating shape of the dif-
analytic relation fuse shoulder has also been confirmed evaluating the spot
profile for sharp terrace size distributions assuming that the
d(r,K, )=exgd —2H(r)(1—cosK, d)] size of the adjacent terraces are not correlated. Both spot
profile parameters can be interpreted easily for the out-of-
=exp—n(K)[1-g(n 1]} (10 phase scattering conditidn:
between the height-height correlation and the phase ) )
correlation. The scattering condition enters vigK,) « =K(K°”t)z7T— 9 (14)
=2(w?/d?)(1— cosK, d) including the rms heightv. Since out L7 2T)Y(T)
this expression will be the basic parameter for our studies,
we denote it as @ombined scattering conditior similar ~ 2d
relation has also been proposed by Vill&nal. for vicinal 2 4
surfaces® QU= o (K OV = L[ 1 W_( l) (15)
The central component has the intensity 0 AT 6 \(I')) |

where(I") and o denote the average terrace size and the

(12) standard deviation of the terrace size distribution, respec-
tively.

The attenuated oscillation of the phase correlation implies

that also the pair correlation shows equivalent oscillations.

W2
Go(K,)=ex —25(1—cosKld)

due to the Poisson distribution of exposed lay&rBinally,
we woul_d like to mention that the Poisson _statistics does n herefore, we modify the autocorrelation of Hé) by
automatically mean that the rough surface is produced by the
statistical growth mode. This growth mode is characterized r\2e
additionally byw/d= while we do not apply any restric- g(r)=exp{ - E)
tions to the relation between rms height and coverage.

It has been shown that the simple relatip(r K, =K' to include these oscillations. We obtain the height-height
=g(r) is valid for scattering conditions close to the in-phasecorrelation
condition AK, =K, —K''<2#/d approximating the expo-
nential of EQ.(10) by the first order Taylor approximatidfi. H(r)=2w[1—e "9 cogqor)] (17

cog(qor) (16)
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and the phase correlation

D(r,K,)=exg— (K, )[1—e 79" cogqor)]}.
(19)

This simple model shows the main features reported for
surfaces with mounds: the asymptotic behavidfr <¢)
«(r/&)2* and a maximum of the height-height
correlation®©

The parameteq, causes the height-height correlation to
oscillate. Following our previous discussion of Fig. 1, this
implies that the characteristic wave vector is related to the
characteristic length(average pyramid siz€ A)) via qq
=2m/(A). Such oscillations of the height-height correlation
have been observed in different MC simulations of epitaxial
growth including an Ehrlich-Schwoebel barrieft1218

We would like to remark that the parametefsand
go depend exclusively on the morphology while the diffrac-
tion parametersx(K,) and ko(K,) include explicitly
the scattering condition. Therefore, we will study in the fol-
lowing how the morphology parameters determine these dif-
fraction parameters. For this purpose we will compare the
exactly evaluated phase correlatidn(r,K,) of Eq. (18
with the approximated phase correlatiche,r,K,) of
Eq. (13) for different combined scattering conditions
(K, )=2(W?/d?)(1—cosK,d) (including the rms heighiv
of the surfacg correlation lengthg, and characteristic wave
vectorsqp.

Figure 3 shows the results having fitted the phase corre-
lations calculated by Eq18) (open symbolsfor roughness
exponenta=0.5 to the approximatiofsolid line) following
Eq. (13) for different periodicitiesgg and combined scatter-
ing conditionsy(K, ). Obviously the agreement between the
approximation motivated by the experimental results and the FIG. 3. Comparison of the phase correlation evaluated from Eg.
exact shape is excellent. (17) (open symbolsand the least square fit following E€L8) for
different scattering condition&) 7(K,)=0.5, (b) »(K,)=1, (¢)
7n(K,)=2 and scaled characteristic wave vectégg. The defini-
tion of the symbols shown ifc) applies also tga) and (b).

