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Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors
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Analytical solutions using a recently derived block-diagonalized Hamiltonian for strained wurtzite crystals
are shown. The theoretical results are used to extract the deformation potentials from the experimental results
of the A-, B-, andC-line exciton transition energies as a function of thaxis strain using a set of recently
reported elastic stiffness constants. The obtained parameters are then applied to calculate the wave functions,
valence band energies, effective masses, optical-momentum matrix elements, exciton Bohr radius, and binding
energy as a function of strain. These analytical and numerical results are useful for understanding the optical
and electronic properties near the band edges of strained wurtzite cri/SG163-182808)01224-7

I. INTRODUCTION dependent band mixing features of the GaN valence bands.
Furthermore, analytical expressions for the strain depen-
Gallium nitride(GaN) and related materials have received dence of the effective masses, exciton properties, and other
a lot of attention recently. Theoretical models for the electri-important parameters of GaN have been calculated. These
cal and optical properties of GaN related materials play aréxpressions will be useful for understanding the physical
important role in designing quantum-well structures for in-Properties of GaN. Based on the analytical expressions, we
vestigating physical processes as well as device applicatior%btag)n the deformation potentials using recent experimental
using these wurtzite crystals. Blue-green semiconductor ladata: ] ] ]
sers using InGaN/GaN quantum-well structures have been In Sec. Il, we derive the analytical expressions of the
successfully demonstratedalthough the lifetime of these €nergy dispersion, wave functions, and other properties of
devices at room temperature is still limited. the strained _GaN. The defprmatlon po_tentlals are_then ex-
The GaN materials are usually grown on substrates suchacted by using the analytical expressions of the interband
as sapphire or SiC and a significant amount of strain exist§ransition energies foA-, B-, and C-line excitons. In Sec.
Since strain significantly affects the electronic and opticallll. numerical results for the strain effects on the valence
properties of semiconductors, it has been difficult to deterWave functions, the energy dispersion, band-edge effective
mine many of the band structure parameters due to an uADasses, and o'pt|cal—.ma}tr|x elemgnts are shown. The strain-
known amount of residual strain in many earlier Samp|es_dependent exciton binding energies are also calculated. We
Although theoretical work on wurtzite crystals has been defhen conclude in Sec. IV.
veloped since the 1960smore experimental data on high-
quality GaN and InGaN wurtzite crystals with measured Il. THEORY

strain values were available only recently. Many parameters | thjs section, we present the analytical solutions of the
such as the effective ban_d structure parameters for the V&alence band energies and their corresponding eigenfunc-
lence bands, the crystal field split-off energy, and the spintions for the strained wurtzite semiconductors based on the
orbit energy were obtained theoretically although not all ofrecently developed block-diagonalized Hamiltonians. The
them match closely to the experimental data. analytical expressions of the band-edge effective masses, ex-

Theoretical models for wurtzite electronic structures withgjton properties, and optical matrix elements of the strained
strain  effects have been reported based on @  wyrtzite semiconductors are also shown.

method®~8 A consistent set of basis functions with the cor-
responding Ham"tonla_n has been derived, and it has been A Block-diagonalized Hamiltonian and eigenenergies
found that the six-by-six Hamiltonian for the valence bands
can be block-diagonalized into two three-by-three ) . . . .
Hamiltonian<” wurtzite _sem|7conductor can be blockdiagonalized into two 3
In this paper, we present analytical solutions and numeri<3 matrice$

