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Localized defect modes in a two-dimensional triangular photonic crystal
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By using a finite-difference time-domain numerical method based on introducing an oscillating dipole at a
proper position in a two-dimensional photonic crystal consisting of an array of dielectric cylinders, we nu-
merically solve the inhomogeneous wave equation discretized in both space and time to calculate the eigen-
frequency and the eigenfunction of a localized defect mode. We study the spatial distribution of the electric
field and the radiated power associated with the defect modes produced by introducing a defect cylinder into
an otherwise periodic two-dimensional triangular photonic crystal. We have obtained excellent agreement for
the defect mode ofA1 symmetry created by removing a single cylinder from the center of the region of
cylinders arrayed in a triangular lattice with the experimental result of Smithet al. @J. Opt. Soc. Am. B10, 314
~1993!#. We have also examined systems in which defect states are introduced by varying the radius of a single
cylinder and when both the dielectric strength and the radius of the defect cylinder are changed. The calculated
values of the donor and acceptor levels associated with the exponentially decaying defect modes ofA1

symmetry induced by changing the radius are in good quantitative agreement with the nondegenerate donor
and acceptor levels obtained by the supercell method within the plane-wave approach reported recently by
Fenget al. @Jpn. J. Appl. Phys.36, 120 ~1997!#.
@S0163-1829~98!05324-7#
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I. INTRODUCTION

Since the discovery of a new class of periodic dielec
structures—photonic crystals1,2—considerable progress ha
been achieved in exploring the nature of these artificia
created materials3,4 that possess unique physical propert
such as the existence of photonic band gaps5 and the local-
ization of light in the presence of disorder,2 which may lead
to applications in many scientific and technical areas.6

One of the most intriguing properties of photonic ban
gap crystals is the emergence of exponentially decaying
calized defect modes that may appear within the photo
band gaps when a defect is introduced into an otherw
perfect photonic crystal.1,7–23 Understanding the nature o
the localized modes and determining the conditions un
which photon bound states exist within the gaps is of p
ticular importance for various potential applications of dop
photonic crystals in semiconductor lasers, resonators,
frequency filters. The calculations of the frequencies and
fields associated with these defect modes were performe
using supercell methods,10,12–15,18,22,23which are based on
computer simulation methods, and by exact Green’s func
methods,16,17,19,20which yield the solution of the impurity
problem in terms of the eigenvalues and eigenfunctions
the photonic band structure of the perfect photonic cryst

A supercell method in which a single defect is placed i
repeated cell of a sufficiently large size introduces an ar
of defects into the structure rather than just a single def
The overlap between the modes localized at the defects in
neighboring cells gives rise to a dispersion of the impur
band, and the frequency of the band is taken to be the b
center. As alternative exact methods for studying the loc
570163-1829/98/57~24!/15242~9!/$15.00
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ized modes in photonic crystals, schemes based on the a
cation of the Green’s-function formalism have be
developed.16,17,19,20In an approach presented by Leung,16 the
fields within the photonic crystal in the presence of a def
are expanded in terms of vector Wannier functions. The
plication of exact Green’s-function methods to the study
the defect modes in photonic crystals was also made by
radudin and McGurn17 for a two-dimensional periodic sys
tem formed from an array of cylindrical dielectric rods. Th
problem of a single dielectric-impurity rod or a cluster
rods with a general impurity dielectric constant in a trunca
two-dimensional, periodic dielectric medium has been st
ied by Algul et al.9 More recently, the Green’s-function for
malism has been applied to the study of a single impu
fabricated from a frequency-dependent material embedde
a photonic crystal formed from a frequency-independ
material.20

In this paper, we focus on the study of the localiz
modes produced by introducing a defect cylinder into a tw
dimensional periodic system consisting of parallel dielec
rods of circular cross section that are arrayed in a triang
lattice. It is well known that by changing the dielectric co
stant of a single cylinder one can create donor and acce
states emerging from the top and the bottom of the g
Alternatively, acceptor and donor levels may appear wh
the radius of a defect cylinder is reduced and increased
spectively. It has been demonstrated both theoretically
experimentally that the resulting acceptor defect create
single level, while a donor defect creates multiple levels
side a band gap. Surprisingly, to date, to our knowledge,
systematic study of the symmetry of the defect modes an
the associated field patterns has been carried out, and th
15 242 © 1998 The American Physical Society
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57 15 243LOCALIZED DEFECT MODES IN A TWO-DIMENSIONAL . . .
the objective of this paper for the case of a triangular pho
nic crystal.

