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This work addresses the question of whether low-lying excitations in conjugated polymers are comprised of
free charge carriers or excitons. States are characterized as bound or unbound according to the scaling of the
average particle-hole separation with system size. We critically examine other criteria commonly used to
characterize states. The polymer is described by an extended Hubbard model with alternating transfer integrals.
The model is solved by exact diagonalization and the density-matrix renormalization{@blRG) method.

We demonstrate that the DMRG accurately determines excitation energies, transition dipole moments and
particle-hole separations of a number of dipole-forbiddéyg) (and dipole-allowed B,) states. Within a
parameter regime considered reasonable for polymers such as polyacetylene, it is found that the charge gap,
often used to define the exciton binding energy, is not a good criterion by which to decide whether a state is
bound or unbound. The essential nonlinear optical stedg is found to mark the onset of unbound excitations

in the A; symmetry sector. In th&, symmetry sector, on the other hand, it is found thidiow-lying states

are unbound and that there is no well-define®|, state. That is, the B, state marks the onset of unbound
excitations in this sectofS0163-18208)02716-1

I. INTRODUCTION whereE(N) refers to the ground-state energy of the neutral
system (where the band is half-filled For the Hubbard
The current interest in conjugated polymers lies to a largenodel with only on-site Coulomb interaction, the charge gap
extent in their optical properti€sConjugated polymers ex- coincides with the lowest optical excitation, i.e., the optical
hibit strong luminescence, and large and ultrafast nonlineagap? This is, of course, also true for the tight-bindirigr
optical (NLO) responsé. This has led to technological op- Hiicke) model, which is an independent-electron model,
portunities and, for instance, polymer light-emitting diodeswhere the charge gap is the onset of the delocalized states in
are now widely producetiThese optical properties are asso-the conduction band. However, this is generally not true in
ciated with the delocalizedr-electron system of the conju- the case of longer-range Coulomb interactions since there are
gated polymers and, in particular, the low-lying excitations.states below the charge gap. It has been argued that these
However, the nature of these excitations is not fully understates are exciton states since they, for instance, appear en-
stood, and has been a subject for fundamental research @ngetically within the tight-binding band gap. Thus, the
conjugated polymers in recent years. charge gap has been used to discriminate between the states:
A central issue is whether low-lying excitations are com-states below the charge gap correspond to excitons and states
prized of free charge carriers or excitons. If the Coulombabove the charge gap correspond to free charge carriers.
interaction between the oppositely charged particles an€onsequently, for a state of enerBy the binding energ¥,,
holes is strong, excitons are formed, i.e., bound particle-holés defined as
pairs, in which the motions of the particle and the hole are
strongly correlated. On the other hand, if the Coulomb inter- E,=E4—E. 2
action is effectively screened, then the particles and holes are
only very weakly bound and move essentially independentlyWWe believe that this criterion can be seriously criticiz&d:
as free charge carriers. the charge-gap energy is in general not an eigenenergy of the
Different criteria have been used in the literature to dis-system, but rather mixes ground-state energies of three, all
criminate between the states, leading to contradictory condifferently charged, systemsii) the criterion does not dis-
clusions concerning the nature of the low-lying states. Soméinguish between different symmetry sectors; diid the
commonly used criteria are the charge 959,4‘6 and the criterion does not directly measure the motion of particles
essential NLO statesnA; andnB,, 78 and holes, but is based on total energies only. In this work,
The charge gap is defined as the sum of the energies fave have directly calculated the relative motion of particles
removing and adding an electron to the neutral system: and holes for different states in each symmetry sector in
order to identify excitons.
It should be noted that the use of the Hartree-Fock band
E¢q=E(N+1)+E(N—-1)—2E(N), (0] gap in the literaturgis merely an approximate way of calcu-
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lating the charge gap. This follows directly from Koopmans’ particle-hole separation follow in Sec. 1l C, and ionicity re-
theorem, and we will therefore not treat the Hartree-Focksults are given in Sec. Il D. Finally, conclusions are given in
band gap as a separate criterion for excitons. It is well knowrec. IV.
that the Hartree-Fock band gap systematically overestimates
the true charge gap.

