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ac conductance of a quantum wire with electron-electron interactions
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The complex ac response of a quasi-one-dimensional electron system in the one-band approximation with an
interaction potential of finite range is investigated. It is shown that linear response is exact for this model. The
influence of the screening of the electric field is discussed. The complex absorptive conductance is analyzed in
terms of resistive, capacitive, and inductive behavifg€163-182¢08)00403-2

[. INTRODUCTION enced by the interaction due to Kohn’'s theorem. However,
Raman scattering from quantum wires and dots showed sig-
Experimental and theoretical investigations of the acnatures of the dispersion of the collective excitatiGhg!
transport in nanostructures are of profound scientific interestThe absorption of microwaves in an ensemble of metallic
since they provide insight into the behavior (@pen quan-  grains has been investigated experimentally and theoretically
tum systems in nonequilibrium that are externally control-in many paper$®23
lable within wide ranges of parameters. In addition, possible Absorption and scattering of electromagnetic radiation are
applications of nanostructures in future electronic devicespnly one possibility to measure ac-transport properties with-
which will have to operate at very high frequencies, requireout applying voltage and current probes that may disturb the
detailed knowledge of their frequency- and time-dependengystem’s properties severely. More recently, other highly so-
transport behavior. phisticated, noninvasive techniques for determining ac con-
Electron transport in nanostructures is very strongly influ-ductances have been pioneefédCoupling a system of
enced by charging effects. Most striking is the Coulombabout 16 mesoscopic rings to a highly sensitive supercon-
blockadé of the dc current through tiny tunnel junctions ducting microresonator, the perturbation of the resonance
when the bias voltage and the temperature are smaller thgrequencies and quality factors has been used to determine
the “charging energy,”Ec=e?2C (e is the elementary the real and imaginary parts of an ac conductance. Here the
chargeC the “capacitance of the tunnel junction"The use  fundamental question arises about what the differences be-
of a capacitance has been justified by observing that its vakween the “conductances” as determined by different meth-
ues determined fronE. are consistent with those obtained ods are?®
from the geometry of the junctioh® C was found to be of Theoretical approaches have been developed, ranging
the order of 10 F, and much smaller for metallic from semiclassical rate-equation approximations to fully
junctions? Interactions also dominate transport through is-quantum-mechanical attempts. The linear theory of ac-
lands between two tunnel contacts in series in a semiconduguantum transport has been restricted to noninteracting
tor quantum wire. Théinear conductance shows pronounced systems$~3° How to define quantum capacitané&sand
peaks if the external chemical potential coincides with the inductance¥ ?° was addressed. ac transport through mesos-
difference between the ground state energiel 6fL andN copic structures in the presence of Coulomb interaction was
electrons in the island. In the charging model, these energiesnsidered by using a self-consistent mean-field methdad.
are again given in terms of a “capacitan€®” E(N) This approach strongly relies on the presence of “reser-
=N?e?/2C, C~10 % F. One can ask how small a capaci- voirs,” “contacts,” and “electrochemical potentials” which
tance can be without being influenced by quantum effectsare not necessary ingredients of high-frequency experiments
The limitations of the charging model become obvious in thesuch as the absorption of microwaves.
nonlinear transport properties: fine structure in the current- Photoinduced transport through a tunnel batfiand tun-
voltage characteristic is related to the quantum properties afeling through semiconductor double-barrier structtfreas
the interacting electrorfs® been considered. Charging effects in small semiconductor
In recent years, frequency-dependent electrical respongguantum dots in the presence of time-varying fields were
of systems with reduced dimensionality became the subjedteated®®3*The influence of high-frequency electric fields on
of activities. These techniques are of particular interest, sincthe linear and nonlinear transport through a quantum dot
no current and voltage probes have to be attached to theith infinitely strong Coulomb repulsidh was studied.
sample. The current response to microwave and far-infrareBhoton-assisted tunneling through a double quantum dot has
radiation on the transport through semiconductor microstrucbeen investigated by using the Keldish technitudhe
tures has been studié®:*It has been found that the absorp- photoinduced transport through a single tunnel barrier in a
tion of microwaves leads to a characteristic broadening obne-dimensional interacting electron system has been
the conductance peaks of semiconductor quantum dots in thevestigated® In most of the latter works, quantum effects
Coulomb-blockade regiol:*® Infrared absorptiolf='8 of  of the interaction have been treated only approximatively.
guantum dots and wires mainly provided information on the In view of the importance of the interaction for the ac
parts of the excitation spectrum that are only weakly influ-properties of nanostructures, Luttinger systems are of great
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interest. Here the interaction can be taken into account exsystem with respect to an electric fiel{x’,w). In an ex-
actly. The conductance of a tunnel barrier in a Luttingerperiment, either the current as a function ofextternal volt-
liquid with zero-range interaction has been shdWfito  age (in the dc limib, or the absorption of electromagnetic
scale with the frequency as?9~2 (g is the interaction pa- energy at frequencw from an external field is determined.
rameter; see belowAt =0 repulsive electron-electron in- In both cases, not too much is known about the internal field.
teraction suppresses tunneling completely, even for a vanisfi-herefore, it is reasonable to search for quantities that do not
ingly small potential barrier. However, it has been alsodepend on the spatial form of the field. One possibilit{ fe
shown that foro— 0 there is adisplacement contributioro ~ défine the conductandé, by using the absorbed power. One