In our calculations, we apply a finite-difference tim
domain technique developed within the framework of t
supercell method, which allows calculating the eigenf
quency and the eigenfunction of a defect mode with h
precision.24 The method is based on the numerical simulat
of the excitation of the defect mode by a virtual oscillati
dipole located near the dielectric defect. By discretizing
inhomogeneous wave equation for the electric field in b
space and time we have calculated the electric-field distr
tion, energy density, and electromagnetic energy emitted
the dipole as a function of frequency.

Our method fully allows for the satisfaction of the boun
ary conditions at the boundaries of the computational
and, therefore, is applicable to the study of the uncoup
localized modes that cannot be excited by an external p
wave and have not been revealed by using conventio
finite-difference techniques for calculating the transmiss
coefficient for the incident wave. Such information might
valuable in the design of photonic band-gap structures
devices in which these modes with eigenfrequencies wi
the higher-frequency gaps can be utilized or, on the ot
hand, if a single dominant mode is desired and modes
other symmetries are to be suppressed.

The present paper is organized as follows. In Sec. II
briefly describe the methods used in calculating the elec
magnetic field radiated by an oscillating dipole embedded
a photonic crystal. In Sec. III we present results for the fu
symmetric localized modes ofA1 symmetry of theC3v point
group for the system in which a single cylinder is remov
from the center of the triangular lattice, which corresponds
the system studied experimentally in Ref. 14. Then we st
the variation of the donor and acceptor levels that appea
the photonic band gap when the dielectric constant o
single cylinder and/or the radius of the defect rod is modifi
in a photonic crystal with two different values of the fillin
fraction of the rods. In Sec. IV we discuss and summarize
results obtained and give possible directions for future
search.

II. METHODS OF CALCULATION

The numerical method used to calculate the eigen
quency and eigenfunction of a defect mode in a triangu
photonic crystal in this paper is based on the approach
veloped within the framework of the Green’s-functio
formalism24 that treats the inhomogeneous Maxwell’s equ
tions with a source term that is the extrinsic polarization fi
of an oscillating dipole embedded in the perfect photo
lattice. We solve this problem in the presence of the de
by using a numerical simulation of the excitation of the d
fect mode by an oscillating dipole located near the defe
Then by evaluating the electromagnetic energy emitted
the dipole as a function of frequency we determine the eig
frequency of the defect mode as the resonance frequenc

We start from the following Maxwell’s equations:

¹3E~x;t !52
1

c

]

]t
H~x;t !, ~2.1!
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¹3H~x;t !5
1

c

]

]t
$e~x!E~x;t !14pPd~x;t !%, ~2.2!

wheree~x! is a position-dependent dielectric constant tha
a periodic function ofx, except for the disorder introduce
by the dielectric defect, andPd(x;t) is the polarization field
of the oscillating dipole embedded in the photonic lattic
which can be written in the explicit form

Pd~x;t !5dmd~x2x0!exp~2 ivt !, ~2.3!

wheredm is the amplitude of the oscillating dipole,x0 is the
position vector of the dipole, andv is the angular frequency
of the oscillation.

The Green’s-function method that treats the dipole rad
tion in a regular photonic lattice24 can be applied to the prob
lem of the calculation of the defect mode if the presence
the defect modes is taken into account in addition to
extended Bloch states. When we denote the eigenfunc
and the eigenfrequency of the defect mode byEd(x) andvd ,
assume thatv is close tovd , which is isolated in a photonic
band gap, and neglect the contribution from all other eig
modes, then Eq.~36! in Ref. 24 yields the following expres
sion for the electric field of the present problem:

E~x,t !.2
2pvd$dm•Ed* ~x0!%Ed~x!exp~2 ivt !