The 6x6 valence band Hamiltonian for the strained

cal results for the electronic band structures and wave func- H g oK) 0
tions for strained GaN bulk samples using the block- HY(k) = x L , (1)
diagonalized Hamiltonian. Our calculations show the strain- 0 H3x3(k)
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where The eigenequation for the valence band endegfor a
givenk vector is given by
F K —iH,
Ho (k=] Ki G A—iH|, 2 a] [0
iH, A+iH, A Haxs(k)| 92 | =E| 92 |. (7)
93 93
i N e The ei ion has th lytical solutnand
L B . e eigenequation has three analytical solutiohan
Haxa(k)=| Kt G A+iH{l, (3 they can be expressed as
and the basis functions are shown in the Appendix. The ma- E,=(S+ 52)_%,
trix elements are 3
F=A;+A,+\+6, 1 C, i3
Eo=—5 (SitS) -5+ 5 (S5=5), (8
G:Al_A2+)\+ 0,
1 C, iV3
h? Es=—5 (S1+S)— 5 ——5 (5=,
A= 2—%(A1k§+A2kf)+Dlezz+ D &xxt €yy), 2 3 2
where
9= " AskZ+ Ask?) + D€yt Dyl eyt 4 1 1
= 2m0( 3Kz 4Kt) 3€77 4(€xx 6yy)- (4) ngcl_gcg,
2
Ki=5—Agk?, 1 1
C2my o r=5(C1C,—3Cq)— 55C3, )
hz 3 2\1/271/3
Hi==—Agkik,, Si=[r+(@°+r9)7],
2mg
Szz[r_(q3+r2)1/2]l/3, (10)
A= \/§A3,
and
and
Cy,=—(F+G+N\),
kf=ki+K3. (5)
— A2 2 2
Here A;’'s are the valence band effective-mass parameters C1=FG+GAFA—-A"=K{—2H{, (1D
which are similar to the Luttinger parameters in zinc blende
crystal. D;s are the deformation potentials for wurtzite C0=—de(H§’X3].

crystals® In the above Hamiltonian, we have considered a
strained-layer wurtzite crystal pseudomorphically grown The lower 3x 3 Hamiltonian is the complex conjugate of
along the(000)) direction (c axis), the only nonvanishing the upper X3 Hamiltonian. Therefore, they have exactly

elements are the same eigenvalues since the energies are real. The wave
functions of the lower Hamiltonian are the complex conju-
a,—a gates of the corresponding wave functions of the upper
ExxT EyyT T g Hamiltonian. Below we consider the solutions for the upper
Hamiltonian.
2Cy3 .
€,7~— C_33€XX' (6) B. Wave functions

After we obtain the three eigenvalues, we calculate the
whereay anda are the lattice constants of the substrate anctorresponding eigenfunctions. For a genetalnot at the

the layer materials, respectively. zone center, the envelope functions are determined by
It should be noted that the above convention gives a nega-

tive in-plane strain é,,=€,,<0) and positivec-axis strain 9y {iH(G—EY)+(A—iH)K}

(e,>0) for a biaxial compressive strain. In the case of a ) , . )

biaxial tensile strain, we have a positive in-plane strain and % |=pv {-HK—(A-IH)(F-E)} |, (12

negativec-axis strain. In this paper, the parameggyis used a4 {(G—-E")(F—EY)— Kf}

as the variable in our plots since it has been directly mea-
sured from x-ray diffraction for a few sampl@s. where
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DV=|iH(G—E")+K(A—iH)|?+[iHK+(A—iH)(F—E")|?>+|(G—E")(F—E")— K22, (13

for v=heavy hole(HH), light hole (LH), and crystal-field M= (4| p,| ¥*) [,
split-off hole (CH) bands. Care should be takenkat=0 in
the above expressions. M.= (¢ v\[2 19
Once we obtain the expansion coefficiegts g,, and =Kyl v, 19
93, the complete Bloch wave function is given by respectively. These quantities determine the optical response
. 3 of the materials for the TEt] and TM (z) polarized light.
Wo(r k) =— eikn) v li 14 The calculated analythal results are presented in Table I,
(1K) W ;1 gr (i) (4 whereE,, andE,, are given by
for each hole band. 5
. ) .y . Epz:m_|<is| P Z)P,
C. Band-edge energies and exciton transition energies 0
At the band edges;=k,=0, the Hamiltoniang2) and 5
(3) can be simplified sinc&;=0 andH;=0. This Hamil- Ep=—iS|pd X) P2,
tonian has three eigenvalues for the valence bands as shown Pt mg
in Fig. 1, >
EE'H:FO: =m—0|(iS|py|Y>|2, (20
Gn+\ Gr—N_\2 andp,, px, andp, are thez, x, andy components of the
LH 0 € 0 € 2 y
Eo =— ( 5 ) A“, (19  momentum operator.
ECH_GO+ N, B (60—7\6)2 A2 E. Exciton Bohr radius and binding energy
0 2 2 ’ The bound state of the exciton binding energy is often
where calculated using the variational method because of its sim-
plicity. In axially symmetric crystals such as wurtzite, the
Fo=A;+Ay+ N +6,, variational wave function and the Hamiltonian are aniso-
tropic. Here we employ the variational mett®ébr the cal-
Go=A;—A,+\+6,, culation of exciton binding energy and Bohr radius. The
Hamiltonian for an electron-hole pair is given by
Ne=D1€,,+ Do st €yy), (16)