the current which can dominate the transport for very strong?ndS that, in the dc limit, the result is indeed independent of
repulsive interaction and a very high barrfér. he shape of the field. I—_|owever, in ac transport, the _shape of
The driving voltage has been assunetihocin most of the square of th_e _Fogner transform of the_ e_Iectrlc flel_d ap-
these works. Since the driving electric field is determined byP€ars as a multiplicative factor. The remaining factor is the
the interaction between the electrdRé3the current can be density of collective excitations of the interacting electrons.
expected to depend on how charges induced by an externfl has a resonance aby. For noninteracting electrons
electric field are rearranged by the interaction. Even in théld/dw=vg ", andl'y(w) reveals merely the structure of the
limit of dc transport through a Luttinger system this has beerglectric field.
argued to be s8**°The dependence of the ac properties of a That the ac conductance depends on the shape of the driv-
tunnel barrier in a Luttinger system on the shape of the elecing electric field leads to the question of the nature of this
tric driving field has been investigaté@iit has been found field in an interacting system. We show that for the conduc-
that the current depends only on the integral over the driving?iVity of an ideal Luttinger liquid, it is theexternal electric
electric field—the external voltage—only in the dc limit, ield which has to be used, since linear response is exact.
even in the nonlinear regime_ One of the side results was tEUrthermore, we will demonstrate that this is also true for the
confirm that linear response is exact for the ideal Luttinge@Psorptive conductance.
systent’>*64"The ac properties of the Luttinger liquid with ~ Having determined the absorptive part of the conduc-
spatially varying interaction strength were also studfed®  tance,I';(w), the reactive part’;(w) may be obtained by
In this paper, we concentrate on the ac-transport propefKramers-Kronig transformation. The complex conductance
ties of electrons described by the Luttinger model with anl' (@) =T'1(w)+il';(®) relates the average current with the
interaction of finite range. The model is exactly solvable.voltage. The current as a function of time consists of two
Since its current response can be determined without aglarts. OnexI'y, is in phase with the driving field. The sec-
proximations, answers to fundamental questions can bend,=I,, is phase shifted by- /2.
found, such asi) how to identify the specific signatures of ~ Whenw is small, we can expand
the electron-electron interaction in ac transp@if, how to
understand the influence of the properties of the driving elec-
tric field, (iii) how to define conductances, afid) how to
understand ac-transport in terms of resistive, capacitive, and
inductive behaviors. The latter yield quantum analogs of im-The first term corresponds to the quantized contact
pedances that are common in classical electrodynamicsonductanc¥ Rgl=e2/h. It is here renormalized by the in-
Such parameters are also often used for describing the tranteraction paramet&tg. The terme w? indicates whether the
port in nanostructures. Therefore, a quantum approach taurrent is capacitive {;>0) or inductive (y;<<0). ForI',
ward their definition is highly desirable. However, in the we find
guantum regime, they depend not only on the interaction, but
also on the frequency and shape of the applied electric field. I'y(w)=wy,+O0(w). 2
Together with their microscopic definitions, it is thus impor-
tant to determine the range of parameters for their validity. This quantity also indicates if the system behaves capaci-
The interaction potential is obtained by using a three-ively and inductively,y,<0 andy,>0, respectively. How-
dimensional (3D) screened Coulomb potentidbcreening ever, in the latter casey; can still be positive, indicating
lengtha 1) and projecting to a quasi-1D quantum wire of a capacitive behavior of the real part of the conductance.
finite width d. Whena~1<d, we recover the Luttinger lig- For frequencies close to the resonance, the Kramers-
uid with zero-range interaction. On the other hand, wherKronig transformation gives
a~1>d we obtain the 1D analog of the Coulomb interaction.
The excitation spectrum of this model shows an inflection I'y)(w)~ym(o—op), 3)
point at a frequencw,, that increases monotonically with the
interaction strength, and with the inverse of a characteristivith y,,>0 when y,<0 and wj~ w, [position of maxi-
length associated with the interactith. mum of ' (w) ]. The quantityy,, indicates capacitive and/or
By using linear-response theory, we obtain the complexinductive behavior close to the resonance frequenewy).
frequency-dependent nonlocal conductivity given by the The height or, equivalently, the width of the resonance in
current-current correlation function. It contains the disperI’; defines also a resistancB, In contrast to the contact
sion relation of the elementary excitations, and turns out taesistance, it is truly “dissipative” and related to the pair
be independent of the temperature within the model. Therexcitations of the Luttinger liquid. It is also containedys,
are no nonlinear contributions to the current in this model. though its numerical value for small is different from the
The conductivity describes the current response of th@ne near the resonance. Generally, we find that it is only
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possible to define resistances, capacitances, and inductandesconstantN,=kgL/7. The dispersion relation interpolates
in certain limited parameter regiofis. between the limit of zero-range interactiog—¢0), where
In order to observe capacitive behavior, the interactionw(k)=v|q|, with the “charge sound velocity’v=vg/g,
between the electrons should &afficiently long rangeThis  and the limit of noninteracting particlesq{-=), (q)
is consistent with the results of a different approach in which=y|qg|. The strength of the interaction is defined as
Coulomb blockade behavior at a tunnel barrier between two
Luttinger liquids has been discuss&d\lso there, a nonzero 1 V(g=0)
range of the interaction is necessary for capacitive behavior. Print Chave
In Sec. Il, we briefly describe the model and the disper- 9 F
sion relations for various interaction potentials. We calculateNoninteracting fermions correspondde- 1, repulsive inter-
the ac conductance and study external versus internal drivingction tog<1.
fields in Sec. Ill. Section IV contains the identification of  The particle density(x) can be written in terms of the
quantum impedances. Section V contains the discussion gfhase variable of the Luttinger model
the results.

