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Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors
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Analytical solutions using a recently derived block-diagonalized Hamiltonian for strained wurtzite crystals
are shown. The theoretical results are used to extract the deformation potentials from the experimental results
of the A-, B-, andC-line exciton transition energies as a function of thec-axis strain using a set of recently
reported elastic stiffness constants. The obtained parameters are then applied to calculate the wave functions,
valence band energies, effective masses, optical-momentum matrix elements, exciton Bohr radius, and binding
energy as a function of strain. These analytical and numerical results are useful for understanding the optical
and electronic properties near the band edges of strained wurtzite crystals.@S0163-1829~98!01224-7#
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I. INTRODUCTION

Gallium nitride~GaN! and related materials have receiv
a lot of attention recently. Theoretical models for the elec
cal and optical properties of GaN related materials play
important role in designing quantum-well structures for
vestigating physical processes as well as device applicat
using these wurtzite crystals. Blue-green semiconductor
sers using InGaN/GaN quantum-well structures have b
successfully demonstrated1,2 although the lifetime of these
devices at room temperature is still limited.

The GaN materials are usually grown on substrates s
as sapphire or SiC and a significant amount of strain ex
Since strain significantly affects the electronic and opti
properties of semiconductors, it has been difficult to de
mine many of the band structure parameters due to an
known amount of residual strain in many earlier sampl
Although theoretical work on wurtzite crystals has been
veloped since the 1960s,3 more experimental data on high
quality GaN and InGaN wurtzite crystals with measur
strain values were available only recently. Many parame
such as the effective band structure parameters for the
lence bands, the crystal field split-off energy, and the sp
orbit energy were obtained theoretically although not all
them match closely to the experimental data.

Theoretical models for wurtzite electronic structures w
strain effects have been reported based on thek•p
method.3–8 A consistent set of basis functions with the co
responding Hamiltonian has been derived, and it has b
found that the six-by-six Hamiltonian for the valence ban
can be block-diagonalized into two three-by-thr
Hamiltonians.6,7

In this paper, we present analytical solutions and num
cal results for the electronic band structures and wave fu
tions for strained GaN bulk samples using the bloc
diagonalized Hamiltonian. Our calculations show the stra
570163-1829/98/57~24!/15303~12!/$15.00
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dependent band mixing features of the GaN valence ba
Furthermore, analytical expressions for the strain dep
dence of the effective masses, exciton properties, and o
important parameters of GaN have been calculated. Th
expressions will be useful for understanding the physi
properties of GaN. Based on the analytical expressions,
obtain the deformation potentials using recent experime
data.9

In Sec. II, we derive the analytical expressions of t
energy dispersion, wave functions, and other properties
the strained GaN. The deformation potentials are then
tracted by using the analytical expressions of the interb
transition energies forA-, B-, and C-line excitons. In Sec.
III, numerical results for the strain effects on the valen
wave functions, the energy dispersion, band-edge effec
masses, and optical-matrix elements are shown. The st
dependent exciton binding energies are also calculated.
then conclude in Sec. IV.

II. THEORY

In this section, we present the analytical solutions of
valence band energies and their corresponding eigenf
tions for the strained wurtzite semiconductors based on
recently developed block-diagonalized Hamiltonians. T
analytical expressions of the band-edge effective masses
citon properties, and optical matrix elements of the strain
wurtzite semiconductors are also shown.

A. Block-diagonalized Hamiltonian and eigenenergies

The 636 valence band Hamiltonian for the straine
wurtzite semiconductor can be blockdiagonalized into two
33 matrices6,7

Hv~k!5FH333
U ~k! 0

0 H333
L ~k!

G , ~1!
15 303 © 1998 The American Physical Society
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where

H333
U ~k!5F F Kt 2 iH t

Kt G D2 iH t

iH t D1 iH t l
G , ~2!

H333
L ~k!5F F Kt iH t

Kt G D1 iH t

2 iH t D2 iH t l
G , ~3!

and the basis functions are shown in the Appendix. The
trix elements are

F5D11D21l1u,

G5D12D21l1u,

l5
\2

2m0
~A1kz

21A2kt
2!1D1ezz1D2~exx1eyy!,

u5
\2

2m0
~A3kz

21A4kt
2!1D3ezz1D4~exx1eyy!, ~4!

