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Size effects in fluctuation spectra of many-valley semiconductors
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We present the results of theoretical investigation of inhomogeneous fluctuations in submicrometer active
layers of many-valley semiconductors with equivalent vallgys, Si type, where the layer dimensiond2is
comparable to or less than the intervalley diffusion relaxation length, The study is based on the
Boltzmann-Langevin kinetic equation. Boundary conditions for the fluctuations on the layer surfaces are
derived. It is shown that for arbitrary orientations of the valley axegstal axeswith respect to the surfaces,
the fluctuation spectra depend on the applied small electric field. Some physical phenomena are reported:
unlike bulk samples, intravalley fluctuation processes cause the intervalley fluctuations in thin layers; the
spectra of fluctuations depend on the layer thickness; witi 2,,, a considerable suppression of the fluc-
tuations arises for the fluctuation frequency& Ti;l , Wherer;, is the characteristic intervalley relaxation time.
[S0163-182698)03123-3

I. INTRODUCTION about 90 GHz has been realizZ&F° These materials and
. . . . tructures have multivalley electron energy spectra and show
Electron fluctuations in semiconductors have receive

. e considerable contribution to the noise from intervalley
much attention over several decades because of their impof:, - «itions of carriers

tance for both the fundamental and applied physics. For @ |, this paper, we report on our studies of the intervalley
long time, the low-frequency fluctuations, such as the flickef,ctyations in submicrometer active layers for which the
and generation-recombination noise, have been at the focyg,yndaries and size effects are important. We show that the
of the study. However, since the high frequency region issize effect allows the intervalley fluctuations to be controlled
used in experimental investigations and employed in noveln such systems. The paper is organized as follows. In Sec.
devices, much attention is paid to the nonequilibrium fluc-||, we qualitatively analyze the influence of interfaces and
tuations in the frequency region where the main type of fluchoundaries on the intervalley fluctuations and discuss the
tuations is the noise associated with hot cartiétand inter-  effect of both the intravalley and intervalley stochastic fluc-
valley transitions in many-valley semiconductdrs® These tuation sources. In Sec. Ill, we describe our model, introduce
type of fluctuations are studied in weak and strdhegating  the basic equations, and derive the boundary conditions for
electric fields for semiconductors with equivalei@e, Si  fluctuations in the problem with restricted geometry of a
type’ % and nonequivalentGaAs typ&'>9 valleys. Al sample. The intervalley fluctuations in the near-equilibrium
the above papets!® concern bulk semiconductors. electron gas are analyzed in Sec. IV. Section V is devoted to
Among important effects inherent in the high-frequency@ discussion of the results and numerical estimates for the
fluctuations, several cases stand out for which the intrinsiéntervalley and generation-recombination fluctuations. Sec-
mechanisms of limitation or suppression of noise have beeHon VI draws the main conclusions of this work.
discovered recently/~2® The suppression of hot-electron
nqise in bulk sampl_es occurs in compensa’Fed semiconductors Il. INTERVALLEY ELUCTUATIONS:
with strong scattering o_f elec_trons by opt|_cal phondsse INELUENCE OF INTERFACES AND BOUNDARIES
theory in Ref. 17, experiment in Ref. l&nd in many-valley
semiconductors with intensive electron-electron scattéfing.  In the theory of electron fluctuations based on the Lange-
Micrometer-length-diode structures show the limitation ofvin approach, the central problem is to derive the micro-
hot-electron nois&%2°Thin submicrometer conductive lay- scopic stochastic sources of fluctuations and their correlation
ers, films, etc. demonstrate the suppression of the Nyquidtinctions(Ref. 4 and references thergirt least two kinds
noise?! ambipolar drift noisé* and hot-electron nois.In of sources are essential in many-valley semiconductors. The
nanoscale samples and structures, there also occurs the siipst is due to the intravalley random scattering of carriers. It
pression of shot noise under ballistic and diffusive quantuneads to the Nyquist noise of the current. The second is
transport>—2° caused by the intervalley processes giving rise to the excess
The results obtained in Refs. 17—26 indicate a fundamenroise?*° In this section, we will qualitatively analyze the
tal way to control the electron fluctuations and current noiseinfluence of boundaries on the intervalley fluctuations and
Most of these works are focused on llI-V semiconductorsdiscuss the role of both the intervalley and intravalley sto-
Meanwhile, silicon remains the basic material of microelec-chastic sources.
tronics. Recentl/"?° a significant progress has been While a separate valley is characterized by its own anisot-
achieved in the technology of submicrometer Si-based strudgopy, the total conductivity remains isotropic in the range of
tures and devices for high-speed and low-noise applicationgionheating electric fields because of cubic crystal symmetry:
Particularly, in Si-SiGe bipolar transistor the frequency up tooi=2" o\ = o8, wheres{? is the conductivity tensor of
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the ath valley, v is the total number of valleys. Similarly, the By using the relations that hold true for correlators of the
correlation function of the Nyquist fluctuations of the currentstochastic source€t !, 1! YD, (TVT VYo7 2 (T T iz\%/>

is also |sotrop|g for bulk crystals as a tensor of rank two:zoy we can estimate the parametetaking ' <D T
(8];611)={(8])°)Six . In the range of electric fields where 12 i i _ « .
Ohm's law is valid, the intervalley noise is proportional to * v~ » (dVI)=([T,[/), where | is the characteristic
the square of the applied electric fiel The intensity of length scale of the quctuann@,f(‘l’) represents the diffusion
fluctuations is described by a tensor of rank four, which caniensor in theath valley. Then, from Eq.(3) we gety
not be reduced to a scalar quantity due to the crystal sym=La/I2. It is evident for thin layers (@<L;) we should
metry. Thus, in contrast to the Nyquist noise, the excestakel~2d. For thick layers (8>L;,), the fluctuationsn,
intervalley noisds anisotropic One can obtain the following generated by the random spatial electron flow is character-
comparative estimate for amplitudes of the intervaliey)  ized by a length scale greater thag . Therefore, such a

and the Nyquisti() noise® fluctuation is substantially affected by the intervalley relax-
_ ation. As a result, the characteristic length scale of the fluc-