E
0.=D3z€,,+ Dyl exxt €yy). I\

For the conduction band, the band-edge energy is given
by

ES=A;+A,+Eg+P,., (17) ES
which includes a hydrostatic energy shift

Pce=ac€,,+ Aot €xxt Eyy)- (18

D. Band-edge effective masses and optical matrix elements

Band-edge effective masses can be obtained by setting
eitherk;=0 or k,=0 in the three-by-three Hamiltonian and
looking for theE —k relation for a smalk, or k; to find the
zone center effective masses. We then obtain the transverse
(perpendicular to the axis) andz-directional(parallel to the
c axig effective masses, respectively.

These results can also be calculated by using near zone

centerE—k dispersion relations and taking their second de- k7= 5 > Ky
rivatives with respect tk; and k, at the zone center. The
calculated results are summarized in Table I. FIG. 1. Schematic diagram for the conductie®), heavy-hole

Optical-matrix elements for transversg @ndc-axis (z) (HH), light-hole (LH), and crystal-field split-off hol¢CH) bands of
polarized waves are given by a strained wurtzite crystal.
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h? az+ 92 h? o 1 @ @ -
= 2w oy T 2 i 3127 15 a2/ sinh T @8
e? (21) where the parameters and « are defined as
[ +y?) + k{22
_ Mt Ky 29
where u, and i, are the reduced mass in theandz direc- w= Iy Ky’ (29
tions, respectively. These reduced effective masses are cal-
culated from those of the valence bands and conduction band p
effective masses in the correspondingndz directions.«; a,=a \/ —(1+a?). (30)
Kt

and k, are dielectric constants of the crystal for thandz
directions, respectively.

This Hamiltonian can be simplified by normalizing the
energy and length by

The z-directional exciton Bohr radius is obtained using the
calculateda; value and Eq(30).

Note that our simplified variational approach ignores the
valence band-mixing effects on exciton states. The band-

4
Eo= 'uzt_e, mixing effects in the presence of strain will further compli-
20" Kk, cate the exciton binding energies, especially those of the un-
Yr 2 bound states due to strong coupli_ng_ of the bands. For the
- (Kkey) Yo 22) ground 1S states excitons, the variational approach should
o ue? give a resonably accurate estimation of the binding energies
o as have been demonstrated in zinc blende systems such as
yielding GaAs.
2 2 2
H=— (?_24_ 07_2+ fad '9_2 - 2 T F. Exciton transition energy and extraction
IXEdYS pp 9z°]  [XTHyT+ (Kl K,)Z7] of the deformation potentials

(23)
The A-, B-, andC-line exciton transition energies are ob-
The variational function is assumed to be of the form fortained from the conduction band to the HH, LH, and CH
the ground (B) state, band transition energies minus the corresponding exciton
binding energies

1 x2+y2 Z2 1/2
¢(r)=mexp[— —+ } (24) Ea=ES—EfH—EDH,
TaLA; t z
Es=Eg—Eg"—Eping. (31)

wherea; anda, are the variational parameters and they are
the effective Bohr radius for theandz directions, respec-
i i i Ec=E5—ES"—ESH
tively. Using the relation c=Eo~Fo bind»

where E;, 4 Stands for the exciton binding energies calcu-

2) 32 e—alrlgikrg3 = 8 a lated from Eq.(27) for the conduction band to threeband
(2m)~ PRV ) ; )
(a +k9)*’ hole bands transitions. We need to estimate the deformation

potentials for calculating the strain effects in wurtzite semi-
we obtain the variational function in the Fourier transformconductors. There are four deformation potentiaisto D,

domain for the valence bands, and two deformation potentigls
anda,, for the conduction band.
1 First we adopt the quasicubic approximatido reduce
W(r)= f f sz the number of unknowns:
\ragal ki+ks+1)

