
PHYSICAL REVIEW B 15 JUNE 1998-IIVOLUME 57, NUMBER 24
Identification of excitons in conjugated polymers:
A density-matrix renormalization-group study
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This work addresses the question of whether low-lying excitations in conjugated polymers are comprised of
free charge carriers or excitons. States are characterized as bound or unbound according to the scaling of the
average particle-hole separation with system size. We critically examine other criteria commonly used to
characterize states. The polymer is described by an extended Hubbard model with alternating transfer integrals.
The model is solved by exact diagonalization and the density-matrix renormalization-group~DMRG! method.
We demonstrate that the DMRG accurately determines excitation energies, transition dipole moments and
particle-hole separations of a number of dipole-forbidden (Ag) and dipole-allowed (Bu) states. Within a
parameter regime considered reasonable for polymers such as polyacetylene, it is found that the charge gap,
often used to define the exciton binding energy, is not a good criterion by which to decide whether a state is
bound or unbound. The essential nonlinear optical statemAg is found to mark the onset of unbound excitations
in the Ag symmetry sector. In theBu symmetry sector, on the other hand, it is found thatall low-lying states
are unbound and that there is no well-definednBu state. That is, the 1Bu state marks the onset of unbound
excitations in this sector.@S0163-1829~98!02716-7#
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I. INTRODUCTION

The current interest in conjugated polymers lies to a la
extent in their optical properties.1 Conjugated polymers ex
hibit strong luminescence, and large and ultrafast nonlin
optical ~NLO! response.2 This has led to technological op
portunities and, for instance, polymer light-emitting diod
are now widely produced.3 These optical properties are ass
ciated with the delocalizedp-electron system of the conju
gated polymers and, in particular, the low-lying excitation
However, the nature of these excitations is not fully und
stood, and has been a subject for fundamental researc
conjugated polymers in recent years.1

A central issue is whether low-lying excitations are co
prized of free charge carriers or excitons. If the Coulom
interaction between the oppositely charged particles
holes is strong, excitons are formed, i.e., bound particle-h
pairs, in which the motions of the particle and the hole
strongly correlated. On the other hand, if the Coulomb int
action is effectively screened, then the particles and holes
only very weakly bound and move essentially independe
as free charge carriers.

Different criteria have been used in the literature to d
criminate between the states, leading to contradictory c
clusions concerning the nature of the low-lying states. So
commonly used criteria are the charge gap,Eg ,4–6 and the
essential NLO states,mAg andnBu .7,8

The charge gap is defined as the sum of the energies
removing and adding an electron to the neutral system:

Eg5E~N11!1E~N21!22E~N!, ~1!
570163-1829/98/57~24!/15167~10!/$15.00
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whereE(N) refers to the ground-state energy of the neut
system ~where the band is half-filled!. For the Hubbard
model with only on-site Coulomb interaction, the charge g
coincides with the lowest optical excitation, i.e., the optic
gap.4 This is, of course, also true for the tight-binding~or
Hückel! model, which is an independent-electron mod
where the charge gap is the onset of the delocalized stat
the conduction band. However, this is generally not true
the case of longer-range Coulomb interactions since there
states below the charge gap. It has been argued that t
states are exciton states since they, for instance, appea
ergetically within the tight-binding band gap. Thus, th
charge gap has been used to discriminate between the s
states below the charge gap correspond to excitons and s
above the charge gap correspond to free charge carr
Consequently, for a state of energyE, the binding energyEb
is defined as

Eb[Eg2E. ~2!

We believe that this criterion can be seriously criticized:~i!
the charge-gap energy is in general not an eigenenergy o
system, but rather mixes ground-state energies of three
differently charged, systems;~ii ! the criterion does not dis
tinguish between different symmetry sectors; and~iii ! the
criterion does not directly measure the motion of partic
and holes, but is based on total energies only. In this wo
we have directly calculated the relative motion of partic
and holes for different states in each symmetry sector
order to identify excitons.

It should be noted that the use of the Hartree-Fock b
gap in the literature5 is merely an approximate way of calcu
15 167 © 1998 The American Physical Society
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15 168 57M. BOMAN AND R. J. BURSILL
lating the charge gap. This follows directly from Koopman
theorem, and we will therefore not treat the Hartree-Fo
band gap as a separate criterion for excitons. It is well kno
that the Hartree-Fock band gap systematically overestim
the true charge gap.

In works on NLO properties of conjugated polymers t
most important channels for such processes have b
identified,9–12 leading to a phenomenological model f
third-order nonlinearity that is based on only the four m
essential states.7 These states are the ground state 1Ag , the
lowest dipole-allowed state 1Bu , themAg, and thenBu . The
mAg is defined as the state that has the strongest dipo13

coupling ~or transition moment! to the 1Bu , and thenBu is
defined as the state that has the strongest dipole couplin
the mAg , apart from the 1Bu .