Kt5
\2

2m0
A5kt

2 ,

Ht5
\2

2m0
A6ktkz ,

D5A2D3 ,

and

kt
25kx

21ky
2 . ~5!

Here Ai ’s are the valence band effective-mass parame
which are similar to the Luttinger parameters in zinc blen
crystal. Dis are the deformation potentials for wurtzi
crystals.3 In the above Hamiltonian, we have considered
strained-layer wurtzite crystal pseudomorphically gro
along the~0001! direction (c axis!, the only nonvanishing
elements are7

exx5eyy5
a02a

a
,

ezz52
2c13

c33
exx , ~6!

wherea0 anda are the lattice constants of the substrate a
the layer materials, respectively.

It should be noted that the above convention gives a ne
tive in-plane strain (exx5eyy,0) and positivec-axis strain
(ezz.0) for a biaxial compressive strain. In the case o
biaxial tensile strain, we have a positive in-plane strain a
negativec-axis strain. In this paper, the parameterezz is used
as the variable in our plots since it has been directly m
sured from x-ray diffraction for a few samples.9
a-

rs
e

a

d

a-

d

a-

The eigenequation for the valence band energyE for a
given k vector is given by

H333
U ~k!F g1

g2

g3

G5EF g1

g2

g3

G . ~7!

The eigenequation has three analytical solutions,10 and
they can be expressed as

E15~S11S2!2
C2

3
,

E252
1

2
~S11S2!2

C2

3
1

iA3

2
~S12S2! , ~8!

E352
1

2
~S11S2!2

C2

3
2

iA3

2
~S12S2!,

where

q5
1

3
C12

1

9
C2

2 ,

r 5
1

6
~C1C223C0!2

1

27
C2

3 , ~9!

S15@r 1~q31r 2!1/2#1/3,

S25@r 2~q31r 2!1/2#1/3, ~10!

and

C252~F1G1l!,

C15FG1Gl1Fl2D22Kt
222Ht

2 , ~11!

C052det@H333
U #.

The lower 333 Hamiltonian is the complex conjugate o
the upper 333 Hamiltonian. Therefore, they have exact
the same eigenvalues since the energies are real. The
functions of the lower Hamiltonian are the complex con
gates of the corresponding wave functions of the up
Hamiltonian. Below we consider the solutions for the upp
Hamiltonian.

B. Wave functions

After we obtain the three eigenvalues, we calculate
corresponding eigenfunctions. For a generalkt not at the
zone center, the envelope functions are determined by

F g1
v

g2
v

g3
v
G5

1

DvF $ iH t~G2Ev!1~D2 iH t!Kt%

$2 iH tKt2~D2 iH t!~F2Ev!%

$~G2Ev!~F2Ev!2Kt
2%

G , ~12!

where
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Dv5Au iH t~G2Ev!1Kt~D2 iH t!u21u iH tKt1~D2 iH t!~F2Ev!u21u~G2Ev!~F2Ev!2Kt
2u2, ~13!
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for v5heavy hole~HH!, light hole ~LH!, and crystal-field
split-off hole ~CH! bands. Care should be taken atkt50 in
the above expressions.

Once we obtain the expansion coefficientsg1 , g2 , and
g3, the complete Bloch wave function is given by

Cv~r ,k!5
1

AV
ei ~k•r !(

i 51

3

gi
v~k!u i & ~14!

for each hole bandv.

C. Band-edge energies and exciton transition energies

At the band edges,kt5kz50, the Hamiltonians~2! and
~3! can be simplified sinceKt50 andHt50. This Hamil-
tonian has three eigenvalues for the valence bands as sh
in Fig. 1,

E0
HH5F0 ,

E0
LH5

G01le

2
1AS G02le

2 D 2

1D2, ~15!

E0
CH5

G01le

2
2AS G02le

2 D 2

1D2,

where

F05D11D21le1ue ,

G05D12D21le1ue ,

le5D1ezz1D2~exx1eyy!, ~16!

ue5D3ezz1D4~exx1eyy!.