Al_AZZ _A3:2A4,

ikt' rt IkZZ
xexp — exp ——|d%k,  (26)
ay a,
wherer=(x,y) andk;=(ky k). A,=Ag, (32)
Using the above variational function and minimizing the
energy expectation value, we obtain the exciton binding en-
ergy

Az+4As=2A,,

Dl_ D2: - D3:2D4.

From this approximation, we can reduce two unknown va-
_ sinh L 27 lence _band d_eformation potentials. Fu_rthermore, we ignpre
a,a, the anisotropic property of the conduction band deformation
potentials
and the corresponding transverse direction exciton Bohr ra-
dius ac,=ac=ac. (33

1 w
Epin=——| 2+
Pind™ 342 1+ a?
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TABLE |. Band-edge effective masses.

Valence band m,/mg m, /mg
HH —(A+Ay) ! —(A+Ay) !
LH ESH_ ), 1 ELH_, -1
At —FEBH_EOH)A3:| —|Axt —C_E(L)H_EOH)A4
CH S VA ESH-\.| |
|l |l el

Ignoring the strain-dependent variation of the excitonwith

binding energies which is smdlkess than 0.8 meV as will be
shown later in Fig. 1()], we obtain the following linear
coefficients for the slopes of th&-, B-, andC-line exciton
energies as a function of tleeaxis straine,,:

C33) Cs3
Sa=(a.—D (1——)+— :
a=(ac—D>y) Cral | Cpa?

c c
SB=(aC—D2)(1——33 +=2p,, (34)

Ci3/ Ci3

sc=<ac—D2>(1— C—“) —2p,
Ci3

as shown in Fig. 2. Knowing the slop&s and Sc from the
large compressive strain region of ti#eline exciton and
C-line exciton transition energies, we obtaia.¢-D,) and
D4.

From EQgs.(31) we obtain the following relation if we
ignore the slight difference of the HH and LH exciton bind-
ing energies:

A;+3A, 6, A—A,+6,.\°

—E.= Ze_ 2
Es—Ea=—— 5 \/ ( 5 +2A2,
€5

> |

o

5t o %

c .

] 4

=

c

g

e

o

C

*

i

c-axis strain €zz

FIG. 2. Theoretical curves for thA-, B-, and C-line exciton
transition energies are plotted as a function ofdkexis strain with
their linear slopes in the compressive strain region.

Ca3
0c=D3€,,+ Dyl €xxt fyy):(D3_ C_13D4) €, (36

From the strain value of the crossing pokft betweenE,

and Eg from Fig. 2, we can calculate the quantify,
—(c33/Cc13) D4, Which can be used as a check to confirm the
obtained deformation potential values from the previous pro-
cedure. We assume that

(37)

where the total valua for the interband deformation poten-
tial is obtained from the hydrostatic pressure measureffent.
Therefore, we can extract all the deformation potentials from
the experimental data following the theoretical curves shown
in Fig. 2.

Ill. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTAL RESULTS

A. Extraction of deformation potentials

The procedure described in Sec. Il is used to obtain the
deformation potentials by comparing the theoretical results
with the experimental dataSince the extracted deformation
potentials depend on the elastic constants, we take the elastic
constants from recently measured values in Ref. 15. The ex-
tracted deformation potentials and other theoretical band
structure parameters are listed in Table Ill. In Fi¢g)3we
show our calculated exciton transition energies for fxe
B-, andC-line excitons and the experimental results by Shi-

TABLE Il. Interband optical momentum matrix elements.