In addition, it was found that there is a sudden increas
the particle-hole separation at themAg and thenBu , i.e., all
states below these states have more tightly bound part
and holes.7 It has therefore been argued that themAg and the
nBu are the lowest-lying free charge-carrier states and us
criteria for the identification of excitons. The binding ener
is defined analogously to Eq.~2!, but with the charge gap
replaced with themAg or nBu energy depending on whic
symmetry sector is of interest.

Although intriguing, it is not clear that states below th
mAg and thenBu really correspond to excitons. The small
particle-hole separation may simply be a consequence of
tem confinement. In principle, one needs to study an infin
system to resolve this issue, whereas the results of Re
pertain to an oligomer ofN58 carbon atoms. Another ap
proach is to look at how the particle-hole separation sca
with the system sizeN. In this work, we have calculated th
particle-hole separation for different system sizes. T
particle-hole separation scales differently for free charge
riers and bound states.

In another study, the particle-hole separation was stud
as a function of system size,5 with electron correlation
treated within the singly excited configuration-interacti
~SCI! approximation. It was found that states of energy s
nificantly below ~above! the Hartree-Fock band gap we
bound ~unbound!. Excitons are many body excitations an
for instance, it has been found that the exciton binding
ergy is sensitive to the inclusion of higher-order correlat
through perturbation theory.14,15 It is therefore important to
treat the electron correlation accurately when assessing e
ton criteria. In this work, we have used exact diagonalizat
of the Hamiltonian for systems (N<10), and the density-
matrix renormalization-group~DMRG! method for longer
systems (N<50).

The methodology of this work is outlined in Sec. I
which contains definitions of calculated quantities and a
scription of the computational methods. The model Ham
tonian is defined in Sec. II A, particle-hole separation defi
tions are given in Sec. II B where the basis of the scal
analysis is outlined, the ionicity is defined in Sec. II C, a
the numerical solution of the model is described in Sec. II
A more detailed derivation of the scaling behavior in t
noninteracting limit is given in Appendix A. Results are pr
sented and discussed in Sec. III. The accuracy of the DM
method is demonstrated in Sec. III A, the energy spectra
transition moments are given in Sec. III B, results for t
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particle-hole separation follow in Sec. III C, and ionicity r
sults are given in Sec. III D. Finally, conclusions are given
Sec. IV.

II. METHODOLOGY

A. Model

As a generic model for conjugated polymers we study
extended Hubbard model with alternating hopping integr
and on-site and nearest-neighbor electron-electron inte
tions:

Ĥ[2t(
i ,s

@12~21! id#~ ĉis
† ĉi 11s1H.c.!1

U

2 (
i

~ n̂i21!

3~ n̂i21!1V(
i

~ n̂i21!~ n̂i 1121!, ~3!

whereĉis annihilates ap electron with spins on sitei and
n̂i is the occupation number operator for sitei . We have
studied systems with an even number of sitesN, and open
boundary conditions. The Hamiltonian is a paradigm for co
jugated polymers in which excitons can exist.

For convenience we taket51, which sets the energy
scale. Values for the dimerization in the range 0.07–0
have been proposed for polyacetylene, polydiacetylene,
poly~para-phenylenevinylene!.16,4 We choosed50.1 as a
typical value for conjugated polymers. Optical absorpti
data suggest aU value of 2.25–2.75,17 whereasab initio
calculations suggest a slightly higher value of 3.6.18 We have
takenU53 as a reasonably realistic value. For the neare
neighbor interaction we use the standard valueV50.4U.7,4

Thus, the chosen values of the parameters aret51, d50.1,
U53, and V51.2. These values are used throughout
paper, unless otherwise stated.

Besides conserving the total number of particles,
Hamiltonian possesses spatial symmetry,Ĉ2hP$Ag ,Bu%,
charge conjugation symmetry,ĴP$1,2%, and spin symme-
try, e.g.,ŜP$0,1,2...%.19 In this paper we are concerned wit
neutral, singlet states~with a half-filled band andŜ50!, ex-
cept for the charged states used in determiningEg . The sin-
glet ground state is even under spatial inversion and cha
conjugation, and is denoted 11Ag

1 , or simply 1Ag . For this
work we only need to consider the ground-state symme
sector and the sector to which it is dipole coupled. Since
dipole operator is odd under inversion and charge conju
tion, states in the dipole-coupled sector are denotedj 1Bu

2 , or
simply jBu , where j is the state number.