Y

1 )
II. LUTTINGER LIQUID WITH LONG-RANGE ﬁ(x)=|q;0 sgria) \/ 2L|q|e‘°(“) H(bytb-g) (8
INTERACTION
where
A. Outline of the model
The Luttinger liquid is a model for the low-energy exci- e2<p(q):UF_|Q| 9)
tations of a 1D interacting electron g&s>® Its excitation o(q)’

spectrum can be calculated analytically. Also, many of tth
thermodynamical and transport properties, such as the linear
conductivity, can be determined even in the presence of per- 1
turbing potentials. The main assumption is the linearization p(X)=po+ — 9y 9(X). (10)
of the free-electron dispersion relation near the Fermi level. Jr

The starting point is the Hamiltonian for interacting fermions
with, say, periodic boundary conditions,

ith the mean particle density,=Ny/L, we write

For later use in the linear-response theory, we need the cou-
pling to the driving voltagdJ(x,t) and the current densif{?.

The former is given by

H=hve 2 (sk—Ke)(CiCis™ (ChCis)o)

k,s==*

HU=e£C dx p(x)U(x,t). (11

+ 2 Vi sk sCfoCl CisChs. (D
kpsikgsy SR Sa TSRS s ey The electric field isE(x,t) = — ,U(x,t). The external volt-

age is assumed to be given By .dx E(x,t)=U(t). The

current operator is defined by using the 1D continuity equa-

tion for the Heisenberg representation of the operators,

Herec/ andc, are the creation and annihilation operators
for fermions in the stategks) of wave numbek=2mn/L
(n=0,£1,=2,...) in thebranchess=*, kg the Fermi
wave number,V the Fourier transform of the electron-

. . . e .
electron interaction, and- - -); denotes an average in the J(x,t)=— —3(x,1). (12)
ground state. Vi
Formally, the fermion Hamiltonian can be transformed
into a bosonized form. For spinless particles with an interac- B. Interaction potential

tion that depends only on the distance between the particles, ) ) . . .
V(|x—x'[), and taking into account only forward scattering, In order t_oiobtam the dlspgrsmn rglatlor! explicitly, we
one obtains a bilinear form in the boson operators which cafi€€d @ specific model for the interaction. Since we eventu-

be diagonalized by a Bogolubov transformatf8ithe result ~ &/ly want to draw some conclusions on quantum wires, we
is start from a 3D screened Coulomb interaction

—ar

H=§ﬁwmm$¢ 5) V(r)=Vo——, (13)

é(vith Vo=€?l4mes,, and project onto the quasi-1D states of
the quantum wire.
For the latter, we assume a parabolic confining potential

The spectrum of the pair excitations corresponding to th
bosonic creation and annihilation operatcbrz;: and by is
given by the Fourier transform of the interaction potenial

v(q) in they andz directions independent of. The correspond-
' ing states ared= \y?+7?)

o(q)=velg|\/1+ (6)

ﬁ’ﬂUF‘

e
wk(x,§)=f¢(§)- (14)
The particle excitations which change the total electron num-

ber are omitted here. The number of particles is assumed tm the following, we assume, for the confining wave function



1518 G. CUNIBERTI, M. SASSETTI, AND B. KRAMER 57

2 2 "
o(O)=\—5e ', (15) I
md T 7
10— BT —
whered represents the “diameter” of the wire. Z e 7
We obtain the effective interaction potential for the mo- % /;j;;f/ o P
tion in thex direction from the matrix elements of E4.3) in 3 b 7 =01 L= aicon
state(15) by performing the integrations with respect yo . - e 7 e ade06
andz, i I e ad=10
- ad=2.0
o\ - — ad=30
s - g
V(X)=— _(2) dé’ 2/czzd2 [ —Va2x2+g ] (16) /// ‘
ad 01 == |
0.1 1 10 qd

Its Fourier transform is
FIG. 1. Double logarithmic plot of the dispersion relatiefq)
2 of the Luttinger model withgo=0.1 and different rangead(« is
Z(q +ta) ). (17 the inverse potential range in position spades the diameter of
quantum wire.

V()= Voe(d2/4)(q2+ AE

The functionE; is the exponential integra?.
Two limiting cases are of particular interest. When 1,

E,(2)~exp(—2)/z. Thus, forad>1, termediate wave numbey, corresponding to the character-

istic frequencyw,,. It is related to the finite range of the

4V 1 interaction in the wave-number space. For zero-range inter-
V(q) -0 = (18) action the dispersion becomes linear, and)) =vgq/g. Fig-
d? g*+a? ure 2 shows the excitation densiy/dw for variousg, and
.. . ad=1.
This is the Fourier transform of The frequencyup and the corresponding wave numlqgr
V(X)= %VLae’“M. (19 as a function ofg0 —1)~ ! are shown in Fig. 3 for various

ad. For a broad range daf, the frequencyw, andq, decay
asg, ! and gy *?, respecuvely The data fop, obey the
scaling law Bo=0, 2-1)

For a—, but with V| =4V,/a?d?=const, this isV| §(x),
the zero-range interaction, with the strength of the con-
ventional Luttinger liquid.

