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Quantum measurements performed with a single-electron transistor

Alexander Shnirman and Gerd Scho¨n
Institut für Theoretische Festko¨rperphysik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany

~Received 20 January 1998; revised manuscript received 11 March 1998!

Low-capacitance Josephson junction systems as well as coupled quantum dots, in a parameter range where
single charges can be controlled, provide physical realizations of quantum bits, discussed in connection with
quantum computing. The necessary manipulation of the quantum states can be controlled by applied gate
voltages. In addition, the state of the system has to be read out. Here we suggest to measure the quantum state
by coupling a single-electron transistor to theq-bit. As long as no transport voltage is applied, the transistor
influences the quantum dynamics of theq-bit only weakly. We have analyzed the time evolution of the density
matrix of the transistor andq-bit when a voltage is turned on. For values of the capacitances and temperatures
which can be realized by modern nanotechniques, the process constitutes a quantum measurement process.
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I. INTRODUCTION

Recent proposals1–4 suggested using nanoscale devic
such as low-capacitance Josephson junctions or cou
quantum dots, as quantum bits (q-bits!, which are the basic
elements of quantum computers. The two logical states
different charge states of the system.1–3 Applied gate volt-
ages allow the necessary controlled manipulations~single-bit
and two-bit operations! of the quantum states. In addition t
these manipulations, a read-out device is required to perf
quantum measurements of the resulting state of theq-bit. We
suggest to use single-electron transistors for this purpos

The requirements to perform, on the one hand, quan
manipulations and, on the other hand, a quantum meas
ment, appear to contradict each other. During the manip
tions the dephasing should be minimized, while a quant
measurement should dephase the state of theq-bit as fast as
possible. The option to couple the measuring device to
q-bit only when needed is hard to achieve in mesosco
systems. The alternative, which we discuss here, is to k
the measuring device permanently coupled to theq-bit in a
state of equilibrium during the quantum operations. T
measurement is performed by driving the measuring de
out of equilibrium, in a way which dephases the quant
state of theq-bit. Similar nonequilibrium dephasing pro
cesses have recently been considered by a numbe
authors.5–8

For definiteness we discuss in this paper the measurem
process performed by a single-electron tunneling~SET! tran-
sistor coupled capacitively to a Josephson junctionq-bit;
however, this type of measurement may be performed
any quantum system with two different charge states.
describe the measuring process by considering the time
lution of the density matrix of the coupled system. We sh
that the process is characterized by three different t
scales: the dephasing time; the time of measurement, w
may be longer than the dephasing time; and the mixing ti
i.e., the time after which all the information about the initi
quantum state is lost due to the transitions induced by
measurement. Thus we arrive at a criterion for a ‘‘goo
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quantum measurement: the mixing time should be lon
than the time of measurement.

II. QUANTUM SYSTEM AND MEASURING DEVICE

The system is shown in Fig. 1. The two superconduct
islands in the upper part are the realization of aq-bit. Its state
is characterized by a discrete variablen, the number of extra
Cooper pairs on the lower superconducting island. The lo
part ~a normal island between two normal leads! stands for a
SET transistor, which is coupled capacitively to theq-bit. Its
charging state is characterized by the extra charge on
middle island,eN. A similar setup was recently studied i
the experiments of Refs. 9 and 10, with the purpose of de
onstrating that the ground state of a single Cooper pair bo
a coherent superposition of different charge states. We
cuss the relation of our proposal to these experiments be

FIG. 1. The circuit consisting of aq-bit plus a SET transistor
used as a measuring device.
15 400 © 1998 The American Physical Society
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57 15 401QUANTUM MEASUREMENTS PERFORMED WITH A . . .
As shown earlier,1 the quantum operations with theq-bit
are performed by controlling the applied gate voltageVqb.
At this stage the transport voltageV across the SET transis
tor is kept at zero. Therefore, no dissipative currents flow
the system, and dephasing effects due to the transisto
minimized. To perform a measurement, one applies a tra
port voltageV. The resulting normal current through th
transistor depends on the charge configuration of theq-bit,
since different charge states induce different voltages on
middle island of the SET transistor. In order to che
whether the dissipative current through the SET transi
contains information about the quantum state of theq-bit, we
have to discuss various noise factors~shot noise! and the
measurement-induced transitions between the states o
q-bit. It turns out that, for suitable parameters which can
realized experimentally, the dephasing by the passive S
transistor is weak. When the transport voltage is turned
the dephasing is fast, and the current through the transist
after a transient period—provides a measure of the stat
the q-bit. At still longer times the complicated dynamics
the composite system destroys the information of the qu
tum state to be measured.