For the conduction band, the band-edge energy is gi
by

E0
C5D11D21Eg1Pce , ~17!

which includes a hydrostatic energy shift

Pce5aczezz1act~exx1eyy!. ~18!

D. Band-edge effective masses and optical matrix elements

Band-edge effective masses can be obtained by se
eitherkt50 or kz50 in the three-by-three Hamiltonian an
looking for theE2k relation for a smallkz or kt to find the
zone center effective masses. We then obtain the transv
~perpendicular to thec axis! andz-directional~parallel to the
c axis! effective masses, respectively.

These results can also be calculated by using near z
centerE2k dispersion relations and taking their second d
rivatives with respect tokt and kz at the zone center. Th
calculated results are summarized in Table I.

Optical-matrix elements for transverse (t) andc-axis (z)
polarized waves are given by
wn

n

ng

rse

ne
-

Mz5 z^ccupzucv& z2,

Mt5 z^ccuptucv& z2, ~19!

respectively. These quantities determine the optical respo
of the materials for the TE (t) and TM (z) polarized light.
The calculated analytical results are presented in Table
whereEpz andEpt are given by

Epz5
2

m0
z^ iSupzuZ& z2,

Ept5
2

m0
z^ iSupxuX& z2,

5
2

m0
z^ iSupyuY& z2, ~20!

and pz , px , and py are thez, x, and y components of the
momentum operator.

E. Exciton Bohr radius and binding energy

The bound state of the exciton binding energy is oft
calculated using the variational method because of its s
plicity. In axially symmetric crystals such as wurtzite, th
variational wave function and the Hamiltonian are anis
tropic. Here we employ the variational method16 for the cal-
culation of exciton binding energy and Bohr radius. T
Hamiltonian for an electron-hole pair is given by

FIG. 1. Schematic diagram for the conduction~C!, heavy-hole
~HH!, light-hole~LH!, and crystal-field split-off hole~CH! bands of
a strained wurtzite crystal.
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H52
\2

2m t
S ]2

]x21
]2

]y2D2
\2

2mz

]2

]z2

2
e2

@k tkz~x21y2!1k t
2z2#1/2, ~21!

wherem t andmz are the reduced mass in thet andz direc-
tions, respectively. These reduced effective masses are
culated from those of the valence bands and conduction b
effective masses in the correspondingt andz directions.k t
andkz are dielectric constants of the crystal for thet andz
directions, respectively.

This Hamiltonian can be simplified by normalizing th
energy and length by

E0[
m te

4

2\2k tkz
,

a0[
~k tkz!

1/2\2

m te
2 , ~22!

yielding

H52F ]2

]x21
]2

]y21
m t

mz

]2

]z2G2
2

@x21y21~k t /kz!z
2#1/2.

~23!

The variational function is assumed to be of the form
the ground (1S) state,

c~r !5
1

Apazat
2

expF2S x21y2

at
2 1

z2

az
2D 1/2G , ~24!

whereat andaz are the variational parameters and they
the effective Bohr radius for thet and z directions, respec-
tively. Using the relation

~2p!23/2E E E e2aur ueik•rd3r5A8

p

a

~a21k2!2 ,

~25!

we obtain the variational function in the Fourier transfo
domain

C~r !5
1

Apazat
2
E E E 1

p2~kt
21kz

211!2

3expS 2
ikt• r t

at
D expS 2

ikzz

az
D d3k, ~26!

wherer t5(x,y) andkt5(kx ,ky).
Using the above variational function and minimizing t

energy expectation value, we obtain the exciton binding
ergy

Ebind5
1

3at
2S 21

v

11a2D 2
2

ataz
sinh21a ~27!

and the corresponding transverse direction exciton Bohr
dius
al-
nd

r

e

-

a-

at5
1

3S 21
v

11a2D a

sinh21a
, ~28!

where the parametersv anda are defined as

v[
m t

mz

k t

kz
, ~29!

az5atAkz

k t
~11a2!. ~30!

The z-directional exciton Bohr radius is obtained using t
calculatedat value and Eq.~30!.

