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Size effects in fluctuation spectra of many-valley semiconductors
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We present the results of theoretical investigation of inhomogeneous fluctuations in submicrometer active
layers of many-valley semiconductors with equivalent valleys~Ge, Si type!, where the layer dimension, 2d, is
comparable to or less than the intervalley diffusion relaxation length,L iv . The study is based on the
Boltzmann-Langevin kinetic equation. Boundary conditions for the fluctuations on the layer surfaces are
derived. It is shown that for arbitrary orientations of the valley axes~crystal axes! with respect to the surfaces,
the fluctuation spectra depend on the applied small electric field. Some physical phenomena are reported:
unlike bulk samples, intravalley fluctuation processes cause the intervalley fluctuations in thin layers; the
spectra of fluctuations depend on the layer thickness; with 2d&L iv , a considerable suppression of the fluc-
tuations arises for the fluctuation frequencyv!t iv

21 , wheret iv is the characteristic intervalley relaxation time.
@S0163-1829~98!03123-3#
e
p
r

ke
oc

i
v
c

uc

cy
s
ee
n
cto

g.
o
-
u

s
um

e
ise
rs
c
n

ru
on
t

how
ey

ey
he
the

ed
ec.

nd
the
c-

uce
for
a
m

d to
the
ec-

ge-
ro-
tion

The
. It

is
cess
e
nd
to-

ot-
of
try:
I. INTRODUCTION

Electron fluctuations in semiconductors have receiv
much attention over several decades because of their im
tance for both the fundamental and applied physics. Fo
long time, the low-frequency fluctuations, such as the flic
and generation-recombination noise, have been at the f
of the study. However, since the high frequency region
used in experimental investigations and employed in no
devices, much attention is paid to the nonequilibrium flu
tuations in the frequency region where the main type of fl
tuations is the noise associated with hot carriers1–8 and inter-
valley transitions in many-valley semiconductors.9–16 These
type of fluctuations are studied in weak and strong~heating!
electric fields for semiconductors with equivalent~Ge, Si
type9–14! and nonequivalent~GaAs type8,15,16! valleys. All
the above papers1–16 concern bulk semiconductors.

Among important effects inherent in the high-frequen
fluctuations, several cases stand out for which the intrin
mechanisms of limitation or suppression of noise have b
discovered recently.17–26 The suppression of hot-electro
noise in bulk samples occurs in compensated semicondu
with strong scattering of electrons by optical phonons~see
theory in Ref. 17, experiment in Ref. 18! and in many-valley
semiconductors with intensive electron-electron scatterin14

Micrometer-length-diode structures show the limitation
hot-electron noise.8,19,20Thin submicrometer conductive lay
ers, films, etc. demonstrate the suppression of the Nyq
noise,21 ambipolar drift noise,14 and hot-electron noise.22 In
nanoscale samples and structures, there also occurs the
pression of shot noise under ballistic and diffusive quant
transport.23–26

The results obtained in Refs. 17–26 indicate a fundam
tal way to control the electron fluctuations and current no
Most of these works are focused on III-V semiconducto
Meanwhile, silicon remains the basic material of microele
tronics. Recently,27–29 a significant progress has bee
achieved in the technology of submicrometer Si-based st
tures and devices for high-speed and low-noise applicati
Particularly, in Si-SiGe bipolar transistor the frequency up
570163-1829/98/57~24!/15465~11!/$15.00
d
or-
a
r
us
s
el
-
-

ic
n

rs

f

ist

up-

n-
.
.
-

c-
s.

o

about 90 GHz has been realized.28,29 These materials and
structures have multivalley electron energy spectra and s
a considerable contribution to the noise from intervall
transitions of carriers.

In this paper, we report on our studies of the intervall
fluctuations in submicrometer active layers for which t
boundaries and size effects are important. We show that
size effect allows the intervalley fluctuations to be controll
in such systems. The paper is organized as follows. In S
II, we qualitatively analyze the influence of interfaces a
boundaries on the intervalley fluctuations and discuss
effect of both the intravalley and intervalley stochastic flu
tuation sources. In Sec. III, we describe our model, introd
the basic equations, and derive the boundary conditions
fluctuations in the problem with restricted geometry of
sample. The intervalley fluctuations in the near-equilibriu
electron gas are analyzed in Sec. IV. Section V is devote
a discussion of the results and numerical estimates for
intervalley and generation-recombination fluctuations. S
tion VI draws the main conclusions of this work.

II. INTERVALLEY FLUCTUATIONS:
INFLUENCE OF INTERFACES AND BOUNDARIES

In the theory of electron fluctuations based on the Lan
vin approach, the central problem is to derive the mic
scopic stochastic sources of fluctuations and their correla
functions~Ref. 4 and references therein!. At least two kinds
of sources are essential in many-valley semiconductors.
first is due to the intravalley random scattering of carriers
leads to the Nyquist noise of the current. The second
caused by the intervalley processes giving rise to the ex
noise.9,10 In this section, we will qualitatively analyze th
influence of boundaries on the intervalley fluctuations a
discuss the role of both the intervalley and intravalley s
chastic sources.

While a separate valley is characterized by its own anis
ropy, the total conductivity remains isotropic in the range
nonheating electric fields because of cubic crystal symme
s ik5(a

n s ik
(a)5sd ik , wheres ik

(a) is the conductivity tensor of
15 465 © 1998 The American Physical Society
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theath valley,n is the total number of valleys. Similarly, th
correlation function of the Nyquist fluctuations of the curre
is also isotropic for bulk crystals as a tensor of rank tw
^d j id j k&5^(d j )2&d ik . In the range of electric fields wher
Ohm’s law is valid, the intervalley noise is proportional
the square of the applied electric fieldE. The intensity of
fluctuations is described by a tensor of rank four, which c
not be reduced to a scalar quantity due to the crystal s
metry. Thus, in contrast to the Nyquist noise, the exc
intervalley noiseis anisotropic. One can obtain the following
comparative estimate for amplitudes of the intervalley~iv!
and the Nyquist (i ) noise:13

~d j 2!v
iv

~d j 2!v
i

'
vd

2t iv

~11v2t iv
2 !v2tp

'
Ex

2

~11v2t iv
2 !E0

2
. ~1!

