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Quantum measurements performed with a single-electron transistor
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Low-capacitance Josephson junction systems as well as coupled quantum dots, in a parameter range where
single charges can be controlled, provide physical realizations of quantum bits, discussed in connection with
guantum computing. The necessary manipulation of the quantum states can be controlled by applied gate
voltages. In addition, the state of the system has to be read out. Here we suggest to measure the quantum state
by coupling a single-electron transistor to théit. As long as no transport voltage is applied, the transistor
influences the quantum dynamics of it only weakly. We have analyzed the time evolution of the density
matrix of the transistor and-bit when a voltage is turned on. For values of the capacitances and temperatures
which can be realized by modern nanotechniques, the process constitutes a quantum measurement process.
[S0163-182698)03024-0

I. INTRODUCTION quantum measurement: the mixing time should be longer
than the time of measurement.
Recent proposals* suggested using nanoscale devices,

such as low-capacitance Josephson junctions or coupled |I. QUANTUM SYSTEM AND MEASURING DEVICE
guantum dots, as quantum bitg-bits), which are the basic h is sh - h ducti
elements of quantum computers. The two logical states ar_eI T de §y?rt]em ISS OW? In Ftlf? L 1|— et_two sula;i)terli:ont liCt'ng
different charge states of the systém.Applied gate volt- :S aE fmt rs ug%er p?ﬂ? arret \?rr?ablﬁ;hlor;q:nb .r st itf
ages allow the necessary controlled manipulatieisgle-bit S characterized by a discrete variabieine number of extra

. . o Cooper pairs on the lower superconducting island. The lower
and two-bit operationsof the quantum states. In addition to .
these manipulations, a read-out device is required to perfor art(a normal island between two normal leadfands for a

P ' ) q op ET transistor, which is coupled capacitively to théit. Its
guantum measurements of the resulting state ofjthbé. We

) . ' charging state is characterized by the extra charge on the
suggest to use single-electron transistors for this purpose. iqqle island,eN. A similar setup was recently studied in

The requirements to perform, on the one hand, quanturgye experiments of Refs. 9 and 10, with the purpose of dem-
manipulations and, on the other hand, a quantum measurgpstrating that the ground state of a single Cooper pair box is
ment, appear to contradict each other. During the manipulag coherent superposition of different charge states. We dis-

tions the dephasing should be minimized, while a quantunguss the relation of our proposal to these experiments below.
measurement should dephase the state ofjthi as fast as

possible. The option to couple the measuring device to the

g-bit only when needed is hard to achieve in mesoscopic

systems. The alternative, which we discuss here, is to keep @ Il
the measuring device permanently coupled todHgt in a

state of equilibrium during the quantum operations. The
measurement is performed by driving the measuring device

out of equilibrium, in a way which dephases the quantum -
state of theq-bit. Similar nonequilibrium dephasing pro-

cesses have recently been considered by a number of -
authors>~®

For definiteness we discuss in this paper the measurement
process performed by a single-electron tunne(®gT) tran-
sistor coupled capacitively to a Josephson junctiphit;
however, this type of measurement may be performed for
any quantum system with two different charge states. We <

describe the measuring process by considering the time evo-
lution of the density matrix of the coupled system. We show
that the process is characterized by three different time
scales: the dephasing time; the time of measurement, which
may be longer than the dephasing time; and the mixing time, .