Note that our simplified variational approach ignores t
valence band-mixing effects on exciton states. The ba
mixing effects in the presence of strain will further comp
cate the exciton binding energies, especially those of the
bound states due to strong coupling of the bands. For
ground 1S states excitons, the variational approach sho
give a resonably accurate estimation of the binding ener
as have been demonstrated in zinc blende systems suc
GaAs.

F. Exciton transition energy and extraction
of the deformation potentials

TheA-, B-, andC-line exciton transition energies are ob
tained from the conduction band to the HH, LH, and C
band transition energies minus the corresponding exc
binding energies

EA5E0
C2E0

HH2Ebind
HH ,

EB5E0
C2E0

LH2Ebind
LH , ~31!

EC5E0
C2E0

CH2Ebind
CH ,

where Ebind
v stands for the exciton binding energies calc

lated from Eq.~27! for the conduction band to threev-band
hole bands transitions. We need to estimate the deforma
potentials for calculating the strain effects in wurtzite sem
conductors. There are four deformation potentialsD1 to D4
for the valence bands, and two deformation potentialsact
andacz for the conduction band.

First we adopt the quasicubic approximation3 to reduce
the number of unknowns:

A12A252A352A4 ,

A314A55A2A6 ,

D25D3 , ~32!

D12D252D352D4 .

From this approximation, we can reduce two unknown v
lence band deformation potentials. Furthermore, we ign
the anisotropic property of the conduction band deformat
potentials

acz5act5ac . ~33!
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TABLE I. Band-edge effective masses.

Valence band mz /m0 mt /m0

HH 2(A11A3)21 2(A21A4)21

LH
2FA11S E0

LH2le

E0
LH2E0

CHDA3G21

2FA21S E0
LH2le

E0
LH2E0

CHDA4G21

CH
2FA11S E0

CH2le

E0
CH2E0

LHDA3G21

2FA21S E0
CH2le

E0
CH2E0

LHDA4G21
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Ignoring the strain-dependent variation of the excit
binding energies which is small@less than 0.8 meV as will be
shown later in Fig. 10~b!#, we obtain the following linear
coefficients for the slopes of theA-, B-, andC-line exciton
energies as a function of thec-axis strainezz:

SA5~ac2D2!S 12
c33

c13
D1

c33

c13
D4 ,

SB5~ac2D2!S 12
c33

c13
D1

c33

c13
D4 , ~34!

SC5~ac2D2!S 12
c33

c13
D22D4

as shown in Fig. 2. Knowing the slopesSA andSC from the
large compressive strain region of theA-line exciton and
C-line exciton transition energies, we obtain (ac2D2) and
D4.

From Eqs.~31! we obtain the following relation if we
ignore the slight difference of the HH and LH exciton bin
ing energies:

EB2EA5
D113D2

2
1

ue

2
2AS D12D21ue

2 D 2

12D3
2,

~35!

FIG. 2. Theoretical curves for theA-, B-, and C-line exciton
transition energies are plotted as a function of thec-axis strain with
their linear slopes in the compressive strain region.
with

ue5D3ezz1D4~exx1eyy!5S D32
c33

c13
D4D ezz. ~36!

From the strain value of the crossing pointec betweenEA
and EB from Fig. 2, we can calculate the quantityD3
2(c33/c13)D4, which can be used as a check to confirm t
obtained deformation potential values from the previous p
cedure. We assume that

ac5
1

2
a, ~37!

where the total valuea for the interband deformation poten
tial is obtained from the hydrostatic pressure measureme14

Therefore, we can extract all the deformation potentials fr
the experimental data following the theoretical curves sho
in Fig. 2.

III. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTAL RESULTS

A. Extraction of deformation potentials

The procedure described in Sec. II is used to obtain
deformation potentials by comparing the theoretical res
with the experimental data.9 Since the extracted deformatio
potentials depend on the elastic constants, we take the el
constants from recently measured values in Ref. 15. The
tracted deformation potentials and other theoretical b
structure parameters are listed in Table III. In Fig. 3~a!, we
show our calculated exciton transition energies for theA-,
B-, andC-line excitons and the experimental results by S

TABLE II. Interband optical momentum matrix elements.