Whenad<1 we still obtain the above result8) as long
asqd>1 which implies that inx spaceV(x— 0) behaves as wp(Bo;ad) = wy[ Boh ™ ?(ad);0]h(ad). (22)
Eq. (19), but with V(x=0)= J7V,/d. For z—0, E;(2)~

~Inz so that, forqd-<1, The scaling functiofn(ad) is shown in the bottom left inset

V(q)~ — Vo[ (a?+g?)d?]. (20) of Fig. 3, and it.is prop_ortional to the limit ab,, for infini-
tesimally small interaction.
This is the same behavior as obtained by starting from the
1D equivalent of the Coulomb interactiéh®®c® implying
the interaction falls off ax ! in space. 1. LINEAR RESPONSE
In many of the quantum wire experiments metallic gates . . . .
are present in some distance, €yfrom the wire(diameter In th|§ section we outline the calculation of the conduc-
d<D). In order to discuss the changes in the |nteract|ontance with linear-response theory.
induced by the presence of the gates, we can consider an
infinite metal plate parallel to the wire. This changes the 20 I

interaction potential according to z; od =10 2N
~
S / N
Vp(r)=V(r)=V(|r+D|), (21 15 4——- /! N
/ S~
due to the presence of the mirror charge. It is clear that thi¢ A /
influences the results only when 1=D. Assume then that 0 1 e, et A B R
a=0. The cutoff of the Coulomb tail of the potential is in ™77/, 7 ol
this limit given by D instead ofa~*. The results to be dis- E /  g-03
cussed below forwd<1 also apply for this limit, witha / / - g,=05
replaced byD 1. 08 L7 > -‘1’; ]
e P T &
C. Results for the dispersionlaw L~ e
0.0 T
Results for the dispersion are shown in Fig. 1 for interac- 0 5 10 15 20 25 @d/vg 30

tion parametergy=0.1[Vo= i’muF(g —1)] and various
ad. There is a crossover between the interacting and nonin- FIG. 2. The density of pair excitationdg/de for ad=1, dif-
teracting limits forq—0 andg—oe, respectively, at the in- ferentg,.
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100 Here (---)=Trlexp(=pBH)---1/Tr exp(~BH) is the usual
j thermal averagétemperaturex~1). By using expression
I3 (10), we find the exact result
3 2
g U q
R(g,w)=—— . : (28
h w?(q)—(0+i0*)?
104, od=0
od = 0.2
od = 0.6 , ) )
3t ] _ %z %.8 B. Analogy with a Brownian particle
] e et o ““%d_:jo” A most remarkable feature of the above result becomes
B s A N O transparent by applying the imaginary-time path-integral ap-
e o proach. With this, the time-dependent nonlinear response to
1190 05 10 15 20 . e an electric field of arbitrary spatial shape of a Luttinger sys-
0.0001 0.001 0.01 0.1 10851 10 100 tem was calculated recentl§ It was found that the average

] of the phase field8) obeys the equation of motion of a
FIG. 3. The resonance frequeney, and the corresponding Brownian particle with masM —0
wave numberg, (inset, top right as a function of the strength of '

the interaction ¢, >— 1) * of the Luttinger liquid with interaction .
of finite range as indicated. Inset, bottom left: scaling function Mﬂ(x,t)+f
h(ad).

t dt’ y(t—t)d(x,t)=L(x,t), (29

o subject to an effective external force with the Fourier trans-
A. Conductivity

form

Using the above current, E¢12), one obtains the com-
plex conductivity,o(x—x";t—t") which relates the current e 1 = , ,
at a given pointx at time't with the driving electric field ~ £(X.®)=— I a(x=0,w)f,wdx E(X',0)o(x=x",w),
Eex[(X,,t,), (30)

N T R e o and a damping termy(t) which is given by the nonlocal
‘](X’t)_f%dx fﬁmdt T(X= X" Bey(X', ). conductivity. The Fourier transform of(t) is
23 g2 1

While the nonlocality of the conductivity is unimportant in vw)=— o (x=0w) (32)

the dc limit, it is crucial for time-dependent transport. By
assuming that the electric field is concentrated only near &rom the solution of the equation of motion the current is
given point, say’ =Xy, we obtain found,

t % t
J(x,t)zf dt' o(X—Xg;t—t" )Ut) (29 J(x,t)=£ dx’fﬁ dt' o(x—x',t—t")E(x',t"). (32

with the voltage dropUe,(t')=[dX Ec(x',t") dropping The linear response is exact for the Luttinger liquid.
only nearx,. We see thatr(x—Xq,t—t") then plays the role
of a “conductance” that relates the current at some pgint C. Driving electric field

in the system with a voltage dropping at some other point. In this section, we investigate the influence of screening

