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Two-dimensional Yukawa Bose liquid: A Singwi-Tosi-Land-Sjdander study
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We study the ground-state properties of a two-dimensional Yukawa boson liquid within the self-consistent
scheme of Singwet al.[Phys. Rev176 589(1968]. The interaction potential being short ranged and having
a soft core is the screened Coulomb interaction in two dimensions. We calculate the static structure factor and
local-field corrections describing the short-range correlation effects, and compare our results with the Monte
Carlo simulations[S0163-18208)02323-4

. INTRODUCTION tex lattices in highF, materiald® such as YBaCu;O,_ 5 and
Bi,Sr,CaCyOg, , in transport, magnetization, and neutron-

The many-body problem of a collection of particles obey-diffraction-type experiments have revealed a rich phase dia-
ing Bose statistics and a given interparticle interaction is aram. Theoretical calculations studying this melting transi-
paradigm for understanding various physical properties ofion range from quantum and classical MC
realistic systems such as liquid helium and neutron mattesimulations®®?3o density-functional theory approachés,
The fluid of charged bosons embedded in a uniform neutraland perturbation expansion technigdeghe flux-line liquid
izing background is another model with possible relevancenodel proposed by Nelsthassumes that London limit is
and application to superconductivity. Bosons interacting withapplicable(the ratio of the penetration depth to coherence
the Yukawa potentiafi.e., V~ exp (—r)/r in three dimen- length is very large, which holds true for high-materialg,
siong has been used to determine the crystallization of sysand the angular dependence of the vortex interaction is ne-
tems with soft-core potentials. glected.

In this work, we study the ground-state properties of a Our primary aim is to see how well the STLS approach
two-dimensional Yukawa Bose liqui®D-YBL) within the  models the ground-state static and dynamic properties of 2D
self-consistent-field method. There are several motivatingyukawa bosons. To this end, we calculate the static structure
reasons for our investigation. In two dimensions, thefactor, the pair-correlation function, and the dispersion of the
Yukawa bosons interact via the potenti@h(r/o), which  collective modes to compare with available MC simulations.
may be regarded as the screened Coulomb potential avith Both the zero-temperature quantum MC simulations of Ma-
being the screening length. The celebrated self-consistengro and Ceperléyand the path-integral MC calculations of
field method of Singwi, Tosi, Land, and ‘%mdef (STLS  Nordborg and Blattér indicate a first-order transition at
has been applied to a variety of bosonic systems to determirgbout the same critical parameters. In our calculations we are
the ground-state correlations. These include charged bosofimited to studying the fluid phase of the Yukawa boson
interacting via the long-range Coulomb fordesystems with  model, thus little can be said about the possible freezing
short-range interactiorfs, and systems with hard-core transition into the crystal phase. However, various ground-
interactions. Results are often compared to the availablestate correlation functions can signal the approach to the
Monte Carlo (MC) simulations which provide accurate transition, as in the case of Bose Coulomb ligtid.
ground-state energies. The STLS approach enjoys reasonableThe rest of this paper is organized as follows. In Sec. I,
success, especially in the weak to moderate coupling regimeve provide self-consistent-field equations for 2D-YBL. Sec-
The 2D Yukawa potential can be termed as short ranged wittion Il contains the results of our calculations. We conclude
a soft core. Recent calculations on the charged bosons intewith a brief summary in Sec. IV.
acting via a Inf) potentiaf showed qualitative agreement
with the MC simulation$ on the same system in the fluid Il. THEORY
phase. Thus, it seems timely to apply the STLS method to
the 2D-YBL problem to obtain some complementary results The bare interparticle interaction for the Yukawa bosons
to the current MC simulatior? Another impetus for study- in two dimensions is given by %(ry=€ Ko(r/o), whereK,
ing the 2D-YBL comes from the suggestion of NelSbthat ~ is the zero-order modified Bessel function of the second
the classical statistical mechanics of flux-line liquids as ockind, ande and o are, respectively, the fundamental energy
cur in highT. superconductors can be mapped onto a 2Dand length scales; in relation to the type-Il highs super-
guantum system. The observation of the melting of the vorconductivity, they are matched to the material paraméfers.
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To characterize the 2D-YBL system, we employ the wave- Y°(q,iw)
number-space d-space formalism, there the 2D bare x(Q,iw)= o : PR (6)
Yukawa interaction becomes)®(q)=2med?/(1+ o?q?), 1-U"(g)[1-G(a)]x(q,iw)

which is well behaved at the origin and short ranged, the- ti 4
consequences of which will be displayed in the following quation (4)
sections. For the dielectric formulatithof this many-body
system, beyond the random-phase approximafRiPa), the

is obtained by applying the fluctuation-
dissipation theorefi along the rotated —imaginary— fre-
quency axi& as

self-consistent local-field correction scheme of STLS is b=

implemented. The expression for the local-field correction S(q)=—ﬁJ do x(q,iw); (7)
(LFC), that incorporates the corrections to the RPA mean 0

field, becomes performing the frequency integral yields B¢).