phase correlation &(r,K,)

phase correlation o(r,K,)

phase correlation @(r,K,)

scaled distance r/¢

A. Nonoscillating correlations

The open symbols of Fig. 4 show the scaled half-width
éxk(K,) obtained from fitting the phase correlation of Eqg. ex(K ) =[IN7(K,)—Inin(1—e 1+ enK)-1y]- 12
(18) for £9y=0 with the approximated phase correlation of (20)
Eq. (13) for different «. For this analysis we used the fitting

range G<r<10¢. As expected, one obtains the asymptotic  he solid lines of Fig. 4 demonstrate that the predicted

behavioréx(K,)=1 for n(K, )<1. On the other hand, the Lenayior of Eq(20) follows exactly the fitting result for the

scaled half-width increases drastically for the opposite casgyle investigated range of(K,). Equation(20) has the
The linear slope of the log-log plot demonstrates that th%symptotic behavior é‘:K(KL)le- for p(K,)<1 and

half-width follows a power law for largep(K,)>1 with ex(K,)=[ 12

, 1)=[n(K)]"* for p(K,)>1.
crossover to the constant half-widthaK, )=1. The expo- Equation(20), however, is quite complicated to describe
nent of the power law depends on the roughness expenent approximated phase dependence of the half-width.

_The only adjustable parameter of EQ.3) is the half-  therefore, from the practical point of view, it is desirable to
width «(K,) since the rms roughness and the scattering  gimplify Eq. (20) by a phenomenological relation describing

conditionK, fix the value of the phase gorzrelation for infi- exactly the same asymptotic behavior. The dashed line in
nite lateral distance tG,=e~ 7(K1) =g 2W/dI(A-cosKid ‘A £y 4 demonstrates that

proper way to obtain«(K ) is to require that both the ap-
proximation form of Eq(13) and the exact form of Eq18)

must be identical for=«"! [where we haveqoexp(x’l) Ex(K, )=
—al e L
=e ]. Thus we have the criterion

Y2 Tow?1d?)(1-cosK, d) |7

1— e—2(w2/d2>(1—cos K, d)
(21

n(K.)
1_977](KL)

Dk HK ) =Dk KY) (19
fulfills excellently this demand so that we base the following
which can only be fulfilled for considerations on this result.
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100 |

10F

0-0 w=3d, 0=0.5

0-0 w=2d, 0=0.5

A-A w=3d, ¢=1.0

v-v w=2d, 0=1.0
L | L | L

0.4}

scaled halfwidth &x(K|)
scaled halfwidth /i
o
(2]

0 L | | L
00 02 04 06 08 10
scattering phase K;d/2rn

1
1(Ky)=2(w/d)2[1-cos(dK )]

FIG. 6. Comparison of the half-width for different roughness
FIG. 4. Dependence of the diffraction spot half-wid#taled €xponents ¢=0.5 anda=1.0) and constant half-width at the out-
with respect to the correlation lengéh on the combined scattering ©0f-phase condition. The open symbols are obtained from the fitting
condition (K, ). The open symbols are obtained from fitting the Procedure and the solid lines show the behavior predicted by Eq.
“exact” phase dependence of E¢L8) with the “experimental”  (21). The phase dependence is smoother for larger roughness expo-
phase correlation Eq13). While both are identical for small scat- hents. Equivalent to the result illustrated by Fig. 5, the half-width at
tering conditions, they show a different behavior for large scatteringhe in-phase condition increases with decreasing rms roughwmess
conditions. Additionally, the comparison of the fitting result with
Eqg. (20) and Eq.(21) is shown. The agreement is excellent. roughness(substrate and islangslt is well known that
for this surface the shape of the diffuse shoulder does not
Of course the main goal of this analysis is to study howdepend on the scattering condition. It has the constant value
the surface morphology influences the diffuse scattering fog.=¢-1.1926 Therefore, our model overestimates the half-