V~v2vd1 iG!
,

~2.4!

whereEd(x) is normalized as

E
V
e~x!uEd~x!u2dx5V. ~2.5!

In Eq. ~2.4!, G is a small positive constant that ensures t
causality of the solution of Eqs.~2.1!–~2.2!,24 and V is the
volume on which the cyclic boundary condition is impose

The electromagnetic energyU emitted per unit time by
the oscillating dipole placed atx0 within the supercell is
given by the surface integral of the normal component of
Poynting vector, which can be transformed into a volum
integral by using Gauss’s theorem. By calculating the Po
ting vector and by using the normalization condition giv
by Eq. ~2.5!, we obtain the following expression forU:25

U5
pvd

2udm•Ed~x0!u2

2V$~v2vd!21G2%
. ~2.6!

Then by evaluating the electromagnetic energy emitted
the dipole as a function of frequency we can obtain
eigenfrequency of the defect modevd as a resonance fre
quency.

To perform this task, we use the numerical simulation
the dipole radiation to solve the inhomogeneous Maxwe
equations with a source term that is the extrinsic polarizat
field of the oscillating dipole given by Eq.~2.3!. In this pa-
per, we apply this technique to the problem of an isola
defect introduced into an otherwise perfect two-dimensio
photonic crystal. The introduction of a defect into a period
dielectric structure may give rise to localized states with
the photonic band gap, which are donorlike or acceptorl
depending on the method used to form a defect. Specifica
we study the defect modes in a two-dimensional photo
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15 244 57VLADIMIR KUZMIAK AND ALEXEI A. MARADUDIN
lattice that consists of infinitely long parallel rods charact
ized by a dielectric constantea embedded in a backgroun
dielectric material characterized by the dielectric const
eb . The rods are assumed to be parallel to thex3 axis, and
the intersections of the axes of the rods with a perpendic
plane form a two-dimensional triangular lattice. In particul
we are interested in exploring the nature of defect mode
C3v symmetry, which may appear within the photonic g
when a cylinder is removed or an impurity cylinder with
modified dielectric constant is introduced into the otherw
perfect two-dimensional photonic crystal. We also study
alternative, technologically more favorable, defect states
ated by varying the radius of a single cylinder.

The vector electromagnetic field in the two-dimension
photonic lattice can be decoupled into two independent
larization components, i.e.,E polarization for which the elec
tric field is parallel to the rod axis, andH polarization for
which the magnetic field is parallel to the rod axis.7,26,27 In
this paper, we will consider the particular case of the def
states ofE polarization. The theory of the defect states ofH
polarization can be constructed along similar lines and w
be presented elsewhere. The two-dimensional system
study is characterized by a dielectric constant of the form

e~xi!5e0~xi!1ed~xi!, ~2.7!

wheree0(xi) is a periodic function ofxi ,

e0@xi1xi~ l !#5e0~xi!, ~2.8!

wherexi( l ) is a translation vector of the triangular lattic
while ed(xi) is nonzero in a small region of thex1x2 plane.

For the case ofE polarization, the electric-field vector i
given by

E~x;t !5„0,0,E3~xi ;t !… ~2.9!

and

H~x;t !5„H1~xi ;t !,H2~xi ;t !,0…. ~2.10!

If we assume that the direction of the oscillating dipo
momentdm is parallel to the rods, and denote by (x10,x20)
the position of the dipole moment within thex1x2 plane,
Maxwell’s equations for the amplitude functionsE3(xi ;t),
H1(xi ;t), andH2(xi ;t) take the form

]E3

]x1
5

1

c

]

]t
H2 , ~2.11!

]E3

]x2
52

1

c

]

]t
H1 , ~2.12!