The Hamiltonian of the composite system consists
three main parts: the charging energy, the terms descri
the microscopic degrees of freedom of the metal islands
electrodes, and the tunneling terms, including the Joseph
coupling. The charging term is a quadratic form in the va
ablesn andN:

Hcharge5Eqbn
21EsetN

21EintnN12enVn1eNVN1const.
~1!

The charging energy scalesEqb, Eset, and Eint are deter-
mined by the capacitances between all the islands. Simila
the effective gate voltagesVn andVN depend in general on
all three voltagesVqb, Vg , andV, but, for a symmetric bias
~see Fig. 1!, Vn andVN are controlled only by the two gat
voltagesVqb andVg .

The microscopic termsHL , HR , andHI describe nonin-
teracting electrons in the two leads and on the middle isl
of the SET transistor, respectively:

Hr5(
ks

eks
r cks

r† cks
r ~r 5L,R,I !. ~2!

The index s labels the transverse channels including
spin, while k labels the wave vector within one channe
Similar terms exist for the two islands of theq-bit. Here we
use the ‘‘macroscopic’’ description of the superconducto
assuming that the microscopic degrees of freedom have
ready been integrated out.11

The tunneling terms include the Josephson couplingHJ
52EJcosQ, which describes the transfer of Cooper pa
between the two islands of theq-bit (eiQun&5un11&), and
the normal tunneling Hamiltonian for the SET transistor:

HT5 (
kk8s

Tkk8s
L cks

L†ck8s
I e2 if

1 (
k8k9s

Tk8k9s
R ck9s

R† ck8s
I e2 ifeic1H.c. ~3!
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Apart from the microscopic degrees of freedom, Eq.~3! con-
tains two ‘‘macroscopic’’ operatorse6 if ande6 ic. The first
one describes changes of the charge on the transistor is
due to the tunneling:eifuN&5uN11&. It may be treated as
an independent degree of freedom if the total number
electrons on the island is large. We include one more op
tor e6 ic which describes the changes of the charge in
right lead. It acts onm, the number of electrons which hav
tunneled through the SET transistor,eicum&5um11&. Since
the chemical potential of the right lead is controlled,m does
not appear in any charging part of the Hamiltonian. Ho
ever,e6 ic allows us to keep track of the number of electro
which have passed through the SET transistor, which is
lated to the current through the device.

We define theq-bit’s Hamiltonian as the part of the tota
one which governs theq-bit’s dynamics in equilibrium (N
50):

Hqb5Eqb~n2Qqb!
22EJcosQ. ~4!

HereQqb[22eVn/2Eqb is theq-bit’s gate charge, measure
in units of 2e. We concentrate on the values ofQqb in an
interval around the degeneracy pointQqb5

1
2, so that only the

low-energy charge statesn50 andn51 are relevant. These
states, however, are not appropriate logical states of
q-bit, since they are not the eigenstates of the Hamilton
~4!. We diagonalize Eq.~4! in the two charge state subspac
for a fixed value ofQqb ~which is kept constant between th
quantum manipulations and during the measurement!, and
denote the corresponding logical statesu0& and u1&. In this
basis, up to a constant,Hqb52 1

2 DE sz , wheresz is the
Pauli matrix and

DE[A@Eqb~122Qqb!#
21EJ

2. ~5!

The price which we pay for this simplification is that th
number operatorn, which appears in the mixed term of Eq
~1!, becomes nondiagonal:

n5 1
2 2 1

2 coshsz2
1
2 sin h sx , ~6!

with mixing angleh given by tanh5EJ /Eqb(122Qqb). In
the quantum regime, which we are considering here,Eqb
@EJ , and, therefore, one can chooseQqb so that tanh!1.

The interaction Hamiltonian@part of the mixed term in
Eq. ~1!# now becomes

H int52 1
2 EintN~coshsz1sin h sx!, ~7!

while the rest of the mixed term (EintN/2), as well as all
other remaining terms, are collected in the Hamiltonian
the SET transistor:

Hset5Eset~N2Qset!
21HL1HR1HI1HT . ~8!