Valence band Mz Mt

HH 0
m0

4
Ept

LH
E0

CH2le

E0
CH2E0

LH S m0

2
EpzD E0

LH2le

E0
LH2E0

CH S m0

4
EptD

CH
E0

LH2le

E0
LH2E0

CH S m0

2
EpzD E0

CH2le

E0
CH2E0

LH S m0

4
EptD

Sum
m0

2
Epz

m0

2
Ept
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kanai et al.9 We use a constant value of 26 meV for th
exciton binding energy in the calculation of the interba
transition energies. The strain dependence of the exc
binding energies is negligible due to their small variatio
@less than 0.8 meV as will be shown later in Fig. 10~b!#. We
can see that the agreement between the theoretical re
and the experimental data is very good.

Both the calculated and experimental results show the
ear dependence of the exciton transition energies on
strainezz in most of the strain regions except near the an
crossing between the LH and CH bands at a slightly bia
tensile~negativeezz) strain region. The anticrossing betwee
the LH and CH bands near the20.07% strain shows a

TABLE III. Physical parameters of GaN.

Parameter Value Reference

Lattice constant~Å! 11
a 3.189
c 5.185

Energy parameters
Eg ~300 K! ~eV! 3.44 12
Dcr5D1 ~meV! 22.0 9
Dso53D2 ~meV! 15.0 9
D35D2 ~meV! 5.0

Conduction band effective masses 4
me

z/m0 0.20
me

t /m0 0.18

Valence band effective mass parameters 4
A1 26.56
A2 20.91
A3 5.65
A4 22.83
A5 23.13
A6 24.86

Deformation potentials~eV!

a ~interband! 29.20 14
ac5

1
2 a ~conduction band! 24.60 this work

D1 21.70 this work
D2 6.30 this work
D3 8.00 this work
D4 24.00 this work

Dielectric constants 9
k t 7.87
kz 8.57

Elastic stiffness constants (1011 dyn/cm2) 15
c11 39.0
c12 14.5
c13 10.6
c33 39.8
c44 10.5
c66 12.3
n
s

ults

-
he
-
l

strong coupling of the LH and CH bands and the excha
nature of their wave functions.

Figure 3~b! gives the transition energy difference betwe
B- and A-line excitons, as well asC- and A-line excitons.
We can see that in the large biaxial compressive strain c
the energy differenceEB2EA approaches a constant valu
and the slope is zero sinceSA5SB . Therefore, these mea
surements are very useful for determining the experime
values of the deformation potentials.

B. Energy band structures

The valence-band mixing effects can be understood fr
the dispersion relations and corresponding wave function
the HH, LH, and CH bands. Figures 4~a!–4~d! show the
calculated valence band dispersion relations of bulk GaN
~a! a biaxial compressive strainezz50.2%, ~b! zero strain
0%, ~c! a small biaxial tensile strain20.09%, and~d! a
large biaxial tensile strain20.2%. We plot the three valenc
bands: heavy hole~HH!, light hole ~LH!, and crystal-field
split-off hole ~CH! bands along thekt andkz directions.

Along the kz direction (kt50) on the left side of Figs.
4~a!–4~d!, the Hamiltonian is of the form

H333
U ~k!5F Fz 0 0

0 Gz A2D3

0 A2D3 lz

G , ~38!

whereFz , Gz , andlz are obtained fromF, G, andl by
settingkt50. Clearly theg1 component of the Hamiltonian
is decoupled from theg2 andg3 components. The HH band
has a purely parabolic dispersion,E5Fz , along thekz direc-
tion for all strain cases. On the other hand, theg2 and g3
components are coupled to each other due to the off-diag
elementsA2D3. For the zero strain and the biaxial compre
sive strain cases, the LH and CH bands are far apart,
their coupling due to this off-diagonal term becomes re
tively small. Therefore, the LH and CH bands appear to
parabolic along thekz direction as shown in Figs. 4~a! and
4~b!. For a tensile strain case, however, the diagonal te
Gz and lz become close and the coupling due to the o
diagonal elements becomes significant. Therefore, the n
parabolic nature of the LH and CH bands along thekz direc-
tion appears as shown in Figs. 4~c! and 4~d!.