different scattering conditions. Therefore, Fig. 5 shows theyidth close to the out-of-phase condition for too smooth sur-
phase dependence of the scaled half-widi{K,) of the  faces.
diffuse shoulder for different rough surfacésughness ex- The roughness parameterinfluences also the phase de-
ponenta=0.5). The open dots are again the result of thependence of the half-width close to the out-of-phase scatter-
fitting procedure described before, while the solid lines areng condition due to the power law for largg(K ). Com-
obtained from Eq(21). Obviously the agreement is always paring the phase dependence for0.5 anda=1.0, Fig. 6
excellent for rough surfaces while EQ1) overestimates the jllustrates the influence of the rms height. Here the half-
half-width for smooth surfaces. width at the out-of-phase condition is identical for all curves
This, in fact, is an inherent feature of our model due to tthp|ying that the step density is identical. Again the open
assumed vertical dependence of the pair correlation. Thusymbols are obtained from the fitting analysis and the solid
for instance, our model cannot be applied well to the growthines from the phenomenological E¢21). The agreement
morphology in the submonolayer range implying a two-levelis perfect so that Eq21) can be considered as well estab-
lished to describe the phase dependence for surfaces with

50 | different roughness parametets Figure 6 demonstrates
- O that the phase dependence becomes smoothew#dr so
20 that the ratio between out-of-phase half-width and in-phase
o half-width increases. Therefore the phase dependence of the
g 10 V=N half-width offers the possibility to determine the roughness
S 5L parameter.
s We have just described how the phase dependence of the
%3 5| half-width can be concluded from E@21). However, one
(D]

can also interpret this relation with respect to different
| roughness parameters for the out-of-phase condition:

!
00 02 04 06 08 10

scattering phase K d/2r 2w/d)Ye
P o= (K= @2
FIG. 5. Dependence of the scaled half-width on the scattering
phasedK, /27 for roughness exponemnt=0.5 and constant corre-
lation length¢ but varying the rms heightv. The solid lines show It has been shown faxr= 0.5 (Lorentzian shoulder due to

the predicted dependence from E@1) while the open dots are a geometric terrace size distributjothat the half-width at
from the fitting procedure. In contrast to the scattering close to thehe out-of-phase condition depends on the step depsity/
in-phase condition, where the half-width does not depend on th@n via Kou= zp_40 Assuming that the half-width is purely

rms roughness or the scattering condition, the half-width increasegetermined by the step density, E82) can be interpreted as
drastically close to the out-of-phase condition with increasing rms

roughness. Note the logarithmic scale. The agreement between Eq. e
(21) and the exactly evaluated half-width increases with increasing _ (2w/d)

rms roughnessy. P 2¢ (23
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Yanget al. have reported a similar relatidA3® Addition- 100 E
ally, they pointed out that the half-width is invariant for the F — éKochQ“
self-affine surfaces of thick films due to the scaling relations [

= . [ o 0=0.50
woc®F and £x@ P, < 30
3 = o 0=0.75
<
B. Oscillating correlations g 10 | ¢ 0=1.00
. . . © F
After the analysis of pure exponential correlation func- <
tions, we extend our study to the oscillating correlation func- 2z i
tions of Eq.(16) with some preferential characteristic wave g 3 i o
vector £go>0. Therefore, the second paramekg(K ) is Maﬂ (a)
introduced to solve the approximation problem to fit EB) 1 $99? oy
to the exact form of Eq(18). _ _ _ 01 03 1 3 10 30 100
Because of the former consideration concerning the 30

equivalence of the height-height correlation and the phase
correlation for scattering conditions close to the in-phase
condition, it is clear thak(KL)=_§‘1 andky(K,)=qq for
(K, )<1 (equivalent to|K, —KT|<w™1). Thus we will
proceed studying the other asymptotic behavior #¢K ;)

>1.

In this case of large rms heigkat with scattering condi-
tions not too close to the in-phase condition, we concentrate
our analysis on small lateral distances since the phase corre-
lation vanishes for> ¢. We substitute the height-height cor-
relation in Eq.(18) by its asymptotic form so that we obtain

av] w O

k(K )ko(Ky)

a0 50 G0

3 10 30 100
nK)

ol (b)
?oo?mee ! | 1 {

01 03 1 3 10 30 100
(K )=2(w/d)*[1-cos(dK )]

scaled satellite position Eky(K|)