(8)%)V VAT E2 tuations proves to be=(2dL,,)*? for thick layers.
~ (1) These qualitative estimates show that the fluctuations in

PN 2.2\ 2 2. 2\2°
(619, (AForvir  (1+en)E thick layers are mainly due to the intervalley stochastic
Here, 7, is the intervalley timer,, is the electron momentum sourcesT';’: v=~L;/2d<1. For thin layers, we havey

p relaxation timeypy andv are the drift and thermal veloci- ~L2/(2d)?>1, which means that the fluctuations are

ties, respectively; the external field is assumed to be alongnainly due to the intravalley stochastic sourdés If 2d
the x direction, Eo=kgT/eL,, is the characteristic fielclilzre— ~L,,, both kinds of the stochastic sources are of the same
lated to the intervalley relaxation length,=(D 7)™  order of magnitude. It is worthwhile to note that the contri-
whereD is the diffusion coefficient] is the temperatur&s  pbytion resulting from the intravalley stochastic sources to the
is the Boltzmann constang is the electron charge. EXpres- intervalley fluctuations has been ignored in previous theoret-
sion (1) is given for the actual frequency intervalr,<1. It jcal works.
is seen that the intervalley noise dominates over the Nyquist | restricted samples, an internal fluctuating electric field
one in the frequency regiom 7, <1 provided tha,>Eo.  arises along the transverse direction with respect to the ap-
Since typically the intervalley timer, is greater than the pjied field?* This fluctuating field renormalizes the intraval-
electron energy relaxation timg, the intervalley scattering |ey stochastic sources and, in addition, gives rise to the de-
of carriers is the main source of the excess noise in the fieldendence of the fluctuations on the applied field. Besides the
range stochastic sources discussed above, there exists an additional
source of the fluctuations that originates from intervalley re-
Eo<E.<E., E.=kgTleL., 2 laxation on the surface. The fluctuations generated on the
where the hot-electron effect is negligitj]laf(Dre)l’z is sqrface_: can transfer into the bulk of a layer, while thpse
the characteristic electron energy relaxation lehgth arisen in the bulk can diffuse tp the surface and relax on it. If
It should be noted that both kinds of the fluctuation the intervalley surface scattering ra,is large enough
sources(intravalley and intervalleyare uncorrelated. As a > D/d), the fluctuations are redistributed over the spectrum,
consequence, for bulk materials the intravalley source doel- the intensity of the fluctuations decreases at low frequen-
not lead to the intervalley current noise. On the contrary, foi€iéS @7y <1 and increases at higher frequencies; > 1

thin layers both kinds of the sources give rise to the interval{ ‘blueshift™). _ _ _
ley fluctuations and current noise. In this work, we investi- e stress, once again, that the above-mentioned qualita-

gate the fluctuations in size-restricted samplleser9 of tive features of the_ intervalley quctuations_are completely
many-valley semiconductors with equivalent valleys. Wedue to the boundaries and strong surface intervalley relax-
show that for thin samples of thicknesd 2L ,, the intensity ation processes. Those features are characteristic of size re-
and characteristic frequency of the fluctuations essentialltrictéd samples and do not occur in bulk crystals where the
differ from those for bulk crystals. In brief, this difference is surface does not practically affect their electrophysical and
as follows. In restricted samples, the fluctuations are inhofluctuative properties.

mogeneous because the surface contributes to the overall re-
laxation process. The intravalley stochastic source irutne
valley generates the random spatial inhomogeneous flow of
electrons] ' (r,t), which, in turn, leads to fluctuations of the A. The model

local electron densitygn,(r,t). It can be estimated aén), The temporal evolution of spatially inhomogeneous
~ 7y (div Tia). The fluctuation 5ni;' caused by intervalley quasineutral fluctuations of the carrier density in individual
transitions associated with the appropriate stochastic sourcealleys is governed by the set of coupled stochastic continu-
TV, must be of the order of,T . The relative contribution 'Y equations

of both the sources into the spectral density of the fluctua-
tions is given by

Ill. THE MODEL AND BASIC EQUATIONS

9 on,(r,t)  Sng(r,t
i SN (r,t) +div 8i%(r,t)= > () dng(r.t)
(8n3)}, at o\ g -

(s

Y ©)

+TY(r,1), (4
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where the intervalley time,; corresponds to electron tran- Supposing the electric circuit in thedirection to be opened
sitions from valleya to valley 8 (a,8=1 .. .v), on both dc and ac current and taking into account Et3),
we can find the fluctuating fieldg, from the equation

G a o (9
5lk(rat):_/LkI[Eléna(rrt)+naaEI(rat)]_Dklo—._xl(sna(rat) Siy(y,t)=0, (13)
+T(rb) (5) wheresi, =X ,4iy. Notice that with the above assumptions
akd we may also takeSE, ,=0.
is a fluctuation of the partial particle flow densityf; is the Further it is convenient to use the Fourier transforms for

mobility tensor of the carriers in thath valley). Equations  Egs. (4):
(4) and(5) contain the Langevin sources of fluctuations due

. . . . d
to intervalley and intravalley scattering of electrons: —iwéna(y,w)+d—y5i;’(y,w)

Tiv )= iv 1), 6
Virt) prap(rt) (6) Sna(y, )  Sngy, o) Ty w).