i.e., the time after which all the information about the initial

guantum state is lost due to the transitions induced by the FIG. 1. The circuit consisting of g-bit plus a SET transistor
measurement. Thus we arrive at a criterion for a “good” used as a measuring device.
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As shown earlief, the quantum operations with tligbit ~ Apart from the microscopic degrees of freedom, 8).con-
are performed by controlling the applied gate voltagg. tains two “macroscopic” operatore®'¢ ande™'?. The first
At this stage the transport voltageacross the SET transis- one describes changes of the charge on the transistor island
tor is kept at zero. Therefore, no dissipative currents flow indue to the tunnelinge'?|N)=|N+1). It may be treated as
the system, and dephasing effects due to the transistor aesn independent degree of freedom if the total number of
minimized. To perform a measurement, one applies a translectrons on the island is large. We include one more opera-
port voltageV. The resulting normal current through the tor e*'¥ which describes the changes of the charge in the
transistor depends on the charge configuration ofg#iet,  right lead. It acts omm, the number of electrons which have
since different charge states induce different voltages on thinneled through the SET transistel’|m)=|m+1). Since
middle island of the SET transistor. In order to checkthe chemical potential of the right lead is controlleddoes
whether the dissipative current through the SET transistonot appear in any charging part of the Hamiltonian. How-
contains information about the quantum state ofgHst, we  ever,e™'? allows us to keep track of the number of electrons
have to discuss various noise factdshot nois¢ and the which have passed through the SET transistor, which is re-
measurement-induced transitions between the states of tieted to the current through the device.
g-bit. It turns out that, for suitable parameters which can be We define theg-bit's Hamiltonian as the part of the total
realized experimentally, the dephasing by the passive SE®ne which governs thg-bit's dynamics in equilibrium I{
transistor is weak. When the transport voltage is turned on=0):
the dephasing is fast, and the current through the transistor—
after a transient period—provides a measure of the state of Hop= Eqb(n—qu)2— E;c0s0. (4)
the g-bit. At still longer times the complicated dynamics of
the composite system destroys the information of the quarHerqub: 2eV,/2E, is theqg-bit's gate charge, measured
tum state to be measured. in units of 2e. We concentrate on the values Qfp in an
The Hamiltonian of the composite system consists ofinterval around the degeneracy po@gb 3, SO that only the
three main parts: the charging energy, the terms describingw-energy charge states=0 andn=1 are relevant. These
the microscopic degrees of freedom of the metal islands angtates, however, are not appropriate logical states of the
electrodes, and the tunneling terms, including the Josephsanpbit, since they are not the eigenstates of the Hamiltonian
coupling. The charging term is a quadratic form in the vari-(4). We diagonalize Eg4) in the two charge state subspaces
ablesn andN: for a fixed value ofQq, (which is kept constant between the
quantum manipulations and during the measurementd
Hcharge™ Eqon®+ EseN®+ EinN+2enV,+eNVy+const.  denote the corresponding logical stafes and|1). In this
(1) basis, up to a constant,,= — 3AE o,, whereo, is the

The charging energy scaldsy,, Ese, andE;, are deter- Pauli matrix and

mined by the capacitances between all the islands. Similarly, —
the effective gate voltageg,, andVy depend in general on AE= \/[Eqb(l_qub)] +Ej. ®)
all three voltage¥/,, V4, andV, but, for a symmetric bias
(see Fig. 1, V,, andVy are controlled only by the two gate
voltagesVq, and V.
The microscopic termsl, , Hg, andH, describe nonin-

teracting electrons in the two leads and on the middle island 1 L

of the SET transistor, respectively: =373 COSno,—3 SN 7 0y, ©

The price which we pay for this simplification is that the
number operaton, which appears in the mixed term of Eq.
(1), becomes nondiagonal:

with mixing anglen given by tam=E;/Eq(1—2Qgp). In

H=>, el cilct, (r=L,R1). (2)  the quantum regime, which we are considering hérg,
ko >E;, and, therefore, one can chodg, so that tam<1.

The interaction Hamiltoniafipart of the mixed term in

The index o labels the transverse channels including the
Eqg. (1)] now becomes

spin, while k labels the wave vector within one channel.
Similar terms exist for the two islands of tlaebit. Here we
use the “macroscopic” description of the superconductors,
assuming that the microscopic degrees of freedom have al-
ready been integrated oth.