B. Particle-hole separation

In this paper, we consider the relative motion of partic
and holes as a direct way of identifying excitons. In partic
lar, we calculate the average particle-hole separation. E
tons have small particle-hole separations that remain finit
the system size is increased. By contrast, the average s
ration between two free charge carriers increases indefin
with system size. Indeed, for a completely independent p



p

n
nd

ss

ci
is
s
v
rg

e
m
ther
u-
ve

in

that
re-
dy

nd

r

57 15 169IDENTIFICATION OF EXCITONS IN CONJUGATED . . .
ticle and hole, each with a uniform probability (1/N) of be-
ing on any given site, the leading term in the average se
ration is proportional toN.

In Ref. 7 Guoet al. used the density-density correlatio
function C( i , j ) as a signifier that distinguishes bound a
unbound states:

C~ i , j ![^~ n̂i2^n̂i&!~ n̂ j2^n̂ j&!&. ~4!

C( i , j ) correlates a charge fluctuation on sitei to a charge
fluctuation on sitej . A positive value means that an exce
~deficit! of charge on sitei correlates with an excess~deficit!
on sitej . A negative value correlates an excess with a defi
In the context of excitons, the concept of quasiparticles
way of representing an aggregation of electrons that lead
an excess of charge in a region, which may extend o
several sites. Likewise, a hole represents a deficit of cha
Now, for sufficiently largeN, C( i , j ) is negative~positive!
at
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for u i 2 j u odd ~even!. We thus consider the odd distanc
contributions when defining the probability distribution fro
which to measure the separation of particles and holes. O
definitions, utilizing both positive and negative contrib
tions, oruC( i , j )u are possible, and yield the same qualitati
results.

In Ref. 7 it was found that there is a noticeable change
the nature of the decay ofC( i , j ) at themAg andnBu , the
particle-hole separation being considerably larger than
for the lower-lying states. However, calculations were
stricted toN58. We have used the DMRG method to stu
substantially larger systems~up to N550!. Most impor-
tantly, this makes it possible to discriminate between bou
and unbound states from thescaling of C( i , j ) or the
particle-hole separation withN.

We define an averaged,20 centered correlation function fo
a system of sizeN with open boundary conditions as
CN~ l ![H CS N2 l

2
,
N1 l

2 D , l even

1

2 FCS N2 l 11

2
,
N1 l 11

2 D1CS N2 l 21

2
,
N1 l 21

2 D G , l odd.

~5!
ole
r
tely

r-

n;
As discussed, we define the average particle-hole separ
~in units of chemical bonds! by regarding the negative value
of CN( l ) as a probability distribution, viz.,

^ l &N[
( l 50

N21l ~ uCN~ l !u2CN~ l !!

( l 50
N21~ uCN~ l !u2CN~ l !!

. ~6!

It is instructive to consider the two extreme cases of v
weak and very strong electron-electron interaction, since
identification of bound and unbound states is unambigu
in these cases. In the noninteracting limit (U5V50), we
combine exact analytical results with exact diagonalizati
of systems of up to 4098 sites in order to determine
scaling of the correlation function and particle-hole sepa
tion with N. Details are given in Appendix A. The mai
point is that, as can be seen from Fig. 1, the ground s
(1Ag) and the unbound states~1Bu and 2Ag! have particle-
hole separations that scale very differently withN. For the
ground state we have exponential convergence,

^ l &N5a@11O~e2aN!#, ~7!

and for the unbound excited states we have very slow c
vergence,

^ l &N5b@11O~N21!#. ~8!

In the limit of strong interactions, (U,V@t), it was
shown by Guoet al.7 that the states can be identified sole
from their total energy. Att50, the analysis is trivial: a
particle~hole! is a doubly occupied~empty! site. The ground
state has zero energy, bound states occur atU-V, and un-
bound states atU. Since the Hamiltonian consists only of th
ion

y
e
s

s
e
-
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n-

U-V potential, the bound states have a particle and a h
next to one another, the correlation function vanishes fol
.1, and the particle-hole separation converges immedia
with N, i.e., ^ l &N[1. For unbound states, at energyU, it is
easy to show that̂l &N increases linearly withN, i.e., as for
independent particles and holes.

In addition to the correlation function, we consider are-
duced correlation function: the difference between the co
relation function of an excitation,CN( l ), and that of the
ground state,CN

(GS)( l ):

CN
~red!~ l ![N@CN~ l !2CN

~GS!~ l !#. ~9!

The motivation for studyingCN
(red)( l ) is that it only measures

changesin the charge fluctuations induced by an excitatio

FIG. 1. Particle-hole separation^ l &N of the 1Ag , 2Ag , and 1Bu

states in the noninteracting limit (U5V50) plotted as a function of
1/N.
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15 170 57M. BOMAN AND R. J. BURSILL
that is, the effect of creating particles and holes, whose
tion we are interested in. By analogy with Eq.~6!, we also
define a reduced particle-hole separation^ l &N

(red) .
In the noninteracting case, the reduced particle-hole se

ration for unbound states scales linearly withN, as shown in
Fig. 2. As mentioned above, this is how the separation o
completely independent particle and hole scale. In
strongly correlated limit,CN

(GS)( l )[0 and so^ l &N
(red)[^ l &N

and hencê l &N
(red)[1 for bound states and̂l &N

(red)}N for un-
bound states. That is, unbound states scale in the same
in both limits. This suggests that, for general interact
strength, the reduced particle-hole separation scales line
for unbound states.