BFa Tap TBa
Tia(r,t)=zp VTN ap(T 1), @ (14)

v N _ _ Due to the presence of interfaces, a closed set of equations
Xap @re the stochastic microscopic forces with known correjnclydes boundary conditions for the fluctuations that in the
lation properties appearing in the Boltzmann-Langevincase under discussion are to be set on the lateral faces at
equatiorf:** For these forces the following identities are — -4 Below, using a simple model, we derive and analyze

valid: in detail the boundary conditions to Eq44).

> Xiap(r,t):o, > Xic\l/p(r't):(), (8) B. Boundary conditions
P a=1 p . . .

It is known that there still exists a problem of boundary
which means the conservation of the partial and total densieonditions to the Boltzmann kinetic equation for the one-
ties of electrons with respect to intravalley and intervalleyparticle distribution function in the problems where surface
scattering. scattering of electrons is essential. Finding a solution to this

Equations(4)—(7) correspond to low-frequency and long- problem is an extraordinarily complex theoretical question,
range fluctuations of hydrodynamic type, which require which has not yet been completely examined. In a quantum
microscopic approach, the boundary conditions have been

wrp<l, Lp<lLy. © derived for the case of surface scattering of the electron mo-

The conditions of quasineutrality for stationary regime andmentum in metal$> To our knowledge, an analogous treat-
fluctuations ment for electron fluctuations has not been carried out. Here,
the state of lateral faces of the crystal is described by the

i v boundary conditions to the continuity equatio@s. Let us

Z n,=vnNe=N, 2 on,(r,t)=0, (100 consider an extremely thin boundary layer of the thickn®ss

at o=t whereL ,< §<d (a more detailed criterion will be given be-
complete Eqgs(4) and incorporate complementary require- low). We assume the characteristic intervalley relaxation

ments for the frequency and spatial-time parameters: time within the layer s}, , to be much smaller than that in the
bulk, 7,,. Note that in the frame of this model the kinetic

wy<l, <7y, lp<l Ly, 2d, (1) parameters may be discontinuous, with integratar the
7 is the Maxwell relaxation timd g is the Debye screening 12ye0 smgular!tg. The fluctuative quantities, such as

We will consider a plate-shaped samBi&* of the thick- ~ Sition as being governed by the second-order drift-diffusion
ness 21=L, along they axis (the smallest size of the equation. Our derivation uses two models with different be-

sample, with their lateral dimensions, , being consider- havior of the kinetic relaxation parameters within the bound-
ably larger than the thicknessdz L, <L,<L,. Equations ary layer.

(4) can be averaged over th plane. After that the problem ~ For the first model, we assume th¢(y) value to be
becomes one dimensional so that all the quantities in Eqg&haracterized by extremely drastic change on éhscale.

(4)—(7) are only dependent on the coordingtefor instance, ~ Integrating directly Eqsi14) over the boundary layer, we get
the equations

2d [Ly/2 L2
on,(y,t)=— dxf dzén,(r,t),

Vol-L2 J-Lp2 Sigd(y==d,w)=* X (S;n, —Sz,dn5) 7 U, (w),
B+ a
Vy=2dL,L, being the volume of the sample. The internal (15)
transverse field arising along thyedirection is to be found ) ) -
from Maxwell's equations: which are the appropriate boundary conditionsttie bulk

Egs.(14). Here, we have introduced the surface carrier den-
rot E=0, divj=0. (12 sities 5n§ , the surface rates of intervalley relaxation
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. +d dy tuations is given in the Appendix. We make use of its results
= iJ ) (16)  to analyze the boundary conditions.
=(d-9Taply The relation(A10) may be put in a form similar tbound-
and the Langevin surface sources ary Egs.(15):
+d i T
U= [ Ty an 2=S o=, 22
*(d=9 with the surface relaxation ra given by
Performing the indicated integration ovgr we have taken
into account that the fluctuation factor is slowly varying over S= E tanh ‘_S 23)
K

the layer and can be taken outside the integral. We have also I
assumed the particle flow density on the crystal boundar
with nonconducting surrounding medium to equal zero.
Once the Langevin surface sources are known, the corr
lation functions(spectral densitigscan be immediately cal-

The spectral density of the correlation function for the
é__angevin surface source on the right-hand side of 26)
can be readily calculated from Eq#11)—(A15):

culated. Using the expressidB) and the correlation rela- . 2dn,S
tions given in Refs. 4 and 13, and taking into account the (uu),= (24)
second of the propertig8), we find Vo
. By virtue of the continuity property discussed above for the
~ o~ 4dnoS™ fluctuative variablessn and 6i at the boundary, the relation

= . 18
(usuz),, Vo (18) (22) is just the boundary condition in question.

Generally, the expression®\11)—(A14) and (23)—(24)
have been obtained for arbitrary relations betwéemdl. It
is of interest to analyze these expressions in combination
C‘Q’.ith Eg. (22) in the limiting cases.
For the thin boundary layer&<l) from Eg. (23), we
btainS= &/ 7}, . It is easy to see that the same expression for
results from Eq(16), if we take in the integrand the time
7,5(Y) 1o be constant. Consequently, the inequadity! is
D the explicit criterion of the validity of expressions for the
S*> T (19 surface rate and the Langevin surface sources in the form of
Egs.(16) and(17). Since our primary concern is with large
that is, when the surface relaxation rate is much larger thaf, then combining the expression for it with the condition
the effective diffusion velocity ,=D/d. In the case of Eq. (19), we obtain
(19), Egs.(15) can be simplified:

The spectral densit§l8) is expressed in terms of the surface
rate of intervalley relaxatiofl6).