The transistor’s gate charge~measured in the units ofe)
becameQset[2(eVN1Eint/2)/2Eset. The total Hamiltonian
reads H5Hqb1Hset1H int . One should understand, how
ever, that the division chosen is rather arbitrary. The ter
Hqb andHset would not describe theq-bit and the SET tran-
sistor if they were decoupled.
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III. QUANTITATIVE DESCRIPTION OF THE
MEASUREMENT, TIME EVOLUTION OF THE

REDUCED DENSITY MATRIX

The total system is described by a reduced density ma
s(t)5TrL,R,I$r(t)%, where the trace is taken over the micr
scopic states of the leads and of the island. In general,
density matrixs( i , j ;N,N8;m,m8) is a matrix in i and j ,
which stand, for the quantum states of theq-bit (u0& or u1&),
in N and inm. However, as shown in Ref. 12, a closed set
equations describing the time evolution of the system can
derived where the off-diagonal elements inN have been
eliminated. The same is true for the off-diagonal element
m. Therefore, we need to consider only the following e
ments of the density matrixs i , j

N,m[s( i , j ;N,N;m,m). We
assume now that at timet50, when theq-bit is prepared in
the quantum stateau0&1bu1& as a result of previous quan
tum manipulations, we switch on a transport voltage to
SET transistor. To proceed, we can further reduce the den
matrix in two different ways to obtain dual descriptions
the measuring process.

The first widely used procedure7 is to trace overN andm.
This yields a reduced density matrix of theq-bit s i , j

[(N,ms i , j
N,m . Assuming that, att50, it is in the state

s i , j~0!5S uau2 ab*

a* b ubu2 D , ~9!

the questions are how fast the off-diagonal elements ofs i , j
vanish ~dephasing!, and how fast the diagonal elemen
change their original values~for instance due to transition
induced by the measurement!. This description is enough
when one is interested in the quantum properties of the m
sured system only (q-bit in our case!, and the measuring
device is used as a source of dephasing.5,6,8 It does not tell us
much, however, about the quantity measured in an exp
ment, namely, the current flowing through the SET trans
tor.

The second procedure is to evaluate the probability dis
bution of the number of electronsm which have tunneled
trough the SET transistor during timet:

P~m,t ![(
N,i

s i ,i
N,m~ t !. ~10!

This quantity gives a complete description of the measu
ment. At t50, no electrons have tunneled, soP(m,0)
5dm,0 . Then thisd peak starts to shift in the positivem
direction, and, at the same time, it widens due to shot no
Since two states of theq-bit correspond to different conduc
tivities ~and shift velocities inm space!, one may hope tha
after some time the peak splits in two. If after sufficie
separation of the two peaks their weights~integrals! are still
close to uau2 and ubu2, a good quantum measurement h
been performed. Unfortunately, there exist further proces
which destroy this idealized picture. After a long time t
two peaks transform into a broad plateau, since transiti
between theq-bit’s states are induced by the measureme
Therefore, one should find an optimum time for the measu
ment, so that, on one hand, the two peaks are separate
on the other hand, the induced transitions have not yet h
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pened. In order to describe this, we have to analyze the t
evolution of the reduced density matrix quantitatively.

IV. DERIVATION OF THE MASTER EQUATION

The Bloch-type or master equations with coherent ter
have only recently been analyzed in condensed-ma
physics.13,7 In Ref. 12, a diagrammatic technique was dev
oped which provides a formally exact master equation as
expansion in the tunneling strength. Only the tunneling te
HT is considered a perturbation, while all other terms con
tute the zeroth-order HamiltonianH0[H2HT , which is
treated exactly. The master equation reads

ds~ t !

dt
2

i

\
@s~ t !,H0#5E

0

t

dt8S~ t2t8!s~ t8!, ~11!

where the matrix elements ofS(t8,t) can be calculated dia
grammatically using the real-time Keldysh conto
technique.12 The simplest diagram describing the tunneli
through the left junction in first-order perturbation theo
~sequential tunneling! is shown in Fig. 2. The dashed line
crossing the diagram contribute the following factor to t
rate12

2aL

S p

\b D 2

e6 imL~ t2t8!

sinh2F p

\b
~ t2t86 id!G , ~12!

whereaL[\/(4p2e2RTL
), mL is the electrochemical poten

tial of the left lead, andd[1/vc is the inverse frequency
cutoff. The sign of theid term depends on the time directio
of the dashed line.12 It is minus if the direction of the line
with respect to the Keldysh contour coincides with its dire
tion with respect to the absolute time~from left to right!, and
plus otherwise. For example, the right part of Fig. 2 sho
carry a minus sign, while the left part carries a plus sign. F
the sign in front ofimL(t2t8) the rule is as follows: minus
if the line goes forward with respect to the absolute time, a
plus otherwise.

