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Localized defect modes in a two-dimensional triangular photonic crystal
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By using a finite-difference time-domain numerical method based on introducing an oscillating dipole at a
proper position in a two-dimensional photonic crystal consisting of an array of dielectric cylinders, we nu-
merically solve the inhomogeneous wave equation discretized in both space and time to calculate the eigen-
frequency and the eigenfunction of a localized defect mode. We study the spatial distribution of the electric
field and the radiated power associated with the defect modes produced by introducing a defect cylinder into
an otherwise periodic two-dimensional triangular photonic crystal. We have obtained excellent agreement for
the defect mode of\; symmetry created by removing a single cylinder from the center of the region of
cylinders arrayed in a triangular lattice with the experimental result of Senigh.[J. Opt. Soc. Am. BLO, 314
(1993 ]. We have also examined systems in which defect states are introduced by varying the radius of a single
cylinder and when both the dielectric strength and the radius of the defect cylinder are changed. The calculated
values of the donor and acceptor levels associated with the exponentially decaying defect médes of
symmetry induced by changing the radius are in good quantitative agreement with the nondegenerate donor
and acceptor levels obtained by the supercell method within the plane-wave approach reported recently by
Fenget al. [Jpn. J. Appl. Phys36, 120(1997)].
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[. INTRODUCTION ized modes in photonic crystals, schemes based on the appli-
cation of the Green’s-function formalism have been
Since the discovery of a new class of periodic dielectricdeveloped®!”1%2%n an approach presented by Leufighe
structures—photonic crystalé—considerable progress has fields within the photonic crystal in the presence of a defect
been achieved in exploring the nature of these artificiallyare expanded in terms of vector Wannier functions. The ap-
created materiafé' that possess unique physical propertiesplication of exact Green's-function methods to the study of
such as the existence of photonic band gapsl the local- the defect modes in photonic crystals was also made by Ma-
ization of light in the presence of disordewhich may lead radudin and McGurH for a two-dimensional periodic sys-
to applications in many scientific and technical ar®as. tem formed from an array of cylindrical dielectric rods. The
One of the most intriguing properties of photonic band-problem of a single dielectric-impurity rod or a cluster of
gap crystals is the emergence of exponentially decaying lorods with a general impurity dielectric constant in a truncated
calized defect modes that may appear within the photonitwo-dimensional, periodic dielectric medium has been stud-
band gaps when a defect is introduced into an otherwis@d by Algul et al® More recently, the Green’s-function for-
perfect photonic crystdt’~?® Understanding the nature of malism has been applied to the study of a single impurity
the localized modes and determining the conditions undefabricated from a frequency-dependent material embedded in
which photon bound states exist within the gaps is of para photonic crystal formed from a frequency-independent
ticular importance for various potential applications of dopedmaterial?®
photonic crystals in semiconductor lasers, resonators, and In this paper, we focus on the study of the localized
frequency filters. The calculations of the frequencies and thenodes produced by introducing a defect cylinder into a two-
fields associated with these defect modes were performed limensional periodic system consisting of parallel dielectric
using supercell method§2-1%182223yhich are based on rods of circular cross section that are arrayed in a triangular
computer simulation methods, and by exact Green’s functiotattice. It is well known that by changing the dielectric con-
methods®171920which yield the solution of the impurity stant of a single cylinder one can create donor and acceptor
problem in terms of the eigenvalues and eigenfunctions o$tates emerging from the top and the bottom of the gap.
the photonic band structure of the perfect photonic crystal. Alternatively, acceptor and donor levels may appear when
A supercell method in which a single defect is placed in athe radius of a defect cylinder is reduced and increased, re-
repeated cell of a sufficiently large size introduces an arragpectively. It has been demonstrated both theoretically and
of defects into the structure rather than just a single defecexperimentally that the resulting acceptor defect creates a
The overlap between the modes localized at the defects in thsingle level, while a donor defect creates multiple levels in-
neighboring cells gives rise to a dispersion of the impurityside a band gap. Surprisingly, to date, to our knowledge, no
band, and the frequency of the band is taken to be the bargystematic study of the symmetry of the defect modes and of
center. As alternative exact methods for studying the localthe associated field patterns has been carried out, and this is
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the objective of this paper for the case of a triangular photo- 19
nic crystal. VXH(x;t)= T e(X)E(x;t) +4mPy(x;t)}, (2.2