As is seen from Eq(15), the fluctuation spectra in re-
stricted samples become dependent on both the sample thi
ness and the surface intervalley relaxation rate. The most
considerable modification of the spectra occurs under th
strong surface intervalley scattering:

é ()

on,(y==d, 0)=0. (20) S= = d <7<l (25)
Really, we can apply an iterative procedure to E@{5), _ _
using the assumed large aspect rdtie SdD>1 (we put From Eq.(23) it follows that the paramete$ increases
S*=S"=S9). The first iteration yields with increasings and tends to saturate. In the opposite limit

(6>1), we findS=1/7},. Similarly to Eq.(25), we can write

on, ~I' Y2512 (21)  for its maximal(saturategivalue
A maximal attainable rate of intervalley relaxation on the | d &
surface can be estimated as (1/4§ In the drift-diffusion Sma— =5 771 (26)
approach this corresponds $o- . It follows from Eq.(21) Tiv

that Egs.(15) reduce to Egs(20) in the limit S—«. The .

boundary conditions of the forif20) have been used in Ref. ~ Comparing Egs.(25) and (26)5’ one can see thathe

33. We also note that the criteridd9) (S=w) is directly ~ aSymptotic dependenceS=S(4, ), for the limiting cases

opposite to that of Ref. 303=0). Therefore, we may ne- are given by Sx(7;)™*? and S=Spae(7) " respec-

glect the effect of carrier domain formation that can arise infively. The Sy, value can be approximately estimated from

thin samples® EQ. (26): Snax= (D7) "% 75, ~v (75 73,) Y2 In particular, with
Obviously, the surface relaxation rate6) and the spec- 7~ 7,53 this provides the above-mentioned estimate for the

tral density(18) are to depend on the thickneds In turn, limitary attainable intervalley relaxation rate associated with

this dependence is to specify an explicit form of the bound+the intensive surface scatteriffy.

ary carrier density fluctuationn;, approaching zero when  In a similar way, we can analyze the dependence of the

the surface intervalley relaxation time, tends to zero. To carrier density fluctuationjn(— ), on the kinetic relaxation

explore such a dependence in more detail, we now consid@arameter;, . Using the same iterative treatment as above

another model of the boundary layer for which the essentidlEgs.(22) and(24), (25)], we find

kinetic relaxation parameters are assumed to be constant

within the layer. A general solution of equations for the fluc- on(—8)~S Y2 (}) 12 (27
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~ ~ ~ I
/ '(f,0)=T, ({,w)+asin 20T ({, o), =5
v +Th), (33
;/4\ y where the major angular dependence is contained in the an-
isotropic factor
2N
/1 G
X a, ()= > sin 449, (39
N and the rest designations arg=y/L;,, y=d/L;, &
2d =E,/Eq, a=L%/neD, D=D{)(1-a%sirf29), a=D)/
DS(): T12= T21=2Tj, .

] ) ] ) The solution to Eqs(29) and (30) is found to be
FIG. 1. Orientation of valleys with respect to the lateral faces in

the two-valley model. lo
st Brwe e a. @
In the range wher&~ S, (26), the dependence or}, be- ¢
comes more gradual with G, (¢,¢") denoting Green’s function of the operator
(31) with the zero boundary conditions. To fir@,(Z,¢'),
on(— 8)~S Yo (75)14, (28)  we consider two different regions;’=¢ and {'<¢, for

which we introduce

The expression§21) and (27) and (28) provide a direct - _
justification of the boundary conditior@0) under the crite- G, ({,{")=G,({={".0"), G, ({,)=G,({<{".{).
rion (19). It is worth stressing that our consideration is based (36)
on the distinct models and includes the various ”miti”QSubstituting Eq(36) into Eq. (35), we get
cases. Nevertheless, the final results demonstrate the same
dependence of the boundary density fluctuation on the sur- ¢ - e
face rate of intervalley relaxatidisee Eq(21) and Eqs(27) 5f(§,w)=f_ D({',0)G,({,¢")d¢
and (28)]. Therefore, this approach can be expected to be ‘0

quite reasonable for the problem of the boundary conditions b _ N
for the fluctuations in restricted many-valley crystals. + L O({',w)G,({,¢")dl’, (37
C. Solution of stochastic continuity equations where Green'’s functions are given by
In order to avoid a confusion of computational detail in - exd ke (£—¢)1 .
the solving of general equatiori$4), we consider the two- Go,(&d=1¢ SN2k Zo] sint{ k- ({—{o)]
valley modef illustrated in Fig. 1. Equation&l4) reduce to =) (=)50
an equation for the relative fluctuatiodf = én,/ng, which Xsint{k _)({"+ o) ],
can be written as
R - o exdken(E=4N1
2L6F(L.w)]=®(L,0). (29 Colbd) = ~sintT2k_ zo] SNk (£ o]
The boundary conditions read Xsint{k ("= o) ], (38
SF(==*{o,w)=0. (30) with k(.= (k;*£k;)/2 or, alternatively,
The operatorZ on the left-hand side and the function 1 CHED) .
~ . . i k(+):__a1(19)5, k(,): 52+1_|(1)Tiv.
®(£,w) on the right-hand side of E¢29) are given by 2 4 @9
N d? d i ' ' - i
P=iwr,+ d_gz“Lal(ﬂ)gd_g_ 1 (31) Finally, in accordance with Eq$37)—(39), we can write

81({,0) =k [ F(L.L0)+ F(L— o), (40)
~ d - ~
Bw)=alLy'g; TG0 T(w) | (32 where

_sinik)({—Zo)] (¢
The effective stochastic sources of fluctuations are specified FE Lo = sinf{ 2k o] J-¢,
by

DL, o)

. - Xexf k) ({=¢")]sint k- y({" + o) 1dL".
V(¢ w)=17({,0), 41)



