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Two-dimensional Yukawa Bose liquid: A Singwi-Tosi-Land-Sjölander study
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We study the ground-state properties of a two-dimensional Yukawa boson liquid within the self-consistent
scheme of Singwiet al. @Phys. Rev.176, 589~1968!#. The interaction potential being short ranged and having
a soft core is the screened Coulomb interaction in two dimensions. We calculate the static structure factor and
local-field corrections describing the short-range correlation effects, and compare our results with the Monte
Carlo simulations.@S0163-1829~98!02323-6#
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I. INTRODUCTION

The many-body problem of a collection of particles obe
ing Bose statistics and a given interparticle interaction i
paradigm for understanding various physical properties
realistic systems such as liquid helium and neutron ma
The fluid of charged bosons embedded in a uniform neut
izing background is another model with possible releva
and application to superconductivity. Bosons interacting w
the Yukawa potential@i.e., V; exp (2r)/r in three dimen-
sions# has been used to determine the crystallization of s
tems with soft-core potentials.1

In this work, we study the ground-state properties o
two-dimensional Yukawa Bose liquid~2D-YBL! within the
self-consistent-field method. There are several motiva
reasons for our investigation. In two dimensions, t
Yukawa bosons interact via the potentialK0(r /s), which
may be regarded as the screened Coulomb potential wis
being the screening length. The celebrated self-consist
field method of Singwi, Tosi, Land, and Sjo¨lander2 ~STLS!
has been applied to a variety of bosonic systems to determ
the ground-state correlations. These include charged bo
interacting via the long-range Coulomb forces,3 systems with
short-range interactions,4 and systems with hard-cor
interactions.5 Results are often compared to the availa
Monte Carlo ~MC! simulations which provide accurat
ground-state energies. The STLS approach enjoys reason
success, especially in the weak to moderate coupling reg
The 2D Yukawa potential can be termed as short ranged
a soft core. Recent calculations on the charged bosons i
acting via a ln (r) potential6 showed qualitative agreemen
with the MC simulations7 on the same system in the flui
phase. Thus, it seems timely to apply the STLS method
the 2D-YBL problem to obtain some complementary resu
to the current MC simulations.8,9 Another impetus for study-
ing the 2D-YBL comes from the suggestion of Nelson10 that
the classical statistical mechanics of flux-line liquids as
cur in high-Tc superconductors can be mapped onto a
quantum system. The observation of the melting of the v
570163-1829/98/57~24!/15197~7!/$15.00
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tex lattices in high-Tc materials11 such as YBa2Cu3O72d and
Bi2Sr2CaCu2O81x in transport, magnetization, and neutro
diffraction-type experiments have revealed a rich phase
gram. Theoretical calculations studying this melting tran
tion range from quantum and classical M
simulations,8,9,12,13to density-functional theory approaches14

and perturbation expansion techniques.15 The flux-line liquid
model proposed by Nelson10 assumes that London limit is
applicable~the ratio of the penetration depth to coheren
length is very large, which holds true for high-Tc materials!,
and the angular dependence of the vortex interaction is
glected.

Our primary aim is to see how well the STLS approa
models the ground-state static and dynamic properties of
Yukawa bosons. To this end, we calculate the static struc
factor, the pair-correlation function, and the dispersion of
collective modes to compare with available MC simulation
Both the zero-temperature quantum MC simulations of M
gro and Ceperley8 and the path-integral MC calculations o
Nordborg and Blatter9 indicate a first-order transition a
about the same critical parameters. In our calculations we
limited to studying the fluid phase of the Yukawa bos
model, thus little can be said about the possible freez
transition into the crystal phase. However, various grou
state correlation functions can signal the approach to
transition, as in the case of Bose Coulomb liquid.6,7

The rest of this paper is organized as follows. In Sec.
we provide self-consistent-field equations for 2D-YBL. Se
tion III contains the results of our calculations. We conclu
with a brief summary in Sec. IV.

II. THEORY

The bare interparticle interaction for the Yukawa boso
in two dimensions is given byU0(r )5e K0(r /s), whereK0
is the zero-order modified Bessel function of the seco
kind, ande ands are, respectively, the fundamental ener
and length scales; in relation to the type-II high-Tc super-
conductivity, they are matched to the material parameter10
15 197 © 1998 The American Physical Society
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To characterize the 2D-YBL system, we employ the wa
number-space (q-space! formalism, there the 2D bare
Yukawa interaction becomesU0(q)52pes2/(11s2q2),
which is well behaved at the origin and short ranged,
consequences of which will be displayed in the followi
sections. For the dielectric formulation16 of this many-body
system, beyond the random-phase approximation~RPA!, the
self-consistent local-field correction scheme of STLS
implemented. The expression for the local-field correct
~LFC!, that incorporates the corrections to the RPA me
field, becomes

G~qn!5
1

2prE0

`

dpnpn@12S~pn!# I ~pn ,qn!, ~1!

where

I ~pn ,qn!52
11qn

2

2qn
2

11pn
22qn

22A~11pn
21qn

2!224pn
2qn

2

A~11pn
21qn

2!224pn
2qn

2
.