In our calculations, we apply a finite-difference time-
domain technique developed within the framework of thewheree(X) is a position-dependent dielectric constant that is
supercell method, which allows calculating the eigenfre-a periodic function ok, except for the disorder introduced
guency and the eigenfunction of a defect mode with highby the dielectric defect, anBly(x;t) is the polarization field
precision?? The method is based on the numerical simulationof the oscillating dipole embedded in the photonic lattice,
of the excitation of the defect mode by a virtual oscillating which can be written in the explicit form
dipole located near the dielectric defect. By discretizing the .
inhomogeneous wave equation for the electric field in both Pa(x;t)=d, 6(x—Xo)exp( —iwt), 23

space and time we have calculated the electric-field distribughered is the amplitude of the oscillating dipolg, is the
tion, energy density, and electromagnetic energy emitted bysition vector of the dipole, and is the angular frequency
the dipole as a function of frequency. of the oscillation.

Our method fully allows for the satisfaction of the bound-  The Green’s-function method that treats the dipole radia-
ary conditions at the boundaries of the computational céllio, in a regular photonic lattié&can be applied to the prob-
and, therefore, is applicable to the study of the uncouplegey, of the calculation of the defect mode if the presence of
localized modes that cannot be excited by an extemnal plange gefect modes is taken into account in addition to the
wave and have not been revealed by using conventionglyiended Bloch states. When we denote the eigenfunction
finite-difference techniques for calculating the transmissionq the eigenfrequency of the defect modeEhgx) andawy
coefficient for the incident wave. Such information might be ;sqme thab is close towy, which is isolated in a photoﬁic
valuable in the design of photonic band-gap structures anfyg gap, and neglect the contribution from all other eigen-

devices in which these modes with eigenfrequencies within,gqes. then Eq36) in Ref. 24 yields the following expres-
the higher-frequency gaps can be utilized or, on the othegjqn, for the electric field of the present problem:
hand, if a single dominant mode is desired and modes of

other symmetries are to be suppressed. 27 wq{d,, E} (Xo) }Eg(X)exp( —i wt)
The present paper is organized as follows. In Sec. Il we E(x,t)=— V(o—wgtiT) ,
briefly describe the methods used in calculating the electro- @~ @d (2.4

magnetic field radiated by an oscillating dipole embedded in

a photonic crystal. In Sec. Il we present results for the fullywhereEy(x) is normalized as

symmetric localized modes &f; symmetry of theC,, point

group for the system in which a single cylinder is removed 24y

from the center of the triangular lattice, which corresponds to f €(|EO)"dx=V. 29
the system studied experimentally in Ref. 14. Then we stud . .
the variation of the donor and acceptor levels that appear if! E9- (2.4, I' is a small positive constant that ensures the
the photonic band gap when the dielectric constant of £2us@lity of the solution of Eq$2.1—(2.2,™ andV is the
single cylinder and/or the radius of the defect rod is modified’Clume on which the FVCI'C boundary condmon.ls .|mposed.
in a photonic crystal with two different values of the filling 1 ne €lectromagnetic enerdy emitted per unit time by

fraction of the rods. In Sec. IV we discuss and summarize thi1e oscillating dipole placed at, within the supercell is
results obtained and give possible directions for future re9/ven by the surface integral of the normal component of the
search. Poynting vector, which can be transformed into a volume

integral by using Gauss’s theorem. By calculating the Poyn-
ting vector and by using the normalization condition given

Il. METHODS OF CALCULATION by Eq. (2.5, we obtain the following expression fai:2°