15470 V. A. KOCHELAP AND V. N. SOKOLOV 57

Since it is of interest to compare the contributions of the (8i 461 ) w(Ey) (85F) ,(Ey)
different Langevin sources given in Eq$) and(7) to the Sj(w,Ey)= T ane f(w,Ex TN
noise, we consider their action separately. To this end, we (819 =0 (81 w0 (49)

can split the total fluctuatiodf (¢, ) into two parts:

i v where 637 _,=7,/NVy, and (5j2)7_,=2e?ND/V, cor-
O1(f,0)= 14, 0) + 517, ). (42) respond to theO low-frequency equilibriam fluctuations of the
From Eqs.(40) and(41), we get for the two terms: valley carrier density and the current density for an infinite
crystal, respectively.
. exd k[ (4 o , In an experiment, the intervalley fluctuations can be stud-
Sf (¢ w)=—1 J "M w)F"Y(= 4,0 @)dd"  jed by measuring besides the excess current noise also fluc-
(=) 174 tuations of the transverse voltage across the sample

sinHk - (£o— )]
Sini 2k - o]

d
5U:j7d5Ey(y) dy. (50

{0~ o
xf TN @) F MG w)dl |, (43)
~to By inserting Eq.(47) into Eq. (50), we get

where straightforward calculations give the expressions

' JEx)=1+a%cog(29)E2S(w,E,),
FY(£,¢ o) =exg —k ¢ 1sink_,({+¢)], S(w,E,) =1+a’cos(29)E°Sy(w, Ey)

(44

_ (U3 (Ey)

. J .
i ' — iv ’ S(w,Ey)= , 51
F(§,§ ,(U) ag,F (gvg 1w)' @ ) (5f2)::0 ( )

By virtue of the results obtained in this subsection, it iswhere sli=6U/2dE, is the dimensionless transverse volt-

easy to calculate spectral densities of the correlation funcage. As is seen from direct comparison, the expressiés)s
tions for fluctuations of the valley carrier density, currentand(51) are quite similar and differ in their angular depen-
density, transverse voltage and to study their field, fre-dences.

quency, and size dependences. This will be done in the next An important peculiarity of the excess current noise is the
section. dependence of the spectral densiyw,E,) on the applied

electric field[the second term in E¢48)] in the range of the
fields (2). This is due to the fact that for an arbitrary orien-
tation of the valleys relative to the lateral surfa¢ese Fig.
1), the electric field enters in Eq29). The spectral density
One of essential features of the electron fluctuations ir5;(w,E,) has to decrease with increasing the electric field
restricted samples is their spatial inhomogeneity. The madiecause of the occurrence of drift of the fluctuations to the
roscopic observable quantities should be averaged over thsurface and fast destruction due to intensive surface interval-
sample thickness: ley relaxation. For symmetrical orientations of the valleys
(9=0,7/4) the electric field drops from E¢29) because the
1 d d coefficient(34) vanishes for such values of the angdle In
(6i 6] k)w=—2f dylf dya[ 6i(y1) Sjk(Y2)ls - this case, the intervalley fluctuations are identical to those
(2d)"/) ~d —d (45 under the thermal equilibrium condition.
Setting in Eq.(31) E,=0, we find the local spectral den-
By using the expressions resulting from E€8.and(13) for  sity [ 8f({1) 8f({2)],,, which should then be averaged over
the current density the thickness similarly to Eq45). For the averaged spectral
densityS(w, {y) =Si(w,E,=0), we obtain

IV. INTERVALLEY NEAR-EQUILIBRIUM
FLUCTUATIONS

Ssin(21‘})+cos(2f})i> 51‘}

O)ly=—2e az

T)—an,D _ .
Si(0,40) =K"(w,0) + K'(@,40). (52)

Here, the functionsC"''(w,{,) correspond to the different
random sources in Eq33) [see also Eqs6) and (7)] and
provide the size dependence of the spectrum:

(46)
and the fluctuative transverse electric field

L.
s6,=—=1 F+a

sin(29) dig - 005(21‘})5} of, (47

" neD Y
we find the spectral density of the current density fluctua- KV (w, o) = 1 [1+ 1 /Sinwgl)
tions: ’ 1+w?i2| costé)+codd)| &
Sj(w,Ey) =1+a%sir(29)E°Sy(w,E,). (48) N sin(&) _4flsinh(§1)+§zsin(§z)) 53
We have introduced the dimensionless quantities &2 g+é
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1
(1+ w?72) Y2 costiéy) + cog &)

[Sintté) _sin(£;)

&1 & )

where §;=2{oReK-)), &=2LIm(k))
Ly andk.) given in Eq.(39).

Let us analyze briefly the expressidia®)—(54). The con-

tribution related to the second term in E§2) [see Eq(54)]

K'(0,40)=

(54)

with ¢o=d/

is completely determined by the boundaries. It disappears

for an infinite crystal, i.e., iid—% (or {o—>) : K'—0,
KV—(1+ w?72) "1 . For the range of low frequenciesr,,
<1 from Eqgs.(53) and(54), we find

tanr(zo)}
o |

. 3 1
IC'V(w=O,§0)= El:l_ § tanl’?(go)_
(55)

tanh({o)
{o

) 1
K'(w=0,§0)=§ +tantf(£o)— 1
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FIG. 2. Various contribution$55) to the low-frequency &7,
<1) spectral density56) compared with the total contribution as a
function of dimensionless thicknesg=d/L;,: 1, K¥(w,&o); 2,
,Cl(w1§0); 37 Sf(w‘fo) :Klv(w1§0) +’Cl(w1§0)'