Here,t iv is the intervalley time,tp is the electron momentum
p relaxation time,vd andv are the drift and thermal veloci
ties, respectively; the external field is assumed to be al
the x direction, E05kBT/eLiv is the characteristic field re
lated to the intervalley relaxation lengthL iv5(Dt iv)

1/2,
whereD is the diffusion coefficient,T is the temperature,kB
is the Boltzmann constant,e is the electron charge. Expres
sion ~1! is given for the actual frequency intervalvtp!1. It
is seen that the intervalley noise dominates over the Nyq
one in the frequency regionvt iv&1 provided thatEx@E0.
Since typically the intervalley timet iv is greater than the
electron energy relaxation timete , the intervalley scattering
of carriers is the main source of the excess noise in the fi
range

E0!Ex!Ee , Ee[kBT/eLe , ~2!

where the hot-electron effect is negligible@Le5(Dte)
1/2 is

the characteristic electron energy relaxation length#.
It should be noted that both kinds of the fluctuati

sources~intravalley and intervalley! are uncorrelated. As a
consequence, for bulk materials the intravalley source d
not lead to the intervalley current noise. On the contrary,
thin layers both kinds of the sources give rise to the interv
ley fluctuations and current noise. In this work, we inves
gate the fluctuations in size-restricted samples~layers! of
many-valley semiconductors with equivalent valleys. W
show that for thin samples of thickness 2d&L iv the intensity
and characteristic frequency of the fluctuations essenti
differ from those for bulk crystals. In brief, this difference
as follows. In restricted samples, the fluctuations are in
mogeneous because the surface contributes to the overa
laxation process. The intravalley stochastic source in theath
valley generates the random spatial inhomogeneous flow
electrons,Ĩ a

i (r,t), which, in turn, leads to fluctuations of th
local electron density,dna(r,t). It can be estimated asdna

i

't iv(div Ĩ a
i ). The fluctuationdna

iv caused by intervalley
transitions associated with the appropriate stochastic sou
Ĩ a

iv , must be of the order oft iv Ĩ a
iv . The relative contribution

of both the sources into the spectral density of the fluct
tions is given by

g5
~dna

2 !v
i

~dna
2 !v

iv
. ~3!
t
:
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By using the relations that hold true for correlators of t
stochastic sources:^ Ĩ ak

i Ĩ a l
i &}Dkl

(a) , ^ Ĩ a
iv Ĩ a

iv&}t iv
21 , ^ Ĩ ak

i Ĩ b
iv&

50, we can estimate the parameterg taking Ĩ ak
i }D1/2, Ĩ a

iv

}t iv
21/2, (divĨ a

i )'(u Ĩ a
i u/ l ), where l is the characteristic

length scale of the fluctuations,Dkl
(a) represents the diffusion

tensor in theath valley. Then, from Eq.~3! we get g
'L iv

2 / l 2. It is evident for thin layers (2d!L iv) we should
take l'2d. For thick layers (2d@L iv), the fluctuationdna

i

generated by the random spatial electron flow is charac
ized by a length scale greater thanL iv . Therefore, such a
fluctuation is substantially affected by the intervalley rela
ation. As a result, the characteristic length scale of the fl
tuations proves to bel 5(2dLiv)

1/2 for thick layers.
These qualitative estimates show that the fluctuations

thick layers are mainly due to the intervalley stochas
sources Ĩ a

iv : g'L iv/2d!1. For thin layers, we haveg
'L iv

2 /(2d)2@1, which means that the fluctuations a

mainly due to the intravalley stochastic sourcesĨ a
i . If 2d

'L iv , both kinds of the stochastic sources are of the sa
order of magnitude. It is worthwhile to note that the cont
bution resulting from the intravalley stochastic sources to
intervalley fluctuations has been ignored in previous theo
ical works.

In restricted samples, an internal fluctuating electric fie
arises along the transverse direction with respect to the
plied field.22 This fluctuating field renormalizes the intrava
ley stochastic sources and, in addition, gives rise to the
pendence of the fluctuations on the applied field. Besides
stochastic sources discussed above, there exists an addi
source of the fluctuations that originates from intervalley
laxation on the surface. The fluctuations generated on
surface can transfer into the bulk of a layer, while tho
arisen in the bulk can diffuse to the surface and relax on i
the intervalley surface scattering rate,S, is large enough (S
@D/d), the fluctuations are redistributed over the spectru
i.e., the intensity of the fluctuations decreases at low frequ
cies vt iv!1 and increases at higher frequenciesvt iv@1
~‘‘blueshift’’ !.

We stress, once again, that the above-mentioned qua
tive features of the intervalley fluctuations are complet
due to the boundaries and strong surface intervalley re
ation processes. Those features are characteristic of siz
stricted samples and do not occur in bulk crystals where
surface does not practically affect their electrophysical a
fluctuative properties.

III. THE MODEL AND BASIC EQUATIONS

A. The model

The temporal evolution of spatially inhomogeneo
quasineutral fluctuations of the carrier density in individu
valleys is governed by the set of coupled stochastic cont
ity equations

]

]t
dna~r,t !1div d ia~r,t !5 (

bÞa
S dna~r,t !

tab
2

dnb~r,t !

tba
D

1 Ĩ a
iv~r,t !, ~4!
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where the intervalley timetab corresponds to electron tran
sitions from valleya to valley b (a,b51 . . .n),

d ik
a~r,t !52mkl

a @Eldna~r,t !1nadEl~r,t !#2Dkl
a ]

]xl
dna~r,t !

1 Ĩ ak
i ~r,t ! ~5!

is a fluctuation of the partial particle flow density (mkl
a is the

mobility tensor of the carriers in theath valley!. Equations
~4! and ~5! contain the Langevin sources of fluctuations d
to intervalley and intravalley scattering of electrons:

Ĩ a
iv~r,t !5(

p
xap

iv ~r,t !, ~6!

Ĩ a
i ~r,t !5(

p
vtpxap

i ~r,t !, ~7!

xap
i , iv are the stochastic microscopic forces with known cor

lation properties appearing in the Boltzmann-Lange
equation.4,13 For these forces the following identities a
valid:

(
p

xap
i ~r,t !50, (

a51

n

(
p

xap
iv ~r,t !50, ~8!

which means the conservation of the partial and total de
ties of electrons with respect to intravalley and interval
scattering.