(24

r|2e db
<I>(r,Kl):eX;{ - n(KL)<E> — (K )52,
FIG. 7. Dependence of the satellit® half-width and(b) posi-
Equivalently, the “experimental” phase correlation can tion on .the scattering con.dition for rough surfaces with oscillating
be approximated by correlatlorl/sz;( The halffwm_zlth follows the power |a\l§K(.K.l)
«[ p(K,)]"“* as the solid lines show. For the satellite position one
obtains ko(K  )oc[ (K, )]* (with x=0.5—0.6). The inset of(b)
(25 shows the dependence of the ratio from satellite half-width and
position on the scattering condition. Only far=0.5 does one ob-
sinceGy(K,)<1. Here we have approximated additionally tain a nonconstant dependence.
the cosine of Eq(13) by the equivalent Gaussian clg
:exq—%kgrz] valid for r<q5l so that Eq(25) can be com- cellently the behavior of the half-widtk for all roughness
pared directly with Eq(24). exponents. In contrast to E(R7), the satellite position does
Applying the matching criterion ®(x 1,K,) not scale exactly with/ »(K ;) but we obtain exponents from
=<bexp(;<‘1,KL) of Eq. (19) does not lead to a clear result 0.5 to 0.6[solid lines in Fig. Th)].
since we have to determine two parameters for the diffrac- Figure 8 presents the phase dependence of the satellite
tion spot. Therefore, we propose that the linear and the qugposition and half-width for rough surfaces with exponent
dratic term ofd)exp(:cfl,Ki) may be adjusted independently =0.5 and constant correlation lenggh Here the open dots
to the terms<r2® ando«r? of ®(x 1,K,) so that we obtain are the data obtained from the fitting proced(equivalent

1 2
Doy 1K, )=expg — (K, )r— EkO(KL)r2

to Fig. 7).
Ex(K,)=[n(K,)]"* (26) These results are compared to the phenomenological
and equations
Ko(KL ) =doVn(K,). (27 K |
. L . . . Er(Ky )= K, (28
Equation(26) is identical to the asymptotic behavior of 1-e 7%

the half-width for nonoscillating correlations. Surprisingly,
the roughness exponent does not have any impact on the and
relation between the satellite position and the characteristic

wave vector. (K.)
Equivalent to the examination of the nonoscillating corre- Ko(K, )= 0o \ [ ML) (29)
lations, we proved the validity of Eq26) and Eq.(27) fit- 1—e KD

ting the “experimental” phase correlatiod,(r,K,) to

®(r,K,) in the range 6<r<10¢. Figure 7 shows the results adapted from Eq(21).

obtained foréqy=2 and different roughness exponenis The solid lines in Fig. 8 show that the agreement is ex-
For »(K,)>3, the »(K,) dependence of Eq26) fits ex-  cellent for rough surfacesm=2d). Obviously the satellite
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FIG. 8. Phase dependence of both the sate{bjehalf-width

o . FIG. 9. Impact of the roughness exponent 1.0 anda=0.5
(note the logarithmic scalend(b) position fora=0.5,£g,=2 and P g P .

. . (characteristic wave vectdigy=2) on the phase dependence of the

dlffere'nt rms roughnesw. The phase dependence of th? Sa_‘te”'tesatellite(a) half-width and(b) position with identical spot param-

half-width is descnbeq exce!lgntly by EG21) as the solid line eters at the out-of-phase condition. The definition of the symbols in

shows. For the satellite position there are deviations for smootraa) applies also tab). The phase dependence of the half-width is

surfacesw<2d. governed by the roughness exponent since the rms roughwess
does not change the behavior drastically. laor 1.0 the depen-

position is overestimated by E¢R9) for smoother surfaces dence is much flatter than fer=0.5. The phase dependence of the

while the dependence of the half-width E@8) still fits  satellite position is only influenced by the rms roughnéssid

well. lines forw/d=2 andw/d=3, respectively.