These expressions result in simple size dependence of the

low-frequency spectrum given by

tanh( o)
{o

Now consider the limiting cases. FdeL;, ({>1), the

Si(w=00)=1— : (56)

The spectra of the intervalley fluctuations in the near-
equilibrium electron gas with strong intervalley surface scat-
tering of the particlegsee criteria(2) and (19)] essentially
differ from the spectra for bulk samples where they have the
ordinary Lorentz form. Unlike the fluctuation behavior, the
stationary transport undergoes no qualitative modifications
and remains unchanged for the above both cases. Hence,

main contribution to the spectrum is due to the intervalleyjnyestigation of the spectra of the intervalley fluctuations in

scattering. Really, it follows from Eqg55) and (56) that

K'~(1/2)@d/Ly,) "%, KV~1, i.e., KV>K'. On the contrary,

small electric fields must provide information of microscopic
processes in the electron gas, particularly, about the intensity

for d< Liv (§0< 1), we ObtainlCi"< ICi. Consequently, in this of surface scattering_

case the size dependence of the spectrum is primarily deter- An important feature of the fluctuation spectra considered
mined by the transverse fluctuative electron flow, and it iss that the low-frequency spectral densities for thin samples

given by

1/ d)\?
Sf(w=0,§o)=§(r) - (57)

Thus, the overall spectral densiip2) is dominated for
d>L,, by the sourcd Vv (6) and ford<L,, by the sourcd '

prove to be much smaller than that for an infinite crystal.
This follows directly from the expression48), (51), and
(57). Sucha suppression of the low-frequency fluctuatians
the most pronounced in the case of strong surface intervalley
scatterindin the sense of the criteridid9)]. The suppression
effect clearly manifests itself in fluctuations of the valley
carrier density, the current density, and the transverse voltage

(7). This is in full agreement with the qualitative estimates[see Eqs(48) and(51) and Eqs.(52)-(54) as well as Figs.

presented in Sec. Il.

V. DISCUSSION

2-4]. Detailed analysis of the parameters governing the sur-
face processesSec. Il and Appendix points the way to
control the current noise. Properly chosen impurity doping of
very thin layefs) at the surfacg) can suppress the noise

In this work, the intervalley fluctuations in the electron while the dc current does not suffer any changes.
gas of restricted semiconductors are studied under conditions Another interesting feature concerns the noise anisotropy.

when the thickness of a sample, or an active layet, i8

Note that the noise anisotropy is significant in bulkSi.

comparable to or less than the intervalley diffusion relax-For instance, providing the dc current is alopt00] or

ation length,L;,. Both kinds of stochastic sources, the bulk [110] directions this

is determined by the factor

and surface ones, are taken into account. Reduction in tHe djx3j) 00/ (8ix8ix) 110]=4. From our results it is
layer thickness results in that the fluctuation spectra dependear that under the size effect the anisotropy decreases and
on the thickness and surface intervalley relaxation processe®mpletely vanishes for an extremely thin layergL,,).

[Egs. (15 and (40) and (48)]. This allows one to state the

It is furthermore important to note a change of the role of

occurrence of considerable size effects in the fluctuationintravalley and intervalley Langevin sources for bulk and
spectra of restricted many-valley semiconductors. The aboveestricted semiconductors. In restricted samptes|i(;,), the
analysis of fluctuation processes makes clear the set of paharacteristic diffusion timé¢;=d?/D (i.e., the time needed
rameters controlling the surface noise sources and relaxatiofor diffusion of a fluctuation to the surfagbecomes compa-
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' ' tain different high-frequency asymptotics for the spectral
density(52) [see also Eq948) and(51)] depending on the
thickness 2. The case of thick samplgsl/L;,={y>1] im-
plies thatri\’,l> D/d?. Then theK'(w, ) in Eq. (52) is neg-
ligible and the corresponding spectral density for the fre-
quencyw> 7, is given by

Sf(w7 CO)

107t

SH(@,{o> 1) ~KY(w,{0>1)~(wTy,) 2

On the opposite, for thin samplegy<1) and for the fre-
quency rangeo>D/d? [D/d*>7,'], we get KV(w,{,
<1)=(w7y) % K(w,{e<1)~{; (wr,) ¥2 The large
value of the ratio[ K'(w,{o<1)/KV(w,{o<1)]~{y%>1
provides the predominance of the second term in(&#). In
turn, this leads to the asymptotic dependence

1072

Si(w, o<1 =g H(wmy) "%,
FIG. 3. Frequency dependences of the spectral deSdity, ()

(52) for different values of dimensionless thicknegs=d/L;, :1, which is chqrac;teristic of Qiﬁusion Iimit(_ad n_oi§é. . .
0.5:2,1.0: 3, 2.0: 4. 3.0: 5, 5.0; 6. Under criterion(2) the intervalley noise is quasiequilib-

rium.Accordingly, in bulk samples the intensity of interval-

] ] ley current fluctuations is proportional Ef and a deviation
rable to the intervalley time;, . As a consequence, the fluc- o this law occurs in strong electric fields due to the heat-
tuating inhomogeneous transverse flow of the carriers 9iVeR\g effect. In restricted samples, ﬂﬁ dependence is real-
Yzed only for symmetrical orientations of the valleys. Other-

. e Ir\}vise, it becomes more complicated through the appearance
thin samples d<L;), the diffusion intravalley term54) ot the transverse fluctuating electric field, which results in

completely dominates the noigig. 2). the spectral densit E,) dependence on the field
The decrease of the intensity of fluctuations in the ranges. o Eq.(48)]. $Bilw.Ey) dep X