Valence band M, M,
My
HH 0 2 En
E(?H_)\e Mo EIC_)H_)\G Mo
- EElz o el
EsH—N. [m, ESH—N. [mg
" el e
My Mo
Sum 7Epz 7Ept
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TABLE lIl. Physical parameters of GaN. strong coupling of the LH and CH bands and the exchange
nature of their wave functions.
Parameter Value  References  Figure 3b) gives the transition energy difference between
Lattice constantA) 11 B- and A-line exc_itons, as Wel! a_é:- and A-Iine_ excito_ns.
a 3189 We can see t.hat in the large biaxial compressive strain case,
c 5 185 the energy differenc&g—E, approaches a constant value

and the slope is zero sincg=Sg. Therefore, these mea-
surements are very useful for determining the experimental

Energy parameters values of the deformation potentials.

E, (300 K) (eV) 3.44 12
A=A (MeV) 22.0 9
A..—3A, (MeV) 15.0 9 B. Energy band structures
Az=A, (meV) 5.0 The valence-band mixing effects can be understood from
the dispersion relations and corresponding wave functions of
Conduction band effective masses 4 the HH, LH, and CH bands. Figurega}-4(d) show the
mé/m 0.20 calculated valence band dispersion relations of bulk GaN for
e/ 1110 . . . . .
mi/m, 0.18 (a) a biaxial compressive straia,,=0.2%, (b) zero strain
€ 0%, (c) a small biaxial tensile strair-0.09%, and(d) a
. large biaxial tensile strair-0.2%. We plot the three valence
alence band effective mass parameters * bands: heavy holéHH), light hole (LH), and crystal-field
Al 70'91 split-off hole (CH) bands along thé&; andk, directions.
A2 5 65 Along the k, direction k;=0) on the left side of Figs.
8 ) 4(a)—4(d), the Hamiltonian is of the form
A, -2.83
As -3.13 F, 0 0
Ro 486 HY4(k)=| 0 G, 2A;], (38)
Deformation potentialgeV) 0 \/§A3 A,
a ('n}erband _ —9:20 _ 14 whereF,, G,, and\, are obtained fron, G, and\ by
a,=3 & (conduction bany —460  thiswork  gapingk,=0. Clearly theg, component of the Hamiltonian
Dy —170  thiswork s gecoupled from the, andgs components. The HH band
D2 630 thiswork  pas g purely parabolic dispersidi=F,, along thek, direc-
D3 8.00  thiswork o for all strain cases. On the other hand, theand g;
D4 —4.00  thiswork  components are coupled to each other due to the off-diagonal
elements\2A ;. For the zero strain and the biaxial compres-
Dielectric constants 9 sive strain cases, the LH and CH bands are far apart, and
Ky 7.87 their coupling due to this off-diagonal term becomes rela-
Ky 8.57 tively small. Therefore, the LH and CH bands appear to be
parabolic along thé, direction as shown in Figs.(4 and
Elastic stiffness constants (£0dyn/cn?) 15 4(b). For a tensile strain case, however, the diagonal terms
C11 39.0 G, and A, become close and the coupling due to the off-
Cio 14.5 diagonal elements becomes significant. Therefore, the non-
Ci3 10.6 parabolic nature of the LH and CH bands along khelirec-
Cas 39.8 tion appears as shown in Figgc#and 4d).
Cas 10.5 On the right half of Figs. @&)—4(d), the dispersion rela-
Ces 12.3 tions along thek; direction k,=0) are plotted, and their

behavior can be understood as follows. The Hamiltonian
takes the form

kanai et al® We use a constant value of 26 meV for the

exciton binding energy in the calculation of the interband Foo K 0
transition energies. The strain dependence of the exciton ngs(k): Ki G \/§A3 , (39
binding energies is negligible due to their small variations 0 \2A N

3 t

[less than 0.8 meV as will be shown later in Fig()J. We
can see that the agreement between the theoretical resulthereF,, G;, and\; are obtained fronF, G, and\ by
and the experimental data is very good. settingk,=0.