In works on NLO properties of conjugated polymers the
most important channels for such processes have been A. Model

identified?~*? leading to a phenomenological model for , ,
third-order nonlinearity that is based on only the four most As a generic model for conjugated polymers we study the

) extended Hubbard model with alternating hopping integrals
essential statésThese states are the ground statg, Lthe X . N g hopping Integ

lowest dipole-allowed statel, , themA,, and thenB, . The fitggs:on site and nearest-neighbor electron-electron interac
mAy is defined as the state that has the strongest dipole
coupling (or transition momentto the 1B, and thenB, is
! . . o U i
oA, apart flom the B oo AP ORI IR Sy (1~ 1) 51(E] B0, +HEI 5 D (D)
In addition, it was found that there is a sudden increase in '
the particle-hole separation at theA; and thenB,, i.e., all
states below these states have more tightly bound particles
and holes. It has therefore been argued that thé, and the
nB, are the lowest-lying free charge-carrier states and useful A . ) . o
criteria for the identification of excitons. The binding energy Whereci, annihilates ar electron with spins on sitei and
is defined analogously to E@2), but with the charge gap N; is the occupation number operator for siteWe have
replaced with themA, or nB, energy depending on which studied systems with an even number of si&sand open
symmetry sector is of interest. boundary conditions. The Hamiltonian is a paradigm for con-
Although intriguing, it is not clear that states below the jugated polymers in which excitons can exist.
mAy and thenB, really correspond to excitons. The smaller ~ For convenience we take=1, which sets the energy
particle-hole separation may simply be a consequence of syscale. Values for the dimerization in the range 0.07-0.15
tem confinement. In principle, one needs to study an infinithave been proposed for polyacetylene, polydiacetylene, and
system to resolve this issue, whereas the results of Ref. goly(para-phenylenevinylen 64 \We chooses=0.1 as a
pertain to an oligomer oN=8 carbon atoms. Another ap- typical value for conjugated polymers. Optical absorption
proach is to look at how the particle-hole separation scalegata suggest & value of 2.25-2.73! whereasab initio
with the system siz&l. In this work, we have calculated the calculations suggest a slightly higher value of ¥ gVe have
particle-hole separation for different system sizes. ThdakenU=3 as a reasonably realistic value. For the nearest-
particle-hole separation scales differently for free charge cameighbor interaction we use the standard va:e0.4U.”*
riers and bound states. Thus, the chosen values of the parameters arg, 6=0.1,
In another study, the particle-hole separation was studietd =3, andV=1.2. These values are used throughout the
as a function of system siZewith electron correlation paper, unless otherwise stated.
treated within the singly excited configuration-interaction Besides conserving the total number of particles, the
(Spl) approximation. It was found that states of energy sig-Hamiltonian possesses spatial Symmet@Zhe{Ag B},
nificantly below (above the Hartree-Fock band gap were charge conjugation symmetrgg{+,—}, and spin symme-

bound (unbound. Excitons are many body excitations and, - 19 . .
for instance, it has been found that the exciton binding enzry’ e.g.5e{0,1,2.};.7 In this paper we are concerned with

ergy is sensitive to the inclusion of higher-order correlationneutral, singlet stateisvith a half-filled band an&=0), ex-
through perturbation theo®y:*° It is therefore important to  cept for the charged states used in determirtigg The sin-
treat the electron correlation accurately when assessing excet ground state is even under spatial inversion and charge
ton criteria. In this work, we have used exact diagonalizatiorconjugation, and is denotedA, , or simply 1A4. For this
of the Hamiltonian for systemsN=10), and the density- Wwork we only need to consider the ground-state symmetry
matrix renormalization-grougfDMRG) method for longer sector and the sector to which it is dipole coupled. Since the
systems KN=<50). dipole operator is odd under inversion and charge conjuga-
The methodology of this work is outlined in Sec. II, tion, states in the dipole-coupled sector are denptgq , or
which contains definitions of calculated quantities and a desimply jB,, wherej is the state number.
scription of the computational methods. The model Hamil-
tonian is defined in Sec. Il A, particle-hole separation defini-
tions are given in Sec. Il B where the basis of the scaling
analysis is outlined, the ionicity is defined in Sec. Il C, and In this paper, we consider the relative motion of particles
the numerical solution of the model is described in Sec. Il D.and holes as a direct way of identifying excitons. In particu-
A more detailed derivation of the scaling behavior in thelar, we calculate the average particle-hole separation. Exci-
noninteracting limit is given in Appendix A. Results are pre- tons have small particle-hole separations that remain finite as
sented and discussed in Sec. lll. The accuracy of the DMR@&e system size is increased. By contrast, the average sepa-
method is demonstrated in Sec. Il A, the energy spectra andation between two free charge carriers increases indefinitely
transition moments are given in Sec. Ill B, results for thewith system size. Indeed, for a completely independent par-

Il. METHODOLOGY

X(ﬁi—1>+VZ (Ni—1)(Nj:1—1), 3)