~2!

In the above expressions and throughout the text we
normalized variables, denoted by the subscriptn; usings as
the unit for length ande for the energy,r5ns2 also repre-
sents the normalized density withn being the density. Unlike
the case with the long-range interactions as in elect
liquids,2 the short-range nature of the Yukawa potential
flects itself with a nonzero value for theq→0 limit of the
LFC, given by

G~qn50!5
1

2prE0

`

dpn

pn

~11pn
2!2

@12S~pn!#. ~3!

The static structure factor of the 2D-YBL depends on
LFC through

S~qn!5
1

S 11
4pr

~11qn
2!L* 2qn

2 @12G~qn!# D 1/2, ~4!

whereL* 5@\2/2ms2e#1/2 is the de Boer parameter. Equ
tions ~1! and~4! are solved iteratively, until a self-consiste
solution is reached within a predetermined tolerance va
In arriving at Eq.~4!, one major simplification is made, b
assuming total Bose-Einstein condensation for thenoninter-
acting 2D bosons, which is actually known to be impossib
in two dimensions.17 The outcomes of this simplification ar
assessed in Sec. III by comparing our results, with the
mally exact, quantum Monte Carlo~QMC! method. So the
noninteracting density response function in condensate
proximation of the the 2D bosons, along the imaginary f
quency axisiv, becomes

x0~q,iv!5
22neq

~\v!21eq
2

, ~5!

wheren is the density andeq5\2q2/2m. The corresponding
interacting density response function is given as
-

e

s
n
n

se

n
-

e

e.

r-

p-
-

x~q,iv!5
x0~q,iv!

12U0~q!@12G~q!#x0~q,iv!
. ~6!

Equation ~4! is obtained by applying the fluctuation
dissipation theorem16 along the rotated —imaginary— fre
quency axis18 as

S~q!52
\

npE0

`

dv x~q,iv!; ~7!

performing the frequency integral yields Eq.~4!.
For the organization of our presentation, we list the

maining expressions for the quantities needed in characte
ing the 2D-YBL. The pair-correlation function becomes

g~r n!511
1

2prE0

`

dqnqnJ0~qnr n!@S~qn!21#, ~8!

where r n5r /s is the normalized 2D radial distance an
J0(x) is the zero-order Bessel function of the first kind. Co
lective excitations of the 2D-YBL can be characterized bo
by the dispersion relation and the density of these collec
excitations. The former occurs at the normalized —toe—
energies

En,c~qn!5L* qnAL* 2qn
21

4pr

11qn
2 @12G~qn!#. ~9!

The density of collective excitations is defined asDc(E)
5(qd@E2Ec(q)#, which reduces to

Dc~E!5
A

2p(
i

1

UdEc~qi !

dqi
U , ~10!

where qi is the i th root of the equationEc(q)5E; in our
results, we take the areaA to be unity, or equivalently, we
refer to density of collective excitations per unit area.

III. RESULTS AND DISCUSSION

The two dimensionless parameters controlling the und
lying physics of the 2D-YBL are the normalized densityr
and the de Boer parameterL* , the latter being inversely
related to the mass of the bosons. Using as a guideline
phase diagram of this system obtained by Magro a
Ceperley,8 we perform computations at the valuesL* 50.1,
0.0645, and 0.05, forr ranging between 2 and 0.01. Th
path-integral Monte Carlo~PIMC! calculations of Nordborg
and Blatter9 place the liquid-solid transition toL* '0.062 in
agreement with Ref. 8. Even though we are content with
liquid phase, the indications of the liquid-solid phase tran
tion exist in several quantities. We first display the LF
curves in the range of ther-L* plane mentioned above; i
can be noted from Fig. 1 that, asr→0, G(q)→1. Thus, in
essence for very low densities, the LFC cancels the me
field established by the RPA, suggesting there the use of
Hartree-Fock approach. The static structure factor curve
Fig. 2 show a tendency toward a structure formation as
density decreases. Furthermore, the peak value ofS(q) data
is then seen to diminish beyond some density, in agreem
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FIG. 1. Local-field correction of the 2D-YBL forL* 50.1, 0.0645, and 0.05. At eachL* value,r52, 1, 0.5, 0.1, 0.05, and 0.01 curve
are plotted, ordered sequentially with ther52 ones being indicated.