The tunneling terms include the Josephson couplig
= —E;cos0, which describes the transfer of Cooper pairs
between the two islands of tleebit (€'®|n)=|n+1)), and
the normal tunneling Hamiltonian for the SET transistor:

Hin=— %EintN(COS no,+sin g o), (7
while the rest of the mixed termE(;N/2), as well as all

other remaining terms, are collected in the Hamiltonian of
the SET transistor:

Hset:Ese(N_Qset)2+HL+HR+HI+HT- (8

The transistor's gate chargeneasured in the units of)

Hi= 2 T o CIIZ;C:(' e ¢ becameQ .= — (e V\y+ Ein/2)/2E4. The total Hamiltonian
kk' o reads H=Hg,+Hget Hip. One should understand, how-
ever, that the division chosen is rather arbitrary. The terms
+ > Tk’k” Ck" ck,ge*‘¢e‘¢’+ H.c. 3) Hgb andHge would not describe thg-bit and the SET tran-

K'K'o sistor if they were decoupled.
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lIl. QUANTITATIVE DESCRIPTION OF THE | |
MEASUREMENT, TIME EVOLUTION OF THE Nl y! T ! !
4

REDUCED DENSITY MATRIX I :—7 N,Hl,J N'Lﬂl,], :N,ﬂl,}
{ |
The total system is described by a reduced density matrix !

|

|

cr(t).=Tr|_'R’|{p(t)}, where the trace is tgken over the micro- (1) W :

scopic states of the leads and of the island. In general, the N-Lmd ,N,ﬂ],J |
density matrixo(i,j;N,N’;m,m’) is a matrix ini andj, ! ,' :[ + t’

which stand, for the quantum states of thit (|0) or |1)), H L/ |

i

|

|

|

|

|
|
|
1
|
|
in N and inm. However, as shown in Ref. 12, a closed set of Nllﬂl’N,Hl,l : /
o ol
|
|
1

equations describing the time evolution of the system can be
derived where the off-diagonal elements i have been / ‘\
eliminated. The same is true for the off-diagonal elements in 'y ' 'y S\
m. Therefore, we need to consider only tge following ele- N'l,]]l,l K-—{N,ﬂl,l N'Lmvl [‘ ‘N,]l],l
ments of the density matrin:\flmecr(i,j;N,N;m,m). We : ! ! |
assume now that at time=0, when theg-bit is prepared in
the quantum statea|0>+b|1> as a result of previous quan- FIG. 2. The first-order diagram for the transition rates.
tum manipulations, we switch on a transport voltage to the&
i

\

|
|
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1
|
|
|
! ]
! |
I |
I |
|

X furth h ened. In order to describe this, we have to analyze the time
SET transistor. To proceed, we can further reduce the density, o ytion of the reduced density matrix quantitatively.
matrix in two different ways to obtain dual descriptions of

the measuring process. IV. DERIVATION OF THE MASTER EQUATION

The first widely used procedurés to trace oveN andm. _ _
This yields a reduced density matrix of thgbit o7; The Blloch—type Ior rglaster eqtljan%ns_wnh cgherer&t terms
EEN,mUi’\,ljm- Assuming that, at=0, it is in the state ave only recently been analyzed in condensed-matter

physicst®’ In Ref. 12, a diagrammatic technique was devel-

oped which provides a formally exact master equation as an
9) expansion in the tunneling strength. Only the tunneling term

' H+ is considered a perturbation, while all other terms consti-

tute the zeroth-order Hamiltoniaklo;=H—H+, which is

the questions are how fast the off-diagonal elements;gf treated exactly. The master equation reads

vanish (dephasing and how fast the diagonal elements .

change their original value€or instance due to transitions da(t) —I—[a(t) Hol= J'tdt’z(t—t’)a'(t') (11)

induced by the measuremeniThis description is enough dt & o 0 ’

when one is interested in the quantum properties of the me

sured system onlyg-bit in our cas¢, and the measuring o .ammatically using the real-time Keldysh contour

device is used as a source of dephaéiﬁ@lt does not tell Us  tachnique2 The simplest diagram describing the tunneling
much, however, about the quantity measured in an expernrough the left junction in first-order perturbation theory

tor. _ _ crossing the diagram contribute the following factor to the
The second procedure is to evaluate the probability distrirgte?

bution of the number of electroms which have tunneled

la|? ab*
a*b |b|?