On the right half of Figs. 4~a!–4~d!, the dispersion rela-
tions along thekt direction (kz50) are plotted, and their
behavior can be understood as follows. The Hamilton
takes the form

H333
U ~k!5F Ft Kt 0

Kt Gt A2D3

0 A2D3 l t

G , ~39!

whereFt , Gt , and l t are obtained fromF, G, and l by
settingkz50.

It can be seen from the Hamiltonian, that the HH, LH, a
CH bands are coupled to each other along thekt direction,
and all three bands become non-parabolic as shown in F
4~a!–4~d!. In the compressive and zero strain case, Figs. 4~a!
and 4~b!, the coupling between CH band and other two ban
is weak at a smallkt .
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FIG. 3. ~a! Theoretical values for the exciton transition energies are compared with the experimental data~symbols! for the A-, B-, and
C-line excitons.~b! The differences of theC-line andA-line as well asB-line andA-line exciton transition energies are plotted as a funct
of the c-axis strain.
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It should be noted that even in the zero strain case,
three bands are not degenerate at the zone center for wu
crystals. This feature is different from that of the cubic III-
semiconductors, for which the HH and LH bands have
same energy at the zone center, and they split in the pres
of strain. Therefore, the unstrained wurtzite crystal is sim
to a prestrained zinc blende crystal. Adding the strain to
wurtzite crystal causes either further splittings or reduc
splittings among some of the bands depending on whe
the strain is compressive or tensile.

It is interesting to note that the HH and LH bands a
degenerate at the zone center at a certain tensile strain v
@ezz.20.09%, Fig. 4~c!#, and the band structure resembl
that of an unstrained zinc blende crystal. If the tensile str
is increased above that value, the LH band is lifted to the
of the valence band.

C. Wave functions

In addition to the band structure dispersions, the wa
functions for the wurtzite crystals show interesting featu
on the band mixing. However, little work has been done
far to understand the wave functions of the wurtzite cryst
In Figs. 5–7, we show the wave functions of the three
lence bands of compressive strained, unstrained, and te
strained wurtzite GaN crystals, respectively, using the n
three-by-three Hamiltonian. In our calculation, thevth va-
lence band wave function with a wave vectork is determined
by the eigenfunction of Eq.~7!. The mixing ratio of the
coefficientsg1, g2, and g3 determines the nature of eac
band.

First, we consider the wave functions for the band str
ture along thekz direction. Since the HH band is decouple
ll
ite

e
ce
r
e
d
er

lue

in
p

e
s
o
s.
-
ile

w

-

from the LH and CH bands, we obtaing151 and
g25g350 for the HH band as shown in the left half of Fig
5~a!, 6~a!, and 7~a!, andg150 for the LH and CH bands a
shown in Figs. 5~b! and 5~c!, 6~b! and 6~c!, and 7~b! and
7~c!. For LH and CH bands, the LH and CH band wa
functions consist of a mixture of theg2 andg3 components
along thekz direction. This is the direct consequence of t
block-diagonalized form of the Hamiltonian~2!. Along this
direction, only the mixing of theg2 and g3 components is
needed to know the wave functions.

For a biaxial compressive strain value,ezz50.2%, Figs.
5~b! and 5~c! show that near the zone center along thekz
direction, the LH band is dominated by theg2 component
with a small amount of mixing with theg3 component. Simi-
larly, the CH band is dominated by theg3 component with a
small amount of mixing with theg2 component. Apart from
the zone center, the mixing effects approach zero. Theref
the HH, LH, and CH bands are virtually independent of ea
other and have nearly pure nature ofg1, g2, andg3 compo-
nents along thekz direction when the applied strain is in
creasingly compressive.

On the other hand, strong mixing betweeng2 and g3
along thekz direction for the LH and CH bands exists for th
biaxial tensile strain case, as shown in Figs. 7~b! and 7~c!.
Near the zone center, the LH and CH bands have a domi
g3 or g2 component, respectively. In the largekz region, the
LH and CH bands exchange their dominant componentsg3
to g2 andg2 to g3, respectively.