The numerical method used to calculate the eigenfre- 7m§|dﬂ-Ed(x0)|2
guency and eigenfunction of a defect mode in a triangular = 2V{(0—wg) 24T (2.6
photonic crystal in this paper is based on the approach de- d
veloped within the framework of the Green’s-function Then by evaluating the electromagnetic energy emitted by
formalisnt* that treats the inhomogeneous Maxwell's equa-the dipole as a function of frequency we can obtain the
tions with a source term that is the extrinsic polarization fieldeigenfrequency of the defect mods; as a resonance fre-
of an oscillating dipole embedded in the perfect photonicquency.
lattice. We solve this problem in the presence of the defect To perform this task, we use the numerical simulation of
by using a numerical simulation of the excitation of the de-the dipole radiation to solve the inhomogeneous Maxwell’s
fect mode by an oscillating dipole located near the defectequations with a source term that is the extrinsic polarization
Then by evaluating the electromagnetic energy emitted byield of the oscillating dipole given by E@2.3). In this pa-
the dipole as a function of frequency we determine the eigenper, we apply this technique to the problem of an isolated
frequency of the defect mode as the resonance frequency.defect introduced into an otherwise perfect two-dimensional
We start from the following Maxwell’'s equations: photonic crystal. The introduction of a defect into a periodic
dielectric structure may give rise to localized states within
the photonic band gap, which are donorlike or acceptorlike
depending on the method used to form a defect. Specifically,
we study the defect modes in a two-dimensional photonic

VxE(x;t)=—%%H(x;t), (2.2
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lattice that consists of infinitely long parallel rods character- 92 9 e(x)) 92
ized by a dielectric constart, embedded in a background 2T 2| BE3T T2 2 B3
. , : ; . . X1 OX5 ce at
dielectric material characterized by the dielectric constant
€,. The rods are assumed to be parallel to xhexis, and w? _
the intersections of the axes of the rods with a perpendicular =5z 4md . 8(X1~ X10) 8(X2 ~ X0 EXP( ~ I w1).
plane form a two-dimensional triangular lattice. In particular,
we are interested in exploring the nature of defect modes of (2.14

Cs, symmetry, which may appear within the photonic gap
when a cylinder is removed or an impurity cylinder with a L L .
modified dielectric constant is introduced into the otherwise, 'NOW: by approximating both derivatives in space and
perfect two-dimensional photonic crystal. We also study thdime in the latter equation by finite differences, one obtains
alternative, technologically more favorable, defect states cre-
ated by varying the radius of a single cylinder. 1/ At

The vector electromagnetic field in the two-dimensional Ek+1 2Ek-—Ek 1+ —_ (_) [E|+1J+E:( 1] 2Ek]]
photonic lattice can be decoupled into two independent po- Ax
larization components, i.ekE, polarization for which the elec- 1 /A
tric field is parallel to the rod axis, anld polarization for (
which the magnetic field is parallel to the rod ak#€:*’In AX;
this paper, we will consider the particular case of the defect
states oft polarization. The theory of the defect stategbf
polarization can be constructed along similar lines and will
be presented elsewhere. The two-dimensional system we
study is characterized by a dielectric constant of the form where the index refers to a grid point of time, the indicés

and j denote thex; and x, axes, respectivelyAt is the

2
[Efj 1 +Ef 1 —2Ef ]

€

i, %8000 eXP—iwt), (2.15

(X)) = eo(X)) + €4(X)), (2.7 division of time, andAx,, Ax, are the intervals between the
_ o . neighboring nodes along the andx, axes, respectively, on
whereeo(x;) is a periodic function ok, a discrete two-dimensional mesh. To evaluate the electric
field radiated from the oscillating dipole we solve Eg.15
€0l X +x(1)]=€eo(x)), (2.8 with the initial conditionsEz(x;;0)=0, JE3(x;;0)/dt=0.