O'i,j(o):(

Yhere the matrix elements af(t’,t) can be calculated dia-

trough the SET transistor during tinte (i) ZetmL(H')
h
— o Bﬂ_ y (12)
— N,m . .
P(m,)=2, ali"(1). (10) SNl 22 (=t %i5)

This quantity gives a complete description of the measureWherea  =fi/(4m*€’Ry ), u_ is the electrochemical poten-
ment. At t=0, no electrons have tunneled, $(m,0) tial of the left lead, andd=1l/w is the inverse frequency
=5,0. Then thisd peak starts to shift in the positive  cutoff. The sign of the 5 term depends on the time direction
direction, and, at the same time, it widens due to shot noiséf the dashed liné’ It is minus if the direction of the line
Since two states of the-bit correspond to different conduc- With respect to the Keldysh contour coincides with its direc-
tivities (and shift velocities i spacg, one may hope that tion with respect to the absolute tinfieom left to right, and
after some time the peak splits in two. If after sufficient Plus otherwise. For example, the right part of Fig. 2 should
separation of the two peaks their weigkitstegral are still ~ carry a minus sign, while the left part carries a plus sign. For
close to|a|? and |b|?, a good quantum measurement hasthe sign in front ofi u, (t—t") the rule is as follows: minus,
been performed. Unfortunately, there exist further processebthe line goes forward with respect to the absolute time, and
which destroy this idealized picture. After a long time the Plus otherwise.

two peaks transform into a broad plateau, since transitions FOr a single SET transistor, the horizontal lines corre-
between they-bit's states are induced by the measurementsSPond to trivial exponential factdrse'®". In our case, how-
Therefore, one should find an optimum time for the measure€ver, we have to account for the nontrivial time evolution of
ment, so that, on one hand, the two peaks are separate ai@e g-bit. Therefore the upper line in the left part of Fig. 2
on the other hand, the induced transitions have not yet hamorresponds to(N—1,jje Mot"t")N—1,j’), while the
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lower line corresponds tN,i|e'Hot=t)|N,i’). To calculate
these matrix elements, we diagonalidg, + H;y for each
value ofN. The eigenenergies are

1 :
EQY=F5V(AE+EN cosn)®+ (EiN sin )?,
(13

and the mixing anglesy (analogous toz) are given by
taney=E;N sin 7/(AE+E;;N cos7). The matrix elements
(propagatorsread

. . o
(N,O|e*|HoAt|N,O>: C0§7NelEgAt+Sin2?Ne'ETAt)
Xe"E(sggm
. e n o
(N,Ze"™MoH|N,1)= Cos"-?Ne'El“Jrsinz?Ne'Eom)
Xe" IE(Set)At (14)

. 1 .
(N,1|e"H0At|N,O>=§sin EN(e—lESIAt e—rE At)e_'E(set)A

where Egelt)z Ese(N - Qsebz-
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E(l)N 1mO:N, mO(At)

1,m,0;N,m,0
~2mwa EO(E)S(At+0)

—2a,D(E) 8’ (At+0). 17

[Note that Eq(17) is equivalent to Eq(15) only as a kernel

in the convolution(11) when applied to slowly changing
matrix elements ofr.] The first term of Eq(17) is the usual
golden rule tunneling rate corrected with respect to the addi-
tional charging energy corresponding to the quantum state
|0) of the g-bit, E - . The seconc{divergin@ part of

Eq. (17) produces aterm proportronal td/(dt)a o™ One

can take this term to the left-hand side of Etfl), so that the
time derivative on the left-hand side will look like
(d/d)[opg"—2a, D(E)oy, ™. We analyze all possible
choices of theg-bit's indices in Fig. 2, and arrive at the
conclusion that the diverging terms always have the same
structure as the coherent terms on the left-hand side of Eq.
(12). Moreover, if we neglect some energy corrections of
orderE;,, we may incorporate all of these terms to the left-
hand side of Eq(11), so that the master equation reads

()

f',l—ro(t>,Ho]}=ro<t>,
a9

where A and B are tridiagonal matrices in thBl and m

We now analyze the rates in Fig. 2 for different choices ofspaces, composed of the diverging factors of the type of

g-bit's indices in the regim& E>E,,,E;. There the mixing
angles are smalkyxNE;E;/(AE)?, for all relevant values
of N. Hence we keep only terms linear &, . The simplest
transition ('=0,)'=0N—-1m)—(i=0,=0N,m) is de-

scribed by

2
T .~
— _ efrEtA
(1)N—1,m,0;N,m,0 aL(hIB)
2N TmoN mo(A) = - +c.c.,
sink? —B(At+i6)
(15
where E stands here foru +(ES, P—EWN)+(EY~

—Ep).
The form of the master equatidftl) suggests the use of

D(E), while I is the regular local part ok (t—t’).