In summary, for unbound states, the particle-hole sep
tion ^ l &N converges slowly withN and the reduced particle
hole separation̂ l &N

(red) diverges linearly. By contrast, fo
bound states, botĥl &N and ^ l &N

(red) converge rapidly to a
finite value.

C. Ionicity

In the limit of strong electron-electron interaction,U@t,
the ground state is a pure spin-density wave, i.e., it is so
a linear combination of covalent configurations~or Slater
determinants!, where there is exactly one electron on ea
site. It is therefore natural, in this limit, to define a particle
a doubly occupied site, and a hole as an unoccupied
Configurations that have particles and holes are referred t
ionic. A general state can be written asC5C (covalent)

1C (ionic).
Following Ref. 11, we define the ionicity as the number

particle-hole pairs.21 Thus, single particle-hole pair exciton
are constructed from singly ionic configurations, biexcito
are constructed from doubly ionic configurations, etc. T
ionicity of a state is defined as the expectation value of
ionicity operatorÎ :

Î 5
1

2 (
i

~ n̂i21!2. ~10!

In addition to the ionicity, we have calculated the avera
ionic particle-hole separation̂l &N

(ionic) by considering only
the ionic part of the wave function. In contrast to^ l &N ,

FIG. 2. Reduced particle-hole separation^ l & (red) of the 1Bu and
2Ag states in the noninteracting limit (U5V50) plotted as a func-
tion of N.
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^ l &N
(ionic) allows us to probe changes withinC (ionic) alone,

rather than at the same time taking into account a chang
the relative weights ofC (covalent) andC (ionic).

D. Computational methods

Equation~3! can be comfortably solved by exact diag
nalization for systems of up toN512 sites. For longer chain
we turn to the density-matrix renormalization-grou
~DMRG! method.22 The DMRG has been applied to Eq.~3!
in calculations of ground-state and triplet energies,23 charge
densities,23 the charge gap and 1Bu energies,4,24 the 2Ag
energy,24 polarizabilities,25 and oscillator strengths.26

In this work we apply an infinite lattice DMRG
algorithm22 to find the charge gap and a number ofAg and
Bu states of Eq.~3!. In addition to excitation energies, w
find the transition dipole moments between theAg and Bu
states as well as the density-density correlation function~5!
and hence the particle-hole separation~6! and reduced sepa
ration ^ l &N

(red) . At each iteration the superblock consists of
system block, an environment block, and two extra sites. T
initial system and environment blocks consist of two sit
The system and environment blocks are increased by
sites at a time until a superblock ofN550 sites is reached
We retain m5230 density-matrix eigenstates in the ba
truncation procedure.

The system, environment and superblock Hamiltonia
and density matrices are block diagonalized using the t
particle numberN̂ and totalz-spin Ŝz operators. States from
different symmetry sectors are found by projecting tr
states from the iterative, sparse matrix diagonalization p
cedure into the correct symmetry sector by means of
operatorsĈ2h ,Ĵ and the spin-parity operatorP̂.27 Because
the density matrix commutes with the blockĴ and P̂ opera-
tors, the superblock states calculated areexacteigenstates of
Ĵ and P̂ at all stages of the calculation. They are also ex
eigenstates ofĈ2h by construction because the environme
block is the reflection of the system block. We check t
DMRG program by ensuring that it reproduces the results
the exact diagonalization program for the first two iteratio
The exact diagonalization program itself reproduces theN
58 site results from Ref. 7.

III. RESULTS AND DISCUSSION

A. Accuracy of the DMRG calculations

We begin with the noninteracting limit (U5V50),
where we have performed separate exact diagonalization
long chains in order to evaluate the DMRG accuracy. T
noninteracting case is of particular interest since it give
worst-case accuracy. Errors are expected to be smaller in
interacting case where particles are more localized in p
tion space, the DMRG becoming exact in the atomict
50) limit.