By using the values of the electric field obtained by solv-

' ing EQ.(2.15 in a computational domain that is chosen to be
a supercell composed of an array oK8 unit cells, we

determine the components of the magnetic field from Egs.

wherex,(l) is a translation vector of the triangular lattice
while e4(X;) is nonzero in a small region of thgx, plane.
For the case oE polarization, the electric-field vector is

given by (2.17) and(2.12. Then we use the components of the elec-
tric and magnetic fields to evaluate the frequency depen-

E(x;t)=(0,0E5(x;1)) (2.9  dence of the electromagnetic energy emitted by the dipole

and per unit time, and we determine the frequency of the defect

mode as the resonance frequency. The spatial distribution of
the electric field with the frequency of the defect mode and
HOGt) = (H1(x;1),Ha(X;;1),0). (210 the associated electromagnetic energy is sampled evaey
in the region in thex;x, plane consisting of & 8 unit cells,
each of which is characterized by the lattice constant
The fields at the nodes outside the computational domain
are related to the field inside by imposing periodic boundary
conditions. Modes within the domain investigated are ex-
cited by an oscillating dipole located near a defect cylinder
in the photonic crystal, and the solution of £g8.15) is car-
JE; 14 ried out for enough dipole cycles until a converged eigenfre-
,9_)(1: cat 2 (213 guency and a converged distribution of the electric field as-
sociated with the localized mode are achieved. The
symmetry of the eigenmode can be specified by imposing
By 10 " (2.1p  Periodic boundary conditions reflecting the symmetry of a
axz cot v ' particular irreducible representation ©f, symmetry and by
placing the dipole in an appropriate symmetrical configura-
tion. Employing the symmetry of th€,, point group leads

If we assume that the direction of the oscillating dipole
momentd,, is parallel to the rods, and denote k¥, §,X5)
the position of the dipole moment within thgx, plane,
Maxwell's equations for the amplitude functiols(x;;t),
H.(x;;t), andH,(x,;t) take the form

H, oHy 14

- = {G(X\\)E3+47Td 8(X1—X10) to a large reduction of the computational task, since in fact
Iy X, coat the calculations for the defect modes that correspond to non-
. 1.
X 8(Xp— Xo0)€XP( —i wb)}. 2.13 degenerate states were carried outirof the supercell. In

order to discretize the wave equation we sampled the unit
The equation foE; obtained by eliminatingd; andH, can  cell at a 2020 mesh, and one period of oscillation was
be written in the form divided into 240 time points.
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Al vacancy mode in triangular lattice: a=1.27 cm R=0.48 cm €,=9 a=127cm, R=048cm, r4=Re, =9. ¢4=1. A, - symmetry
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FIG. 1. The electromagnetic energy radiated by an oscillating
dipole moment located at the center of the defect rod as a functior(b) x[em] A o
of the oscillation frequency. The dashed curve corresponds to the
configuration when a defect state is created by removing a single g 2. The spatial distributiofa) of the electric field andb)
rod; the solid curve represents the radiated energy of an oscillating,q energy density excited by the oscillating dipole after 100 cycles
dipole in the perfect two-dimensional photonic crystal consisting ofyt scillation atwal/2mc=0.471, which corresponds to the reso-
dielectric rods of circular cross section arrayed in a triangular latyanece shown in Fig. 1, caused by removing a single cylinder from
tice. As in the experimentally studied array of Sméhal. (Ref. the two-dimensional photonic crystal.
14), the following values were assumeda=1.27cm, R
=0.48cm, €,=9.0, ¢,=€¢4=1.04. A resonance atwa/2wc

—0.471 indicated by an arrow is clearly observed. impurity cylinder we have also found defect statesAof,

B., B,, E;, andE, symmetry. We will publish these results
in a forthcoming paper.