Both the calculated and experimental results show the lin- It can be seen from the Hamiltonian, that the HH, LH, and
ear dependence of the exciton transition energies on théH bands are coupled to each other along kheirection,
strain €,, in most of the strain regions except near the anti-and all three bands become non-parabolic as shown in Figs.
crossing between the LH and CH bands at a slightly biaxia#i(a)—4(d). In the compressive and zero strain case, Fi¢®. 4
tensile(negativee,,) strain region. The anticrossing between and 4b), the coupling between CH band and other two bands
the LH and CH bands near the 0.07% strain shows a is weak at a smalk; .
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FIG. 3. (a) Theoretical values for the exciton transition energies are compared with the experimentalddials for the A-, B-, and
C-line excitons(b) The differences of th€-line andA-line as well asB-line andA-line exciton transition energies are plotted as a function
of the c-axis strain.

It should be noted that even in the zero strain case, afirom the LH and CH bands, we obtaig;=1 and
three bands are not degenerate at the zone center for wurtzigg=g;=0 for the HH band as shown in the left half of Figs.
crystals. This feature is different from that of the cubic IlI-V 5(a), 6(a), and 7a), andg; =0 for the LH and CH bands as
semiconductors, for which the HH and LH bands have theshown in Figs. ®) and 5c), 6(b) and &c), and 7b) and
same energy at the zone center, and they split in the presengg). For LH and CH bands, the LH and CH band wave
of strain. Therefore, the unstrained wurtzite crystal is similafyctions consist of a mixture of thg, andg; components
to a prestrained zinc blende crystal. Adding the strain to they,ng thek, direction. This is the direct consequence of the
wurtzite crystal causes either further splittings or reduceq)lock-diagonalized form of the Hamiltoniat2). Along this
splittings among some of the bands depending on Whemedirection, only the mixing of thay, and gs components is

thel strain Is compressive orr;censrllle. HH and LH band needed to know the wave functions.
t s interesting to note that the an anads aré o 4 pjaxial compressive strain value,,=0.2%), Figs.

degenerate at the zone center at a certain tensile strain valg&))
; and Hc) show that near the zone center along ke
[€;,~—0.09%, Fig. 4c)], and the band structure resembles g o tion the LH band is dominated by th component

fch{it of an unstrained zinc blende crystal. If_thg tensile straquith a small amount of mixing with thgs component. Simi-

is increased above that value, the LH band is lifted to the to‘?arly, the CH band is dominated by tigg component with a

of the valence band. small amount of mixing with thg, component. Apart from

the zone center, the mixing effects approach zero. Therefore,

the HH, LH, and CH bands are virtually independent of each
In addition to the band structure dispersions, the wavedther and have nearly pure natureqf g,, andg; compo-

functions for the wurtzite crystals show interesting featuregients along thek, direction when the applied strain is in-

on the band mixing. However, little work has been done sccreasingly compressive.

far to understand the wave functions of the wurtzite crystals. On the other hand, strong mixing betwegn and gs

In Figs. 5—7, we show the wave functions of the three va-along thek, direction for the LH and CH bands exists for the

lence bands of compressive strained, unstrained, and tensitiéaxial tensile strain case, as shown in Fig&)7and 7c).

strained wurtzite GaN crystals, respectively, using the newNear the zone center, the LH and CH bands have a dominant

three-by-three Hamiltonian. In our calculation, théh va- g3 or g, component, respectively. In the larggregion, the

lence band wave function with a wave veckois determined LH and CH bands exchange their dominant componens,

by the eigenfunction of Eq(7). The mixing ratio of the to g, andg, to gs, respectively.

coefficientsg,, g,, and g; determines the nature of each  Along thek, direction, the mixing between all three com-

band. ponents exists. For the compressive strain case on the right
First, we consider the wave functions for the band strucside of Figs. %a)—5(c), the coupling betweeg, andg, oc-

ture along thek, direction. Since the HH band is decoupled curs gradually in the smak; region (less than 0.04 A?),