In the DMRG calculations the initial two systems (N
56,10) are treated exactly. The errors for these systems
merely a result of the limited precision of the sparse ma
diagonalization algorithm~the accuracy could be increase
by running the programs at higher precision!. The DMRG
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TABLE I. The ground-state energy (1Ag), the charge gapEg , the 1Bu and 4Ag energy gaps, various

transition momentŝ jBuum̂u1Ag& and particle-hole separations^ l &50 for the N550 site system calculated
using the DMRG for a number of truncation parameter valuesm.

m

Energy ^ jBuum̂umAg& ^ l &50

1Ag Eg 1Bu 4Ag 1Bu 3Bu 2Bu 4Bu

64 2102.97649 1.2190 1.1122 1.1761 1.479 9.472 1.883 1.94
100 2102.97925 1.2212 1.1058 1.5455 7.151 6.599 2.018 1.72
150 2102.97969 1.2213 1.1044 1.4801 7.065 6.847 2.061 1.63
185 2102.97996 1.2218 1.1026 1.3855 6.962 7.297 2.078 1.60
230 2102.98002 1.2218 1.1025 1.3431 6.945 7.330 2.085 1.59
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truncation error sets in atN514, where the relative error i
;1025. The error increases with system size and is;1024

for N530– 50.
In addition to excitation energies, it is important to look

quantities such as transition moments and particle-hole s
rations, which pertain to the wave function rather than
energy. The truncation error for transition moments
;1023 for N530– 50, i.e., one order of magnitude larg
than for excitation energies, but well within what is acce
able for our purposes. The particle-hole separations h
similar errors to the transition moments.

The DMRG is a truncated basis method with system
cally reducible error. In the interacting case it is important
test the accuracy of calculations by varying the single sou
of error, the truncation parameterm, and checking for con-
vergence. We asses the error by running the program f
number of values ofm. Convergence results for a number
quantities are given in Table I for theN550 site system. It is
found that the ground-state energy converges to 5 or 6
ures and gaps are resolved to within 0.01% for the cha
gap and 1Bu states, with slower convergence for the high
excitations where errors range up to 1 or 2%. The error
transition dipole moments are larger but are still sm
enough to make a clear identification of the essential N
states. Errors range from around 0.5% for the 1Ag→1Bu
transition to 1–2% for themAg→1Bu transition. The errors
in the particle-hole separations are found to range from 0
for the 1Ag state to 1–3% for the higher excitations. Co

FIG. 3. Excitation energies~relative to the 1Ag! in the Ag sym-
metry sector as a function ofN. The charge gap~dashed line! is
shown for comparison.
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vergence is sufficiently good to allow the clear classificat
of states as bound or unbound on the basis of the scalin
the particle-hole separation.

B. Excitation energies and transition moments

The evolution of the energy spectra with system size
shown in Fig. 3 and Fig. 4 for theAg andBu sectors, respec
tively. The charge gap is also shown for comparison. Th
is exactly one excitation below the charge gap for all syst
sizes in theBu symmetry sector, and for most systems in t
Ag sector. The 3Ag drops below the charge gap forN
542– 50.

Transition moments between variousAg states and the
1Bu are given in Table II. ThemAg can be identified as the
5Ag for N510– 50. The transition moment with the 2Ag
increases with system size, while transition moments w
the 3Ag and the 4Ag decrease forN>22. The charge gap is
always below themAg energy so the charge gap criterio
will give lower exciton binding energies than themAg crite-
rion.

The transition moments for the identification of thenBu
are given in Table III. There are two qualitative differenc
between these transition moments and those used for
identification of themAg ~Table II!. First, while the state
number of themAg is basically constant~m55, apart from
N56!, the state number of thenBu changes with the system

FIG. 4. Excitation energies~relative to the 1Ag! in the Bu sym-
metry sector as a function ofN. The charge gap~dashed line! is
shown for comparison.
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15 172 57M. BOMAN AND R. J. BURSILL
size when the definition of Sec. I is applied. It is the 5Bu at
N56, the 4Bu at N510,14, and the 2Bu at N518,22,26.

Second, for many system sizes, thenBu is ill defined in
the sense that there are several transition moments clo
the maximum value and to that of thenBu . For instance, at
N518, the 1Bu , 2Bu , and 4Bu have very similar transition
moments; atN522, the 1Bu , 2Bu, and 5Bu ; and atN526,
the 1Bu , 2Bu , 3Bu , and 6Bu . It was found in Ref. 7 that
conduction-band states had strong dipole coupling toseveral
neighboring conduction-band states in the dipole coup
symmetry sector. This was seen to distinguish band-to-b
transitions from transitions involving excitons. If themAg is
the onset of the conduction band, i.e., the lowest-lying
bound Ag state, then our results imply that the 1Bu is the
onset of the conduction band in theBu symmetry sector. A
stronger argument, based on the scaling of the particle-
separation, is given in Sec. III C.

C. Particle-hole separation

The particle-hole separation̂l &N of the Ag states is plot-
ted as a function ofN in Fig. 5. We see that themAg displays
completely different behavior from all the lower-lyingAg
states. For the lower states, the average separation conv
rapidly to the ground-state~bulk limit! value of around 1.3
chemical bonds.28 By contrast, for themAg the separation is

TABLE II. Transition momentŝ jAgum̂u1Bu& for various states
jAg and system sizesN.