B. Particle-hole separation
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ticle and hole, each with a uniform probability NIy of be-  for |i—j| odd (even. We thus consider the odd distance
ing on any given site, the leading term in the average sepacontributions when defining the probability distribution from
ration is proportional to\. which to measure the separation of particles and holes. Other

In Ref. 7 Guoet al. used the density-density correlation definitions, utilizing both positive and negative contribu-
function C(i,j) as a signifier that distinguishes bound andtions, or|C(i,j)| are possible, and yield the same qualitative

unbound states: results.
oA A - In Ref. 7 it was found that there is a noticeable change in
C(, ) =((ni=(n)(nj—(n;))). 4 the nature of the decay @i,j) at themA, andnB,, the

C(i,j) correlates a charge fluctuation on sit¢o a charge particle-hole separation being considerably larger than that
fluctuation on sitg. A positive value means that an excessfor the lower-lying states. However, calculations were re-
(deficit) of charge on sité correlates with an excesdeficit) stricted toN=_8. We have used the DMRG method to study
on sitej. A negative value correlates an excess with a deficitsubstantially larger system@p to N=50). Most impor-

In the context of excitons, the concept of quasiparticles is dantly, this makes it possible to discriminate between bound
way of representing an aggregation of electrons that leads tand unbound states from thscaling of C(i,j) or the

an excess of charge in a region, which may extend oveparticle-hole separation witN.

several sites. Likewise, a hole represents a deficit of charge. We define an averagéficentered correlation function for
Now, for sufficiently largeN, C(i,j) is negative(positive  a system of sizé\ with open boundary conditions as

N—I N+l
(T’T’ | even

SND=Y 11 INC14L N#I+1 N—l-1 N+I—1 ®
E[c( > +c( > ” | odd.

As discussed, we define the average particle-hole separatidt+V potential, the bound states have a particle and a hole
(in units of chemical bonddy regarding the negative values next to one another, the correlation function vanishes! for

of Cy(l) as a probability distribution, viz., >1, and the particle-hole separation converges immediately
N1 with N, i.e.,{I)y=1. For unbound states, at energy it is
~ ESplCnh=C(1)) easy to show thatl )y increases linearly with\, i.e., as for
(D= zl'\‘=*01(|cN(|)|_cN(|)) ' 6) independent particles and holes.

In addition to the correlation function, we considerea
It is instructive to consider the two extreme cases of veryduced correlation functianthe difference between the cor-
weak and very strong electron-electron interaction, since theglation function of an excitationCy(l), and that of the
identification of bound and unbound states is unambiguouground statecf\,GS)(I):
in these cases. In the noninteracting limid €V=0), we
combine exact analytical results with exact diagonalizations CR?(h=N[Cn(H—-CF()]. 9

of systems of up to 4098 sites in order to determine thel.he motivation for Studyin@&red)m is that it only measures

scaling of the correlation function and particle-hole separa- . . . o
tion with N. Details are given in Appendix A. The main changesn the charge fluctuations induced by an excitation;

point is that, as can be seen from Fig. 1, the ground state - j,

(1A4) and the unbound stat¢$B, and 2Ay) have particle- *’\*\_2\,_49
hole separations that scale very differently wiNh For the * e R
ground state we have exponential convergence, SF *‘~~\\‘___ Tl
lBu_“—&:.:‘.;K__\._‘ ________ -
(hy=a[1+0(e"*N)], (7) T e
z, 4
and for the unbound excited states we have very slow con~- s}
vergence,
1 14,
(Dn=b[1+O(N"H]. ) A
In the limit of strong interactions, ,V>t), it was s - . , s ;
0.005 0.01 0.015 0.02 0.025 0.03

shown by Gucet al that the states can be identified solely
from their total energy. At=0, the analysis is trivial: a
particle (hole) is a doubly occupiedempty site. The ground FIG. 1. Particle-hole separatighyy of the 1A,, 2A4, and 1B,
state has zero energy, bound states occld-&f, and un-  states in the noninteracting limit{=V=0) plotted as a function of
bound states afi. Since the Hamiltonian consists only of the 1/N.

1/N —
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2000} - (H{°" allows us to probe changes withiér(©"® alone,
rather than at the same time taking into account a change in
the relative weights offr (c0va'ent) gnd g (ionic)

T 1500 |

<3 1000
~

(red)

D. Computational methods

Equation(3) can be comfortably solved by exact diago-
nalization for systems of up td= 12 sites. For longer chains
we turn to the density-matrix renormalization-group
(DMRG) method?2 The DMRG has been applied to EQ)
in calculations of ground-state and triplet enerdfesharge
1000 2000 3000 1000 densities?® the charge gap andBl, energies,®* the 2A,

N — energy?* polarizabilities?® and oscillator strengttfg.