Figure 9 shows the impact of the roughness parameter on ]

&k, for a surface with characteristic wave veciggy=2.  tween half-W|gIth and correlatlon Iengt_h as fo_r the nonoscil-

Here, we assumed an identical half-width and position for alfating correlations, here the interpretation is different. For the

this is equivalent to identical terrace size distributions. Fig-0 the step densitjcf. Eq.(23)]. Earlier we reporteicf. Eq.

ure 9@ shows that the dependence of the satellite half-widtH15)] that the satellite position is determined by the average

becomes smoother with increasing roughness exponent $@race size sharp distributions. Therefore, we obtain the step

that the value at the in-phase condition increases more dra8€nsity via

tically with respect to the exponent than to the rms roughness

w. On the other hand, Fig.(B) demonstrates that the behav- 1 _2w

| and, Fig (®) d == d (3

ior for the satellite position is vice versa. Here the roughness P (ry ad do

exponent has almost no impact on the curve. Even the rms . 4 4

roughness does not change the behavior drastically excer:‘gleCtmg the termeo™/(T')" of Eq. (15).

for scattering conditions close to the in-phase condition

where the curves have the asymptotic vdﬂé%k8“‘= d/iow. IV. APPLICATION TO THE EPITAXIAL GROWTH OF Ag
Finally we would like to discuss the relation between the ON Ag(11]) AT LOW TEMPERATURE

characteristic parametegsand, of the height-height cor- In the following we will apply the diffraction analysis

relation and the diffraction parameteks,; and kg" at the  presented in the preceding section to characterize rough Ag
out-of-phase condition. On one hand, we can directly use Edfilms grown on Ag111) at 130 K. The Ag film was depos-
(22) since Eq.(26) is identical to the equivalent relation for ited on a 100-ML-thick Ag template layer that has been
nonoscillating correlations. On the other hand, we obtain fogrown on a Sil11) 7x 7 sample. Spot profiles of the specu-
the characteristic wave vector lar beam were measured with a high-resolution low-energy
electron diffraction instrument with a transfer width of 100
nm. The experimental results concerning the growth mode
KOUL_ | (K°”‘)=2w (30) and the annealing behavior of the Ag film have been pub-
0 ROV g do- lished previously?® Here we would like to concentrate our
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FIG. 10. Contour plot of th€00) spot recorded at the out-of- [ T 28 30 3.2
phase conditiork, d/27w=2.5 after deposition of 2.5 ML Ag. The N scattering phase oK /2x
diffuse shoulder shows six satellites pointing to a sharp terrace size o 1 ° 3 4 5
distribution. We used a cutoff for the central component to empha- coverage O[ML]

size the diffuse satellites.

FIG. 12. Coverage dependence of the rms heighbbtained
analysis on the comparison of the experimental data with th&om the analysis of the central component intensity. The rms
theoretical approach for the diffraction from surfaces withroughness follows the power la®*? pointing to a statistical
oscillating correlations developed here. growth (Poisson growthof the Ag adlayer without interlayer trans-

Figure 10 shows a contour plot of the specu@0) beam  port. The inset shows the phase dependence of the scaled central
recorded at the out-of-phase conditiknd/27=2.5 from a  component intensitfzo(K, ) for ®=1.0 ML and®=3.5 ML. The
2.5 ML Ag film. Clearly one can distinguish six satellites at solid Iings are least square fits of E(_q:L) to the experimental data
a distance oky,=5% Bz from the central component. Since ffom which one obtains the rms height
we do not observe a single Lorentzian shoulder, rather satel-
lites, the terrace size distribution cannot be a geometric distively). As described previousfp, this kind of diffuse spot
tribution. It must be sharper implying<(I'). We have ob- profile can be analyzed with respect to the average terrace
served this effect for the total investigated coverage ranggize and the standard deviation of the terrace size distribu-
0.5 ML<0=3.5 ML as Fig. 11 demonstrates. Figure(d1 tjon. The result is shown in Fig. 14). According to the
presents the half-widtl,,; and the positiorkg" at the out-  power law for the spot profile parametes,; and k2", we
of-phase condition. Both increase with increasing coveraggéng that both(T") and o follow the power law® ~23 Thus
following the power law®?* (solid and dashed line, respec- the terrace size distribution obeys a scaling law: it does not
become broader or sharper with increasing coverage but
scales with the average terrace size.