N

^ jAgum̂u1Bu&

1Ag 2Ag 3Ag 4Ag 5Ag

6 1.529 0.239 0.185 2.697 0.195
10 2.144 0.664 0.000 0.970 4.006
14 2.613 1.210 0.179 2.089 4.879
18 2.987 1.794 0.270 2.592 5.691
22 3.300 2.369 0.241 2.779 6.384
26 3.548 2.924 0.173 2.770 6.920
30 3.789 3.408 0.112 2.639 7.290
34 4.071 3.706 0.069 2.421 7.464
38 4.303 3.989 0.046 2.162 7.543
42 4.528 4.203 0.043 1.526 7.627
46 4.636 4.703 0.046 1.786 7.594
50 4.831 4.899 0.058 1.603 7.521

TABLE III. Transition moments ^ jBuum̂umAg& for various
statesjBu and system sizesN.

N

^ jBuum̂umAg&

1Bu 2Bu 3Bu 4Bu 5Bu 6Bu

6 2.697 0.908 0.281 1.916 2.135 0.041
10 4.006 2.059 0.391 3.977 0.235 1.735
14 4.879 3.524 0.016 4.640 0.287 2.446
18 5.691 5.278 0.845 4.771 3.299 1.291
22 6.384 6.892 2.664 0.396 5.997 2.207
26 6.920 6.860 6.585 1.822 0.987 6.361
to
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nd
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ges

significantly larger for allN, exhibiting a far strongerN
dependence, and converging to a different limit from t
bulk limit if converging at all. It follows that theAg states
below themAg are bound and themAg is unbound.

The striking difference between themAg and the lower
Ag states is also borne out in the behavior of the redu
particle-hole separation̂l &N

(red) depicted in Fig. 6. The re-
duced separation of themAg scales linearly withN, i.e., as
for completely independent particles and holes. ForN550,
the average separation is around 25 chemical bonds.
lower states, on the other hand, all have bounded separa
For instance, for the 2Ag ^ l &N

(red) scales linearly up toN518,
where it levels off at around eight chemical bonds. The
terpretation of this is clear: the 2Ag is comprised of excitons
with an average size of eight bonds. When the syst
reaches a sufficiently large size the separation settles a
intrinsic average size of the exciton. For smaller syste
around or below the exciton size, the average separatio
dictated by the system confinement.

In summary, theAg states below themAg are bound, and
the mAg is the lowest-lying free charge-carrier state in th
symmetry sector. We have only performed calculations
up toN550, and thus, in principle, we cannot be certain th
the reduced separation of themAg does not eventually tape
off. However, it is clear from our calculations that themAg
behaves as a free charge-carrier state for systems of up

FIG. 5. Particle-hole separation^ l &N of the Ag states as a func-
tion of N. The plot shows all states up to themAg .

FIG. 6. The reduced particle-hole separation^ l &N
(red) of the Ag

states as a function ofN. The plot shows all states up to themAg .
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sites. If an upper bound does exist, then themAg must be
extremely weakly bound. ThemAg energy is therefore a
good reference energy when calculating binding energie
this symmetry sector. The charge gap, on the other ha
falls among the bound states. Some of the bound states
above the charge gap, while others are below. Thus,
charge gap fails to discriminate between bound and unbo
states.

We now turn to the dipole-allowed (Bu) symmetry sector.
The particle-hole separation is shown in Fig. 7. The sep
tions depend strongly onN, indicating that there are no
bound states in this sector. This is confirmed by the redu
particle-hole separation, shown in Fig. 8: The 1Bu scales
almost perfectly linearly withN and the 2Bu increases at
least as rapidly over the plotted range. This explains the
sence of a well-definednBu state above the 1Bu ~see Sec.
III B !. That is, the 1Bu is the lowest unbound state in theBu
sector. We note that the charge gap lies above the 1Bu ,
incorrectly suggesting that the 1Bu is a bound state~see Fig.
4!. As was the case for theAg sector, the charge gap is not
useful criterion for determining whether states are bound
unbound in this symmetry sector.

D. Ionicity

The ionicity gives additional insight into the nature of th
low-lying states. It is instructive to first study a case of re

FIG. 7. Particle-hole separation^ l &N of the Bu states as a func
tion of N. The 1Ag state is plotted for reference.