]H2

]x1
2

]H1

]x2
5

1

c

]

]t
$e~xi!E314pdmd~x12x10!

3d~x22x20!exp~2 ivt !%. ~2.13!

The equation forE3 obtained by eliminatingH1 andH2 can
be written in the form
-

t
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]x1
2 1

]2

]x2
2DE32

e~xi!

c2

]2

]t2 E3

5
v2

c2 4pdmd~x12x10!d~x22x20!exp~2 ivt !.

~2.14!

Now, by approximating both derivatives in space a
time in the latter equation by finite differences, one obtai

Ei , j
k1152Ei , j

k 2Ei , j
k211

1

e i , j
S Dt

Dx1
D 2

@Ei 11,j
k 1Ei 21,j

k 22Ei , j
k #

1
1

e i , j
S Dt

Dx2
D 2

@Ei , j 11
k 1Ei , j 21

k 22Ei , j
k #

1
4pdm

e i , j
~vDt !2d i i 0d j j 0 exp~2 ivt !, ~2.15!

where the indexk refers to a grid point of time, the indicesi
and j denote thex1 and x2 axes, respectively,Dt is the
division of time, andDx1 , Dx2 are the intervals between th
neighboring nodes along thex1 andx2 axes, respectively, on
a discrete two-dimensional mesh. To evaluate the elec
field radiated from the oscillating dipole we solve Eq.~2.15!
with the initial conditionsE3(xi ;0)50, ]E3(xi ;0)/]t50.

By using the values of the electric field obtained by so
ing Eq.~2.15! in a computational domain that is chosen to
a supercell composed of an array of 838 unit cells, we
determine the components of the magnetic field from E
~2.11! and ~2.12!. Then we use the components of the ele
tric and magnetic fields to evaluate the frequency dep
dence of the electromagnetic energy emitted by the dip
per unit time, and we determine the frequency of the def
mode as the resonance frequency. The spatial distributio
the electric field with the frequency of the defect mode a
the associated electromagnetic energy is sampled everya/20
in the region in thex1x2 plane consisting of 838 unit cells,
each of which is characterized by the lattice constanta.

The fields at the nodes outside the computational dom
are related to the field inside by imposing periodic bound
conditions. Modes within the domain investigated are e
cited by an oscillating dipole located near a defect cylind
in the photonic crystal, and the solution of Eq.~2.15! is car-
ried out for enough dipole cycles until a converged eigenf
quency and a converged distribution of the electric field
sociated with the localized mode are achieved. T
symmetry of the eigenmode can be specified by impos
periodic boundary conditions reflecting the symmetry o
particular irreducible representation ofC3v symmetry and by
placing the dipole in an appropriate symmetrical configu
tion. Employing the symmetry of theC3v point group leads
to a large reduction of the computational task, since in f
the calculations for the defect modes that correspond to n
degenerate states were carried out in1

12 of the supercell. In
order to discretize the wave equation we sampled the
cell at a 20320 mesh, and one period of oscillation wa
divided into 240 time points.
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III. RESULTS

We first apply this method to the calculation of the tota
symmetricA1 mode of theC3v point group, since the experi
mental observation of Smithet al. @Figs. 7~a! and 7~b! of
Ref. 14# seems to show this symmetry. The experimen
studies in Ref. 14 dealt with the defect configuration crea
by removing one cylinder from an otherwise perfect triang
lar photonic lattice with a lattice constanta51.27 cm con-
sisting of identical dielectric rods of radiusR50.48 cm,
which corresponds to the filling fractionf 50.518, character-
ized by a dielectric constantea59, embedded in a back
ground dielectric material characterized by a dielectric c
stant eb51.04. Our motivation for performing the
calculations in the system studied experimentally in Ref.
is twofold—to validate our approach in comparison with t
experimental data and to examine the symmetry of the lo
ized modes. In the following we focus on the study of t
fully symmetric defect modes that possess theA1 symmetry
of theC3v point group and we place the dipole at the orig
where the defect rod is centered. By imposing boundary c
ditions appropriate to the irreducible representations of
point groupC3v , and varying the dielectric strength of a