For a single SET transistor, the horizontal lines cor
spond to trivial exponential factors12 eiEt. In our case, how-
ever, we have to account for the nontrivial time evolution
the q-bit. Therefore the upper line in the left part of Fig.
corresponds to ^N21,j ue2 iH 0(t2t8)uN21,j 8&, while the

FIG. 2. The first-order diagram for the transition rates.
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57 15 403QUANTUM MEASUREMENTS PERFORMED WITH A . . .
lower line corresponds tôN,i ueiH 0(t2t8)uN,i 8&. To calculate
these matrix elements, we diagonalizeHqb 1 H int for each
value ofN. The eigenenergies are

E0,1
~N!57

1

2
A~DE1EintN cosh!21~EintN sin h!2,

~13!

and the mixing angleseN ~analogous toh) are given by
taneN5EintN sinh/(DE1EintN cosh). The matrix elements
~propagators! read

^N,0ue2 iH 0DtuN,0&5S cos2
eN

2
e2 iE0

NDt1sin2
eN

2
e2 iE1

NDtD
3e2 iEset

~N!Dt,

^N,1ue2 iH 0DtuN,1&5S cos2
eN

2
e2 iE1

NDt1sin2
eN

2
e2 iE0

NDtD
3e2 iEset

~N!Dt, ~14!

^N,1ue2 iH 0DtuN,0&5
1

2
sin eN~e2 iE0

NDt2e2 iE1
NDt!e2 iEset

~N!Dt,

whereEset
(N)[Eset(N2Qset)

2.
We now analyze the rates in Fig. 2 for different choices

q-bit’s indices in the regimeDE@Eint ,EJ . There the mixing
angles are small,eN}NEintEJ /(DE)2, for all relevant values
of N. Hence we keep only terms linear ineN . The simplest
transition (i 850,j 850,N21,m)→( i 50,j 50,N,m) is de-
scribed by

S N21,m,0;N,m,0
~1!N21,m,0;N,m,0~Dt !5

2aLS p

\b D 2

e2 iẼtD

sinh2F p

\b
~Dt1 id!G 1c.c.,

~15!

where Ẽ stands here formL1(Eset
(N21)2Eset

(N))1(E0
N21

2E0
N).

The form of the master equation~11! suggests the use o
a Laplace transformation, after which the last term in E
~11! becomesS(s)s(s). We Laplace transform Eq.~15! in
the regimes!Ẽ, i.e., we assume the density matrixs to
change slowly on a time scale given by\/Ẽ. This assump-
tion should be verified later for self-consistency. At ze
temperature (b→`) and ford→0, we obtain

S N21,m,0;N,m,0
~1!N21,m,0;N,m,0~s!

52a lRe$~s1 iẼ !eid~s1 iẼ !E1@ id~s1 iẼ !#%

'2paLẼQ~Ẽ!22aLs@11g1 ln~ udẼ!u#, ~16!

where E1@•••# is the exponential integral, andg'0.58 is
Euler’s constant. Denoting the diverging factor@11g

1 ln(udẼu)# by D(Ẽ) and performing the inverse Laplac
transform, we arrive at
f

.

S N21,m,0;N,m,0
~1!N21,m,0;N,m,0~Dt !

'2paLẼQ~Ẽ!d~Dt10!

22aLD~Ẽ!d8~Dt10!. ~17!