The main goal of this study, however, is to describe not
only the effect of the oscillating correlations during the ear-
lier stages of epitaxy on the diffraction pattern at the out-of-
phase condition, but to extend the analysisalioscattering
conditions. Therefore, we have analyzed spot profiles re-
corded for scattering conditions 2%, d/27=<3.5, which
show always the typical splitting into a sharp central compo-
nent and a diffuse isotropic ringlike shoulder for low cover-
ages or a sixfold shoulder with satellites at larger coverages.
The diffuse shoulder vanishes at the in-phase condition,
o—o0 <[>/a which proves that it is caused by atomic steps.

O---0 <o>/a Figure 12 presents the spot profile analysis with respect to

e}

»
T

spot profile parameters [%Bz]
S
I

o

o
-
%]
w
~

W
o
T

20 the rms heightw. For all investigated coverages the scaled
central spot intensitq(K ) follows Eq.(11) obtained for a
10k Poisson distribution of exposed layésslid lines in the inset

distribution parameters

of Fig. 12). SinceGy(K,) becomes sharper with increasing
coverage, the rms roughness increases. The detailed analysis
0 —_— 1 demonstrates that the rms roughness follewsd /@ (solid
line). From this behavior one can conclude that the interlayer
diffusion of the deposited Ag is prohibited, obviously due to
FIG. 11. (@) Coverage dependence of the satellite positigfi ~ & Schwoebel barrier at the step edges. For a pure statistical
and half-width k. Both follow the power law®?? (dashed and ~growth without any diffusion, we expect a much smaller av-
solid line, respectively (b) Coverage dependence of the average€rage terrace size than observed in Fig. 11. Therefore, we
terrace sizgI') and the standard deviatiam of the terrace size conclude that the intralayer diffusion on terraces cannot be
distribution. Both scale with increasing coverage so that they followneglected.
the power law® ~23, The analysis of the diffuse shoulder with respect to the

coverage O[ML]
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FIG. 13. Phase dependence of the satellite full width at half
maximum (FWHM) and position for® =3.5 ML. The solid and
dashed lines are the expected phase dependence for roughness ex-
ponentsa= 0.5 anda= 1.0, respectively, following Eq28). Since
the rms roughness can be used as input, the only matching param-
eter is the FWHM at the out-of-phase condition. Equivalently, Eq.
(29) has been used to fit the satellite positi@@cond lower solid
line).
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positionk, and the half-width« of the satellites at various FIG. 14. Evaluation of the coverage dependencébthe cor-
scattering conditions is presented in Fig. 13@®#=3.5 ML.  relation lengthé and(b) the characteristic wave vectqp from the
Since the rms roughness of the film has been determineshteliite parameters at the out-of-phase condition. The correlation
independently from the central component intensity, the onlyength ¢ and the characteristic wave vectgy increase following
fitting parameter for the phase dependence of the satellithe power laws®*® and ® /%, respectively(solid lines.

half-width is the roughness exponemt Comparing the pre-

dicted phase dependence fer=0.5 (solid ling) anda=1.0  obtain simple analytic relations for both the satellite position
(dashed linewe conclude that the roughness is governed byand the half-width on the scattering conditions with mini-
the exponentr=0.5. mum at the in-phase conditionc,=¢"* andk{)=q,) and

Having determined the roughness exponert0.5 from  maximum at the out-of-phase conditifr = (2w/d)Y/ ¢
the phase dependence, one can simply evaluate the correlgyq kU= 2w /d].
tion length of the surface combining the rms roughness The diffraction spots from surfaces with submonolayer
(obtained from the analysis of the central component '”te”adlayers split into a sharp central component and a diffuse
sity) and the satellite half-width at the out-of-phase conditiongpouider with constant half-width. The intensities of both
following Eq. (22). The result of this evaluation is presented gepend on the scattering condition with maximum intensity
in Fig. 14@), where the dots are obtained from the evaluationgt the sharp central component at the in-phase condition and
from the experimental results while the solid line shows thepinimum intensity at the out-of-phase condition. The phase
relation combining the power laws for the rms roughnessjependence changes drastically for infinite rough surfaces
(we® 2) and the spot half-width K, © ). Therefore, (=), For these surfaces the spots do not show any central
we 8bta'” again a power law for the correlation lengéh (' component, rather the spots are broadened and the profiles
«©*). Equivalently the characteristic wave vectpy can depend on the scattering condition. Assuming that the sizes
be ‘1’7\6’3'“3'[9‘1 from Eq30). It follows the power lawdo  of adjacent terraces are not correlated, the spots have Lorent-
@, The;refore, we .do not observe a strong coarsening ofjan profiles with half-widthx (K, ) (1—cosK,d) for a
the pyramids. Their size is almost constant. geometric terrace size distributiéh?