FIG. 1. The electromagnetic energy radiated by an oscilla
dipole moment located at the center of the defect rod as a func
of the oscillation frequency. The dashed curve corresponds to
configuration when a defect state is created by removing a si
rod; the solid curve represents the radiated energy of an oscilla
dipole in the perfect two-dimensional photonic crystal consisting
dielectric rods of circular cross section arrayed in a triangular
tice. As in the experimentally studied array of Smithet al. ~Ref.
14!, the following values were assumed:a51.27 cm, R
50.48 cm, ea59.0, eb5ed51.04. A resonance atva/2pc
50.471 indicated by an arrow is clearly observed.
l
d
-

-

4

l-

,
n-
e

impurity cylinder we have also found defect states ofA2 ,
B1 , B2 , E1 , andE2 symmetry. We will publish these result
in a forthcoming paper.

It is well established that the photonic band structure
E-polarized electromagnetic waves propagating through
photonic crystal considered in Ref. 14 reveals several forb
den gaps. We are interested in the second lowest one, w
appears in the frequency range 0.43,va/2pc,0.49, into
which a defect state is introduced by removing a single c
inder from an otherwise perfect triangular photonic cryst
In Fig. 1, we present the electromagnetic energy radiated
an oscillating dipole located at the center of a defect
versus frequency, which corresponds to a steady state
100 cycles of oscillation. The calculated frequency dep
dence of the radiated power reveals a sharp resonanc
va/2pc50.471. This peak is a consequence of a localiz
state ofA1 symmetry of theC3v point group, and is in quan
titative agreement with the experimentally observed tra
mission peak reported by Smithet al. in Ref. 14, which ap-
pears within the second-lowest band gap. The existenc
the band gap is indicated in Fig. 1 by the solid curve th
represents the radiated energy of an oscillating dipole in
perfect two-dimensional photonic crystal, and is in quanti
tive agreement with the results obtained by using a stand
plane-wave technique.27 The peaks centered atva/2pc

g
n

he
le
ng
f
t-

FIG. 2. The spatial distribution~a! of the electric field and~b!
the energy density excited by the oscillating dipole after 100 cyc
of oscillation atva/2pc50.471, which corresponds to the res
nance shown in Fig. 1, caused by removing a single cylinder fr
the two-dimensional photonic crystal.
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15 246 57VLADIMIR KUZMIAK AND ALEXEI A. MARADUDIN
50.39 and 0.49 represent the onset of the continuum of
bands ofA1 symmetry at the lower and upper band edg
respectively. To verify the localized nature of the defect st
we have evaluated the spatial distribution of the elec
field. The field pattern and spatial distribution of the elect
magnetic energy radiated by the oscillating dipole shown
Figs. 2~a! and 2~b!, respectively, clearly demonstrate th
rapid falloff of the energy density near the defect rod,
expected for a localized defect mode. Because the field
tern associated with this localized mode is strongly localiz
and has a vanishingly small amplitude at the boundary ax
54a, a supercell composed of an array of 838 unit cells
was found sufficient to achieve impurity-band-effect-free
sults. In addition, by placing the oscillating dipole at an o
defect-rod position atx5(a,0) instead of atx5(0,0), we
obtained the identical field pattern and we demonstrated
the induced electromagnetic field belongs to a nondegene
eigenmode. We have monitored the convergence of
eigenfrequencies obtained by using finer meshes in b
space and time, and we have found that the frequencies
converged to better than 1%.