Equations~4!–~7! correspond to low-frequency and long
range fluctuations of hydrodynamic type, which require

vtp!1, Lp! l ,L iv . ~9!

The conditions of quasineutrality for stationary regime a
fluctuations

(
a51

n

na5nn05N, (
a51

n

dna~r,t !50, ~10!

complete Eqs.~4! and incorporate complementary requir
ments for the frequency and spatial-time parameters:

vtM!1, tM!t iv , l D! l , L iv , 2d, ~11!

tM is the Maxwell relaxation time,l D is the Debye screening
length, andN is the overall electron density.

We will consider a plate-shaped sample30,31 of the thick-
ness 2d5Ly along the y axis ~the smallest size of the
sample!, with their lateral dimensionsLx,z being consider-
ably larger than the thickness: 2d&L iv!Lx!Lz . Equations
~4! can be averaged over thexz plane. After that the problem
becomes one dimensional so that all the quantities in E
~4!–~7! are only dependent on the coordinatey, for instance,

dna~y,t !5
2d

V0
E

2Lx/2

Lx/2

dxE
2Lz/2

Lz/2

dzdna~r,t !,

V052dLxLz being the volume of the sample. The intern
transverse field arising along they direction is to be found
from Maxwell’s equations:

rot E50, div j50. ~12!
-

i-

d

s.

l

Supposing the electric circuit in they direction to be opened
on both dc and ac current and taking into account Eqs.~10!,
we can find the fluctuating fielddEy from the equation

d i y~y,t !50, ~13!

whered i y5(ad i y
a . Notice that with the above assumption

we may also takedEx,z50.
Further it is convenient to use the Fourier transforms

Eqs.~4!:

2 ivdna~y,v!1
d

dy
d i y

a~y,v!

52 (
bÞa

S dna~y,v!

tab
2

dnb~y,v!

tba
D1 Ĩ a

iv~y,v!.

~14!

Due to the presence of interfaces, a closed set of equat
includes boundary conditions for the fluctuations that in
case under discussion are to be set on the lateral facesy
56d. Below, using a simple model, we derive and analy
in detail the boundary conditions to Eqs.~14!.

B. Boundary conditions

It is known that there still exists a problem of bounda
conditions to the Boltzmann kinetic equation for the on
particle distribution function in the problems where surfa
scattering of electrons is essential. Finding a solution to
problem is an extraordinarily complex theoretical questio
which has not yet been completely examined. In a quan
microscopic approach, the boundary conditions have b
derived for the case of surface scattering of the electron
mentum in metals.32 To our knowledge, an analogous trea
ment for electron fluctuations has not been carried out. H
the state of lateral faces of the crystal is described by
boundary conditions to the continuity equations~4!. Let us
consider an extremely thin boundary layer of the thicknessd,
whereLp!d!d ~a more detailed criterion will be given be
low!. We assume the characteristic intervalley relaxat
time within the layer,t iv

s , to be much smaller than that in th
bulk, t iv . Note that in the frame of this model the kinet
parameters may be discontinuous, with integrated~over the
layer! singularity. The fluctuative quantities, such
dna(y,v) andd i y

a(y,v), are continuous functions of the po
sition as being governed by the second-order drift-diffus
equation. Our derivation uses two models with different b
havior of the kinetic relaxation parameters within the boun
ary layer.

For the first model, we assume thet iv
s (y) value to be

characterized by extremely drastic change on thed scale.
Integrating directly Eqs.~14! over the boundary layer, we ge
the equations

d i y
a~y56d,v!56 (

bÞa
~Sab

6 dna
62Sba

6 dnb
6!7ũa

6~v!,

~15!

which are the appropriate boundary conditions tothe bulk
Eqs.~14!. Here, we have introduced the surface carrier d
sitiesdna

6 , the surface rates of intervalley relaxation
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Sab
6 56E

6~d2d!

6d dy

tab~y!
, ~16!

and the Langevin surface sources

ũa
6~v!56E

6~d2d!

6d

Ĩ a
iv~y,v!dy. ~17!

Performing the indicated integration overy, we have taken
into account that the fluctuation factor is slowly varying ov
the layer and can be taken outside the integral. We have
assumed the particle flow density on the crystal bound
with nonconducting surrounding medium to equal zero.

Once the Langevin surface sources are known, the co
lation functions~spectral densities! can be immediately cal
culated. Using the expression~6! and the correlation rela
tions given in Refs. 4 and 13, and taking into account
second of the properties~8!, we find

~ ũ1ũ2!v
652

4dn0S6

V0
. ~18!

The spectral density~18! is expressed in terms of the surfa
rate of intervalley relaxation~16!.

As is seen from Eq.~15!, the fluctuation spectra in re
stricted samples become dependent on both the sample t
ness and the surface intervalley relaxation rate. The m
considerable modification of the spectra occurs under
strong surface intervalley scattering:

S6@
D

d
, ~19!

that is, when the surface relaxation rate is much larger t
the effective diffusion velocityvD5D/d. In the case of Eq.
~19!, Eqs.~15! can be simplified:

dna~y56d, v!50. ~20!

Really, we can apply an iterative procedure to Eqs.~15!,
using the assumed large aspect ratioG[Sd/D@1 ~we put
S15S2[S). The first iteration yields

dna
6'G21/2}S21/2. ~21!

A maximal attainable rate of intervalley relaxation on t
surface can be estimated as (1/4)v.30 In the drift-diffusion
approach this corresponds toS→`. It follows from Eq.~21!
that Eqs.~15! reduce to Eqs.~20! in the limit S→`. The
boundary conditions of the form~20! have been used in Re
33. We also note that the criterion~19! (S5`) is directly
opposite to that of Ref. 30 (S50). Therefore, we may ne
glect the effect of carrier domain formation that can arise
thin samples.30

Obviously, the surface relaxation rate~16! and the spec-
tral density~18! are to depend on the thicknessd. In turn,
this dependence is to specify an explicit form of the bou
ary carrier density fluctuationsdna

6 approaching zero when
the surface intervalley relaxation timet iv

s tends to zero. To
explore such a dependence in more detail, we now cons
another model of the boundary layer for which the essen
kinetic relaxation parameters are assumed to be cons
within the layer. A general solution of equations for the flu
r
lso
ry

e-

e

ck-
st
e

n

n
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tuations is given in the Appendix. We make use of its resu
to analyze the boundary conditions.