In this work we apply an infinite lattice DMRG
algorithn?? to find the charge gap and a numberAy and
B, states of Eq(3). In addition to excitation energies, we
find the transition dipole moments between #hg and B,

that is, the effect of creating particles and holes, whose mogtates as well as the density-density correlation fundtion

tion we are interested in. By analogy with E6), we also and hence the particle-hole separatiBhand reduced sepa-
define a reduced particle-hole separatoyie® ' ration (1){{*?. At each iteration the superblock consists of a

In the noninteracting case, the reduced particle-hole Sepgystem block, an environment block, and two extra sites. The

ration for unbound states scales linearly withas shown in initial system and environment blocks consist of two sites.
Fig. 2. As mentioned above, this is how the separation of aT.he system and e_nwronment blocks are mcr_eased by two
ites at a time until a superblock df=50 sites is reached.

completely independent particle and hole scale. In th ; ; o ) .
stror?l c)é)rrelaISd Iimitc(%s)(l)=0 and so(1){eD=(1) e retainm=230 density-matrix eigenstates in the basis
gy N N N —\Y/N  truncation procedure.

d)— d
and hencel){*"=1 for bound states and)(® )fXN for un- The system, environment and superblock Hamiltonians
bound states. That is, unbound states scale in the same wgyy gensity matrices are block diagonalized using the total
in both limits. This suggests that, for general interaction icle numbef and totalz-spin & operators. States from
strength, the reduced particle-hole separation scales linearty P P Ce :
ifferent symmetry sectors are found by projecting trial

for unbound states. states from the iterative, sparse matrix diagonalization pro-
In summary, for unbound states, the particle-hole separa: » SP 9 P

tion (1) converges slowly witiN and the reduced particle- cedure mEo thF correct sy.mmetry sector ?yﬂm eans of the
hole separation1){*® diverges linearly. By contrast, for OPeratorsCz,,J and the spin-parity operatdr.”" Because
bound states, botkl), and <|>§Jed) converge rapidly to a the density matrix commutes with the bIodlqndP opera-
finite value. tors, the superblock states calculated exacteigenstates of

J andP at all stages of the calculation. They are also exact

C. lonicity eigenstates o€,,, by construction because the environment
block is the reflection of the system block. We check the
DMRG program by ensuring that it reproduces the results of
¥he exact diagonalization program for the first two iterations.
The exact diagonalization program itself reproduces Nhe
=8 site results from Ref. 7.

FIG. 2. Reduced particle-hole separatipi™? of the 1B, and
2A, states in the noninteracting limit\=V=0) plotted as a func-
g
tion of N.

In the limit of strong electron-electron interactiod>t,
the ground state is a pure spin-density wave, i.e., it is solel
a linear combination of covalent configuratiof@r Slater
determinants where there is exactly one electron on eac
site. It is therefore natural, in this limit, to define a particle as
a doubly occupied site, and a hole as an unoccupied site.

Qopfigurations that have patrticles anq holes are referlred to as IIl. RESULTS AND DISCUSSION
ionic. A general state can be written ak=y (covalen)
—+ p (fonic) A. Accuracy of the DMRG calculations

Following Ref. 11, we define the ionicity as the number of e begin with the noninteracting limit {=V=0),
particle-hole pairs! Thus, single particle-hole pair excitons where we have performed separate exact diagonalizations for
are constructed from singly ionic configurations, biexcitonsjong chains in order to evaluate the DMRG accuracy. The
are constructed from doubly ionic configurations, etc. Thenoninteracting case is of particular interest since it gives a
ionicity of a state is defined as the expectation value of thgyorst-case accuracy. Errors are expected to be smaller in the
ionicity operatorl : interacting case where particles are more localized in posi-

tion space, the DMRG becoming exact in the atomic (
-1 - =0) limit.
IZEZ (n—1)% (10 In the DMRG calculations the initial two system (
=6,10) are treated exactly. The errors for these systems are
In addition to the ionicity, we have calculated the averagemerely a result of the limited precision of the sparse matrix
ionic particle-hole separatioti){°™® by considering only diagonalization algorithnithe accuracy could be increased
the ionic part of the wave function. In contrast {b)y, by running the programs at higher precisioithe DMRG
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TABLE I. The ground-state energy £}), the charge gaj,, the 1B, and 4A4 energy gaps, various

transition momente{jBu|,&|lAg> and particle-hole separatior$)s, for the N=50 site system calculated
using the DMRG for a number of truncation parameter valmes