ﬁf Iﬁw f;equenmc_aswrivfl,Eatt(‘a‘nlded :}’t'ts |n(r:1reasmg for * The real physical situation corresponding to the two-
d!g _ebr _requefn(rz]les_go(d /D)=1 ( Eues ift"). Thus, are- 46y model discussed in the text is a thin plateneGe or
Istribution of the intensity over the spectrum 0Ccurs on acy, ;i ith such orientation of the lateral faces relative to prin-

clguntsofTLhe bofundarnlas with strgng |n.te;|rvalllfey relaxat|o|ncipa| crystal axes as it behaves like a two-valley semicon-
(Fig. 3. The surface relaxation substantially affects not on Yductor. For instance, in the case 0fGe the axesX,Y,Z

Fhe intensity, but ?"SO the. frequency characteristics of th?‘nust be oriented along crystal axes of the fourfold symme-
intervalley fluctuations. Using Eq#$52)—(54), one can ob- try, with a plate cut out in accordance with Fig. 1. In the case
of n-Si, two situations close to the two-valley model are
possible.(i) The x,y axes are in th€110) plane, with thex
axes making an angté with the[110] crystal axis. Thereby,
one set of valleys consists of tH&00] and [010] valleys
while another does of th@01] valley. (ii)) The x,y axes are

in the (001) plane, with thex axis making an angleé with

the [110] crystal axis. Then, there are two valleys along
[100] and [010] to be added by the thirisotropic valley
along the[001] axis.

In particular, we consider the semiconductor with param-
eters ofn-Si (assuming dc current along th&00] direction):
N=10" cm 3, T=77 K, u»=10% cnm?/V s, €,=11.7,
m, =0.19m,, m=0.92mg, v=10" cm/s, wheree, is the
static dielectric constantn, andm; are the transverse and
longitudinal masses oK valleys, respectivelym, is the
free-electron mass. The ideology of the drift-diffusion ap-
proach and quasineutrality condition require the validity of
2 3 4 5 inequalities(9) and (11). The characteristic lengths are the

E./Ey Debye lengthlp=(eokgT/4me®N)2=2.1x10"° cm, the
mean free path ,= (3/v)(kgT/e) u77=2X 10°° cm, the in-

FIG. 4. Field dependences of the low-frequenayr(<1) tervalley lengthl;,=(D7,)"?=2x10"* cm [for the above
spectral densit; (w, ;) (48) corresponding td)= /4 (see Fig. 1~ parameters the diffusion coefficientls,;= 66.4 cnt/s], the
for different values of dimensionless thicknggs=d/L,,:1, 0.5; 2,  characteristic diffusion field i€,=33.2 V/cm. The corre-
1.0; 3, 2.0; 4, 3.0; 5, 5.0; 6¢. sponding characteristic times are the Maxwellian timg

spectrum as that due to the direct intervalley scattering.

20 T T T T ¥ T T T
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=efA4meNu7,=6.5X10 12 s, the electron momentum re-  We conclude by noting that currently considerable study
laxation time 7,=L,/v=2X 10 12 s, the electron energy is given to electron fluctuations and current noise and their
and intervalley relaxation timesr.=7x10" ' s, r,=6 suppression in conducting microstructures of small intercon-

x 10710 3.35_ _ _ _ ~ tact distanced,: the ballistic conductor in the regime of
Let us _brlefly discuss the intensity of surface relaxation.classical or quantum transp%)"’r(du is smaller than the elec-
The criterion(19) reduces to tron elastic mean free paththe diffusive conductor in the

regime of quasiclassical transpgdr® (d; is much greater
12 than the mean free path, but much smaller than an inelastic
ﬂ) >1, scattering length In terms of the ideology of this paper all
Tp mentioned cases can be classified as longitudinal size effects

which contains in explicit form the microscopic relaxation (see also Ref. 191n contrast, the effects analyzed in this

parameters. This results from the order-of-magnitude estiPaPe" May refer to a different class of size effects when the

mates of the characteristic quantities in EEL9): D transverse to the current dlmensmzil,,.of a sample is the
~U27p/3! d~L,=(D,)Y2 and we use the ultimate value smallest one. For such cases the longitudinal dimension con-

of intervalley relaxation rate on the surface (/4f Nu-  Siderably exceeds all characteristic lengtiy>L;>L.

merical estimates of the relationshifS), (26) show that >Lp). The size effects for such cases of sample geometry

selective impurity doping of a thin surface layer provides acan_be classme(_i aszztransverse size effectg in electron _fluc-

relevant value of the paramet& Large values ofS (S tuations and nois&: T.hus, the excess noise suppression

=3Xx10°—2x10° cm/s) have been observed for the silicon €" be obsgrvaple for different types of nofshot noise, _hot

surfaces® These estimates show that the above parametefd€ctron noise, intervalley nois@and for both longitudinal

enable all required criteria of the theory to be satisfied. and transvgrse7sllgze effects, and also in certain exotic cases of
For the chosen parameters, a contribution of generatiorPU/K materials.”

recombinationGR) fluctuations to the total noise may prove

to be considerable. Now we find the conditions imposed on

the frequencyw and semiconductor parameters under which VI. CONCLUSION

their influence is negligible. The characteristic timgy as-

sociated with impurity recombination and ionization

processe¥ is given by

4

i

To summarize, we have shown that the fluctuation fea-
tures of the electron gas in submicrometer structures of
many-valley semiconductors considerably differ from those
in bulk crystals. This difference is due to the strong influence