It is well established that the photonic band structure for

We first apply this method to the calculation of the totally E-polarized electromagnetic waves propagating through the
symmetricA; mode of theC3, point group, since the experi- photonic crystal considered in Ref. 14 reveals several forbid-
mental observation of Smitkt al. [Figs. 4a) and 7b) of  den gaps. We are interested in the second lowest one, which
Ref. 14 seems to show this symmetry. The experimentalappears in the frequency range O4@a/27wc<0.49, into
studies in Ref. 14 dealt with the defect configuration createdvhich a defect state is introduced by removing a single cyl-
by removing one cylinder from an otherwise perfect triangu-inder from an otherwise perfect triangular photonic crystal.
lar photonic lattice with a lattice constaat=1.27 cm con- In Fig. 1, we present the electromagnetic energy radiated by
sisting of identical dielectric rods of radiuR=0.48 cm, an oscillating dipole located at the center of a defect rod
which corresponds to the filling fractidn=0.518, character- versus frequency, which corresponds to a steady state after
ized by a dielectric constand,=9, embedded in a back- 100 cycles of oscillation. The calculated frequency depen-
ground dielectric material characterized by a dielectric condence of the radiated power reveals a sharp resonance at
stant ¢,=1.04. Our motivation for performing the wa/2mc=0.471. This peak is a consequence of a localized
calculations in the system studied experimentally in Ref. 14tate ofA; symmetry of theCg, point group, and is in quan-
is twofold—to validate our approach in comparison with thetitative agreement with the experimentally observed trans-
experimental data and to examine the symmetry of the localmission peak reported by Smitt al. in Ref. 14, which ap-
ized modes. In the following we focus on the study of thepears within the second-lowest band gap. The existence of
fully symmetric defect modes that possess Ahesymmetry  the band gap is indicated in Fig. 1 by the solid curve that
of the C;, point group and we place the dipole at the origin, represents the radiated energy of an oscillating dipole in the
where the defect rod is centered. By imposing boundary corperfect two-dimensional photonic crystal, and is in quantita-
ditions appropriate to the irreducible representations of théive agreement with the results obtained by using a standard
point groupCs,,, and varying the dielectric strength of an plane-wave techniqu€. The peaks centered aba/2mc

lll. RESULTS
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A1 defect modes in triangular lattice: a =1.27cm f=0.036 R=0.1a Al defect modes in triangular lattice: a =1.27cm f=0.036 R=0.1a
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FIG. 3. The electromagnetic energy radiated by an oscillating
dipole embedded in the supercell containing a defect with the radiu
r4= R for three values of the dielectric constant, vigy= 1 (dashed
curve with the resonance ada/27c=0.456,¢4=3 (dotted curve
with the resonance aba/2wc=0.446, andey=5 (dash-dotted
curve with the resonance aba/27rc=0.436. The solid curve rep-
resents the energy radiated by an oscillating dipole in the perfe
two-dimensional photonic crystal wher,=13, R=0.1a (f
=0.036), anda=1.27 cm.

FIG. 4. The electromagnetic energy radiated by an oscillating
aipole embedded in the supercell containing a defect rod with di-
electric constaney=5 when the radius of the rod ig=R (dotted
curve with the resonance awa/27wc=0.436 andry=1.2R
(dashed-dotted curyavith the resonance aba/2wc=0.427, com-

ared with the corresponding result for a vacafdgshed curve

he solid curve represents the energy radiated by an oscillating
dipole in the perfect two-dimensional photonic crystal with the
same parameters as in Fig. 3.

=0.39 and 0.49 represent the onset of the continuum of the

bands ofA; symmetry at the lower and upper band edgesfect levels on the variation of the dielectric strength of the
respectively. To verify the localized nature of the defect statdélefect rod in a system of rods of radis=0.1a, character-

we have evaluated the spatial distribution of the electrigzed by a dielectric constart,=13, embedded in vacuum,
field. The field pattern and spatial distribution of the electro-that form a triangular lattice with the lattice constaant
magnetic energy radiated by the oscillating dipole shown ir=1.27 cm, which corresponds to a filling fractiof