Energy (iBylmlmAy) (1)so
m 1A, E, 1B, 4A, 1B, 3B, 2B, 4B,

64  —102.97649 12190 11122 11761 1479 9472  1.883  1.042
100  -102.97925  1.2212  1.1058 15455  7.151 6599 2018  1.726
150  —102.97969  1.2213  1.1044 14801  7.065  6.847 2061  1.632
185  —102.97996  1.2218  1.1026  1.3855  6.962  7.297  2.078  1.602
230  —102.98002  1.2218  1.1025 13431  6.945  7.330 2.085  1.596

truncation error sets in &= 14, where the relative error is vergence is sufficiently good to allow the clear classification
~10°. The error increases with system size and-i50 4  of states as bound or unbound on the basis of the scaling of
for N=30-50. the particle-hole separation.

In addition to excitation energies, it is important to look at
guantities such as transition moments and particle-hole sepa-
rations, which pertain to the wave function rather than the B. Excitation energies and transition moments

energg. The truncation error for transition moments IS The evolution of the energy spectra with system size is
~10"° for N=30-50, i.e., one order of magnitude larger gho\n in Fig. 3 and Fig. 4 for tha, andB, sectors, respec-

than for excitation energies, but well within what is accept-tivew' The charge gap is also shown for comparison. There
able for our purposes. The particle-hole separations havg exactly one excitation below the charge gap for all system

similﬁr errors to the transitiog Lnoments.h 4 with _sizes in theB, symmetry sector, and for most systems in the
The DMRG is a truncated basis method wit systematl—Ag sector. The 3, drops below the charge gap fo

cally reducible error. In the interacting case it is important t0_"4o_s5o.

test the accuracy of.calculations by varying thg single source Transition moments between variods, states and the
of error, the truncation parametar, and.checklng for con- 1B, are given in Table Il. ThenA, can be identified as the
vergence. We asses the error by running the program for 87 for N=10-50. The transition moment with theAZ
number of values ofn. Convergence results for a number of increases with system size, while transition moments with

guantities are given in Table | for thé= 50 site system. It is the 3A, and the 4, decrease foN=22. The charge gap is
g g = e

found that the ground-state energy converges to 5 or 6 ﬁg-I below th the ch iteri
ures and gaps are resolved to within 0.01% for the chargaways elow themA, energy so the charge gap criterion

fill give lower exciton binding energies than theA, crite-
gap and B, states, with slower convergence for the higherriong 9 9

excitations where errors range up o 1 or 2%. The_errors N The transition moments for the identification of th8,
transmr(])n dlpolle molmenftg ar_? Ia_rger fbuht are St”.l lsma”are given in Table Ill. There are two qualitative differences
etn(iug éo make a c?ar identi 'Cgt'gr;__); ; etehzsiftllaB NLO_oetwggn _these transition moments gnd tho_se used for the
stales. EITors range from around ©.5% for 9 u identification of themA, (Table I. First, while the state

iti —29 iti . .
transition to 1-2% for thenA;— 1B, transition. The errors | - themA, is basically constantm=5, apart from

in the particle-hole separations are found to range from 0.1%, _ -
for the 1A state to 1-3% for the higher excitations. Con- Ri=6), the state number of teB, changes with the system

0 10 20 30 40 50 10 20 30 40 50

N — N —

FIG. 3. Excitation energiegelative to the B) in the Ay sym- FIG. 4. Excitation energie@elative to the ) in the B, sym-
metry sector as a function &f. The charge gagdashed lingis metry sector as a function di. The charge gapdashed ling is
shown for comparison. shown for comparison.
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7

TABLE Il. Transition momente{jAg|,ZL|lBu) for various states
jAg and system sizeN. mAg =54
6
(jAg|:ZL|1Bu> 5
N 1A, 2A, 3A, 4A, 5A, [,
z
6 1.529 0.239 0.185 2.697 0.195 =
10 2144 0664 0000 0970  4.006 S
14 2613 1210 0179  2.089  4.879 : /:;__A.__t‘:s’«-a:_:;:‘lf‘if—:_,::ﬁ
18 2.987 1.794 0.270 2.592 5.691 ) 5 *37(;,*"“'*" -iF----—:' =%
22 3.300 2.369 0.241 2.779 6.384 14
26 3.548 2.924 0.173 2.770 6.920 0
10 20 30 40 50
30 3.789 3.408 0.112 2.639 7.290
N —

34 4.071 3.706 0.069 2421 7.464

38 4.303 3.989 0.046 2.162 7.543 FIG. 5. Particle-hole separatidi)y of the A, states as a func-
42 4528 4.203 0.043 1.526 7.627  tion of N. The plot shows all states up to theA;.