By using near-field microscopy, one could possibly perform n the response to an external electric field. In particular, we
such a nonlocal experiment. However, it seems to us that it i§; P - NP '

very hard to measure the current locally in a quantum wire iscuss the dc "”?'t’ and show that t_he two limiés-0 and
especially in the region of high frequency —0 cannot be interchanged. It will turn out that for the

: : . ; Luttinger model, where linear response is exact, one can use
By Fourier transformation, Eq23) is equivalent to the external field for the calculation of the current. The re-
J(9,)=0(0, 0)Eex(q, ). (25) ?ults will be used to derive absorptive and reactive conduc-
ances.
The conductivity kernel can be expressed either by the The dielectric response function, which describes the dy-
current-current correlation function or, by using the continu-namical screening of a charge, is defined as
ity equation, as

Uex(d, )
—iw62 8(q’(’()): Uex(q (,L)) ' (33)
o(q,0)=01(0,w) +ioy(q,w)= ———R(q,w), (26) e
aq where
with the charge-charge correlation function Usel(0 )= U o(0, @) + Ul G, ) (34)

is the total potential, antl.,; and U are the external and
(27) ext SC

i
R(xt)=~ g@(t)([p(X,t),p(0,0)]). screening potentials, respectively. Within the linear screen-
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ing model, the dielectric response function can be written in  The limits —0 andq—0 cannot be interchanged. The
terms of the charge-charge correlation function as latter result has been used recently, in order to explain that in
guantum wires the dc conductance is not renormalized by the
interactiof**® [see also Eq(44)]. Here we are discussing
frequency-dependent properties. Thus for small frequencies

e(q,w)
) ] o we always obtain a conductance that is renormalized by the
By using result(28) for R(q, ), we find the explicit expres- jnteraction, since we consider the limit of infinite system
sion

=1-V(9)R(q,w). (39

length.
0?(q)— w? . .
e(q,w)= — (36) D. Absorptive and reactive conductances
wg(d) ~w Since it is very difficult to detect the nonlocal conductiv-
with the dispersion of the noninteracting electrangq). ity, experimentally some average has to be performed. One
Equations(33) and (34) imply that possibility is to use the absorbed powe(t) in order to
define the conductance. This appears to be a natural choice if
Eit(d,0)=Ee(d,0)[1-V(Q)R(q,w)] one wants to describe infrared or microwave experiments,
=Eex(d,0)F(q,0). 37

. - : : , P(t)=f dx J(X,t) Eqel(X,1)
Using conductivity(26) with Eq. (28) and comparing with —

Eq. (36), we see that

1 oo
_ oo(0,w) = gjfwdq A Ew(—q,t). (45)

~ e(qo)

Here oy is the conductivity of the noninteracting electrons.
This implies that

(g, ) (39

We define the average

1T
P= lim ffo dt P(t). (46)

Etol( 0, @) 00(0, ©) =Ee(d, 0) (g, ). (39 =

If we calculated the conductivity from the response to theUSIng the Laplace transform

total field, the conductivity would turn out to be that of non- "

interacting electrons. P(s):J dt e S'PP(t), (47)
This result is true as long as one can use linear screening. 0

It also implies that the voltage drop at frequenseyis the

same for both fields we obtainP = limg_,,SP(s). Theabsorptive conductanaean
’ then be defined by
Utot(w):f dX Bl X, @) = Ul w), (40 P_
- IN'=—, (48
2
since for any finite nonzero frequeneyq—0,w)=1. Uext

For a monochromatic external field, With Ug,(t) = fdX Eeu(X,t). It is independent of the ampli-
tude of the external field, but depends on its shape in space

Eex(0.t) = Eex(q) COSOL, (42) and time. Physically, it is the absorption constant for electro-
one finds the result magnetic radiation. Using Eq42), one can show that the
absorbed power for a monochromatic time dependence is the
Eior(0,t) = Eexd Q) [REF (9, ) cOswt + IMF(q, ») sinwt ], same for both fields due to the time average. We obtain
(42)
I
which means that there is a phase shift between the total and szﬂﬁ dq Reo(q,w)|Eexl(a)|?. (49

the external field.
A final remark concerns the static limit. While we have

for any nonzero frequency(q—0,w)=1, we find, for w With (28) we find, for the real part of the conductivity,

:0, 2
Ug€
, Rer(d,0)= 2 {dlw—w(@)]+ o+ w1} (50
: _w%(q) 1
lime(q,0)=lim——=—. (43 . .
q—0 g—owg(q) 9 This gives the expression
By inserting the dispersion relation of the Luttinger model e? dq
into Eq. (28), one obtains Fl(w):UFFL[Q(w)]d_wa (51
_ 1 with the Fourier transformed autocorrelation function of the
Ero 4) = Eex(d) 1+V(q)/hver’ (44 extemnal electric field
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04 L R o

hT/e \[\

A -
T = \ \

0.1 / \ L, R,
T, —— =

o i)
\‘

0.1 FIG. 5. Classical circuit for simulating the frequency behavior

0 8 16 24 2 wdrv, W of the complex conductance.