FIG. 8. The reduced particle-hole separation^ l &N
(red) of the Bu

states as a function ofN.
in
d,
are
e

nd

a-

d

b-

d

-

tively strong Coulomb interaction~U510, V54!. As seen in
Fig. 9, there is a sudden jump in the ionicity at themAg , for
which ^ Î &51.4. The ground state has an ionicity of 0.45, a
an excitation to themAg creates almost exactly one particl
hole pair. Lower-lying states, on the other hand, follow
more continuous evolution with similar ionicity to that of th
ground state. In fact, the ionicity decreases, the (m21)Ag
being almost purely covalent. By contrast, there is no s
jump in theBu symmetry sector at thenBu . Instead all states
have about the same ionicity, similar to that of themAg .

For the weaker, more realistic, interaction~see Sec. II A!,
the ionicity is shown in Fig. 10. Although there are larg
quantitative differences, many qualitative features remain
the Ag sector, the ionicity decreases continuously up to
mAg where a distinct jump occurs. Again, the ionicity of th
Bu states remains constant at around the same value a
mAg . There is, however, one qualitative change, name
that the spectrum above themAg is now a mixture of states
with high and low ionicity. A picture where themAg is the
onset of a band of states that are all unbound appears t
too simplistic, at least from theN510 site data.

The average ionic separation, shown in Table IV, a
shows a jump at themAg , from slightly more than 2 for the
lower states to 3.5. In the other symmetry sector, the ma
mum ionic separation is 3.8 for thenBu . However, the jump
is less pronounced since the lower states all have relati
large separations of around 3.0.

FIG. 9. The ionicity of thejAg and jBu states forU510, V
54, andN510.

FIG. 10. The ionicity of thejAg and jBu states forU53, V
51.2, andN510.
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To conclude, themAg excitation involves the creation o
more particle-hole pairs than the lower-lying states in theAg
sector. Furthermore, the particle-hole pairs are less stro
bound. The large charge separation of themAg is a result of
two factors: a redistribution of weights in the wave functio
from covalent to ionic configurations, and an increas
charge separation within the ionic part of the wave functi
By contrast, in theBu symmetry sector the difference be
tween thenBu and the lower states is far less pronounced
result which is consistent with the findings of Sec. III C.

IV. CONCLUSIONS

In this paper we have studied the particle-hole separa
in the fundamental model of conjugated polymers—
dimerized, extended Hubbard model—in order to critica
assess criteria commonly used to determine whether ex
tions are excitonic or consist of uncorrelated particle-h
pairs. The chosen parameter values are typical values us
describe polymers such as polyacetylene within the mo
The model was solved for the charge gap and a numbe
states in the ground state (Ag) and dipole allowed (Bu) sym-
metry sectors using the density-matrix renormalization-gro
~DMRG! method for systems of up toN550 sites. It was
shown that the DMRG can be used to accurately comp
energy gaps, transition dipole moments, and particle-h
separations for these states, with relative errors ranging f
a fraction of a percent for the lowest states to a few perc
for higher states. The particle-hole separations of bound
unbound states were shown to scale differently with sys
size, a fact that can be used to discriminate between
states.

It was found that the charge gap, often used to define
binding energy of excitons, is not a useful criterion by whi
to decide whether a state is bound or unbound. The res
for the scaling of the particle-hole separation show that th
is an unbound state below the charge gap in theBu symmetry
sector, and bound states above the charge gap in theAg
sector. Thus, it is possible to have states below the ch
gap that are unbound, and states above the charge gap
are bound. In fact, the results were in keeping with the p
ture that the essential nonlinear optical statemAg marks the
onset of unbound states in theAg symmetry sector. On the
other hand, in theBu sector it was found that all states we
unbound for the parameters considered, and that there
no well-definednBu state. That is, the 1Bu state marks the
onset of unbound excitations in theBu sector.

Finally, we note that, although the dimerized, extend

TABLE IV. The average ionic separation ofjAg and jBu states
for N510.

j

^ l &10
(ionic)

Ag Bu

1 2.23 2.97
2 2.21 3.21
3 2.04 2.82
45n 2.11 3.77
55m 3.54 3.08
ly
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Hubbard model is a fundamental model that is believed
provide a qualitative description of polymers such as po
acetylene, one needs to investigate the effects of long-ra
Coulomb interactions, interchain coupling, and electro
phonon effects before one can begin to make reliable st
ments about the nature of excitons in specific, real con
gated systems. We are currently developing efficie
vectorized DMRG codes with which we will be able to stud
these effects.
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APPENDIX A: SCALING OF THE CORRELATION
FUNCTION AND PARTICLE-HOLE SEPARATION

IN THE NONINTERACTING LIMIT

In this appendix we present some results for the corre
tion functions of excited states of Eq.~3! in the noninteract-
ing limit (U5V50). In arriving at these results, we mak
use of well-known analytical results for open and period
systems and diagonalizations of open systems of up to 4
sites.

The bulk correlation function is given by

C`~ l ![ lim
N→`

CN~ l ! ~A1!