Our model shows a mixing of the properties of two-level
and infinite-level surfaces. On one hand, we still observe a
central component, although its intensity is very strong only

On one hand, one goal of the study presented here was tose to the in-phase conditions if the rms height is large. On
develop aphenomenologicatheory for the diffraction from the other hand, Eq(21) shows that the half-width of the
multilevel surfaces with intermediate rms height. On theshoulder has a cosine-like behavior close to the out-of-phase
other hand, we demonstrated that this model can be appliezbndition for «=0.5 (exponential correlation implying a
to investigate both self-affine and non-self-affine surfacegeometric terrace size distributipwhere the denominator
(characterized by the correlation lengthand the character- can be neglected due t@>d. Here, on first sight, the infi-
istic wave vectogy) from spot profiles recorded at the out- nite roughnessv=o seems to imply an infinite half-width.
of-phase conditioricharacterized by the satellite positigp ~ This is not the case since the infinite roughness causes also
and half-width). an infinite correlation lengtt¥ so that the step density

For this purpose we evaluated spot profiles for oscillating=2w?/ ¢ is finite.
and nonoscillating correlations. Assuming a Poisson-like Similar considerations are valid for oscillating correlation
vertical (h) dependence of the pair correlati@{(r,h) we  functions of infinite rough surfaces, which are caused by

V. DISCUSSION AND CONCLUSION
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sharp terrace size distributions. For instance, for a modified
geometric terrace size distributidoutting off small terrace A
sizeg it has been reported that the spots split into satellites
close to the out-of-phase condition while the splitting van-
ishes close to the in-phase conditfnThis effect is in
agreement with our model as E@O) demonstrates.

The roughness exponeatcan be obtained from analyz-
ing the phase dependence of the half-width of either the
single shoulder for nonoscillating correlations or of the sat-
ellites for oscillating correlations. We would like to mention
that the roughnessa=0.5 is implied by the models with
noncorrelating next neighbor sizes. The interpretation th
the half-W|d_th OT the(Lorgntmar) shoulder at the out-of- than the expected valuk/w for regular facets with pure upward or
phase condition is proportional to the step denpiig based  onward staircases.
upon these models. Therefore, it is an assumption that this
interpretation holds still for larger roughness exponents usegkii- wave vector is smaller thanaZ(A) if the pyramid size
also by other author§:**They have also shown that the step gistribution is broad?
densityp is constant for self-affine surfaces. We have applied our model to analyze diffraction data

Recently, Amar and Family have studied both the autocoypiained from the low temperature growth of homoepitaxial
variancew?g(r) (called structure factor in their stugyand Ag films deposited on A@11) substrates. This proves that
the diffraction profiles at the out-of-phase condition in a MCmany roughness parameters can be obtained from the spot
simulation™* Depending on the deposition condition, they prqfiie analysis. On one hand, it is well known that one ob-
observed self-affine sqrfacélsbeyl_ng scaling Iavx)_sand NON-  tains the rms height from the intensity of the central compo-
self-affine surfaces with peaks in the correlation functions,ont. Using this as an input into E(2) and Eq.(30), also
(attributed to average mound sizeand in the diffraction he characteristic parameters of the height-height correlation
spots. They reported that also for the unstable growth thea, pe evaluated. The splitting of the diffuse scattering into
half-width of the out-of-phase satellites depends on thegieljites shows that the film is grown under unstable growth
growth rate. Applying Eq(22), this effect may be explained ¢ongitions and pyramids are formed. The phase dependence
by different roughness exponents. _ of the satellite half-width reveals the roughness parameter