FIG. 4. Real and imaginary parts;(w) andI'y(w), of the ac  ransform of the electric field has been assumed to be a
conductance of a Luttinger wire with finite range interactiomt GaussiarE(x) = Egexp(— 2X2//2)_ If the range of the electric
=1, g=0.1, range of the electric field/d=1/. field is zero, the zero of ,(w), w*, and the position of the
maximum ofl"4(w), w,,, do not agree. However, as soon as

1 - - 2 / is finite ~w* for a wide region of parameters. In the
L(q)=—=] | dx ¥Egy(x)| . 52 » Om™ @ g P :
(@ 2U2 ffoo edX) (52 Coulomb casea=0, I';%(Inw) Y2 for ®—0, due to the
ogarithmic singularity of the dispersion fop—0.
ext logarith larity of the d for—0
By a Kramers-Kronig transformation, we can also define
a reactive conductance IV. “QUANTUM IMPEDANCES”
1 (= () In this section, we analyze the results for the complex
Iy(w)=—P f do’ — conductance presented above with respect to “resistive,”
T ) -’ “capacitive,” and “inductive” behavior. We compare the

Luttinger system with an equivalent classical circuit.

-—— | damo(.0)lEaal 69
47TU2ext — A. Impedance network

Our system of interacting electrons shows a resonance in
the ac conductance. It can be useful to consider a circuit of
capacitances, inductances, and resistances, in order to simu-

g€’ (gw late the frequency behavior. The circuit shown in Fig. 5 con-
Fl(w):TL(U_>a (54)  tains the minimum set of elements that are necessary for
F reproducing both the low-frequency behavior and near the

the same as without interactidhexcept for the renormaliza- resonance. Its complex impedarifw) is given by
tion of the prefactor and the Fermi velocity with the interac-

it contains information about phase shifts.
For a zero-range interaction the conductance becomes

tion strengthg andg ™1, respectively. In the general case of _ iwC

an interaction potential of finite range, we obtain asymptoti- Z Hw)=— + i . (56)
’ 1+iwRC-w’LC Rotiwlo

cally (w— ),

The resistancd&, is fixed to be the resistance at zero fre-
quency, h/ge?. The circuit shows a resonance neap
=(LC) 2 with a width depending oR.

At low frequency, the real and imaginary parts of
Z Y- w), I'y(w) andT',(w), respectively, behave as

62 w
IN(w)=~ H L(UF). (55
This reflects that for largg the dispersion is not influenced
by an interaction of a finite range.
~ Amost important feature of resu1) is the factorization I'j(w)=Ry*+ 7102  T'y(w)=7y0, (57)
into a part that depends only on the internal properties of the
interacting electron systerdg/dw, and a part that contains With
the information about the shape of the electric field. Only in
the limit of vanishing frequency is the shape of the latter
unimportan£®4® In general, the ac response depends on the
spatial properties of the electric fiell,which is certainly
determined by the interactions. The circuit is defined to behave “capacitively” #,>0 and

Most remarkably, the temperature does not enter the rey,<0 simultaneously. Ify;<0 andy,>0, simultaneously,
sult, althoughT=0 was assumed in the derivation. This is the circuit is clearly “inductive.” If y,=0, i.e., there is no
due to the linearization of the spectrum. As long as this asphase shift between current and voltageindicates capaci-
sumption is justified, the response of the Luttinger liquid istive or inductive behavior depending on whetHtR, is
independent of temperature. larger or smaller than 1, respectively. Note that uBtfko?)

A typical result forl'(w) is shown in Fig. 4. The Fourier the inductancé does not play any role. Whether the circuit

Lo Lo
y1=RC*— —, y,=-C+ .
Ro Ro

(58)
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FIG. 6. The parameterg; and y, (in units of e2d?/hvZ and FIG. 7. “Phase trajectories” in the/(/d) g plane separating

e?d/hv, respectively which characterize the low-frequency be- capacitive from inductive behaviors of the Luttinger liquid fed
havior of the ac conductance of the Luttinger liquid as a function of~ 1.

the interaction parameter for different ranges of the electric field,

7. =h//|me?v¢ independently of the interaction parameter.

Qualitatively the same result is obtained when using the ex-
behaves capacitively or inductively near the resonance igression fory;. Apart from a different numerical prefactor,
therefore to a certain extent independent of its behavior ahe scaling of the inductance withi is the same. This is
small frequency. related to the fact that the behaviorlds at low frequency is

determined via the Kramers-Kronig transformation to the be-

B. Low frequency havior of I';, also at high frequency. The latter depends

We have extracted the parametesand y, [cf. Egs.(1) strongly on the shape ofzthe fielc_j. Only if this is_ assqme_d in
and (2)] which characterize the low-frequency behavior oforder to reproduce the behawor of the classical circuit,
the conductance from the ac-conductance of the Luttingef2n ONe expecyy andy; to yield the same..
liquid. By assuming, as above, the electric field to be Gauss- In_the capacitive region, whegp=<1, the second terms on
ian distributed, we obtain the explicit resufts units ofe¥h € right-hand sides of E459) can be neglected. The first
with V(0)=V(q=0)] terms can be used to define an equivalent capacit@raed

a dissipative resistand® by comparing with Eq(58). For
ad<1, in the limit of Coulomb interaction, we obtain, from

g3d2[3(1—gz)/ 4V, _) /2

= - 5| Y2,
"z 2 | ard?vio) o2 ?
2 1 1 2, C e* 450 ! (60)
yz:_ﬁf dq qu/ZM{ 2 2 ]Jr —— h ave (1-2BgInad)®’
™ Jo W) w3(@)] veVT