5H 1/2, l 50

0, l.0, even

2uF~ l ,d,1 !u22uF~ l ,d,2 !u2 l odd,
~A2!

where

F~ l ,d,6 ![
1

p E
2p/2

p/2

eil uAcosu6 id sin u

cosu7 id sin u
du. ~A3!

For 0,d,1, the model has a gapD54dt and exponentially
decaying correlations

C`~ l !;e2 l /j as l→` ~ l odd!, ~A4!

with correlation length

j5
1

2 tanh21 d
. ~A5!

For the ground state of a system of sizeN we have

CN
~GS!~ l ![C`~ l ![0 for all l even, ~A6!
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and for oddl , CN
(GS)( l ) approachesC`( l ) exponentially fast,

viz.,

CN
~GS!~ l !5C`~ l !@11O~e2aN!# ~ l odd!, ~A7!

for some positive constanta that is uniform overl . It follows
that the ground-state particle-hole separation converges
idly, according to Eq.~7!, where

a[ lim
m→`

(
l 51

m

~2l 21!uC`~2l 21!u

(
l 51

m

uC` ~2l 21!u

~A8!

is the particle-hole separation defined from the bulk corre
tion function ~A1!. This can be seen in Fig. 1 where^ l &N is
plotted for the 1Ag state.

For the excited states the finite lattice correlation funct
CN( l ) approaches the infinite lattice valueC`( l ) as N→`
for any fixed l .29 However, as can be seen from Fig. 1
where we plot lnuCN(l)u for the 1Bu states as a function ofl
for various values ofN, the convergence is very slow. Th
is shown in Fig. 12, where we plot the reduced correlat
function CN

(red)( l ), defined by~9!, as a function of 1/N for a
number of values ofl . We see clearly that the scaling beha
ior of the excited state correlation function is

CN~ l !5C`~ l !1
C`

~red!~ l !

N
1

g~ l !

N2 1¯ , ~A9!

whereC`
(red)( l ) is the limiting, reduced correlation function

viz.,

C`
~red!~ l ![ lim

N→`

CN
~red!~ l !. ~A10!

FIG. 11. lnuCN(l)u for the 1Bu state as a function ofl for N
56, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, and 4098 in
noninteracting case (U5V50). Also plotted is lnuC`(l)u, the bulk
~ground state! value ~dashed line!. Only the odd values ofl are
used. The inset shows the same plot on a smaller horizontal s
p-

-

n

,

n

e

le.

FIG. 12. Reduced correlation functionCN
(red)( l ) for the 1Bu state

as a function of 1/N for various~a! odd and~b! even values ofl in
the noninteracting case (U5V50).

FIG. 13. Limiting reduced correlation functionC`
(red)( l ) for the

1Bu state as a function ofl in the noninteracting case (U5V
50). The inset shows the scaling functionsf ( l ) andg( l ) @f ( l ) is
only defined for odd values ofl becauseC`

(red)( l )50 for evenl #.
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Using a polynomial fit of the form~A9! and extrapolating
to theN5` limit, C`

(red)( l ) is calculated and plotted in Fig
13. We see thatC`

(red)( l ) decays exponentially withl , and
vanishes for evenl . In fact, the scaling form~A9! can be
derived explicitly for the case of periodic boundary con
tions, where it can be shown that

C`
~red!~ l !5AC`~ l ! f ~ l !, ~A11!

where the functionsf ( l ) andg( l ) rapidly approach nonzero
constants asl is increased~i.e., C`

(red)( l ) decays exponen
tially and has correlation length 2j!. The functionsf andg,
derived from the polynomial fit to Eq.~A9!, are plotted in the
inset of Fig. 13.

Now, the straightness of the curves in Fig. 12 indica
that the higher-order terms in Eq.~A9! are small, and Fig. 11
indicates that Eq.~A9! holds for a range ofl values that is of
O(N). These results, together with the definition~6!, imply
-

s

that the particle-hole separation for an excited state sc
according to Eq.~8!, with limiting value b[ limN→` ^ l &N .
This can be seen from Fig. 1, where^ l &N is plotted as a
function of 1/N for the 1Bu and 2Ag states. We note thatb
Þa, i.e., the ground and excited states have differ
particle-hole separations in the bulk limit, even though th
correlation functions approach the same limiting functio
This is due to the fact that the third term in~A9! does not
decay withl.

Finally, we note that, from Eqs.~9!, ~A9!, and~A11!, the
scaling behavior of the reduced correlation function is

CN
~red!~ l !5AC`~ l ! f ~ l !1

g~ l !

N
1¯ . ~A12!

It follows that the reduced separation^ l &N
(red) scales linearly

with N. This is clearly shown in Fig. 2, wherêl &N
(red) is

plotted for the 1Bu and 2Ag states.
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