1-u of the structure’s boundaries characterized by intensive inter-
TGRZW' valley (surface scattering of the carriers. In particular, the
spectra of valley carrier density fluctuations depend on the
where applied smalllunder Ohm's law electric field.
In the structures with small thickness of the active region
U=N/Np=2[1+4g(Np /N.)exp e/kgT)+ 1] 12 (d<L;,), strong surface intervalley relaxation results in sup-

pression of the low-frequencye(r;,<1) intervalley noise
is the fraction of ionized impuritie| is the recombination Without affecting the Nyquist component of noise and the dc
coefficient, N, is the effective density of states in the con- current. The anisotropy of the intervalley fluctuations is also
duction bandg is the impurity ground-stat@f the energy suppressed under these conditions. It is shown that a
€) degeneracy factor. For instance, usig=10"¢ cm?/s3® diffusion-type dependence of the noise intensityef~>?) is
€=0.049 eV, Np=10" cm 3, T=77 K , we obtain u characteristic of the high-frequency® D/d*> ri\’,l) behav-
=0.72, 7gr=3X 10 ° s. For the accepted parameters weior of the noise in contrast with the ordinary Lorentz spectra
may assume the conditiorsg> 7, to be valid. In the fre- (~w~?) for bulk crystals. Using our consideration, one can
quency rangergé<w<ri;1, the GR noise undergoes a point out such a range of the parameters fe6i, n-Ge
strong spectral dispersidifrgrw)?>>1] whereas the disper- wh.erg the interv_alley and GR noise separate by their charac-
sion of the intervalley noise still may be ignorggr,w)?  teristic frequencies.

<1]. For the Lorentz-type spectra, the ratio of noise inten- AS @ concluding remark we stress that by varying the
sities is given by properties of the surfaces and interfaces, it is possible to
control the intervalley noise in semiconductor structures of
o iy submicrometer sizes.
(8)x0)x) w
o o GR @ TWTGR:
(B31x310 5
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APPENDIX cosh(y+ 8)/1]/cosh(y’ + 6)/1]

taniy’/l)—tanH (y’ + d)/l]

: . G(y,y")=I
Let us consider a transitional near-surface layer5(0)

of thicknessé with the positiony=0 corresponding to the
real crystal boundary. The boundary conditigh§), in their
structure, provide a relation of the particle flow density fluc- G(y,y)=I - ; , =y’
tuation, éi, to the carrier density fluctuatio@n, at a certain ) tani(y'/l) —tanti(y’ + 8)/1] =
physical boundar determined by the positiop=—&. To  In order to determinen(— &), we need the expression for
put down an analogous relation for the model layer involvedGreen’s function evaluated gt= — &

one must solve the set of equations

coshy/l)/coshy'/l)

G(—sy") | coshy’/l) A8)
d on(y, . oy )= ey
—iwon(y,w)+ d—&i(y,w): — (i ©) +TV(y, o), sinh( &/1)
y Tiv Al Finally, setting in Eq(A4) y=— 6 and taking into account
(A1) Egs.(A6) and (A8), and the expression fatny(— &) given
by
) d -
5|(y,w)=—D@5n(y,w)+l "(y,w), (A2) |
ono(— 8)= —————=—1{8i+1'(0)cosh }(&/1)=T'(— 6)},
with the boundary conditions ol =9=p tank( 5“){ ©) (o) =1~ o)}
(A9)
Si(y=0,w)=0, di(y=—56,w)=4di. (A3) we get the required relation in the form
We assume two equivalent valleys oriented symmetrically |
relative to the boundary plandsee Sec. Il C and Fig.)1 o L~
Physically, the first of Eqs(A3) means the absence of the on(—o)= D tanh( 5”)(& +u). (A10)

fluctuating particle flow density ay=0 while the second —
corresponds to the given value of ityat — 8. The procedure Hereu=u"+u' with
we use here is as follows. Having written down the general
solution to Egs(A1)—(A3), we get the relation of the fluc-
tuation én(— 6) to the fluctuationsi. Then, we can find the
inverse relation, having expressed the fluctuating flow den-
sity 6i at the boundary in terms of fluctuation of the carrier

uv 1 0NiV ’ ’ ,
y :mﬁgl (y")coshy'/l)dy’, (A1l

densitysn(— 6). The latter must provide an explicit form of
the surface relaxation rate and the Langevin surface sources.

The general solution to EqéA1) and (A2) with the con-
ditions (A3) can be written as

O ~
) =ong()+ [ GlyyTmay. (4

~ 1 0_.
u'=wﬁal'(y’)sini’(y’/l)dy’. (A12)
To obtainu' in Eq. (A12), we have used integration by parts
in the integral on the right-hand side of E#4) containing
the position derivative with respect §o[Eq. (A6)].

The expressionfAll), (A12) define the Langevin surface
sources of the fluctuations in the model under consideration.

Here, ono(y) is the general solution to the homogeneoussypstituting further the Langevin source¥, T! from Egs.

equation forén, being obtained by inserting EgA2) into
Eq. (Al), with the boundary conditions:

d -
Dd—y5no(Y) y:o:| (0),
d s T
Da/&no(y) y:_é——5l+l (=), (A5)

G(y,y') is Green’s function of the operatd(y)= (d/dy)
—172 with zero boundary condition$?=D7}/(1—iwT).
The effective Langevin source in the integra@d!) is given
by

1( )=D—1( —Tiv+i| ) (A6)
y ay |

For Green’s function we readily obtain the expressions:

(6) and(7) into Egs.(A11) and(A12) and using their corre-
lation relations*!3 we can easily calculate the spectral den-
sities of the correlation functions for the Langevin surface
sources:

~iiy :2dno s 1 S [sinh(24/1) ]
(U)o Vo (7o 2 cosR(s/m| 24l 1
(A13)
—~— dng ) Jsink(Z&/l) ]
iTy — D/|2 _ ,
(U Vo( )ZCosﬁ(ﬁll)l 24l
(A14)
(uVuhy,,=0. (A15)

The last propertyA15) is clearly a consequence of the fact
that the Langevin sourcds’ and1 ' are uncorrelated.
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