The roughness exponent is not involved in the phase de; — 5 which we also obtain for the homoepitaxial growth
pendence of the satellite position for oscillating correlations,, other fcc substratéd.This is different compared to MC
(non-self-affine surfacgsThe oscillating height-height cor-  gimulation results proposing that the roughness exponent
relation implies the formation of pyramids and mounds onjg slightly smaller than one for homoepitaxial growth
the surface:*° The average size of the pyramids) is at- 5 fcq100) surface$:® Furthermore, in these and other
tributed to the first minimum of the autocorrelatig{r). sy died® a coarsening of the average pyramid size is reported
Equivalently, we can identify the characteristic wave vectorg, fcc(100) epitaxy. On the other hand, our analysis
by go=2m/(A). Since the scaling lafA)<©®" is proposed  yje|ds an almost constant characteristic wave vector for
(similar to the correlation length for self-affine surfac@¥?) Ag/Ag(111) revealing a constant average size of the pyra-
we obtain the power law">®#~" for the satellite position mids. This has also been reported by Amraeal 38
at the out-of-phase condition. Following E(L5) and Eg. In conclusion, we derived a phenomenological model for
(31), the satellite position is determined by the step densitythe diffraction spot profile analysis of rough surfaces includ-
for sharp terrace size distributions. Therefore, here we find ghg oscillating correlations in the intermediate roughness
constant step density f@8=n as proposed by Siegeet al®  range d<w<=. The diffraction spots split into a central

Combining this with the relation for the out-of-phase sat-component and a diffuse shoulder. Assuming a preserved
ellite positions Eq(30) and Eq.(15) (for sharp terrace size vertical shape of the pair correlation, our analysis shows that
distributions, we obtain d/(I')=4(w/(A)). This implies  not only the intensity of both, but also the parameters char-
that the slope of the pyramid sides=w/(A) and the local  acterizing the diffuse shoulddsatellite position and half-
slope Myocy defined bymygeq=d/(T')=k3"d/7 are propor-  width) depend on the scattering condition. This is confirmed
tional. This is expected for a surface with regular pyramidsby experiments. While one observes a single broad shoulder
where the steps are either strictly upward or downward afor self-affine surfaces formed under stable growth condi-
Fig. 1 suggests. On the other hand, this simple relation isions, the diffuse scattering shows satellites or ringlike pro-
questionable for “real” surfaces with broader distributions files for unstable growth conditions. From the phase depen-
of both pyramid and terrace sizéd. Fig. 15. dence of the satellite half-width it is possible to obtain the

The key to this problem is that the satellite positions at theroughness parameter governing the height-height correla-
out-of-phase condition shift closer to the center of the Bril-tion for small lateral distances. The lateral roughness is de-
louin zone for broader distributions as E(L5 shows. scribed by different length scales, the average pyramid-
Thereforen/k3" overestimates the average terrace size. Wepyramid distancglong wavelength and the average step-
would like to mention that equivalent considerations as forstep distancéshort wavelength The diffraction experiment
the satellite position evaluation from the parameters of thés sensitive to these different length scales at different scat-
terrace size distributions can be applied also for the heightering conditions. While the pyramid-pyramid distance can
height correlation of a surface with pyramids: the characterbe obtained in principle from diffraction experiments per-

N
v

FIG. 15. Schematic drawing of pyramids with rough facets. The
ashed white line shows the slope of the pyramid. Atomic steps
orm additional terraces so that the average terraceISize less
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formed close to the in-phase condition, the experiment igrown on Ag111) at low temperature where it grows in the
sensitive to the step-step distances at the out-of-phase conditatistical growth modevertical roughnessv=®%?). The
tion. Our analysis shows that both scales are mediated by ttappearance of satellites points to unstable growth conditions
vertical roughnessv and the lateral roughness exponent forming pyramids. We determined the roughness exponent
Since it is difficult to analyze spot profiles close to the in-«=0.5 for these surfaces. Combining this with the power
phase condition easilyhecause of the weak diffuse inten- laws observed for the lateral roughnegs k8“‘oc2’3), we
sity), these scaling laws provide a simple way to extract theconcluded an increasing correlation length<@®*%) and
long wavelength roughness from the out-of-phase profilescharacteristic wave vectoggx®/%) pointing to an almost
We applied our model to the analysis of rough Ag films constant average pyramid size.
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