For the organization of our presentation, we list the re-
1 (= maining expressions for the quantities needed in characteriz-
Glan)= prfo dpnpal1=S(pn)] 1(Pn.Gn), (D) ing the 2D-YBL. The pair-correlation function becomes

h 1 o
e r) =1+ 5 [ daado( I San -1, (®)

2 2 2 2 2\2 242
1+dn 1+pa—ay \/(1+p“+q“) 4p“q“_ where r,=r/o is the normalized 2D radial distance and
292 \/(1+ p2+02)2—4p20? Jo(x) is the zero-order Bessel function of the first kind. Col-
(2) lective excitations of the 2D-YBL can be characterized both
by the dispersion relation and the density of these collective
In the above expressions and throughout the text we usexcitations. The former occurs at the normalized —ete-
normalized variables, denoted by the subsamipisingo as  energies
the unit for length and for the energyp=no? also repre-
sents the normalized density withbeing the density. Unlike Amp
the case with the long-range interactions as in electron  En () =A*0y\/A*2q5+ ——[1-G(gn)]. (9
liquids? the short-range nature of the Yukawa potential re- 1+,

flects itself with a nonzero value for ttg—0 limit of the  1he density of collective excitations is defined Bs(E)

[(Pn,0n)=—

LFC, given by =340 E—E(q)], which reduces to
1 (= Ph A 1

=0)= —— —1 r1- _ D(E)=5=2 =T, 10

G(an=0) ZWPJO dpn(1+ Dﬁ)z[l Sl 3 «(E) 2772 dE(q;) (10
dg

The static structure factor of the 2D-YBL depends on the . . . .
LFC through P where g; is theith root of the equatiorE.(q)=E; in our

results, we take the aré® to be unity, or equivalently, we

1 refer to density of collective excitations per unit area.

S(an) = ( 172» (4)

p I1l. RESULTS AND DISCUSSION
+ > 5[1-G(an)]
(1+an)A*“aq The two dimensionless parameters controlling the under-

. lying physics of the 2D-YBL are the normalized densijty
*x _rg2 2 112 }
where A™ =[#/2mo"e]™" s the de Boer parameter. Equa and the de Boer parameté™, the latter being inversely

tions (1) and(4) are solved iteratively, until a self-consistent related to the mass of the bosons. Using as a guideline the

soluupn is reached within a predgtermme_d to_Ierance valuephase diagram of this system obtained by Magro and
In arriving at Eq.(4), one major simplification is made, by

assuming total Bose-Einstein condensation forrhainter- Ceperley; we perform computations at the valuas =0.1,

acting 2D bosons, which is actually known to be impossibleo'%Afs’ and 0.05, fop ranging between_ 2 and 0.01. The
in two dimensions.” The outcomes of this simplification are path-integral Monte CarléPIMC) calculations of Nordborg

assessed in Sec. lll by comparing our results, with the forf”lnd Blatte place the liquid-solid transition t4* ~0.062 in

mally exact, quantum Monte Carl@MC) method. So the e_tgrgement with R'ef..8. Even though we are 'content with the
noninteracting density response function in condensate a;l%'i—glrj]'desig?siﬁ’ ;Z?/é?g;Caﬂggﬁticélth\?vngrdsfgli? El ha?ﬁetrir;%l-
proximatio.n.of the the 2D bosons, along the imaginary fre_curves in the range o(f:{ the-A * blane mentionzdyabove; it
quency axis w, becomes can be noted from Fig. 1 that, as~0, G(g)—1. Thus, in
essence for very low densities, the LFC cancels the mean-
—2n¢q (5) field established by the RPA, suggesting there the use of the
(hw)?+ 65’ Hartree-Fock approach. The static structure factor curves in
Fig. 2 show a tendency toward a structure formation as the
wheren is the density andq=h2q2/2m. The corresponding density decreases. Furthermore, the peak valu& @f data

interacting density response function is given as is then seen to diminish beyond some density, in agreement

x°(g,iw)=
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FIG. 1. Local-field correction of the 2D-YBL foA* =0.1, 0.0645, and 0.05. At eact* value,p=2, 1, 0.5, 0.1, 0.05, and 0.01 curves
are plotted, ordered sequentially with the-2 ones being indicated.
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FIG. 2. Static structure factor of the 2D-YBL fok* =0.1, 0.0645, and 0.05. At each* value,p=1, 0.5, 0.25, 0.1, 0.05, and 0.01
curves are plotted, ordered sequentially with phel ones being indicated.
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FIG. 3. Pair-correlation function of the 2D-YBL fok* =0.1, 0.0645, and 0.05. At each* value,p=1, 0.5, 0.25, 0.1, 0.05, and 0.01
curves are plotted, ordered sequentially with phe0.01 ones being indicated.