FIG. 2. Static structure factor of the 2D-YBL forL* 50.1, 0.0645, and 0.05. At eachL* value,r51, 0.5, 0.25, 0.1, 0.05, and 0.0
curves are plotted, ordered sequentially with ther51 ones being indicated.
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FIG. 3. Pair-correlation function of the 2D-YBL forL* 50.1, 0.0645, and 0.05. At eachL* value,r51, 0.5, 0.25, 0.1, 0.05, and 0.0
curves are plotted, ordered sequentially with ther50.01 ones being indicated.
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with the crossing of a solid-liquid phase boundary interp
tation. Similar conclusions can be drawn from the pa
correlation function analysis, illustrated in Fig. 3. As a m
ter of fact, the phase diagram obtained by Magro a
Ceperley8 shows a reentrant behavior along ther direction
for a constantL* value, so that liquid-to-solid and solid-to
liquid transitions occur at two distinctr values. Ourg(r )
and S(q) results signal the presence of the phase bound
belonging to the low-r branch only, bringing the possibility
of the other high-r branch being a higher-order transitio
An energy-based consideration is required for the exact
cation of the phase boundary, as our estimates from th
plots are rough. In Fig. 4, we compare our~STLS! g(r )
results atr50.02 andL* 50.0645, with the MC data o
Magro and Ceperley.8 The STLS results agree very well wit
the variational Monte Carlo results; however, the diffusi
Monte Carlo technique shows more pronounced struc
than these two. It is conceivable that a more refined integ
equation based theory such as the hypernetted-chain~HNC!
approximation may capture the information contained in M
simulations. Recent application of the HNC method
charged bosons has been very successful in this regard19

The collective excitation dispersion shows the maxo
roton structure as displayed in Fig. 5, gradually disappea
toward low densities. The low-density limiting behavior c
be obtained from Eq.~9! using G(q)→1 as En,c(qn)
→L* 2qn

2 . There is no gap in the long-wavelength excitati
energy for 2D-YBL, in contrast to the case of Bose Coulom
liquid interaction via ln (r) potential.6,7 Our results are quali-
tatively similar to the recent PIMC simulation results of No
dborg and Blatter.9 In fact, the critical parametersrc and
-
-
-
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-
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b

Lc*
2, at which the roton energy vanishes, are usually int

preted as the transition to the solid phase. The zero of
excitation spectrum may be considered as asoft mode, and
the wave vectorqc associated with it indicates the periodici
of the lattice. Theq values where roton minima occur, can b
matched —but not exactly— to thoseq values whereS(q)
attains a peak. We can obtain the roton effective massm*
from the curvature of the dispersion curve at the wave nu
ber qn0 corresponding to the roton minimum as,m/m*
5En,c9 (qn0)/(2L* 2), where m is the free boson mass. I

FIG. 4. Comparison of the pair-correlation functions of t
STLS~solid line!, diffusion Monte Carlo~diamonds!, and the varia-
tional Monte Carlo~crosses! methods. The Monte Carlo data ar
extracted from the plot in Ref. 8.
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Table I, we tabulatem/m* values for the curves displayed i
Fig. 5. In this table we also include the estimate obtained
expanding the energy spectrum aroundqn0 to yield m/m*
5@2/S(qn0)2qn0

2 S9(qn0)/S(qn0)2#/2, under the approxima
tion that S8(qn0) vanishes, which is responsible from th
slight deviation from the curvature calculation. The obser
tion is that, among the densities considered,m/m* has its
largest value at ther50.1.

The density of collective excitations presents the inform
tion contained in the dispersion curves in an alternative w
and is likely to be observed experimentally. It has be
found useful to study the plasmon density of states in in
preting the photoelectron spectra in layered materials,
ticularly high-Tc superconductors.20 A double-peak —in our
case divergence— behavior is indicative of the maxon-ro
structure. As the density is lowered these peaks merge
then diminish, as seen in Fig. 6.

Our treatment focuses on the zero-temperature prope
of the liquid state of the 2D Yukawa bosons. Therefore
seems as if little can be said about the solid-liquid ph
transition boundary. However, recent freezing theories de
oped by Senatore and co-workers,21,22 and Denton, Nielaba
and Ashcroft23 aim to predict the phase-transition point usi

FIG. 5. Collective excitation dispersion of the 2D-YBL fo
L* 5 0.0645. Energies are normalized toe. r51, 0.5, 0.25, 0.1,
0.07, 0.05, 0.03, 0.02, and 0.01 curves are shown, ordered seq
tially with the r51 and 0.01 curves being indicated.

TABLE I. Wave numbers (qn0) corresponding to roton minima
and normalized reciprocal roton effective masses (m/m* ) at L*
50.0645. Form/m* , both curvature results and estimates us
expansion in terms of static structure factor —see text— are giv

m/m* m/m*
r qn0 ~curvature! ~expansion!