We expect that without the approximation of energies in
the diverging terms, the structure of Ed@.8) would be the
same, withA andB being more complicated matrices, which
would include some mixing in the space of tipdit's states.
Finally, we note that for any physically reasonable choice of
the cutoff 8, the logarithmically divergent factors in the ma-
trices A and B are of order 1, and, therefore, the mixing
corrections to the unit matrix in the left-hand side of ELB)
are small. We multiply the master equatigh8) by (1
+a A+ agB) 1~(1—a A—agB) from the left, so that
the mixing corrections move to the right-hand side. Siiice
is linear ina; andag, the mixing corrections are quadratic.
We drop them in the framework of the first-order perturba-
tion theory. The master equation to be analyzed thus be-
comes:

a Laplace transformation, after which the last term in Eq.

(11 becomesX(s)o(s). We Laplace transform Ed15) in
the regimes<E, i.e., we assume the density matiix to

change slowly on a time scale given ByE. This assump-
tion should be verified later for self-consistency. At zero
temperature §— ) and for 5—0, we obtain

N—1,m,0;N,m,0
N-1moN.mo(S)

2(1)

=2aRe((s+iE)eSTEE [ 5(s+iE) ]}

~27a EO(E)—2a,s[1+ y+In(|6E)|], (16)

whereE4[ - - -] is the exponential integral, ang~0.58 is
Euler's constant. Denoting the diverging factpd + vy
+In(|sE|)] by D(E) and performing the inverse Laplace
transform, we arrive at

do(t)

—at (19

i
— o). Ho]=T ().

If the applied voltage is not too higlthe exact criterion to
be specifielwe may consider only two charge states of the
SET transistorN 0,1. We perform a Fourier transform in
m spaceo] ](k) Smopi"e™. To shorten formulas we in-
troduce AN= g} O(k) BN=q?(k), CN=3 Re o) ekm,
and DN==Im 0'01 e'kM. This enables us to rewrite Eq.
(19 as

A'=—T| A%+Tg e*Al—w CO—wreCl, (20
Al=T| A°~Tg A'=QD'+w CO+wrC’,  (21)
BOZ—FLIBO+ FRleikBl—wLCO—wReikcl, (22)
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Bl=T, B~ g B!+ QD+ w, Co+ wrC, (23 in Egs. (20—(27), i.e., those proportional té) and w, g
! ! disappear, and the system factorizes into three independent
© groups. The first ongEgs. (20) and (21)],
CO= — AE°DO- T CO+ TgelkCl— —- (A°-B® . A
OF 2 ) A%=—T| A%+Tg e*Al,

(32)
w . .
_TRelk(Al—Bl), (24) Al:FLOAO_FROAlv
has plain wave solutions<e'“!). For eigenvalues, the stan-
Cl= — AEID4+ T, CO-TRCl+ %(AO— B%) dard analysis gives,
| (T, +Tr){ 15| 1+ Alo(e" D] (32
w w =5 — T r ’
+ S (A-BY, (25) b2 b TR T, TR,
where
D9=AE’CO-T D°+TgeD?, (26)
I IR,
D'=AE'C!+T DO~T'rD*+ - (A'=BY).  (27) b7 7 Ro

is the total transport rate corresponding to thbit is in the
Here AE®=EJ'—EJ" are the energy differences between state |0). When k is small w1~i(T,+Tg), while o,
thleE q-bit's .starfes fo][f N=0 _andh 1, !re_spectlvelx_/':ﬂ anf@ ~Tok+iTo(1+[21o/(I' +T'r ) DK% Sincew, is a large
=Ejysin 7 is the coefficient in the mixing term i, for - -
= ; 01 ginary number, already after a short timgui] only the
N=1 [see Eq(7)]. The terms proportional tAE™"andQ) .., eigenvectoAl/A°=T| /T' ) survives. This eigen-
originate from the coherent part of EQL9). The tunneling o oo ) )
rates which appear in the four last equations for the offVECtor multiplies a wave packet propagating with the group
velocity I' 5. The wave packet widens due to shot noise of the

diagonal elementfEgs. (24)—(27)] are given b
g E0s.(24)~(27)] g Y single electron tunneling, its width being given BY ot (the
I'=27ma [ pu —Es(l—2Qs ], second imaginary term in the expression ).