Figs. 4a) and Zb), respectively, clearly demonstrate the =0.036. The photonic band structure for electromagnetic
rapid falloff of the energy density near the defect rod, aswaves propagating through such a system reveals several
expected for a localized defect mode. Because the field paphotonic gaps. We focus on the lowest band gap that appears
tern associated with this localized mode is strongly localizedn the frequency range 0.42wa/27c<0.57, which is indi-

and has a vanishingly small amplitude at the boundary at cated by the solid curve in Fig. 3. By varying the dielectric
=4a, a supercell composed of an array ok8 unit cells constant of the defect rod we have found resonances at the
was found sufficient to achieve impurity-band-effect-free re-frequenciesva/27wc=0.456, 0.446, and 0.436, which corre-
sults. In addition, by placing the oscillating dipole at an off- spond to three values of the dielectric constant of the defect
defect-rod position ak=(a,0) instead of atx=(0,0), we rod e4=1, €4=3, and e4=5, respectively. Both the
obtained the identical field pattern and we demonstrated thatlectromagnetic-field distribution and the energy density as-
the induced electromagnetic field belongs to a nondegeneras@ciated with the defect state created by introducing an im-
eigenmode. We have monitored the convergence of thpurity rod characterized by a dielectric constagt5 dis-
eigenfrequencies obtained by using finer meshes in bothlay exponentially decaying spatial behavior that resemble
space and time, and we have found that the frequencies atlke strongly localized nature of the defect mode shown in
converged to better than 1%. Figs. 2a) and Zb), respectively.

It is well known that when the dielectric strength of the  Varying the radius of the defect rod represents an alterna-
defect rod is increaseflecreaseda donor(acceptoy level  tive and technologically more favorable way of producing
may appear in the photonic band gap. The results displayedefect levels. The results shown in Fig. 4 illustrate how the
in Fig. 3 demonstrate the monotonic dependence of the dgsosition of the defect levels can be controlled by the simul-
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3A1 acceptor states in triangular lattice: a = 1.27 cm f = 0.145R = 0.2a a=127cm, R=10.2a, 74 = 0.5R ¢, = ¢g = 13 A;—symmetry
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FIG. 5. The electromagnetic energy radiated by an oscillating
dipole embedded in the supercell containing a defect rod character-
ized by the dielectric constaap;= 13 for three values of the radius,  (b)
viz., r4=0.7R (dash-dashed curyavith the resonance aba/2wc
=0.310, r4=0.5R (dash-dotted curyewith the resonance at
wal27c=0.338, and 4= 0.3R (dotted curve¢ with the resonance at
wal2mc=0.367, compared with the corresponding result for a va-
cancy(dashed curve whena=1.27 cm,R=0.2a (f=0.145), and
€,=13.

x{cm]

FIG. 6. The spatial distributiola) of the electric field andb)
the energy density excited by the oscillating dipole after 100 cycles
of oscillation atwa/27c=0.338, which corresponds to the defect
state indicated by the dash-dotted curve in Fig. 5 produced by re-
ducing the radius of the defect cylinder tg=0.5R.