It is well known that when the dielectric strength of th
defect rod is increased~decreased! a donor~acceptor! level
may appear in the photonic band gap. The results displa
in Fig. 3 demonstrate the monotonic dependence of the

FIG. 3. The electromagnetic energy radiated by an oscilla
dipole embedded in the supercell containing a defect with the ra
r d5R for three values of the dielectric constant, viz.,ed51 ~dashed
curve! with the resonance atva/2pc50.456,ed53 ~dotted curve!
with the resonance atva/2pc50.446, anded55 ~dash-dotted
curve! with the resonance atva/2pc50.436. The solid curve rep
resents the energy radiated by an oscillating dipole in the per
two-dimensional photonic crystal whenea513, R50.1a ( f
50.036), anda51.27 cm.
e
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fect levels on the variation of the dielectric strength of t
defect rod in a system of rods of radiusR50.1a, character-
ized by a dielectric constantea513, embedded in vacuum
that form a triangular lattice with the lattice constanta
51.27 cm, which corresponds to a filling fractionf
50.036. The photonic band structure for electromagne
waves propagating through such a system reveals sev
photonic gaps. We focus on the lowest band gap that app
in the frequency range 0.42,va/2pc,0.57, which is indi-
cated by the solid curve in Fig. 3. By varying the dielect
constant of the defect rod we have found resonances a
frequenciesva/2pc50.456, 0.446, and 0.436, which corre
spond to three values of the dielectric constant of the de
rod ed51, ed53, and ed55, respectively. Both the
electromagnetic-field distribution and the energy density
sociated with the defect state created by introducing an
purity rod characterized by a dielectric constanted55 dis-
play exponentially decaying spatial behavior that resem
the strongly localized nature of the defect mode shown
Figs. 2~a! and 2~b!, respectively.

Varying the radius of the defect rod represents an alter
tive and technologically more favorable way of produci
defect levels. The results shown in Fig. 4 illustrate how
position of the defect levels can be controlled by the sim

g
us

ct

FIG. 4. The electromagnetic energy radiated by an oscillat
dipole embedded in the supercell containing a defect rod with
electric constanted55 when the radius of the rod isr d5R ~dotted
curve! with the resonance atva/2pc50.436 and r d51.2R
~dashed-dotted curve! with the resonance atva/2pc50.427, com-
pared with the corresponding result for a vacancy~dashed curve!.
The solid curve represents the energy radiated by an oscilla
dipole in the perfect two-dimensional photonic crystal with t
same parameters as in Fig. 3.



r
th
u

th

n
d
te
th
r
th
a

ty
is
oc
e
lo
2
th
ng

ni-
by

ave
1%.
his
ret-
nd

the
ls in
y a

n-

the
r
the

as
s at
h
rod

c-
ted

or,

tin
ct
,

t
t
va

les
ct
re-

57 15 247LOCALIZED DEFECT MODES IN A TWO-DIMENSIONAL . . .
taneous variation of both the dielectric constant and the
dius of the defect rod. We studied the dependence of
frequency associated with the defect level created by red
ing the dielectric strength toed55 when the radius of the
defect rod is increased in the rangeR,r d,1.5R. In Fig. 4,
we display the resonances at the frequenciesva/2pc
50.436 and 0.427, which correspond to the values of
radius of the defect rodr d5R and r d51.2R, respectively.
The frequencies associated with the defect modes show
the latter figure decrease as the radius of the defect ro
increased. Such a variation of the defect level is consis
with the general result that by adding material to one of
unit cells the frequency of the defect level decreases. It
sembles the tendency shown in Fig. 3, and confirms
equivalence of both methods of producing defect levels
alternative tools for controlling the position of the impuri
level within the photonic gap. By evaluating the spatial d
tributions of the electric fields and energy densities ass
ated with the defect levels indicated in Fig. 4, we confirm
their exponentially decaying behavior, which reflects the
calized nature of the defect mode demonstrated in Figs.~a!
and 2~b!, respectively. Because the field associated with
localized modes presented in Figs. 3 and 4 has a vanishi
small amplitude at the boundary atx54a, a supercell com-
posed of an array of 838 unit cells was found sufficient to