Along thekt direction, the mixing between all three com
ponents exists. For the compressive strain case on the
side of Figs. 5~a!–5~c!, the coupling betweeng1 andg2 oc-
curs gradually in the smallkt region ~less than 0.04 Å21),
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FIG. 4. The valence band structures of the heavy-hole~HH!, light-hole ~LH!, and crystal-field split-off hole~CH! bands are plotted for
~a! a biaxial compressive strainezz50.2%, ~b! zero strain 0%,~c! a small biaxial tensile strain20.09%, and~d! a large biaxial tensile strain
20.2%
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and the coupling saturates in the largekt region for the HH
band as shown in Fig. 5~a!. The coupling ofg1 with g2 and
g3 shows more drastic effects for the LH and CH bands
shown in Figs. 5~b! and 5~c!, especially nearkt50.06 Å21.
Also in the band dispersion curve in Fig. 4~a!, we can see the
anticrossing behavior of the LH and CH bands. This an
crossing behavior of the LH and CH bands occurs a
smaller value ofkt for the unstrained case than that of t
compressive strain case, as shown on the right sides of F
6~b! and 6~c!, although the general mixing features are sim
lar to those of the compressive strain case.

On the other hand, for a biaxial tensile strain case
general mixing of all three components is clear as shown
Figs. 7~a!–7~c!, but less dramatic than the anticrossing b
haviors of the unstrain and compressive strain cases. A
matter of fact, the LH band is dominated by theg3 compo-
nent while the CH band is a mixture ofg1 andg2.

D. Band-edge effective masses and optical momentum
matrix elements

The band-edge effective masses play an important rol
determining the optical properties near the band gap.
strain dependence of the band-edge effective masses is u
for the understanding of optical processes such as gain
absorption spectrum as well as electronic transport proces
In Fig. 8 we plot the calculated valence band effect
masses near the band edges. It can be seen that the eff
s
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tive

masses for all bands are heavy along thekt andkz directions.
A large anisotropy is also observed. The HH band-edge
fective masses along thekz and kt directions are constan
~about 1.1m0 and 0.3m0, respectively! independent of the
strain. In contrast, the LH and CH band-edge effect
masses depend on the strain. For a large compressive s
the LH band-edge effective masses approach those of the
bands, and CH-band effective masses become heavy in tkt

direction, and light along thekz direction. For a large tensile
strain, the situation is reversed, and the CH band-edge e
tive masses approach those of the HH bands. At a20.05%
tensile strain, the LH band effective masses along thekz and
kt directions are equal. For the CH band, equal effect
masses are realized at20.1% tensile strain. It is also see
that the LH and CH band effective masses are equal
biaxial tensile strain of20.07%.

From the band-edge wave functions and energies, we
culate the optical momentum matrix elements of GaN, wh
are important for the interband optical transitions. The res
are plotted in Fig. 9 as a function of thec-axis strain. Under
a biaxial compressive strain~negativeexx5eyy and positive
ezz), the interband optical matrix elements for the HH a
LH bands to the conduction band transitions are domina
by the transverse polarization~on thex-y plane perpendicu-
lar to the c-axis!. On the other hand, interband transitio
between the CH band and the conduction band are do
nated by the polarization along thec axis (z axis!. Under a
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tensile strain, however, the LH and CH bands switch th
polarization dependencies because of their anticrossing
havior as a function of strain. The HH band has const
momentum matrix elements independent of the strain,
the z-polarized component is always 0. These anisotro
optical transition rules can be used in optical measurem
such as photoluminescence, photoreflectance, and absor
near the band edges.

E. Exciton Bohr radius and binding energy

Using the above band-edge effective masses, we then
culate the excitonic properties including the exciton Bo
radius and binding energy. In wide gap materials, excit

FIG. 5. The three components of the wave functionsg1 , g2,
andg3 are plotted along thekt andkz directions for~a! the heavy-
hole ~HH!, ~b! the light-hole~LH!, and~c! the crystal-field split-off
hole ~CH! bands. The strain is biaxial compressive withezz

50.2%.
ir
e-
t
d

ic
ts
ion

al-
r
s

play an important role due to their large Coulombic intera
tion caused by small dielectric constants and large effec
masses.