with the crossing of a solid-liquid phase boundary interpre-A*2, at which the roton energy vanishes, are usually inter-
tation. Similar conclusions can be drawn from the pair-preted as the transition to the solid phase. The zero of the
correlation function analysis, illustrated in Fig. 3. As a mat-excitation spectrum may be considered asoft mode and
ter of fact, the phase diagram obtained by Magro andhe wave vectog, associated with it indicates the periodicity
Ceperle§ shows a reentrant behavior along thelirection  of the lattice. They values where roton minima occur, can be
for a constantA* value, so that liquid-to-solid and solid-to- matched —but not exactly— to thosgvalues wheres(q)
liquid transitions occur at two distingt values. Ourg(r)  attains a peak. We can obtain the roton effective nmass
and S(q) results signal the presence of the phase boundaritom the curvature of the dispersion curve at the wave num-
belonging to the lows branch only, bringing the possibility ber q,, corresponding to the roton minimum asym*
of the other highe branch being a higher-order transition. =E} .(gno)/(2A*?), wherem is the free boson mass. In
An energy-based consideration is required for the exact lo-
cation of the phase boundary, as our estimates from these , , . , , . ,
plots are rough. In Fig. 4, we compare o{8TLS g(r) 14} o .
results atp=0.02 andA* =0.0645, with the MC data of r w0 1
Magro and Ceperle§The STLS results agree very well with 12 oF
the variational Monte Carlo results; however, the diffusion
Monte Carlo technique shows more pronounced structure
than these two. It is conceivable that a more refined integral- o8
equation based theory such as the hypernetted-¢hiiiC) %
approximation may capture the information contained in MC
simulations. Recent application of the HNC method to
charged bosons has been very successful in this régard. L
The collective excitation dispersion shows the maxon- o2
roton structure as displayed in Fig. 5, gradually disappearing r
toward low densities. The low-density limiting behavior can
be obtained from EQ.9) using G(q)—1 as E, ()
—A* Zqﬁ. There is no gap in the long-wavelength excitation
energy for 2D-YBL, in contrast to the case of Bose Coulomb  FiG. 4. Comparison of the pair-correlation functions of the
liquid interaction via In ) potential®’ Our results are quali-  STLS (solid line), diffusion Monte Carlqdiamonds, and the varia-
tatively similar to the recent PIMC simulation results of Nor- tional Monte Carlo(crosses methods. The Monte Carlo data are
dborg and Blatte?. In fact, the critical parameters, and  extracted from the plot in Ref. 8.

1.0

06 -

04

A'=0.0645
p=0.02

0.0

0 2 4 6 8 10 12 14
t/c



57 TWO-DIMENSIONAL YUKAWA BOSE LIQUID: A ... 15201

T v T T T T T T T T T T T
0.025 A =0.0645
0.020
[72]
2
5]
> n
8 0.015 bl
S =
w 2
[72]
0.010 =
D
a]
0.005
0.000 & : ‘ . L . L ‘ L .
0.0 ) } ; ! 0.000 0.005 0.010 0.015 0.020

Energy

FIG. 5. Collective excitation dispersion of the 2D-YBL for ~ FIG. 6. Density of collective excitationger unit areaof the
A* = 0.0645. Energies are normalized é0p=1, 0.5, 0.25, 0.1, 2D-YBL with respect to normalized energy far* =0.1.
0.07, 0.05, 0.03, 0.02, and 0.01 curves are shown, ordered sequen-
tially with the p=1 and 0.01 curves being indicated. as input, the structural information of the liquid phase. Par-
ticularly, using both the second-order functional expansion
Table |, we tabulaten/m* values for the curves displayed in theory and weighted-density approximations, they arrived at
Fig. 5. In this table we also include the estimate obtained bjhe conclusion that the freezing of the liquid state requires
expanding the energy spectrum aroumg to yield m/m* G_(G)_>1, for some reciproc_al—lqttice vecta. Ac_cording to
=[2/5(Ano) — 426S" (Ano)/ S(Ano) 21/2, under the approxima- this finding and our results in Fig. 1, we can smply conjec-
tion that S'(qne) vanishes, which is responsible from the fure that atA* =0.1 value forp=2 and 1, crystalline phase
slight deviation from the curvature calculation. The observaiS not favorable. Moroni and Senatéfepplied their second-
tion is that, among the densities considersdm* has its ~ Order theory to the crystallization dHe at zero temperature,
largest value at thp=0.1. which bares some resemblance with the YBL due to com-
The density of collective excitations presents the informa/Mon Bose statistics and similar short-ranged interactions. A
tion contained in the dispersion curves in an alternative wayX€Y quantity in their formalism is the so-called quantum di-
and is likely to be observed experimentally. It has beerf€Ct correlation functiorK(q), given as
found useful to study the plasmon density of states in inter-
preting the photoelectron spectra in layered materials, par- (q)= _ 1
ticularly high-T.. superconductor® A double-peak —in our x%(q,00  x(d,0 '
case divergence— behavior is indicative of the maxon-roton . ) ) )
structure. As the density is lowered these peaks merge arldsing Eq.(6), this function can be put into the form
then diminish, as seen in Fig. 6.
Our treatment focuses on the zero-temperature properties M: 2mp [1-G(q,)]. (12)
of the liquid state of the 2D Yukawa bosons. Therefore, it € 2 "
seems as if little can be said about the solid-liquid phase .
transition boundary. However, recent freezing theories develoroni and Senatore observed tathe use of Feynman
oped by Senatore and co-workét€2and Denton, Nielaba, 2PProximation to this expression, given by
and Ashcroff® aim to predict the phase-transition point using