FIG. 5. The electromagnetic energy radiated by an oscilla
dipole embedded in the supercell containing a defect rod chara
ized by the dielectric constanted513 for three values of the radius
viz., r d50.7R ~dash-dashed curve! with the resonance atva/2pc
50.310, r d50.5R ~dash-dotted curve! with the resonance a
va/2pc50.338, andr d50.3R ~dotted curve! with the resonance a
va/2pc50.367, compared with the corresponding result for a
cancy~dashed curve!, whena51.27 cm,R50.2a ( f 50.145), and
ea513.
a-
e
c-

e

in
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e
e-
e
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-
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d
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e
ly

achieve impurity-band-effect-free results. We have mo
tored the convergence of the eigenfrequencies obtained
using finer meshes in both space and time, and we h
found that the frequencies are converged to better than

To demonstrate the efficiency and the capabilities of t
method, we have also compared our results with the theo
ical results of Ref. 23 obtained by the supercell method a
the plane-wave approximation. In fact, we have studied
defect size dependence of the acceptor and donor leve
the system consisting of dielectric rods characterized b
dielectric constantea513 and radiusr d50.2R embedded in
vacuum, which form a triangular lattice with the lattice co
stant a51.27 cm that corresponds to the filling fractionf
50.145. We have found that decreasing the radius of
defect cylinder in the range 0,r d,R gives rise to accepto
levels that penetrate into the gap from the continuum of
bands located below the bottom of the photonic band gap
indicated in Fig. 5. Specifically, we have found resonance
the frequenciesva/2pc50.310, 0.338, and 0.367, whic
correspond to the three values of the radius of the defect
r d50.7R, r d50.5R, and r d50.3R, respectively. In Figs.
6~a! and 6~b! we present the spatial distributions of the ele
tric field and the energy density, respectively, associa
with the defect rod with the radius reduced byDr d50.5R.
Both quantities display exponentially decaying behavi

g
er-

-

FIG. 6. The spatial distribution~a! of the electric field and~b!
the energy density excited by the oscillating dipole after 100 cyc
of oscillation atva/2pc50.338, which corresponds to the defe
state indicated by the dash-dotted curve in Fig. 5 produced by
ducing the radius of the defect cylinder tor d50.5R.
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which indicates the strongly localized nature of the accep
mode. In order to study donorlike levels, we have increa
the radius of a single cylinder and have confirmed the e
tence of defect levels that penetrate into the gap from
continuum of the bands located above the top of the photo
band gap. In Fig. 7, we depict the resonances associated
the donor defect modes made by increasing the radius o
defect cylinder in the range 2R,r d,2.5R, namely, we dis-
play resonances at the frequenciesva/2pc50.425, 0.40,
and 0.378, which correspond to the three values of the ra
of the defect rodr d52.1R, r d52.3R, andr d52.5R, respec-
tively. The frequencies associated with the defect lev
shown in Figs. 5 and 7 are in quantitative agreement with
nondegenerate acceptor and donor levels calculated fo
identical system in Ref. 23. In Figs. 8~a! and 8~b!, we display
the distribution of the electromagnetic field and the ene
density associated with the defect rod with the radiusr d
52.3R, respectively. Both quantities display exponentia
decaying amplitudes, and thus indicate the strongly locali
nature of the donor mode. Both acceptor and donor lev
appear within the lowest band gap in the frequency ra
0.27,va/2pc,0.45, which is indicated by the solid curv
in Figs. 5 and 7. The dependence of the radiated power o
dipole embedded in a perfect photonic crystal is in go
quantitative agreement with the results for the photonic b

FIG. 7. The electromagnetic energy radiated by an oscilla
dipole embedded in the supercell containing a defect rod with
electric constanted513 when the radius of the rod isr d52.1R
~dashed curve! with the resonance atva/2pc50.425, r d52.3R
~dotted curve! with the resonance atva/2pc50.40, andr d52.5R
~dash-dotted curve! with the resonance atva/2pc50.378. The
solid curve represents the energy radiated by an oscillating dipo
the perfect two-dimensional photonic crystal with the same par
eters as in Fig. 5.
r
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d

structure forE-polarized electromagnetic waves propagati
through such a system obtained by the standard plane-w
technique.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have applied a finite-difference tim
domain method developed within the framework of the s
percell method and based on the numerical simulation
dipole radiation to a two-dimensional photonic crystal th
consists of a triangular array of circular dielectric rods
which several types of defects are introduced. We first
plied our method to the system with a single rod remov
from the center studied experimentally by Smithet al.14 The
results obtained for this system are in excellent agreem
with the measurements, and we have identified the exp
mentally observed localized mode located at 11.2 GHz
one ofA1 symmetry.