taneous variation of both the dielectric constant and the raachieve impurity-band-effect-free results. We have moni-
dius of the defect rod. We studied the dependence of thtored the convergence of the eigenfrequencies obtained by
frequency associated with the defect level created by reduassing finer meshes in both space and time, and we have
ing the dielectric strength tey=5 when the radius of the found that the frequencies are converged to better than 1%.
defect rod is increased in the ranBecr3<1.5R. In Fig. 4, To demonstrate the efficiency and the capabilities of this
we display the resonances at the frequenciea/2mc  method, we have also compared our results with the theoret-
=0.436 and 0.427, which correspond to the values of thécal results of Ref. 23 obtained by the supercell method and
radius of the defect rody=R andry=1.2R, respectively. the plane-wave approximation. In fact, we have studied the
The frequencies associated with the defect modes shown wefect size dependence of the acceptor and donor levels in
the latter figure decrease as the radius of the defect rod f&e system consisting of dielectric rods characterized by a
increased. Such a variation of the defect level is consisterflielectric constang,= 13 and radius 4=0.2R embedded in
with the general result that by adding material to one of thevacuum, which form a triangular lattice with the lattice con-
unit cells the frequency of the defect level decreases. It restanta=1.27 cm that corresponds to the filling fractidn
sembles the tendency shown in Fig. 3, and confirms the=0.145. We have found that decreasing the radius of the
equivalence of both methods of producing defect levels aglefect cylinder in the range<QOr 4<R gives rise to acceptor
alternative tools for controlling the position of the impurity levels that penetrate into the gap from the continuum of the
level within the photonic gap. By evaluating the spatial dis-bands located below the bottom of the photonic band gap as
tributions of the electric fields and energy densities associindicated in Fig. 5. Specifically, we have found resonances at
ated with the defect levels indicated in Fig. 4, we confirmedthe frequencieswa/27wc=0.310, 0.338, and 0.367, which
their exponentially decaying behavior, which reflects the lo-correspond to the three values of the radius of the defect rod
calized nature of the defect mode demonstrated in Figs. 2 ry4=0.7R, ry=0.5R, and ry=0.3R, respectively. In Figs.
and 2b), respectively. Because the field associated with thé(a) and b) we present the spatial distributions of the elec-
localized modes presented in Figs. 3 and 4 has a vanishinglyic field and the energy density, respectively, associated
small amplitude at the boundary at4a, a supercell com- with the defect rod with the radius reduced hy,=0.5R.
posed of an array of 88 unit cells was found sufficient to Both quantities display exponentially decaying behavior,
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Al donor states in triangular lattice: a =127 cm £=0.145R=0.2a a=127cm R=0.2a rg = 23R e = ea = 13 A;—symmetry
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FIG. 7. The electromagnetic energy radiated by an oscillating
dipole embedded in the supercell containing a defect rod with di-
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electric constanty=13 when the radius of the rod ig;=2.1R (o) 8 0
(dashed curvewith the resonance aba/2wc=0.425,r3=2.3R S o
(dotted CUI’V§3 with the resonance aba/27c=0.40, andrd: 2.5R FIG. 8. The spatlal dlStI’IbUth(ﬁ) of the electric field anc(b)

(dash-dotted curyewith the resonance aba/2wc=0.378. The the energy dgnsity excited by the ospillating dipole after 100 cycles
solid curve represents the energy radiated by an oscillating dipole ifif the oscillation ata/27c=0.40, which corresponds to the defect

the perfect two-dimensional photonic crystal with the same paramstate indicated by the dash-dotted curve in Fig. 7 produced by in-
eters as in Fig. 5. creasing the radius of the defect cylinderrtpe=2.3R.

which indicates the strongly localized nature of the acceptoktructure forE-polarized electromagnetic waves propagating
mode. In order to study donorlike levels, we have increase¢hrough such a system obtained by the standard plane-wave
the radius of a single cylinder and have confirmed the existechnique.

tence of defect levels that penetrate into the gap from the
continuum of the bands located above the top of the photonic
band gap. In Fig. 7, we depict the resonances associated with
the donor defect modes made by increasing the radius of the In this paper we have applied a finite-difference time-
defect cylinder in the rangeR<ry<2.5R, namely, we dis- domain method developed within the framework of the su-
play resonances at the frequenciea/2wc=0.425, 0.40, percell method and based on the numerical simulation of
and 0.378, which correspond to the three values of the radiudipole radiation to a two-dimensional photonic crystal that
of the defect rod y=2.1R, ry=2.3R, andry=2.5R, respec- consists of a triangular array of circular dielectric rods in
tively. The frequencies associated with the defect levelsvhich several types of defects are introduced. We first ap-
shown in Figs. 5 and 7 are in quantitative agreement with thglied our method to the system with a single rod removed
nondegenerate acceptor and donor levels calculated for tfeom the center studied experimentally by Sméthal1* The
identical system in Ref. 23. In Figs(aé3 and 8b), we display results obtained for this system are in excellent agreement
the distribution of the electromagnetic field and the energywith the measurements, and we have identified the experi-
density associated with the defect rod with the radiys mentally observed localized mode located at 11.2 GHz as
=2.3R, respectively. Both quantities display exponentially one of A; symmetry.