The relation~A10! may be put in a form similar tobound-
ary Eqs.~15!:

d i 5S dn~2d!2ũ, ~22!

with the surface relaxation rateS given by

S5
D

l
tanh

d

l
. ~23!

The spectral density of the correlation function for t
Langevin surface source on the right-hand side of Eq.~22!
can be readily calculated from Eqs.~A11!–~A15!:

~ ũũ!v5
2dn0S

V0
. ~24!

By virtue of the continuity property discussed above for t
fluctuative variablesdn andd i at the boundary, the relation
~22! is just the boundary condition in question.

Generally, the expressions~A11!–~A14! and ~23!–~24!
have been obtained for arbitrary relations betweend andl . It
is of interest to analyze these expressions in combina
with Eq. ~22! in the limiting cases.

For the thin boundary layer (d! l ) from Eq. ~23!, we
obtainS5d/t iv

s . It is easy to see that the same expression
S results from Eq.~16!, if we take in the integrand the time
tab(y) to be constant. Consequently, the inequalityd! l is
the explicit criterion of the validity of expressions for th
surface rate and the Langevin surface sources in the form
Eqs.~16! and ~17!. Since our primary concern is with larg
S, then combining the expression for it with the conditio
~19!, we obtain

S5
d

t iv
s

,
l

d
!

d

l
!1. ~25!

From Eq. ~23! it follows that the parameterS increases
with increasingd and tends to saturate. In the opposite lim
(d@ l ), we findS5 l /t iv

s . Similarly to Eq.~25!, we can write
for its maximal~saturated! value

Smax5
l

t iv
s

,
d

l
@

d

l
@1. ~26!

Comparing Eqs.~25! and ~26!, one can see thatthe
asymptotic dependences, S5S(d,t iv

s ), for the limiting cases
are given by S}(t iv

s )21/2 and S5Smax}(tiv
s )21/4, respec-

tively. TheSmax value can be approximately estimated fro
Eq. ~26!: Smax5(Dtiv

s )1/2/t iv
s 'v(tp

s/t iv
s )1/2. In particular, with

t iv
s 'tp

s this provides the above-mentioned estimate for
limitary attainable intervalley relaxation rate associated w
the intensive surface scattering.30

In a similar way, we can analyze the dependence of
carrier density fluctuation,dn(2d), on the kinetic relaxation
parameter,t iv

s . Using the same iterative treatment as abo
@Eqs.~22! and ~24!, ~25!#, we find

dn~2d!'S21/2}~t iv
s !1/2. ~27!
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In the range whereS'Smax ~26!, the dependence ont iv
s be-

comes more gradual

dn~2d!'S21/2}~t iv
s !1/4. ~28!

The expressions~21! and ~27! and ~28! provide a direct
justification of the boundary conditions~20! under the crite-
rion ~19!. It is worth stressing that our consideration is bas
on the distinct models and includes the various limiti
cases. Nevertheless, the final results demonstrate the
dependence of the boundary density fluctuation on the
face rate of intervalley relaxation@see Eq.~21! and Eqs.~27!
and ~28!#. Therefore, this approach can be expected to
quite reasonable for the problem of the boundary conditi
for the fluctuations in restricted many-valley crystals.

C. Solution of stochastic continuity equations

In order to avoid a confusion of computational detail
the solving of general equations~14!, we consider the two-
valley model30 illustrated in Fig. 1. Equations~14! reduce to
an equation for the relative fluctuation,d f 5dn1 /n0, which
can be written as

L̂@d f ~z,v!#5F̃~z,v!. ~29!

The boundary conditions read

d f ~z56z0 ,v!50. ~30!

The operatorL̂ on the left-hand side and the functio
F̃(z,v) on the right-hand side of Eq.~29! are given by

L̂[ ivt iv1
d2

dz2
1a1~q!E

d

dz
21, ~31!

F̃~z,v![aFL iv
21 d

dz
Ĩ i~z,v!2 Ĩ iv~z,v!G . ~32!

The effective stochastic sources of fluctuations are spec
by

Ĩ iv~z,v![ Ĩ 1
iv~z,v!,

FIG. 1. Orientation of valleys with respect to the lateral faces
the two-valley model.
d

me
r-

e
s

d

Ĩ i~z,v!5 Ĩ y
2~z,v!1a sin 2q Ĩ y

1~z,v!, Ĩ k
65

1

2
~ Ĩ 1k

i

6 Ĩ 2k
i !, ~33!

where the major angular dependence is contained in the
isotropic factor

a1~q!5
a2

2
sin 4q, ~34!

and the rest designations arez5y/L iv , z05d/L iv , E
5Ex /E0, a5L iv

2 /n0D, D5Dxx
(1)(12a2sin22q), a5Dxy

(1)/
Dxx

(1) , t125t21[2t iv .
The solution to Eqs.~29! and ~30! is found to be

d f ~z,v!5E
2z0

z0
F̃~z,v!Gv~z,z8! dz8, ~35!

with Gv(z,z8) denoting Green’s function of the operato
~31! with the zero boundary conditions. To findGv(z,z8),
we consider two different regions,z8>z and z8<z, for
which we introduce

Gv
.~z,z8![Gv~z>z8,z8!, Gv

,~z,z![Gv~z<z8,z8!.
~36!

Substituting Eq.~36! into Eq. ~35!, we get

d f ~z,v!5E
2z0

z

F̃~z8,v!Gv
.~z,z8!dz8

1E
z

z0
F̃~z8,v!Gv

,~z,z8!dz8, ~37!

where Green’s functions are given by

Gv
.~z,z8!5

exp@k~1 !~z2z8!#

k~2 !sinh@2k~2 !z0#
sinh@k~2 !~z2z0!#

3sinh@k~2 !~z81z0!#,

Gv
,~z,z8!5

exp@k~1 !~z2z8!#

k~2 !sinh@2k~2 !z0#
sinh@k~2 !~z1z0!#

3sinh@k~2 !~z82z0!#, ~38!

with k(6)5(k16k2)/2 or, alternatively,

k~1 !52
1

2
a1~q!E, k~2 !5Aa1

2~q!