C. Wave functions
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FIG. 4. The valence band structures of the heavy-Kidld), light-hole (LH), and crystal-field split-off hol¢CH) bands are plotted for
(a) a biaxial compressive straiy,=0.2%, (b) zero strain 0% (c) a small biaxial tensile strair 0.09%, andd) a large biaxial tensile strain
—0.2%

and the coupling saturates in the ladgeregion for the HH  masses for all bands are heavy alongkhandk, directions.
band as shown in Fig.(8). The coupling ofg, with g, and A large anisotropy is also observed. The HH band-edge ef-
g; shows more drastic effects for the LH and CH bands asective masses along the, and k; directions are constant
shown in Figs. &) and 5c), especially neak,=0.06 A", (about 1., and 0.3n,, respectively independent of the
Also in the band dispersion curve in Figaf we can see the strain. In contrast, the LH and CH band-edge effective
anticrossing behavior of the LH and CH bands. This anti-masses depend on the strain. For a large compressive strain,
crossing behavior of the LH and CH bands occurs at gnhe | H band-edge effective masses approach those of the HH
smaller vz_ilue 01k_t for the unstrained case t_han t_hat of th_e bands, and CH-band effective masses become heavy iq the
compressive strain case, as shown on the right sides of Figgrection, and light along thk, direction. For a large tensile
6(b) and @c), although the general mixing features are simi-gyain the situation is reversed, and the CH band-edge effec-

lar to those of the compressive stram case. . tive masses approach those of the HH bands. At(05%

On the other hand, for a biaxial tensile strain case the{ . ; .

L ; .tensile strain, the LH band effective masses alongkthend

general mixing of all three components is clear as shown |r|1( directi | For the CH band | effecti

Figs. 1a)—7(c), but less dramatic than the anticrossing be-"t Irections arell e((qjuab ;)r € i and, egual eriective
haviors of the unstrain and compressive strain cases. As '§asses are realized at0.1% tensile strain. It is also seen

matter of fact, the LH band is dominated by thg compo- that the LH and CH band effective masses are equal at a

nent while the CH band is a mixture gf andg,. biaxial tensile strain of-0.07%. _
From the band-edge wave functions and energies, we cal-

culate the optical momentum matrix elements of GaN, which
are important for the interband optical transitions. The results
are plotted in Fig. 9 as a function of tleeaxis strain. Under
The band-edge effective masses play an important role ia biaxial compressive straimegativee,,= €,, and positive
determining the optical properties near the band gap. The,,), the interband optical matrix elements for the HH and
strain dependence of the band-edge effective masses is usefil bands to the conduction band transitions are dominated
for the understanding of optical processes such as gain arlay the transverse polarizatidgon thex-y plane perpendicu-
absorption spectrum as well as electronic transport processdar to the c-axis). On the other hand, interband transitions
In Fig. 8 we plot the calculated valence band effectivebetween the CH band and the conduction band are domi-
masses near the band edges. It can be seen that the effectheted by the polarization along tleeaxis (z axis). Under a

D. Band-edge effective masses and optical momentum
matrix elements
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FIG. 5. The three components of the wave functions g,, FIG. 6. The three components of the wave functions g,

andg; are plotted along thi, andk, directions for(a) the heavy- ~@ndgs are plotted along thé, andk, directions for(a) the heavy-
hole (HH), (b) the light-hole(LH), and(c) the crystal-field split-off hole (HH), (b) the light-hole(LH), and(c) the crystal-field split-off
hole (CH) bands. The strain is biaxial compressive witg,  Nhole (CH) bands. The strain is zero.
=0.2%.

play an important role due to their large Coulombic interac-
tensile strain, however, the LH and CH bands switch theirtlon caused by small dielectric constants and large effective

olarization dependencies because of their anticrossin b(rar]asses.
h " 9 The exciton Bohr radius and binding energy are calcu-

havior as a function of strain. The HH band has constant,q by using the anisotropic variational function. The re-
momentum matrix eIementg independent of the stram, andults are shown in Fig. 10. In general, the exciton Bohr radii
the z-polarized component is always 0. These anisotropic, o small(less than 40 A), and the binding energies are
optical transition rules can be used in optical measuremenqgrge(more than 25 meVcompared with those of the GaAs
such as photoluminescence, photoreflectance, and absorptig{hierials. It can be seen from Fig.(&Dthat the anisotropic
near the band edges. Bohr radius parameters, anda, of the HH to conduction
band exciton(or A-line exciton are independent of the
strain, anda, is larger thara,. For the LH band to conduc-
tion band exciton B-line excitor), botha, anda; approach
Using the above band-edge effective masses, we then cdhose of the HH band exciton asymptotically when we in-
culate the excitonic properties including the exciton Bohrcrease the compressive strain. For a large tensile strain, the
radius and binding energy. In wide gap materials, excitond. H band exciton is squeezed in thalirection and elongated