decaying amplitudes, and thus indicate the strongly localized We have also examined systems in which the defect states
nature of the donor mode. Both acceptor and donor levelare introduced by other methods, namely, by varying the
appear within the lowest band gap in the frequency rangédielectric strength of a single cylinder, by changing the de-
0.27<wal2wc<0.45, which is indicated by the solid curve fect size, and by a combination of both methods. Our results
in Figs. 5 and 7. The dependence of the radiated power of thelearly indicate that by reducing or increasing the radius of
dipole embedded in a perfect photonic crystal is in goodhe defect cylinder we can control the frequency of the defect
guantitative agreement with the results for the photonic bandtate. This behavior is demonstrated by the appearance of

IV. DISCUSSION AND CONCLUSIONS
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acceptorlike levels that penetrate into the gap from the botpresent method to the solution of the problem of frequency-
tom of the band gap as the radius of the defect rod is redependent and nonlinear Kerr-like defects. In such systems,
duced, and by the existence of donorlike levels that appearew physical phenomena are expected to occur.
below the conduction-band edge when the radius of the de- In conclusion, we have successfully applied a finite-
fect rod is increased. The variation of the defect level causedifference time-domain method to the study of isolated de-
by adding dielectric material to one of the unit cells displaysfects, which introduce strongly localized states within a for-
the same tendency as its dependence on the dielectridden gap of a photonic crystal. To demonstrate the
strength of a single rod, and confirms the equivalence of botfficiency of our approach we have studied the configuration
alternative methods of introducing the defect modes. To valiVith @ single cylinder removed and the defect size depen-
date our method we have carried out a calculation of théience of thg defect levels. Th? r_esults obtained by our
defect size dependence in the configuration considered i ethod are in very good quantltatlve agreement W'th. the
Ref. 23, and we have found that our results for the defec efect_modes_observed _b_Oth experimentally and theore_tlc_ally
states ofA, symmetry are in very good quantitative agree-'n earlier studies. In gddmon we have analyzed t_he variation
ment with the nondegenerate acceptor and donor levels r&f the defect levels with the size of a defect and its dielectric
ported in that work. strer!gth, and demonstrated the capability of th_e method to
The results obtained demonstrate that our method constPredict the dependence of the defect level on either of these

tutes a computationally viable technique, which yields accyParameters or on a com_bma’uon of both me_thods f_or p_roduc-
rate eigenvalues and eigenfunctions of the defect states an'ggl the defect level. By inspecting the spatial distribution of

therefore, a complete spatial mapping of the correspondin e f—:-lectromagn.etm field and the energy d(_ansny we have
electric field in the system. As a reasonably simple alterna-(?”f'ed the localized nature of the e.|genfur)ct|ons associated
tive to computationally intensive schemes our method proWIth the d_efect states. In comparison with the supercell
vides a theoretical tool that emulates an experimental mea@emOOI using plane-wave expansions our approach dO?S not
surement, which uses a tuned microwave probe, for examplélmer_ from SIO_W convergence probl_e_ms, . and prqwdes
and allows studying two- and three-dimensional Systemé_lﬁﬁpurlty—band—mdth—free results. In addition, it allows iden-
The method can be readily extended to the case of a |inI=,l‘°y”?9 the symmetry of the defect mode, and thus constitutes
defect and can also be used for the investigation of surfac V|at,>Ie computaﬂongl method comparable to existing
modes. By imposing periodic boundary conditions reflecting reen’s-function techniques.

the symmetry of irreducible representationgaf, symmetry
and by varying the dielectric strength and radius of the defect
rod, our method allows predicting the frequencies of the de- The work of V.K. was supported by the Japanese Society
fect states, which correspond to a particular irreducible repfor Promotion of Science and in part by Czech Academy of
resentation. Then, if we consider the selection rules that apSciences Grant No. 202/96/1239. V.K. wishes to thank the
ply to states with different symmetries as the origin of aResearch Institute for Electronic Science, Hokkaido Univer-
feedback mechanism, we can use multilevel systems basesity, for its hospitality during a visit, at which time this work
on the photonic crystal technology as a source of stimulatedvas done. The work of A.A.M. was supported in part by
emission. Studies in progress focus on the extension of thSF Grant No. DMR-9319404.
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