4
E2112 ivt iv.

~39!

Finally, in accordance with Eqs.~37!–~39!, we can write

d f ~z,v!5k~2 !
21 @F~z,z0!1F~z,2z0!#, ~40!

where

F~z,z0!5
sinh@k~2 !~z2z0!#

sinh@2k~2 !z0#
E

2z0

z

F̃~z8,v!

3exp@k~1 !~z2z8!#sinh@k~2 !~z81z0!#dz8.

~41!
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Since it is of interest to compare the contributions of t
different Langevin sources given in Eqs.~6! and ~7! to the
noise, we consider their action separately. To this end,
can split the total fluctuationd f (z,v) into two parts:

d f ~z,v!5d f i~z,v!1d f iv~z,v!. ~42!

From Eqs.~40! and ~41!, we get for the two terms:

d f i , iv~z,v!5
exp@k~1 !z#

k~2 !
F E

z0

z

Ĩ i , iv~z8,v!Fi , iv~2z,z8,v!dz8

1
sinh@k~2 !~z02z!#

sinh@2k~2 !z0#

3E
2z0

z0
Ĩ i , iv~z8,v!Fi , iv~z0 ,z8,v!dz8G , ~43!

where straightforward calculations give the expressions

F iv~z,z8,v!5exp@2k~1 !z8#sinh@k~2 !~z1z8!#,
~44!

Fi~z,z8,v!5
]

]z8
F iv~z,z8,v!.

By virtue of the results obtained in this subsection, it
easy to calculate spectral densities of the correlation fu
tions for fluctuations of the valley carrier density, curre
density, transverse voltage and to study their field, f
quency, and size dependences. This will be done in the
section.

IV. INTERVALLEY NEAR-EQUILIBRIUM
FLUCTUATIONS

One of essential features of the electron fluctuations
restricted samples is their spatial inhomogeneity. The m
roscopic observable quantities should be averaged ove
sample thickness:

~d j id j k!v5
1

~2d!2E2d

d

dy1E
2d

d

dy2@d j i~y1!d j k~y2!#v .

~45!

By using the expressions resulting from Eqs.~5! and~13! for
the current density

d j x522eF Ĩ x
12an0DS E sin~2q!1cos~2q!

d

dz D d f G
~46!

and the fluctuative transverse electric field

dEy5
Liv

n0D
Ĩ y

11aFsin~2q!
d

dz
2cos~2q!EGd f , ~47!

we find the spectral density of the current density fluct
tions:

Sj~v,Ex!511a2sin2~2q!E2Sf~v,Ex!. ~48!

We have introduced the dimensionless quantities
e

c-
t
-
xt

n
c-
he

-

Sj~v,Ex![
~d j xd j x!v~Ex!

~d j 2!v50
`

, Sf~v,Ex![
~d f d f !v~Ex!

~d f 2!v50
`

,

~49!

where (d f 2)v50
` 5t iv /NV0, and (d j 2)v50

` 52e2ND/V0 cor-
respond to the low-frequency equilibrium fluctuations of t
valley carrier density and the current density for an infin
crystal, respectively.

In an experiment, the intervalley fluctuations can be st
ied by measuring besides the excess current noise also
tuations of the transverse voltage across the sample

dU5E
2d

d

dEy~y! dy. ~50!

By inserting Eq.~47! into Eq. ~50!, we get

SU~v,Ex!511a2cos2~2q!E2Sf~v,Ex!,

SU~v,Ex![
~dUdU!v~Ex!

~d f 2!v50
`

, ~51!

where dU[dU/2dE0 is the dimensionless transverse vo
age. As is seen from direct comparison, the expressions~48!
and ~51! are quite similar and differ in their angular depe
dences.

An important peculiarity of the excess current noise is
dependence of the spectral densitySf(v,Ex) on the applied
electric field@the second term in Eq.~48!# in the range of the
fields ~2!. This is due to the fact that for an arbitrary orie
tation of the valleys relative to the lateral surfaces~see Fig.
1!, the electric field enters in Eq.~29!. The spectral density
Sf(v,Ex) has to decrease with increasing the electric fi
because of the occurrence of drift of the fluctuations to
surface and fast destruction due to intensive surface inter
ley relaxation. For symmetrical orientations of the valle
(q50,p/4) the electric field drops from Eq.~29! because the
coefficient~34! vanishes for such values of the angleq. In
this case, the intervalley fluctuations are identical to tho
under the thermal equilibrium condition.

Setting in Eq.~31! Ex50, we find the local spectral den
sity @d f (z1)d f (z2)#v , which should then be averaged ov
the thickness similarly to Eq.~45!. For the averaged spectra
densitySf(v,z0)[Sf(v,Ex50), we obtain

Sf~v,z0!5Kiv~v,z0!1Ki~v,z0!. ~52!

Here, the functionsKiv, i(v,z0) correspond to the differen
random sources in Eq.~33! @see also Eqs.~6! and ~7!# and
provide the size dependence of the spectrum:

Kiv~v,z0!5
1

11v2t iv
2 F11

1

cosh~j1!1cos~j2!S sinh~j1!

j1

1
sin~j2!

j2
24

j1sinh~j1!1j2sin~j2!

j1
21j2

2 D G , ~53!
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Ki~v,z0!5
1

~11v2t iv
2 !1/2

1

cosh~j1!1cos~j2!

3S sinh~j1!

j1
2

sin~j2!

j2
D , ~54!

where j152z0Re(k(2)), j252z0Im(k(2)) with z05d/
L iv andk(6) given in Eq.~39!.

Let us analyze briefly the expressions~52!–~54!. The con-
tribution related to the second term in Eq.~52! @see Eq.~54!#
is completely determined by the boundaries. It disappe
for an infinite crystal, i.e., ifd→` ~or z0→`) : Ki→0,
Kiv→(11v2t iv

2 )21 . For the range of low frequenciesvt iv

!1 from Eqs.~53! and ~54!, we find

Kiv~v50,z0!5
3

2F12
1

3
tanh2~z0!2

tanh~z0!

z0
G ,

~55!

Ki~v50,z0!5
1

2F tanh~z0!

z0
1tanh2~z0!21G .