(28 Analogously the second group of equatid@®) and(23)
IN'R=27mag] — urt+Es(1—2Qs)]. gives a wave packet with the group velocity',
The rates EFLlFRll(FLl+ FRl) and the width~ \I";t. The two peaks
correspond to thg-bit in the state$0) and|1), respectively.
Iy, =TLEAT, They separate when their width is smaller than the distance
' (29 between their center§T ot+ T ;t<|Ty—T';|t. After this
I'g, =T'r*Alg time,
appearing in the equations for the diagonal elem¢htss. tms=|VTo— VT4 72, (34
E)ZO)tE((EZ?t)k:)Ii?re corrected due to the charging energy mduceqlNhiCh we denote as the measurement time, the process can
y q-bit constitute a quantum measurement. Similar expressions have
AT, =2ma (EQ—ED), been obtained in Refs. 5-7, where they have been denoted as
(300  the dephasing time.
ATgp= —27TaR(E8— Eé). To obtain a clue for the dephasing, we analyze the third

group of equationg24)—(27) at k=0 (the trace ovem is
These corrections are, actually, responsible for the separati@quivalent tok=0). These equations may be combined into
of the peaks. In the regime tgre 1, which we assume here, two complex ones:
|AT gl=27a  gEiy. The rest are small mixing terms,

o, g=may gSin &AE', which also originate from diagrams &8,1=iAE°08,1—FL08,1+ FRG%M, 35
of the type in Fig. 2. Note that we assume that only the two (35
rates given in Eq(28) are nonzerdthe two-state approxima- {ré =i AElaé 1T rLag 1= FRo(l) 1-

tion). Moreover, we assume that thebit's charging energy i B 1 0
corrections can at most change these two rates, but they cdfié standard analysis shows thatlE=|AE"—AE®|~Ejy
not switch on any other rate or switch off one of the two in <(I't*T'r) the imaginary parts of the eigenvalues are
Egs. (29). Im w=~(I' +T'g) and Imw,~dE*/[4(T' +T'g)]. In the
opposite limit dE>(I'  +T'g) the imaginary parts are
Im w,~I" and Imw,~I'g. The first limit is physically
more relevantwe have assumed parameters in this regime
although the second one is also possible if the tunneling is
First, we analyze the system of equatig®6)—(27) quali- too weak or the coupling between tlebit and the SET
tatively. Imagine that we can “switch off’ the Josephson transistor is too strong. In both limits the dephasing time,
coupling during the measurement. Then all the mixing termsvhich is defined as the longer of the two times,

V. QUALITATIVE ANALYSIS
OF THE MASTER EQUATION
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ry=max[Im w;] 1[Im w,] "1}, (36)  degeneracy point, which ®.= 3, so thatl', <I'g and the
Coulomb blockade energycg=E(1—2Q) is of the or-
der of E¢.;. To satisfy the conditions for the golden riikee
Eqg. (15 and the discussion thereafferwe assume the
AT +Tg) chemical potential of the left leagh =V/2 to exceed the
To= T g2 COLR: (377  Coulomb blockade energy by an amount of the order of
Ecg*Ee, and assumé& g to be the largest energy scale of
while t CY|:1R One can check that in the whole range ofthe system:E-g>AE. The transport voltage should not,
validity of our approach the measurement time exceeds theBowever, exceed the limit, after which the third charge state
dephasing timet,,> 7. This is consistent with the fact that Of the SET transistoN=—1 becomes involved. Thug/2
a “good” quantum measurement should completely dephase< Ese{1+2Qse), andQge;should be chosen far enough from
a quantum state. In Refs. 5-7, where different systems hav&ero as well. In this regime we estimate the mixing time as
been discussed, the expressions for the resulting dephasing

. . . .. 2 =2
time were given by expressions similar to Eg4), thus 7 _ EnE3
¢ mi:l'(OCZ'rra( . Eset (38

is parametrically different from the measurement ti(84).
In the first limit, dE<(I' +T'g), it is

=lms.