46 4.636 4.703 0.046 1.786 7.594

50 4.831 4.899 0.058 1.603 7.521  significantly larger for allN, exhibiting a far strongeN
dependence, and converging to a different limit from the
bulk limit if converging at all. It follows that the, states
size when the definition of Sec. | is applied. It is thB,gat  below themA, are bound and thenA; is unbound.
N=6, the 8B, at N=10,14, and the B, at N=18,22,26. The striking difference between theA; and the lower
Second, for many system sizes, thB, is ill defined in A states is also borne out in the behavior of the reduced
the sense that there are several transition moments close f@rticle-hole separatiofl){*® depicted in Fig. 6. The re-
the maximum value and to that of timd, . For instance, at duced separation of tha A, scales linearly wittN, i.e., as
N=18, the B, 2B,, and 8B, have very similar transition for completely independent particles and holes. Ret50,
moments; aN=22, the B, 2B,, and B,,; and atN=26,  the average separation is around 25 chemical bonds. The
the 1B, 2B, 3By, and 8, . It was found in Ref. 7 that |ower states, on the other hand, all have bounded separation.
conduction-band states had strong dipole couplingeteeral  For instance, for the &, (H{eD scales linearly up tdN=18,
neighboring conduction-band states in the dipole couplegyhere it levels off at around eight chemical bonds. The in-
symmetry sector. This was seen to distinguish band-to-bangrpretation of this is clear: the/, is comprised of excitons
transitions from transitions mvolvmg_ excitons. If theAg IS with an average size of eight bonds. When the system
the onset of the conduction band, i.e., the lowest-lying Unyeaches a sufficiently large size the separation settles at the
bound A, state, then our results imply that th@lis the  jntrinsic average size of the exciton. For smaller systems,

onset of the conduction band in tilg, symmetry sector. A around or below the exciton size, the average separation is
stronger argument, based on the scaling of the particle-holgictated by the system confinement.

separation, is given in Sec. Ill C. In summary, theA, states below thenA, are bound, and
the mA, is the lowest-lying free charge-carrier state in this
C. Particle-hole separation symmetry sector. We have only performed calculations for

. . _ up toN=50, and thus, in principle, we cannot be certain that
dThe p?rtlclg-h(;:g _selgaraglqvn:/)N of thﬁ Ag hi;ate?j'ls lplot- the reduced separation of theA; does not eventually taper
ted as a function ol in Fig. 5. We see that thewA, displays ¢ However, it is clear from our calculations that t

completely different behavior from all the Iowe_r-lylngg behaves as a free charge-carrier state for systems of up to 50
states. For the lower states, the average separation converges

rapidly to the ground-statébulk limit) value of around 1.3
chemical bond$® By contrast, for thenA, the separation is

20 F

TABLE IIl. Transition moments(jB,|x|mA;) for various
statesjB, and system sizeN. T
(iBululmAy) =
~ 10t
N 1B, 2B, 3B, 4B, 5B, 6B,
6 2.697 0.908 0.281 1.916 2.135 0.041 5[
10 4.006 2.059 0.391 3.977 0.235 1.735
14 4.879 3.524 0.016 4.640 0.287 2.446 0

18 5.691 5.278 0.845 4.771 3.299 1.291
22 6.384 6.892 2.664 0.396 5.997 2.207
26 6920 6.860 6585 1.822 0987  6.361 FIG. 6. The reduced particle-hole separatidpf{*® of the A,
states as a function ®. The plot shows all states up to theA, .




57 IDENTIFICATION OF EXCITONS IN CONJUGATD . .. 15173

P 1l nB, mAgx )
»"*‘ N
10 P
*‘_/ 1.2
2B, T B,
? '/" T H
T /{’/ PJURSTS =
=% e £
-~ ,*/ A/,A—’A/ g 0.6
4 ,_;;’;f“” -
/// 0.4
ac s
"
: 14, 0.2 f
0 N .
10 20 30 40 50 30 40
FIG. 7. Particle-hole separatigh)y of the B, states as a func- FIG. 9. The ionicity of thejA, and B, states forU=10, V
tion of N. The 1A, state is plotted for reference. =4, andN=10.