These expressions result in simple size dependence o
low-frequency spectrum given by

Sf~v50,z0!512
tanh~z0!

z0
. ~56!

Now consider the limiting cases. Ford@L iv (z0@1), the
main contribution to the spectrum is due to the interval
scattering. Really, it follows from Eqs.~55! and ~56! that
Ki'(1/2)(d/L iv)

21, Kiv'1, i.e.,Kiv@Ki . On the contrary,
for d!L iv (z0!1), we obtainKiv!Ki . Consequently, in this
case the size dependence of the spectrum is primarily d
mined by the transverse fluctuative electron flow, and i
given by

Sf~v50,z0!5
1

3S d

L iv
D 2

. ~57!

Thus, the overall spectral density~52! is dominated for
d@L iv by the sourceĨ iv ~6! and ford!L iv by the sourceĨ i

~7!. This is in full agreement with the qualitative estimat
presented in Sec. II.

V. DISCUSSION

In this work, the intervalley fluctuations in the electro
gas of restricted semiconductors are studied under condit
when the thickness of a sample, or an active layer, 2d, is
comparable to or less than the intervalley diffusion rela
ation length,L iv . Both kinds of stochastic sources, the bu
and surface ones, are taken into account. Reduction in
layer thickness results in that the fluctuation spectra dep
on the thickness and surface intervalley relaxation proce
@Eqs. ~15! and ~40! and ~48!#. This allows one to state th
occurrence of considerable size effects in the fluctua
spectra of restricted many-valley semiconductors. The ab
analysis of fluctuation processes makes clear the set of
rameters controlling the surface noise sources and relaxa
rs

he

y

er-
s

ns

-

he
nd
es

n
ve
a-
n.

The spectra of the intervalley fluctuations in the ne
equilibrium electron gas with strong intervalley surface sc
tering of the particles@see criteria~2! and ~19!# essentially
differ from the spectra for bulk samples where they have
ordinary Lorentz form. Unlike the fluctuation behavior, th
stationary transport undergoes no qualitative modificati
and remains unchanged for the above both cases. He
investigation of the spectra of the intervalley fluctuations
small electric fields must provide information of microscop
processes in the electron gas, particularly, about the inten
of surface scattering.

An important feature of the fluctuation spectra conside
is that the low-frequency spectral densities for thin samp
prove to be much smaller than that for an infinite cryst
This follows directly from the expressions~48!, ~51!, and
~57!. Sucha suppression of the low-frequency fluctuationsis
the most pronounced in the case of strong surface interva
scattering@in the sense of the criterion~19!#. The suppression
effect clearly manifests itself in fluctuations of the valle
carrier density, the current density, and the transverse vol
@see Eqs.~48! and ~51! and Eqs.~52!–~54! as well as Figs.
2–4#. Detailed analysis of the parameters governing the s
face processes~Sec. III and Appendix! points the way to
control the current noise. Properly chosen impurity doping
very thin layer~s! at the surface~s! can suppress the nois
while the dc current does not suffer any changes.

Another interesting feature concerns the noise anisotro
Note that the noise anisotropy is significant in bulkn-Si.
For instance, providing the dc current is along@100# or
@110# directions this is determined by the facto
@(d j xd j x)v[100]

iv /(d j xd j x)v[110]
iv #54. From our results it is

clear that under the size effect the anisotropy decreases
completely vanishes for an extremely thin layer (d!L iv).

It is furthermore important to note a change of the role
intravalley and intervalley Langevin sources for bulk a
restricted semiconductors. In restricted samples (d&L iv), the
characteristic diffusion timetd5d2/D ~i.e., the time needed
for diffusion of a fluctuation to the surface! becomes compa

FIG. 2. Various contributions~55! to the low-frequency (vt iv

!1) spectral density~56! compared with the total contribution as
function of dimensionless thicknessz05d/L iv : 1, Kiv(v,z0); 2,
Ki(v,z0); 3, Sf(v,z0)5Kiv(v,z0)1Ki(v,z0).
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rable to the intervalley timet iv . As a consequence, the fluc
tuating inhomogeneous transverse flow of the carriers g
the same order of magnitude contribution to the freque
spectrum as that due to the direct intervalley scattering
thin samples (d!L iv), the diffusion intravalley term~54!
completely dominates the noise~Fig. 2!.

The decrease of the intensity of fluctuations in the ran
of low frequencies,vt iv!1, is attended by its increasing fo
higher frequencies,v(d2/D)*1 ~‘‘blueshift’’ !. Thus, a re-
distribution of the intensity over the spectrum occurs on
count of the boundaries with strong intervalley relaxati
~Fig. 3!. The surface relaxation substantially affects not o
the intensity, but also the frequency characteristics of
intervalley fluctuations. Using Eqs.~52!–~54!, one can ob-

FIG. 3. Frequency dependences of the spectral densitySf(v,z0)
~52! for different values of dimensionless thicknessz05d/L iv :1,
0.5; 2,1.0; 3, 2.0; 4, 3.0; 5, 5.0; 6,̀ .

FIG. 4. Field dependences of the low-frequency (vt iv!1)
spectral densitySj (v,z0) ~48! corresponding toq5p/4 ~see Fig. 1!
for different values of dimensionless thicknessz05d/L iv :1, 0.5; 2,
1.0; 3, 2.0; 4, 3.0; 5, 5.0; 6,̀ .
s
y

In

e

-
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e

tain different high-frequency asymptotics for the spect
density~52! @see also Eqs.~48! and ~51!# depending on the
thickness 2d. The case of thick samples@d/L iv[z0@1# im-
plies thatt iv

21@D/d2. Then theKi(v,z0) in Eq. ~52! is neg-
ligible and the corresponding spectral density for the f
quencyv@t iv

21 is given by

Sf~v,z0@1!'Kiv~v,z0@1!'~vt iv!22.