The exciton Bohr radius and binding energy are cal
lated by using the anisotropic variational function. The
sults are shown in Fig. 10. In general, the exciton Bohr ra
are small~less than 40 Å), and the binding energies a
large~more than 25 meV! compared with those of the GaA
materials. It can be seen from Fig. 10~a! that the anisotropic
Bohr radius parameters,at andaz of the HH to conduction
band exciton~or A-line exciton! are independent of the
strain, andaz is larger thanat . For the LH band to conduc
tion band exciton (B-line exciton!, both az andat approach
those of the HH band exciton asymptotically when we
crease the compressive strain. For a large tensile strain
LH band exciton is squeezed in thez direction and elongated

FIG. 6. The three components of the wave functionsg1 , g2,
andg3 are plotted along thekt andkz directions for~a! the heavy-
hole ~HH!, ~b! the light-hole~LH!, and~c! the crystal-field split-off
hole ~CH! bands. The strain is zero.
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along thet direction. However, for the CH to conductio
band exciton (C-line exciton!, the situation is the opposite o
the B-line exciton.

Figure 10~b! shows the strain dependence of the exci
binding energies for theA-, B-, and C-line excitons of
wurtzite GaN crystals. The values vary between 25.4
26.2 meV, and they are larger than that of GaAs (4.2 me!.
The difference between the maximum value and the m
mum value is less than 1 meV(4%). Thebinding energy of
the HH-band exciton is constant due to the constant natur
its band-edge effective masses. The LH-band and CH-b
excitons reach a minimum at20.06 and20.09 % tensile
strain, respectively. These strain values correspond to th
of the isotropic effective mass conditions.

FIG. 7. The three components of the wave functionsg1 , g2,
andg3 are plotted along thekt andkz directions for~a! the heavy-
hole ~HH!, ~b! the light-hole~LH!, and~c! the crystal-field split-off
hole ~CH! bands. The strain is biaxial tensile withezz520.2%.
n

d

i-
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IV. CONCLUSIONS

We have derived the full analytical expressions of t
bulk wave function and energy dispersion of the strain
wurtzite GaN using a recently block-diagoinalized Ham
tonian. Based on the analytical expressions, we have
tracted the deformation potentials from experimental exci
transition energies as a function of thec-axis strain. Numeri-
cal results of the energy band dispersion, wave functio
effective masses, optical matrix elements, and exciton pr
erties are shown for the biaxial compressive, tensile,
zero strain cases. These calculations also describe qua
tively the strain-dependent band-mixing features of
wurtzite GaN materials. These analytical expressions and
merical examples will be useful for understanding the ba

FIG. 8. The band-edge effective masses of the HH, LH, and
bands along thekt andkz directions are plotted as a function of th
c-axis strain.

FIG. 9. The interband optical momentum matrix elements of
HH, LH, and CH bands to the conduction band transitions and t
polarization dependencies (t or z polarized! are plotted as a func-
tion of thec-axis strain.
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FIG. 10. ~a! The exciton Bohr radius parametersat and az for the conduction band to HH, LH, and CH bands excitons and~b! their
corresponding binding energies are plotted as a function of thec-axis strain.
si

is

ga

ed
edge optical properties and electronic transport issues u
wurtzite GaN crystals.
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APPENDIX: BASIS FUNCTIONS

The 636 valence band Hamiltonian for the strain
wurtzite semiconductor takes 333 block diagonalized form
when we introduce the following basis functions:

u1&52
a*

A2
u~X1 iY!↑&1

a

A2
u~X2 iY!↓&,

u2&5
b

A2
u~X2 iY!↑&2

b*

A2
u~X1 iY!↓&,

u3&5b* uZ↑&1buZ↓&,
a

ts
ng

-

u4&52
a*

A2
u~X1 iY!↑&2

a

A2
u~X2 iY!↓&, ~A1!

u5&5
b

A2
u~X2 iY!↑&1

b*

A2
u~X1 iY!↓&,

u6&52b* uZ↑&1buZ↓&,

where

a5
1

A2
expF i S 3p

4
1

3f

2 D G , ~A2!

b5
1

A2
expF i S p

4
1

f

2 D G , ~A3!

and

f5tan21S ky

kx
D . ~A4!
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