E. Exciton Bohr radius and binding energy
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FIG. 8. The band-edge effective masses of the HH, LH, and CH
bands along th&; andk, directions are plotted as a function of the

c-axis strain.
-0.5] + ]
IV. CONCLUSIONS
-1 1 1 1 1 1 1 1 L i L . . .
012 008 004 0 004 008 0.2 We have derived the full analytical expressions of the
) Kz (1/A) ’ ke (1/A) bulk wave function and energy dispersion of the strained
wurtzite GaN using a recently block-diagoinalized Hamil-
1 i T _ tonian. Based on the analytical expressions, we have ex-
(c) tracted the deformation potentials from experimental exciton
o5l 1 ] transition energies as a function of tbexis strain. Numeri-

cal results of the energy band dispersion, wave functions,
effective masses, optical matrix elements, and exciton prop-
erties are shown for the biaxial compressive, tensile, and
zero strain cases. These calculations also describe quantita-
tively the strain-dependent band-mixing features of the
wurtzite GaN materials. These analytical expressions and nu-
merical examples will be useful for understanding the band-

-1 )
0.12 0.08 0.04 0 0.04 0.08 0.12

«<

ke (1/A) ; ke (1/A) 1.00 prerrrrerrrrprrrrpep—

FIG. 7. The three components of the wave functions g,,

andg; are plotted along th&, andk, directions for(a) the heavy- o 0.80 A
hole (HH), (b) the light-hole(LH), and(c) the crystal-field split-off E@
hole (CH) bands. The strain is biaxial tensile wigh,= —0.2%. T 3 [
éusi 0.60
along thet direction. However, for the CH to conduction E“a :
band exciton C-line exciton), the situation is the opposite of g'é 0.40}
the B-line exciton. £2 [
Figure 1@b) shows the strain dependence of the exciton g'~= s
binding energies for theA-, B-, and C-line excitons of 2 0.207

wurtzite GaN crystals. The values vary between 25.4 and
26.2 meV, and they are larger than that of GaAs (4.2 jneV S
The difference between the maximum value and the mini- '0_0_2 01 o 01 0.2
mum value is less than 1 meM%). Thebinding energy of

the HH-band exciton is constant due to the constant nature of
its band-edge effective masses. The LH-band and CH-band g\ 9. The interband optical momentum matrix elements of the
excitons reach a minimum at 0.06 and—0.09 % tensile  HH |H, and CH bands to the conduction band transitions and their
strain, respectively. These strain values correspond to thosglarization dependencie$ ¢r z polarized are plotted as a func-

of the isotropic effective mass conditions. tion of the c-axis strain.

c-axis strain €zz (%)
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FIG. 10. (a) The exciton Bohr radius parameteasanda, for the conduction band to HH, LH, and CH bands excitons dmdheir
corresponding binding energies are plotted as a function of-thes strain.

edge optical properties and electronic transport issues using o o
wurtzite GaN crystals. 4y=— —|(X+iY)T)— —=[(X=iY)]), Al
y |4) \/EK ) ﬁ“ )1 (A1)
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APPENDIX: BASIS FUNCTIONS where
The 6<6 valence band Hamiltonian for the strained 1 37 3¢
wurtzite semiconductor takes<® block diagonalized form a= —ex;{i —t — } (A2)
when we introduce the following basis functions: V2 4 2
1) == X))+ (X iY)1) L il
=—— [ —|(X~—i , = —exgil —+ =
\/E \/E B \/EeXF{I 2 + > (A3)
B . B* . and
2)=—Zl(X=1Y)1) = =l (X+iY)]),
2 2 y
. p=tan* —y>. (A4)
13y=8%121)+B|Z1). x
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