@Note that Eq.~17! is equivalent to Eq.~15! only as a kernel
in the convolution~11! when applied to slowly changing
matrix elements ofs.# The first term of Eq.~17! is the usual
golden rule tunneling rate corrected with respect to the ad
tional charging energy corresponding to the quantum s
u0& of the q-bit, E0

N212E0
N . The second~diverging! part of

Eq. ~17! produces a term proportional to (d/dt)s0,0
N21,m . One

can take this term to the left-hand side of Eq.~11!, so that the
time derivative on the left-hand side will look like
(d/dt)@s0,0

N,m22aLD(Ẽ)s0,0
N21,m#. We analyze all possible

choices of theq-bit’s indices in Fig. 2, and arrive at th
conclusion that the diverging terms always have the sa
structure as the coherent terms on the left-hand side of
~11!. Moreover, if we neglect some energy corrections
orderEint , we may incorporate all of these terms to the le
hand side of Eq.~11!, so that the master equation reads

~11aLA1aRB!Fds~ t !

dt
2

i

\
@s~ t !,H0#G5Gs~ t !,

~18!

where A and B are tridiagonal matrices in theN and m
spaces, composed of the diverging factors of the type
D(Ẽ), while G is the regular local part ofS(t2t8).

We expect that without the approximation of energies
the diverging terms, the structure of Eq.~18! would be the
same, withA andB being more complicated matrices, whic
would include some mixing in the space of theq-bit’s states.
Finally, we note that for any physically reasonable choice
the cutoffd, the logarithmically divergent factors in the ma
trices A and B are of order 1, and, therefore, the mixin
corrections to the unit matrix in the left-hand side of Eq.~18!
are small. We multiply the master equation~18! by (1
1aLA1aRB)21'(12aLA2aRB) from the left, so that
the mixing corrections move to the right-hand side. SinceG
is linear inaL andaR , the mixing corrections are quadrati
We drop them in the framework of the first-order perturb
tion theory. The master equation to be analyzed thus
comes:

ds~ t !

dt
2

i

\
@s~ t !,H0#5Gs~ t !. ~19!

If the applied voltage is not too high~the exact criterion to
be specified! we may consider only two charge states of t
SET transistor,N50,1. We perform a Fourier transform i
m spaces i , j

N (k)[(ms i , j
N,meikm. To shorten formulas, we in

troduce AN[s0,0
N (k), BN[s1,1

N (k), CN[(mRe s0,1
N,m eikm,

and DN[(mIm s0,1
N,m eikm. This enables us to rewrite Eq

~19! as

Ȧ052GL0
A01GR0

eikA12vLC02vReikC1, ~20!

Ȧ15GL0
A02GR0

A12VD11vLC01vRC1, ~21!

Ḃ052GL1
B01GR1

eikB12vLC02vReikC1, ~22!
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15 404 57ALEXANDER SHNIRMAN AND GERD SCHÖN
Ḃ15GL1
B02GR1

B11VD11vLC01vRC1, ~23!

Ċ052DE0D02GLC01GReikC12
vL

2
~A02B0!

2
vR

2
eik~A12B1!, ~24!

Ċ152DE1D11GLC02GRC11
vL

2
~A02B0!

1
vR

2
~A12B1!, ~25!

Ḋ05DE0C02GLD01GReikD1, ~26!

Ḋ15DE1C11GLD02GRD11
V

2
~A12B1!. ~27!

Here DE0,1[E1
0,12E0

0,1 are the energy differences betwe
the q-bit’s states for N50 and 1, respectively, andV
[Eintsinh is the coefficient in the mixing term inH int for
N51 @see Eq.~7!#. The terms proportional toDE0,1 andV
originate from the coherent part of Eq.~19!. The tunneling
rates which appear in the four last equations for the o
diagonal elements@Eqs.~24!–~27!# are given by

GL[2paL@mL2Eset~122Qset!#,
~28!

GR[2paR@2mR1Eset~122Qset!#.

The rates

GL0,1
[GL6DGL ,

~29!

GR0,1
[GR6DGR

appearing in the equations for the diagonal elements@Eqs.
~20!–~23!# are corrected due to the charging energy indu
by theq-bit:

DGL[2paL~E0
02E0

1!,
~30!

DGR[22paR~E0
02E0

1!.

These corrections are, actually, responsible for the separa
of the peaks. In the regime tanh!1, which we assume here
uDGL,Ru'2paL,REint . The rest are small mixing terms
vL,R[paL,Rsin e1DE1, which also originate from diagram
of the type in Fig. 2. Note that we assume that only the t
rates given in Eq.~28! are nonzero~the two-state approxima
tion!. Moreover, we assume that theq-bit’s charging energy
corrections can at most change these two rates, but they
not switch on any other rate or switch off one of the two
Eqs.~28!.