On the opposite, for thin samples (z0!1) and for the fre-
quency rangev@D/d2 @D/d2@t iv

21#, we get Kiv(v,z0

!1)'(vt iv)
22, Ki(v,z0!1)'z0

21(vt iv)
23/2. The large

value of the ratio@Ki(v,z0!1)/Kiv(v,z0!1)#'z0
22@1

provides the predominance of the second term in Eq.~52!. In
turn, this leads to the asymptotic dependence

Sf~v,z0!1!'z0
21~vt iv!23/2,

which is characteristic of diffusion limited noise.34

Under criterion~2! the intervalley noise is quasiequilib
rium.Accordingly, in bulk samples the intensity of interva
ley current fluctuations is proportional toEx

2 , and a deviation
from this law occurs in strong electric fields due to the he
ing effect. In restricted samples, theEx

2 dependence is real
ized only for symmetrical orientations of the valleys. Othe
wise, it becomes more complicated through the appeara
of the transverse fluctuating electric field, which results
the spectral densitySf(v,Ex) dependence on the fieldEx
@see Eq.~48!#.

The real physical situation corresponding to the tw
valley model discussed in the text is a thin plate ofn-Ge or
n-Si with such orientation of the lateral faces relative to pr
cipal crystal axes as it behaves like a two-valley semic
ductor. For instance, in the case ofn-Ge the axesX,Y,Z
must be oriented along crystal axes of the fourfold symm
try, with a plate cut out in accordance with Fig. 1. In the ca
of n-Si, two situations close to the two-valley model a
possible.~i! The x,y axes are in the~11̄0! plane, with thex
axes making an angleq with the @110# crystal axis. Thereby,
one set of valleys consists of the@100# and @010# valleys
while another does of the@001# valley. ~ii ! The x,y axes are
in the ~001! plane, with thex axis making an angleq with
the @110# crystal axis. Then, there are two valleys alo
@100# and @010# to be added by the thirdisotropic valley
along the@001# axis.

In particular, we consider the semiconductor with para
eters ofn-Si ~assuming dc current along the@100# direction!:
N51014 cm23, T577 K, m775104 cm2/V s, e0511.7,
m'50.19m0, mi50.92m0, v5107 cm/s, wheree0 is the
static dielectric constant,m' and mi are the transverse an
longitudinal masses ofX valleys, respectively;m0 is the
free-electron mass. The ideology of the drift-diffusion a
proach and quasineutrality condition require the validity
inequalities~9! and ~11!. The characteristic lengths are th
Debye length l D5(e0kBT/4pe2N)1/252.131025 cm, the
mean free pathLp5(3/v)(kBT/e)m775231025 cm, the in-
tervalley lengthL iv5(Dt iv)

1/25231024 cm @for the above
parameters the diffusion coefficient isD77566.4 cm2/s#, the
characteristic diffusion field isE0533.2 V/cm. The corre-
sponding characteristic times are the Maxwellian timetM
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5e0/4peNm7756.5310212 s, the electron momentum re
laxation time tp5Lp /v52310212 s, the electron energy
and intervalley relaxation times:te57310211 s, t iv56
310210 s.35

Let us briefly discuss the intensity of surface relaxatio
The criterion~19! reduces to

A3

4 S t iv

tp
D 1/2

@1,

which contains in explicit form the microscopic relaxatio
parameters. This results from the order-of-magnitude e
mates of the characteristic quantities in Eq.~19!: D
'v2tp/3, d'L iv5(Dt iv)

1/2, and we use the ultimate valu
of intervalley relaxation rate on the surface (1/4)v.30 Nu-
merical estimates of the relationships~25!, ~26! show that
selective impurity doping of a thin surface layer provides
relevant value of the parameterS. Large values ofS (S
533105223106 cm/s) have been observed for the silic
surfaces.35 These estimates show that the above parame
enable all required criteria of the theory to be satisfied.

For the chosen parameters, a contribution of generat
recombination~GR! fluctuations to the total noise may prov
to be considerable. Now we find the conditions imposed
the frequencyv and semiconductor parameters under wh
their influence is negligible. The characteristic timetGR as-
sociated with impurity recombination and ionizatio
processes36 is given by

tGR5
12u

BTNDu~22u!
,

where

u[N/ND52@114g~ND /Nc!exp~e/kBT!11#21/2

is the fraction of ionized impurities,BT is the recombination
coefficient,Nc is the effective density of states in the co
duction band,g is the impurity ground-state~of the energy
e) degeneracy factor. For instance, usingBT51026 cm3/s,36

e50.049 eV, ND51014 cm23, T577 K , we obtain u
50.72, tGR5331029 s. For the accepted parameters w
may assume the conditiontGR@t iv to be valid. In the fre-
quency rangetGR

21!v!t iv
21 , the GR noise undergoes

strong spectral dispersion@(tGRv)2@1# whereas the disper
sion of the intervalley noise still may be ignored@(t ivv)2

!1#. For the Lorentz-type spectra, the ratio of noise inte
sities is given by

~d j xd j x!v
iv

~d j xd j x!v
GR

'v2t ivtGR,

where a numerical factor of the order of unity which depen
on the number of valleys and their orientation has been o
ted. It is seen that the intervalley noise is dominant in
frequency range

tGR
21!~tGRt iv!21/2!v!t iv

21.
.

ti-
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We conclude by noting that currently considerable stu
is given to electron fluctuations and current noise and th
suppression in conducting microstructures of small interc
tact distance,di : the ballistic conductor in the regime o
classical or quantum transport23 (di is smaller than the elec
tron elastic mean free path!; the diffusive conductor in the
regime of quasiclassical transport24–26 (di is much greater
than the mean free path, but much smaller than an inela
scattering length!. In terms of the ideology of this paper a
mentioned cases can be classified as longitudinal size ef
~see also Ref. 19!. In contrast, the effects analyzed in th
paper may refer to a different class of size effects when
transverse to the current dimension,d' , of a sample is the
smallest one. For such cases the longitudinal dimension c
siderably exceeds all characteristic lengths (di@L iv@Le
@Lp). The size effects for such cases of sample geom
can be classified as transverse size effects in electron
tuations and noise.21,22 Thus, the excess noise suppressi
can be observable for different types of noise~shot noise, hot
electron noise, intervalley noise! and for both longitudinal
and transverse size effects, and also in certain exotic cas
bulk materials.17,18

VI. CONCLUSION

To summarize, we have shown that the fluctuation f
tures of the electron gas in submicrometer structures
many-valley semiconductors considerably differ from tho
in bulk crystals. This difference is due to the strong influen
of the structure’s boundaries characterized by intensive in
valley ~surface! scattering of the carriers. In particular, th
spectra of valley carrier density fluctuations depend on
applied small~under Ohm’s law! electric field.