(11)

nKe(gn) _ A*?qf 1

TABLE I. Wave numbers o) corresponding to roton minima € 2 LSZ(qn)
and normalized reciprocal roton effective massegni*) at A* lead iable deviati f h . v ob
=0.0645. Form/m*, both curvature results and estimates using eads to appreciable deviations from the experimentally ob-

expansion in terms of static structure factor —see text— are giveri@ined quantum direct correlation function, with the Feyn-

man approximation having larger oscillations around zero. In

1|, (13)

m/m* m/m* Fig. 7, we plot the direct correlation functidl(q) calcu-
P Uno (curvaturg (expansion lated from Eq.(12) [or Eq.(13), as they are the same within
our Bogoliubov-Feynman type-approximatiofor the 2D-

0.02 0.85 5.4 5.5 YBL system. The interesting observation is that use of Feyn-
0.03 1.05 9.2 9.3 man approximation for 2D Yukawa bosons does not lead to
0.05 1.32 13.7 13.8 large oscillations as in thHe problem. The systematic ap-
0.07 1.53 15.8 16.0 plication of density-functional freezing theories to the 2D
0.1 1.78 16.9 17.0 Yukawa Bose system seems to be beneficial for both assess-
0.25 2.60 14.5 14.7 ing these freezing theories and validating the phase diagram
0.5 3.46 10.3 10.4 obtained by the QMC or PIMC techniqu@s.
1.0 4.54 6.6 6.7 In the dielectric formulation of the interacting bosons, we

have used the response function, assuming that all the par-
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FIG. 7. nK normalized toe vs the normalized wave number,
wheren is the density of 2D-YBL, anK is the quantum direct
correlation function. Severgl and A* combinations are consid-
ered.
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correlation functions and the excitation spectrum, we may
conclude that the present formulation models the ground-
state properties reasonably well. A possible way of taking
the non-condensed bosons into account, within the present
formalism, would be to employ a model momentum distri-
bution n, for particles withk#0. The response function
x(0, ) could be calculated with the mode}, and the con-
densate fraction may be treated as a parameter. It would also
be interesting to compare the static dielectric function calcu-
lated from 1£(q,0)=1+U°(q)x(q,0) [i.e., thew=0 limit

of the full dielectric functione(q,w)] with the direct MC
evaluation of the same quantity. Our calculatiofrsot
shown indicate that agy approaches the reciprocal-lattice
vector associated with the crystal phase, the magnitude of
1/e(q,0) becomes very large, pointing towards the formation
of a localized structure.

IV. SUMMARY

We have performed calculations on some static and dy-

ticles are in the condensate. In general, the interaction effecisamic properties of a 2D Yukawa Bose liquid using the self-
would deplete the condensate, which we have not accountesbnsistent field method of Singwt al? The Yukawa bosons
for in a self-consistent manner. The condensate depletioim two dimensions interact via thi§,(r) potential, in con-
should have the effect of decreasing the static structure facterast to the Ini) potential of the Coulomb Bose liquid. We
S(q), lowering the collective-mode excitation energies, andnhave studied the static structure factor, local-field factor,
thus reducing the the sound velocity associated with theair-correlation function, and dispersion of the collective
long-wavelength phonons. The MC simulatiérisstrongly — modes for the 2D-YBL, and found reasonably good agree-
indicate that there is no condensate in the 2D Coulomb Bosgment with the available MC simulations. Our calculations for
liquid and YBL, but a superfluid phase exists. Our attempt tathe liquid state signal the freezing transition at around the

estimate the number of particles out of the condensateame critical parameters deduced from MC results.

through the formula

1 —NoU%0q)
N_Nozizq: Gch+q)(q_l, (14)
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