In our example, the dephasing time is shorter than the
measurement time. The reason for this is, probably, the presvhere ) = eag=«. The measurement time in the same re-
ence of the additional uncontrolled environment provided bygime is given approximately by
the middle island of the SET transistor. The transport of
electrons occurs via a real state of the islane 1. In dif- 1 Ef
ferent transitions, the island may be left in different micro- tms*2ma E_th (39
scopic states, even though the same number of electrons ) _
have passed. To put it into the language of Ref. 14, the initial N exact values d@s.;andV would determine the numeri-
state of the systema(0)+b|1)) |x) |m=0) evolves into cal 2(:02eff|0|ents in front of Eqs(38) and(39). T_hustm_sltmix
al0) |xo) Imo)+b|1) |x1) my), where|x) stands for the *«ESEZ{(AE)*. One recognizes two competing ratios here:
quantum state of the uncontrolled environment. One mays/AE, which is small, andE¢./AE, which is large. The
imagine a situation whemy=m,, but |yo) and|y,) are conditiont.s/t;x<1, thus, imposes an additional restriction
orthogonal. In this situation dephasing has occurred, but n@n the parameters of the system.
measurement has been performed.

The additional environment actually plays a positive role, VIl. DISCUSSION
i.e., it helps us to perform a quantum measurement, provided " L
it dephases the state of tlebit only when the system is T_o §h0w that all the condltlon_s assumed in this paper are
driven out of equilibrium. This is because the dephasing suptelistic, we calculate the charging energigg,, Eq,, and

presses the transitions between the states oftbé (the _Eim f(_)r the following case: the capacitance of the Josephson
Zeno effect junction C;=2.0x 1018 F, the capacitances of the normal

junctions Cy=1.0x10"!" F, and the capacitances of all
other capacitor<C=2.5x10"18 F. We obtainE¢~20 K,
Eqw~10 K, andE;,~0.5 K. TakingQq,=0.35, Qge= 0.15,
Finally, we analyze what happens if we take into accounand eV=48 K, we obtainAE~3 K, Ecg~14 K, andV/2
the mixing terms in the system of equatiof®9)—(27). We  —Ecg~10 K. We also assumer2x=0.1. The measurement
assumek=0 and investigate the eigenvalues of tha 8 time in this regime ist,¢~0.38X10%/(kgl K)~0.28
matrix formed by the coefficients of Eq§&20)—(27). Note X 10 ' s. For this choice of parameters we calculiig
that in the discussion above we have calculated all the eightumerically, assuming firsE;=0.1 K, and we obtairt
eigenvalues foE;=0 [the two eigenvalues of the complex ~1.4x10°%/(kgl K)~1.0x10"% s. Thus tpy/tme~35,
system(35) are doubled when one considers it as a system oénd the separation of peaks should occur much earlier than
four real equationjs In the diagonal part there were two ze- the transitions happen. Indeed, the numerical simulation of
ros, which corresponded to two conserved quantids the system of equatiorf20)—(27) for those parameters given
+A'=0y, and B+ B'=0, ;. Six other eigenvalues were above shows almost ideal separation of peaee Fig. 3
large compared to the amplitudes of the mixing terms. It isThen we calculatet,,, for E;=0.25 K, and we obtain
clear that switching on the mixing only slightly changes thet,,/t,s~6. This is a marginal situation. The numerical
values of the six large eigenvalues. Moreover, one of theimulation in this case showsee Fig. 4 that the peaks first
eigenvalues is always zero. This corresponds to the consestart to separate, but later the valley between the peaks is
vation of the total traceA’+A'+B°+B'=1. The last filled due to the transitions.
(eighth eigenvalue now acquires a small imaginary part, and In this paper we have demonstrated that the current
this gives the time scale of the mixing between the two statethrough a single-electron transistor can serve as a measure-
of the g-bit. ment of the quantum state of thiebit, in the sense that in the
We do not have an analytical expression for the mixingcase of a superposition of two eigenstates it gives one or the
time, but we can estimate it for a concrete physical situationother result with the appropriate probabilities. This should be
At the degeneracy point, we halg =I'g, and the correc- distinguished from another question, namely, whether it is
tions to rateg30) cancel each other; thus no measurement igossible to demonstrate that an eigenstate gfhét can ac-
performed. Therefore, we choo€g,. far enough from the tually be a superposition of two different charge states, i.e.,