In the structures with small thickness of the active reg
(d!L iv), strong surface intervalley relaxation results in su
pression of the low-frequency (vt iv!1) intervalley noise
without affecting the Nyquist component of noise and the
current. The anisotropy of the intervalley fluctuations is a
suppressed under these conditions. It is shown tha
diffusion-type dependence of the noise intensity (;v23/2) is
characteristic of the high-frequency (v@D/d2@t iv

21) behav-
ior of the noise in contrast with the ordinary Lorentz spec
(;v22) for bulk crystals. Using our consideration, one c
point out such a range of the parameters forn-Si, n-Ge
where the intervalley and GR noise separate by their cha
teristic frequencies.

As a concluding remark we stress that by varying t
properties of the surfaces and interfaces, it is possible
control the intervalley noise in semiconductor structures
submicrometer sizes.

ACKNOWLEDGMENTS

The authors would like to thank Professor Carolyne
van Vliet and Dr. Brian Jones for useful discussions, and
International Atomic Energy Agency and UNESCO for ho
pitality at the International Center for Theoretical Physic
Trieste. This work was partially supported by the Scien
and Technology Center in Ukraine~Grant No. 477!.



c

ed

all

e

ra
-

en
ier
f
rc

u

r

t

ts

e
ion.

n-
ce

ct

15 474 57V. A. KOCHELAP AND V. N. SOKOLOV
APPENDIX

Let us consider a transitional near-surface layer (2d,0)
of thicknessd with the positiony50 corresponding to the
real crystal boundary. The boundary conditions~15!, in their
structure, provide a relation of the particle flow density flu
tuation,d i , to the carrier density fluctuation,dn, at a certain
physical boundary30 determined by the positiony52d. To
put down an analogous relation for the model layer involv
one must solve the set of equations

2 ivdn~y,v!1
d

dy
d i ~y,v!52

dn~y,v!

t iv
s

1 Ĩ iv~y,v!,

~A1!

d i ~y,v!52D
d

dy
dn~y,v!1 Ĩ i~y,v!, ~A2!

with the boundary conditions

d i ~y50,v!50, d i ~y52d,v!5d i . ~A3!

We assume two equivalent valleys oriented symmetric
relative to the boundary planes~see Sec. III C and Fig. 1!.
Physically, the first of Eqs.~A3! means the absence of th
fluctuating particle flow density aty50 while the second
corresponds to the given value of it aty52d. The procedure
we use here is as follows. Having written down the gene
solution to Eqs.~A1!–~A3!, we get the relation of the fluc
tuationdn(2d) to the fluctuationd i . Then, we can find the
inverse relation, having expressed the fluctuating flow d
sity d i at the boundary in terms of fluctuation of the carr
densitydn(2d). The latter must provide an explicit form o
the surface relaxation rate and the Langevin surface sou

The general solution to Eqs.~A1! and~A2! with the con-
ditions ~A3! can be written as

dn~y!5dn0~y!1E
2d

0

G~y,y8! f̃ ~y!dy8. ~A4!

Here, dn0(y) is the general solution to the homogeneo
equation fordn, being obtained by inserting Eq.~A2! into
Eq. ~A1!, with the boundary conditions:

D
d

dy
dn0~y!U

y50

5 Ĩ i~0!,

D
d

dy
dn0~y!U

y52d

52d i 1 Ĩ i~2d!, ~A5!

G(y,y8) is Green’s function of the operatorL̂(y)5(d/dy)
2 l 22 with zero boundary conditions,l 25Dt iv

s /(12 ivt iv
s ).

The effective Langevin source in the integrand~A4! is given
by

f̃ ~y!5D21S 2 Ĩ iv1
d

dy
Ĩ i D . ~A6!

For Green’s function we readily obtain the expressions:
-

,

y

l

-

es.

s

G~y,y8!5 l
cosh@~y1d!/ l #/cosh@~y81d!/ l #

tanh~y8/ l !2tanh@~y81d!/ l #
, y<y8;

~A7!

G~y,y8!5 l
cosh~y/ l !/cosh~y8/ l !

tanh~y8/ l !2tanh@~y81d!/ l #
, y>y8.

In order to determinedn(2d), we need the expression fo
Green’s function evaluated aty52d:

G~2d,y8!52 l
cosh~y8/ l !

sinh~d/ l !
. ~A8!

Finally, setting in Eq.~A4! y52d and taking into accoun
Eqs. ~A6! and ~A8!, and the expression fordn0(2d) given
by

dn0~2d!5
l

D tanh~d/ l !
$d i 1 Ĩ i~0!cosh21~d/ l !2 Ĩ i~2d!%,

~A9!

we get the required relation in the form

dn~2d!5
l

D tanh~d/ l !
~d i 1ũ!. ~A10!

Here ũ5ũiv1ũi with

ũiv5
1

cosh~d/ l !E2d

0

Ĩ iv~y8!cosh~y8/ l !dy8, ~A11!

ũi5
1

l cosh~d/ l !E2d

0

Ĩ i~y8!sinh~y8/ l !dy8. ~A12!

To obtainũi in Eq. ~A12!, we have used integration by par
in the integral on the right-hand side of Eq.~A4! containing
the position derivative with respect toy @Eq. ~A6!#.

The expressions~A11!, ~A12! define the Langevin surfac
sources of the fluctuations in the model under considerat
Substituting further the Langevin sourcesĨ a

iv , Ĩ a
i from Eqs.

~6! and~7! into Eqs.~A11! and~A12! and using their corre-
lation relations,4,13 we can easily calculate the spectral de
sities of the correlation functions for the Langevin surfa
sources:

~ ũivũiv!v5
2dn0

V0
~t iv

s !21
d

2 cosh2~d/ l !
H sinh~2d/ l !

2d/ l
11J ,

~A13!

~ ũi ũi !v5
2dn0

V0
~D/ l 2!

d

2 cosh2~d/ l !
H sinh~2d/ l !

2d/ l
21J ,

~A14!

~ ũivũi !v50. ~A15!

The last property~A15! is clearly a consequence of the fa
that the Langevin sourcesĨ iv and Ĩ i are uncorrelated.
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