(599  which is independent of the electric field and diverges for
infinite interaction rangeg— 0. By comparing with the first

wherewy(q) =velq|/g. term of y, we obtain the dissipative resistance

Figure 6 showy, andvy, as functions ofy. Depending on
the range of the field;’, the behavior changes from capaci- 3 1
tive (small 7, y,>0, v,<0) to inductive(large /, v,<0, e 4 32
v,>0). As functions ofg, vy, and vy, also change signs. R~ e? 32 0(1 2Bolnad)™ (62)
Always, this change of sign happens at smaller valug foir
v,. The “phase separation” lines defined by;(/,g1) For ad>1, we find
=1v,(/,d,)=0 are shown in Fig. 7 foed= 1. By decreas-

ing ad, i.e., increasing the range of the interaction, the end e? d Bo Bo+72 /2

points of the two trajectories @=0 are shifted to higher C%F ————5€ s 2

values of //d. The region of capacitivelike behavior in- VF (z°+Bo) d

creases at the expense of the inductive region for increasing s [Boi 2

interaction strength. X 1—<D<—\ [Bo 2 11 (62)
From the behaviors deep in the capacitive and inductive 2d 2

regions, one can deduct formulas for equivalent inductances. ) )

and capacitances. However, these are not always unique, ith 2= ad/2, and® th? error funct_lon. Here the capacitance
though their scaling properties with the parameters of th&/e€Pends on the electric field, for instance,

system are. For instance, in the region denoted. by Fig. ) 5

7, v, is given by the second term in E¢9) only. This e 9(1-9g°)

leads, by comparing with Eqg.58), to defining Lg CZFQ Vpa (63
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with C;=2 for g//a>1 and C,=(8+2/m)(g/a/) for insensitive to the range of the electric field in a broad region
g//a<1. The corresponding dissipative resistances are of field ranges. If we assurle=L, the scaling behavior of
C near the resonance follows directly from,=(LC) 2
h g Thus the somewhat astonishing result of this is that one can
gRll——gz' (64) identify a region of parameters for the 1D electron system, in
which the scaling properties &f and C are independent of
with R;=% and R, =(37/256)(a/)/g)? for g//a>1 and the frequency, though the numerical prefactors can be differ-
g// a<1, respectively. ent.

R=

C. Near resonance V. DISCUSSION

As seen in Fig. 4, the absorptive conductance shows a
resonance near the frequeney . For this, the interaction
has to be very strong, i.eg<1. Furthermore, the range of
the electric field should not be too largeee below. Due to
the scaling[cf. Eq. (22)], the results in the Coulomb and
Luttinger limits are closely related. Indeed, in contrast to th
limit @—0, in the Coulomb limitad<1 the conductance

We considered the ac-transport properties of quantum
wire with finite range interaction. The linear-response theory
was found to be exact, consistent with earlier work, as a
result of the linearization of the dispersion relation. The de-

endence of the current on the electric field is given by the

icroscopic nonlocal conductivity. However, the latter is not
very useful when aiming at a description of experiments.
%hat is needed is a description in terms of externally acces-
i ¥%ible macroscopic quantities, as for instance given by Ohm'’s
resistance does not play any rol, andL, are neglected |, ‘5ych a relation can also be found in the present, nonlo-
when fittingC, L, andR to the ac conductance. The param- .| qiantum region. By assuming the electric field to be non-
eters of the circuit can be obtained b)_/ fitting to the resonanc€qarq near a given poin,, and the current to be detected by
frequency, and the width and the height of the resonance.

) , a probe at a pointx; one finds I'(w)=Tjj(w)= o (X
For small range of the electric field,<q, ~, we find —xj,w). By generalizing to several probe positions

guency w,,. Since near the resonance the zero-frequenc

o2 X1 ...Xp, One obtains
Co hor B\, (65)
Ji(w>=; Tjj(@)Uj(). (7D)
L g, (66) .
vee? Such an approach has been used rec&nityorder to gen-

eralize the Landauer dc approach to finite frequency. In the
7 present work, the nonlocal conductandg ) are natural
Rx—B1 (67) results of the response theory when suitable assumptions are
€ made for the shape of the electric field. However, it seems to
with B8;=g, A=a"! and B;=g,, A=d for ad>1 and us that in the ac regime this approach is not necessarily ap-
ad<<1, respectively. propriate, since it may be very difficult to apply experimen-
If, on the other hand, the range of the electric field istally ac fields locally.
large, /> qgl, the resonance becomes smaller and very We find it more suitable to define a global average con-
broad. The parameters of the circuit depend here again on tiictance via the time average of the absorbed power. If we

field range. We find consider a monochromatic electric driving field, this absorp-
tive ac conductance can be considered as the real part of a

e? \? ’ complex conductance. It provides information about the

Cox m 731' (68) magnitude of the current in phase with the electric field. The

imaginary part of the ac conductance provides information
about the phase shift between current and voltage. It was