VI. MIXING TIME
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FIG. 3. P(m,t), the probability tham electrons have tunneled =0.25 K. The time is measured in seconds. The initial amplitudes
during timet. The parameters are those given in the tét=0.1  Of theg-bit's states:a=/0.75 andb=/0.25.
K. The time is measured in seconds. The initial amplitudes of the
g-bit's states:a=/0.75 andb=/0.25. examined by an external nonequilibrium curréglectrons in

our case and photons in the quantum jumps techhique

whether it depends on the mixing angteas described by There is, however, an important difference. In the quantum
Eqg. (6). This question has been addressed in the experimenjsmps measurements only one of the logical states scatters
of Refs. 9 and 10. These authors used a setup similar to thghotons. Therefore, the efficiency of the measurement is lim-
one shown in Fig. 1, a single-Cooper-pair box coupled to ated by the ability to detect photons. In principle, we could
single-electron transistor. They demonstrated that the expe@also realize this situation in our system, if we bias the SET
tation, i.e., the average value of the charge in the box, variesansistor such that different states of thebit switch the
continuously as a function of the applied gate voltage, asransistor between the off and on regimes. Then the effi-
follows from Eq.(6). ciency of the measurement is determined by the ability to

Our theory can also describe the type of measurementgetect an individual electron—which is possible in single-
performed in Refs. 9 and 10. For this purpose we analyze thelectron devicegfor instance by charging a single-electron
rates in the master equati@t9) for general values of the box)—and the measurement time would be given by the time
mixing angle, relaxing the requirement tar<1. Then, for it takes the first electron to tunnel. However, this mode of
our approach to be valid, we must hakg,<E;, so that operation would require that the SET transistor is kept near
taney<<1. In this regime each eigenstate of #pbit, |0) or  the switching point, where thermal fluctuations and high-
|1), corresponds to a single, thougpdependent propaga- order processes could modify the picture substantially.
tion velocity (I'y orI'y). Thus, if theg-bit is prepared in one Therefore, we have concentrated here on a situation in which
of its eigenstates, then even at the degeneracy pojnt (the SET transistor conducts for both states of qHait, and
=m/2) where the eigenstates are equally weighted superpdhe measurement requires distinguishing large numbers of
sitions of two charge states, one would observe only oneharges or currents. Accordingly, the measurement time is
peak. We have calculatdd, as a function ofy using Egs. limited by the shot noise. Another, less important, difference
(28), (29), (30), and (33), and obtained curvegot shown is thatin our system there is no third state of ¢fbit, which
here very similar to those in the experiments. It should beresonates with only one of the logical states. Therefore, the
added that near degeneracy our setup would not be efficieqtbit is restricted to stay always in the two dimensional Hil-
in projecting onto the eigenstates anymore, since the differbert space.
ence between the velocities of the pegkg,—1I';|, vanishes To conclude we have shown that a single-electron transis-
near the degeneracy point. tor capacitively coupled to g-bit may serve as a quantum

It is also interesting to compare our proposal with themeasuring device in an accessible range of parameters. We
“quantum jumps” technique employed in quantum optics in have described the process of measurement by deriving the
general, and with the realizations of tlgebits by trapped time evolution of the reduced density matrix, and have dis-
ions in particular(for a review, see Ref. 35Indeed, the cussed two dual ways to reduce it further. One way, in which
concepts are very close in spirit: the state of the system ithe density matrix of theg-bit is obtained, provides the
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