0.02 0.85 5.4 5.5
0.03 1.05 9.2 9.3
0.05 1.32 13.7 13.8
0.07 1.53 15.8 16.0
0.1 1.78 16.9 17.0
0.25 2.60 14.5 14.7
0.5 3.46 10.3 10.4
1.0 4.54 6.6 6.7
y
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as input, the structural information of the liquid phase. P
ticularly, using both the second-order functional expans
theory and weighted-density approximations, they arrived
the conclusion that,22 the freezing of the liquid state require
G(G).1, for some reciprocal-lattice vectorG. According to
this finding and our results in Fig. 1, we can simply conje
ture that atL* 50.1 value forr52 and 1, crystalline phase
is not favorable. Moroni and Senatore22 applied their second-
order theory to the crystallization of4He at zero temperature
which bares some resemblance with the YBL due to co
mon Bose statistics and similar short-ranged interactions
key quantity in their formalism is the so-called quantum
rect correlation functionK(q), given as

K~q!5
1

x0~q,0!
2

1

x~q,0!
. ~11!

Using Eq.~6!, this function can be put into the form

nK~qn!

e
5

2pr

11qn
2 @12G~qn!#. ~12!

Moroni and Senatore observed that22 the use of Feynman
approximation to this expression, given by

nKF~qn!

e
5

L* 2qn
2

2 F 1

S2~qn!
21G , ~13!

leads to appreciable deviations from the experimentally
tained quantum direct correlation function, with the Fey
man approximation having larger oscillations around zero
Fig. 7, we plot the direct correlation functionK(q) calcu-
lated from Eq.~12! @or Eq. ~13!, as they are the same withi
our Bogoliubov-Feynman type-approximation# for the 2D-
YBL system. The interesting observation is that use of Fe
man approximation for 2D Yukawa bosons does not lead
large oscillations as in the4He problem. The systematic ap
plication of density-functional freezing theories to the 2
Yukawa Bose system seems to be beneficial for both ass
ing these freezing theories and validating the phase diag
obtained by the QMC or PIMC techniques.8,9

In the dielectric formulation of the interacting bosons, w
have used the response function, assuming that all the

en-

n.

FIG. 6. Density of collective excitations~per unit area! of the
2D-YBL with respect to normalized energy forL* 50.1.



ec
nt
tio
c
n
th

o
t t
a

ha
t
n

ou

ay
nd-
ing
sent
ri-

also
cu-

e
of

ion

dy-
lf-

e
or,
ve
ee-
or
the

nd

r
as

r,

-

15 202 57C. BULUTAY, B. TANATAR, AND M. TOMAK
ticles are in the condensate. In general, the interaction eff
would deplete the condensate, which we have not accou
for in a self-consistent manner. The condensate deple
should have the effect of decreasing the static structure fa
S(q), lowering the collective-mode excitation energies, a
thus reducing the the sound velocity associated with
long-wavelength phonons. The MC simulations7–9 strongly
indicate that there is no condensate in the 2D Coulomb B
liquid and YBL, but a superfluid phase exists. Our attemp
estimate the number of particles out of the condens
through the formula

N2N05
1

2(q
S eq2N0U0~q!

Ec~q!
21D , ~14!

which is based on the Bogoliubov approximation, shows t
the condensate depletion is rather sizable, especially in
strong coupling limit. From the surprisingly good agreeme
between the MC simulations and our results for the vari

FIG. 7. nK normalized toe vs the normalized wave numbe
where n is the density of 2D-YBL, andK is the quantum direct
correlation function. Severalr and L* combinations are consid
ered.
r,

e
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correlation functions and the excitation spectrum, we m
conclude that the present formulation models the grou
state properties reasonably well. A possible way of tak
the non-condensed bosons into account, within the pre
formalism, would be to employ a model momentum dist
bution nk for particles with kÞ0. The response function
x(q,v) could be calculated with the modelnk , and the con-
densate fraction may be treated as a parameter. It would
be interesting to compare the static dielectric function cal
lated from 1/«(q,0)511U0(q)x(q,0) @i.e., thev50 limit
of the full dielectric function«(q,v)# with the direct MC
evaluation of the same quantity. Our calculations~not
shown! indicate that asq approaches the reciprocal-lattic
vector associated with the crystal phase, the magnitude
1/«(q,0) becomes very large, pointing towards the format
of a localized structure.

IV. SUMMARY

We have performed calculations on some static and
namic properties of a 2D Yukawa Bose liquid using the se
consistent field method of Singwiet al.2 The Yukawa bosons
in two dimensions interact via theK0(r ) potential, in con-
trast to the ln (r) potential of the Coulomb Bose liquid. W
have studied the static structure factor, local-field fact
pair-correlation function, and dispersion of the collecti
modes for the 2D-YBL, and found reasonably good agr
ment with the available MC simulations. Our calculations f
the liquid state signal the freezing transition at around
same critical parameters deduced from MC results.
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