We have also examined systems in which the defect st
are introduced by other methods, namely, by varying
dielectric strength of a single cylinder, by changing the d
fect size, and by a combination of both methods. Our res
clearly indicate that by reducing or increasing the radius
the defect cylinder we can control the frequency of the def
state. This behavior is demonstrated by the appearanc

g
i-

in
-

FIG. 8. The spatial distribution~a! of the electric field and~b!
the energy density excited by the oscillating dipole after 100 cyc
of the oscillation atva/2pc50.40, which corresponds to the defe
state indicated by the dash-dotted curve in Fig. 7 produced by
creasing the radius of the defect cylinder tor d52.3R.
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acceptorlike levels that penetrate into the gap from the b
tom of the band gap as the radius of the defect rod is
duced, and by the existence of donorlike levels that app
below the conduction-band edge when the radius of the
fect rod is increased. The variation of the defect level cau
by adding dielectric material to one of the unit cells displa
the same tendency as its dependence on the diele
strength of a single rod, and confirms the equivalence of b
alternative methods of introducing the defect modes. To v
date our method we have carried out a calculation of
defect size dependence in the configuration considere
Ref. 23, and we have found that our results for the de
states ofA1 symmetry are in very good quantitative agre
ment with the nondegenerate acceptor and donor levels
ported in that work.

The results obtained demonstrate that our method co
tutes a computationally viable technique, which yields ac
rate eigenvalues and eigenfunctions of the defect states
therefore, a complete spatial mapping of the correspond
electric field in the system. As a reasonably simple alter
tive to computationally intensive schemes our method p
vides a theoretical tool that emulates an experimental m
surement, which uses a tuned microwave probe, for exam
and allows studying two- and three-dimensional syste
The method can be readily extended to the case of a
defect and can also be used for the investigation of sur
modes. By imposing periodic boundary conditions reflect
the symmetry of irreducible representations ofC3v symmetry
and by varying the dielectric strength and radius of the de
rod, our method allows predicting the frequencies of the
fect states, which correspond to a particular irreducible r
resentation. Then, if we consider the selection rules that
ply to states with different symmetries as the origin of
feedback mechanism, we can use multilevel systems b
on the photonic crystal technology as a source of stimula
emission. Studies in progress focus on the extension of
u
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present method to the solution of the problem of frequen
dependent and nonlinear Kerr-like defects. In such syste
new physical phenomena are expected to occur.

In conclusion, we have successfully applied a fini
difference time-domain method to the study of isolated
fects, which introduce strongly localized states within a fo
bidden gap of a photonic crystal. To demonstrate
efficiency of our approach we have studied the configurat
with a single cylinder removed and the defect size dep
dence of the defect levels. The results obtained by
method are in very good quantitative agreement with
defect modes observed both experimentally and theoretic
in earlier studies. In addition we have analyzed the variat
of the defect levels with the size of a defect and its dielec
strength, and demonstrated the capability of the method
predict the dependence of the defect level on either of th
parameters or on a combination of both methods for prod
ing the defect level. By inspecting the spatial distribution
the electromagnetic field and the energy density we h
verified the localized nature of the eigenfunctions associa
with the defect states. In comparison with the superc
method using plane-wave expansions our approach does
suffer from slow convergence problems, and provid
impurity-band-width-free results. In addition, it allows ide
tifying the symmetry of the defect mode, and thus constitu
a viable computational method comparable to exist
Green’s-function techniques.
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