V. QUALITATIVE ANALYSIS
OF THE MASTER EQUATION

First, we analyze the system of equations~20!–~27! quali-
tatively. Imagine that we can ‘‘switch off’’ the Josephso
coupling during the measurement. Then all the mixing ter
-

d

ion

o

an

s

in Eqs. ~20!–~27!, i.e., those proportional toV and vL,R
disappear, and the system factorizes into three indepen
groups. The first one@Eqs.~20! and ~21!#,

Ȧ052GL0
A01GR0

eikA1,
~31!

Ȧ15GL0
A02GR0

A1,

has plain wave solutions (}eivt). For eigenvalues, the stan
dard analysis gives,

v1,25
i

2
~GL0

1GR0
!H 16F11

4G0~eik21!

GL0
1GR0

G1/2J , ~32!

where

G0[
GL0

GR0

GL0
1GR0

~33!

is the total transport rate corresponding to theq-bit is in the
state u0&. When k is small v1' i (GL0

1GR0
), while v2

'G0k1 iG0„11@2G0 /(GL0
1GR0

)#…k2. Sincev1 is a large

imaginary number, already after a short time 1/uv1u only the
second eigenvector (A1/A05GL0

/GR0
) survives. This eigen-

vector multiplies a wave packet propagating with the gro
velocity G0. The wave packet widens due to shot noise of
single electron tunneling, its width being given byAG0t ~the
second imaginary term in the expression forv2).

Analogously the second group of equations~22! and~23!
gives a wave packet with the group velocityG1

[GL1
GR1

/(GL1
1GR1

) and the width'AG1t. The two peaks

correspond to theq-bit in the statesu0& andu1&, respectively.
They separate when their width is smaller than the dista
between their centersAG0t1AG1t<uG02G1ut. After this
time,

tms[uAG02AG1u22, ~34!

which we denote as the measurement time, the process
constitute a quantum measurement. Similar expressions
been obtained in Refs. 5–7, where they have been denote
the dephasing time.

To obtain a clue for the dephasing, we analyze the th
group of equations~24!–~27! at k50 ~the trace overm is
equivalent tok50). These equations may be combined in
two complex ones:

ṡ0,1
0 5 iDE0s0,1

0 2GLs0,1
0 1GRs0,1

1 ,
~35!

ṡ0,1
1 5 iDE1s0,1

1 1GLs0,1
0 2GRs0,1

1 .

The standard analysis shows that ifdE[uDE12DE0u'Eint
!(GL1GR) the imaginary parts of the eigenvalues a
Im v1'(GL1GR) and Imv2'dE2/@4(GL1GR)#. In the
opposite limit dE@(GL1GR) the imaginary parts are
Im v1'GL and Imv2'GR . The first limit is physically
more relevant~we have assumed parameters in this regim!,
although the second one is also possible if the tunnelin
too weak or the coupling between theq-bit and the SET
transistor is too strong. In both limits the dephasing tim
which is defined as the longer of the two times,
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tf[max$@ Im v1#21,@ Im v2#21%, ~36!

is parametrically different from the measurement time~34!.
In the first limit, dE!(GL1GR), it is

tf5
4~GL1GR!

dE2 }aL,R , ~37!

while t ms}aL,R
21 . One can check that in the whole range

validity of our approach the measurement time exceeds
dephasing time,tms.tf . This is consistent with the fact tha
a ‘‘good’’ quantum measurement should completely deph
a quantum state. In Refs. 5–7, where different systems h
been discussed, the expressions for the resulting depha
time were given by expressions similar to Eq.~34!, thustf
5tms.

In our example, the dephasing time is shorter than
measurement time. The reason for this is, probably, the p
ence of the additional uncontrolled environment provided
the middle island of the SET transistor. The transport
electrons occurs via a real state of the islandN51. In dif-
ferent transitions, the island may be left in different micr
scopic states, even though the same number of elect
have passed. To put it into the language of Ref. 14, the in
state of the system (au0&1bu1&) ux& um50& evolves into
au0& ux0& um0&1bu1& ux1& um1&, where ux& stands for the
quantum state of the uncontrolled environment. One m
imagine a situation whenm05m1, but ux0& and ux1& are
orthogonal. In this situation dephasing has occurred, bu
measurement has been performed.