sites. If an upper bound does exist, then thé, must be tively strong Coulomb interactiof =10, V=4). As seen in
extremely weakly bound. ThenA, energy is therefore a Fi9-9. there is a sudden jump in the ionicity at théyy, for
good reference energy when calculating binding energies mvhlch( »=1.4. The ground state has an ionicity of 0.45, and
this symmetry sector. The charge gap, on the other handin excitation to thenA, creates almost exactly one particle-
falls among the bound states. Some of the bound states ah®le pair. Lower-lying states, on the other hand, follow a
above the charge gap, while others are below. Thus, th&ore continuous evolution with similar ionicity to that of the
charge gap fails to discriminate between bound and unbounground state. In fact, the ionicity decreases, the-(1)A,
states. being almost purely covalent. By contrast, there is no such
We now turn to the dipole-alloweds(,) symmetry sector. jump in theB, symmetry sector at theB,,. Instead all states
The particle-hole separation is shown in Fig. 7. The separahave about the same ionicity, similar to that of th
tions depend strongly oM, indicating that there are no For the weaker, more realistic, interactitsee Sec. Il A,
bound states in this sector. This is confirmed by the reducethe ionicity is shown in Fig. 10. Although there are large
particle-hole separation, shown in Fig. 8: Th8,1scales quantitative differences, many qualitative features remain. In
almost perfectly linearly withN and the B, increases at the Ay sector, the ionicity decreases continuously up to the
least as rapidly over the plotted range. This explains the abnA; where a distinct jump occurs. Again, the ionicity of the
sence of a well-definedB,, state above the B, (see Sec. B, states remains constant at around the same value as the
Il B). That is, the B, is the lowest unbound state in tlBg, ~ MAy. There is, however, one qualitative change, namely,
sector. We note that the charge gap lies above tBg,1 that the spectrum above tineA, is now a mixture of states
incorrectly suggesting that theB], is a bound statésee Fig. ~ with high and low ionicity. A picture where theA, is the
4). As was the case for th&, sector, the charge gap is not a onset of a band of states that are all unbound appears to be
useful criterion for determining whether states are bound antbo simplistic, at least from th=10 site data.

unbound in this symmetry sector. The average ionic separation, shown in Table IV, also
shows a jump at thenAy, from slightly more than 2 for the
D. lonicity lower states to 3.5. In the other symmetry sector, the maxi-

o N mum ionic separation is 3.8 for theB,,. However, the jump
The ionicity gives additional insight into the nature of the is less pronounced since the lower states all have relatively
low-lying states. It is instructive to first study a case of rela-large separations of around 3.0.
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FIG. 8. The reduced particle-hole separat(dwﬂe"’ of the B, FIG. 10. The ionicity of thejA4 and jB, states forU=3, V

states as a function di. =1.2, andN=10.
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TABLE IV. The average ionic separation pA; andjB, states  Hubbard model is a fundamental model that is believed to

for N=10. provide a qualitative description of polymers such as poly-
— acetylene, one needs to investigate the effects of long-range
(higm Coulomb interactions, interchain coupling, and electron-
] A B phonon effects before one can begin to make reliable state-
9 ! ments about the nature of excitons in specific, real conju-
1 2.23 2.97 gated systems. We are currently developing efficient,
2 2.21 3.21 vectorized DMRG codes with which we will be able to study
3 2.04 2.82 these effects.
4=n 211 3.77
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To conclude, thenA; excitation involves the creation of

APPENDIX A: SCALING OF THE CORRELATION
IV. CONCLUSIONS FUNCTION AND PARTICLE-HOLE SEPARATION

In this paper we have studied the particle-hole separation IN THE NONINTERACTING LIMIT

n thg fundamental model  of conjlugated polymer's'—tlf:e In this appendix we present some results for the correla-
dimerized, extended Hubbard model—in order to criticallyjon fynctions of excited states of E¢®) in the noninteract-
assess criteria commonly used to determine whether excit ig limit (U=V=0). In arriving at these results, we make
tions are excitonic or consist of uncorrelated particle-holg,cq of well-known énalytical results for open a,nd periodic

pairs._The chosen parameter values are typic.al yalues usedd9ctoms and diagonalizations of open systems of up to 4098
describe polymers such as polyacetylene within the model; s

The model was solved for the charge gap and a number of THe bulk correlation function is given by
states in the ground staté{) and dipole allowedB,) sym-

metry sectors using the density-matrix renormalization-grougc_(1)= lim Cy(l) (A1)
(DMRG) method for systems of up tNl=50 sites. It was N—oo

shown that the DMRG can be used to accurately compute

energy gaps, transition dipole moments, and particle-hole 1/2, 1=0

separations for these states, with relative errors ranging from
a fraction of a percent for the lowest states to a few percent
for higher states. The particle-hole separations of bound and —|F(1,8,+)I>=|F(1,8,-)[* | odd,
unbound states were shown to scale differently with system (A2)
size, a fact that can be used to discriminate between thgnhere
states.