The additional environment actually plays a positive ro
i.e., it helps us to perform a quantum measurement, prov
it dephases the state of theq-bit only when the system is
driven out of equilibrium. This is because the dephasing s
presses the transitions between the states of theq-bit ~the
Zeno effect!.

VI. MIXING TIME

Finally, we analyze what happens if we take into acco
the mixing terms in the system of equations~20!–~27!. We
assumek50 and investigate the eigenvalues of the 838
matrix formed by the coefficients of Eqs.~20!–~27!. Note
that in the discussion above we have calculated all the e
eigenvalues forEJ50 @the two eigenvalues of the comple
system~35! are doubled when one considers it as a system
four real equations#. In the diagonal part there were two z
ros, which corresponded to two conserved quantitiesA0

1A15s0,0 and B01B15s1,1. Six other eigenvalues wer
large compared to the amplitudes of the mixing terms. I
clear that switching on the mixing only slightly changes t
values of the six large eigenvalues. Moreover, one of
eigenvalues is always zero. This corresponds to the con
vation of the total traceA01A11B01B151. The last
~eighth! eigenvalue now acquires a small imaginary part, a
this gives the time scale of the mixing between the two sta
of the q-bit.

We do not have an analytical expression for the mix
time, but we can estimate it for a concrete physical situat
At the degeneracy point, we haveGL5GR , and the correc-
tions to rates~30! cancel each other; thus no measuremen
performed. Therefore, we chooseQset far enough from the
f
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degeneracy point, which isQset5
1
2, so thatGL,GR and the

Coulomb blockade energyECB[Eset(122Qset) is of the or-
der ofEset. To satisfy the conditions for the golden rule@see
Eq. ~15! and the discussion thereafter#, we assume the
chemical potential of the left leadmL5V/2 to exceed the
Coulomb blockade energy by an amount of the order
ECB}Eset, and assumeECB to be the largest energy scale
the system:ECB@DE. The transport voltage should no
however, exceed the limit, after which the third charge st
of the SET transistorN521 becomes involved. ThusV/2
,Eset(112Qset), andQsetshould be chosen far enough fro
zero as well. In this regime we estimate the mixing time

tmix
21}2pa

Eint
2 EJ

2

~DE!4
Eset, ~38!

whereaL5aR[a. The measurement time in the same r
gime is given approximately by

tms
21}2pa

Eint
2

Eset
. ~39!

The exact values ofQset andV would determine the numeri
cal coefficients in front of Eqs.~38! and ~39!. Thus tms/tmix

}EJ
2Eset

2 /(DE)4. One recognizes two competing ratios he
EJ /DE, which is small, andEset/DE, which is large. The
conditiontms/tmix!1, thus, imposes an additional restrictio
on the parameters of the system.

VII. DISCUSSION

To show that all the conditions assumed in this paper
realistic, we calculate the charging energiesEset, Eqb, and
Eint for the following case: the capacitance of the Joseph
junction CJ52.0310216 F, the capacitances of the norm
junctions CN51.0310217 F, and the capacitances of a
other capacitorsC52.5310218 F. We obtainEset'20 K,
Eqb'10 K, andEint'0.5 K. TakingQqb50.35, Qset50.15,
and eV548 K, we obtainDE'3 K, ECB'14 K, andV/2
2ECB'10 K. We also assume 2pa50.1. The measuremen
time in this regime is tms'0.383104\/(kB1 K)'0.28
31027 s. For this choice of parameters we calculatetmix
numerically, assuming firstEJ50.1 K, and we obtaintmix
'1.43105\/(kB1 K)'1.031026 s. Thus tmix /tms'35,
and the separation of peaks should occur much earlier
the transitions happen. Indeed, the numerical simulation
the system of equations~20!–~27! for those parameters give
above shows almost ideal separation of peaks~see Fig. 3!.
Then we calculatetmix for EJ50.25 K, and we obtain
tmix /tms'6. This is a marginal situation. The numeric
simulation in this case shows~see Fig. 4! that the peaks first
start to separate, but later the valley between the peak
filled due to the transitions.