It was found that the charge gap, often used to define the 1 (a2 cosO+id sin 6
binding energy of excitons, is not a useful criterion by which F(,5,£)=— J el’\/———————— db. (A3)
to decide whether a state is bound or unbound. The results ™)l cosf+id sin 0
for the scaling of the particle-hole separation show that therg,, o 5<1, the model has a gap= 4t and exponentially
is an unbound state below the charge gap inBhsymmetry decaying correlations
sector, and bound states above the charge gap imAthe
sector. Thus, it is possible to have states below the charge C.()~e "¢ asl—w (I odd), (Ad)
gap that are unbound, and states above the charge gap that
are bound. In fact, the results were in keeping with the picWith correlation length
ture that the essential nonlinear optical statd, marks the

=< 0, >0, even

onset of unbound states in thg symmetry sector. On the = 1 (A5)
other hand, in th®, sector it was found that all states were 2tanh ! &

unbound for the parameters considered, and that there was

no well-definednB,, state. That is, the B, state marks the For the ground state of a system of sideve have

onset of unbound excitations in tlgg, sector. ©9
Finally, we note that, although the dimerized, extended Cy7(1)=C.(1)=0 for all | even, (A6)
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FIG. 12. Reduced correlation functi@{*®(1) for the 1B, state
as a function of M for various(a) odd and(b) even values of in
the noninteracting cas&J=V=0).

and for odd, C{®%(1) approache€..(l) exponentially fast,
viz.,

CPS=C.(hi1+0(e M (I odd, (A7)

for some positive constamtthat is uniform ovet. It follows
that the ground-state particle-hole separation converges rap-
idly, according to Eq(7), where

m
=1

a= lim

m— o

gl IC.. (21-1)]|

(A8)

is the particle-hole separation defined from the bulk correla- T

tion function(A1). This can be seen in Fig. 1 whefB is
plotted for the A state.

For the excited states the finite lattice correlation function
Cn(l) approaches the infinite lattice val@®, (1) asN—»
for any fixed |.2° However, as can be seen from Fig. 11,
where we plot IiCy(1)| for the 1B, states as a function df
for various values oN, the convergence is very slow. This
is shown in Fig. 12, where we plot the reduced correlation
function C{(®¥(1), defined by(9), as a function of M for a
number of values df. We see clearly that the scaling behav-
ior of the excited state correlation function is

g()
W-’-... ,

cl*()
Cn(h=C.()+ N + (A9)
Wherecged)(l) is the limiting, reduced correlation function,

VIZ.,

cled ()= lim Cc{(I).

N—oo

(A10)
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FIG. 13. Limiting reduced correlation functidd®{?(1) for the
1B, state as a function of in the noninteracting caseUE=V

=0). The inset shows the scaling functiof$) andg(l) [f(l) is
only defined for odd values dfbecauseC{®(1)=0 for evenl].
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Using a polynomial fit of the fornfA9) and extrapolating that the particle-hole separation for an excited state scales
to theN=c2 limit, C!*(1) is calculated and plotted in Fig. according to Eq(8), with limiting value b=limy_.. (I)y.
13. We see tha€{®(l) decays exponentially with, and ~ This can be seen from Fig. 1, whe(g) is plotted as a

vanishes for even. In fact, the scaling forn{A9) can be function of 1N for the 1B, and 2A, states. We note that
derived explicitly for the case of periodic boundary condi- #&, i.e., the ground and excited states have different

tions, where it can be shown that particle-hole separations in the bulk limit, even though their
correlation functions approach the same limiting function.
cled()y=C..(Hf(l), (A11)  This is due to the fact that the third term {A9) does not

decay withl.
Finally, we note that, from Eg49), (A9), and(All), the
scaling behavior of the reduced correlation function is

where the function$(l) andg(l) rapidly approach nonzero

constants as is increasedi.e., CI®¥(1) decays exponen-

tially and has correlation lengthé2 The functionsf andg,

derived from the polynomial fit to E§A9), are plotted in the I

inset of Fig. 13. POy 149 P cyed(h = VCm(|)f(|)+¥+“' : (A12)
Now, the straightness of the curves in Fig. 12 indicates

that the higher-order terms in EGA9) are small, and Fig. 11 It follows that the reduced separatigh{*® scales linearly

indicates that Eq/A9) holds for a range of values that is of ~with N. This is clearly shown in Fig. 2, wherd){*? is

O(N). These results, together with the definiti@), imply  plotted for the B, and 2A, states.

*Present address: Institute of Theoretical Physics, Chalmers Uni- coordinate of thdth site along the polymer axis arfq is the
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