In this paper we have demonstrated that the curr
through a single-electron transistor can serve as a meas
ment of the quantum state of theq-bit, in the sense that in the
case of a superposition of two eigenstates it gives one or
other result with the appropriate probabilities. This should
distinguished from another question, namely, whether i
possible to demonstrate that an eigenstate of aq-bit can ac-
tually be a superposition of two different charge states, i
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whether it depends on the mixing angleh as described by
Eq. ~6!. This question has been addressed in the experim
of Refs. 9 and 10. These authors used a setup similar to
one shown in Fig. 1, a single-Cooper-pair box coupled t
single-electron transistor. They demonstrated that the ex
tation, i.e., the average value of the charge in the box, va
continuously as a function of the applied gate voltage,
follows from Eq.~6!.

Our theory can also describe the type of measurem
performed in Refs. 9 and 10. For this purpose we analyze
rates in the master equation~19! for general values of the
mixing angleh, relaxing the requirement tanh!1. Then, for
our approach to be valid, we must haveEint!EJ , so that
taneN!1. In this regime each eigenstate of theq-bit, u0& or
u1&, corresponds to a single, thoughh-dependent propaga
tion velocity (G0 or G1). Thus, if theq-bit is prepared in one
of its eigenstates, then even at the degeneracy pointh
5p/2) where the eigenstates are equally weighted supe
sitions of two charge states, one would observe only
peak. We have calculatedG0 as a function ofh using Eqs.
~28!, ~29!, ~30!, and ~33!, and obtained curves~not shown
here! very similar to those in the experiments. It should
added that near degeneracy our setup would not be effic
in projecting onto the eigenstates anymore, since the dif
ence between the velocities of the peaks,uG02G1u, vanishes
near the degeneracy point.

It is also interesting to compare our proposal with t
‘‘quantum jumps’’ technique employed in quantum optics
general, and with the realizations of theq-bits by trapped
ions in particular~for a review, see Ref. 15!. Indeed, the
concepts are very close in spirit: the state of the system

FIG. 3. P(m,t), the probability thatm electrons have tunnele
during timet. The parameters are those given in the text,EJ50.1
K. The time is measured in seconds. The initial amplitudes of
q-bit’s states:a5A0.75 andb5A0.25.
ts
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examined by an external nonequilibrium current~electrons in
our case and photons in the quantum jumps techniq!.
There is, however, an important difference. In the quant
jumps measurements only one of the logical states sca
photons. Therefore, the efficiency of the measurement is
ited by the ability to detect photons. In principle, we cou
also realize this situation in our system, if we bias the S
transistor such that different states of theq-bit switch the
transistor between the off and on regimes. Then the e
ciency of the measurement is determined by the ability
detect an individual electron—which is possible in sing
electron devices~for instance by charging a single-electro
box!—and the measurement time would be given by the ti
it takes the first electron to tunnel. However, this mode
operation would require that the SET transistor is kept n
the switching point, where thermal fluctuations and hig
order processes could modify the picture substantia
Therefore, we have concentrated here on a situation in wh
the SET transistor conducts for both states of theq-bit, and
the measurement requires distinguishing large number
charges or currents. Accordingly, the measurement tim
limited by the shot noise. Another, less important, differen
is that in our system there is no third state of theq-bit, which
resonates with only one of the logical states. Therefore,
q-bit is restricted to stay always in the two dimensional H
bert space.

To conclude we have shown that a single-electron tran
tor capacitively coupled to aq-bit may serve as a quantum
measuring device in an accessible range of parameters
have described the process of measurement by deriving
time evolution of the reduced density matrix, and have d
cussed two dual ways to reduce it further. One way, in wh
the density matrix of theq-bit is obtained, provides the

e

FIG. 4. P(m,t), the probability thatm electrons have tunneled
during time t. The parameters are those given in the text,EJ

50.25 K. The time is measured in seconds. The initial amplitu
of the q-bit’s states:a5A0.75 andb5A0.25.
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dephasing time, while the other, in which the number
tunneled electrons is counted, provides the time of meas
ment. We have shown that, in our case, the dephasing
was shorter than the measurement time, and we have
cussed the physical meaning of this result. Finally, we h
estimated the mixing time, i.e., the time scale on which
transitions induced by the measurement occurs. We h
shown that this may be made longer than the measurem
time with current technology.
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