Loc 2/, (69)  obtained by a Kramers-Kronig transformation from the real
Vg€ part.
We found that the absorptive ac conductance factorizes
h 1/3 into a product of the density of excitations and the Fourier-
R g E F (70 transformed autocorrelation function of the external electric

field. A question related to this is whether the electric field to
Remarkably, the capacitance obtained here scales in th®e used is the external one or whether one has to use the
same way with the system parameters as the one obtainedimernal electric field that contains screening contributions.
the limit of low frequency, cf. Eq(63). Also, the inductance We found that one can use the external electric field in order
scales as fow—0, althoughL #L,. The dissipative resis- to obtain the ac conductance of the interacting system. If one
tance, however, scales differently, and depends much mongses the total field, the same result is obtained for the con-
strongly on/” than onL andC. This reflects that the dissi- ductance. In any case, the result =0 depends on the
pative resistance is much more sensitive to the width andpatial shape of the field.
height of the resonance thdnand C. The product of the Only in the dc limit does the conductance become inde-
latter is fixed by the resonance frequency, which is quitgpendent of the shape of the applied electric field, and it de-
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pends only on the applied external voltage. It is renormalizedhe field range. The infinite range of the interaction removes
by the interaction parametdt, =ge?/h. This does not con- the dependence on the range of the field, such that one can
tradict other recent results, which indicate that for a Lut-interpret the impedances as genuine properties of the system
tinger system of a finite length connected to Fermi liquidthat are only determined by the parameters of the micro-
leads the conductance is not renormalized by the interactiorscopic model.
We can argue that the interaction influences transport for It is particularly interesting to note that the model allows
system lengthd. above g (w), the wave length of the us to identify two conceptually different “resistances.” In
charge density wave. When<q~!(w), the effect of the the dc limit, we have the equivalent of the “contact resis-
interaction can be neglectéd® Since we are considering tance” h/ge?, which is, however, renormalized by the inter-
the thermodynamic limit, this region is outside the range ofaction parameter. Near the resonance frequency, one can de-
the validity of our model. fine a “dissipative resistance,” approximately given by the
There is a resonance in the absorptive conductance atjgyerse of the height of the resonance. The former depends
frequency which corresponds to the inverse of a characterigsy if and how the system is connected with the “outside
tic length scale of the interaction. In the limit of a 1D Cou- \orid” via contacts. It changes th/€? if the system length
lomb interaction the latter is given by the cutoff lengthFor 5 smaller than the wavelength of the charge-density wave. In
the Luttinger limit, it is the interaction range™*. Its height contrast, we expect that the latter is not changed as long as
and width are influenced by the glect_ric field, bqt iFs po_sitionL>q—1md. By comparing with the classical circuit one also
is not. However, when keeping in mind a “realistic” situa- ste< that the dissipative resistance is also present at low

tion, a vyord of caution is in order here. If one Wa_mts to usefrequency, though it scales differently with the system pa-
the Luttinger model as a model for a quantum wire, the pa;meters.

rameters should be such th@j linearization of the free-
electron dispersion is a good approximation, e kg ; and
(i) interband transitions are not important for the absorptive
conductancem* w<hd ™2 (m* is the effective mags We
found above thaqpocd*l in the Coulomb limit. The Fermi How to calculate the frequency-dependent low-
energy should be smaller than the interband energy distancgsmperature electronic quantum transport properties of nano-
Therefore, the Fermi wave number is restrictekge<d ', structures when interaction effects are important is presently
Then, q,~kg, and corrections to linearization should be a subject of strong debate. Since experiment can access this
taken into account. Since furthermosg,<vg/d=<h/m*d?,  regime by using modern fabrication technology, developing
interband transitions could also become important near théheoretical concepts for the treatment of transport processes,
resonance. For the Luttinger limit of the interaction the situ-taking into account interactions, is important. In addition,
ation does not improve. One also needs to take into accouffiiture information technology will require high-frequency
interband mixing induced by the interaction for a proper de-signal transportation in nanoscale systems. A proper theoret-
scription of the frequency region near the resonance. ical understanding of the underlying microscopic processes
However, at low frequency, and if the Fermi level is well will be essential for developing this technology in the far
below the onset of the second lowest subband, interactiorfuture.
induced mixing of the bands can be neglected, and interband In order to obtain insight into some of the peculiar micro-
transitions are unimportant. Here the real and imaginary pagcopic features of this transport region, we investigated the
of the conductance depend quadratically and linearlywon ac response of a simple 1D model of an interacting electron
respectively. The signs of the prefactors of these terms indisystem. We found that in spite of the simplicity of the model
cated capacitivelike or inductivelike behavior of the systemthe definition of transport parameters already provides non-
By comparing the frequency behavior of the microscopictrivial questions to be solved. The transport parameters de-
model with that of a “minimal” classical circuit of capaci- pend on the purpose for which they are supposed to be used.
tances, inductances, and resistances, we find microscopic eier instance, when asking for the current in some probe as a
pressions for these quantities. They are, however, not uniqueesponse to an electric field applied to another probe, it is the
Their validity is restricted to certain parameter regions. Onlynonlocal conductivity which has to be used as the “conduc-
the scaling properties are the same. Astonishingly, one catance.” On the other hand, when interested in the absorption
identify a parameter region in which the scaling propertiesof electromagnetic radiation, an average of the conductivity
with the parameters of the system are the same for low freprovides an “absorptive conductance.”
guency and near the resonance. This fact gives us some con- By starting from the absorptive conductance, we made an
fidence that, although the frequency region near the resattempt to define for our system the quantum counterparts of
nance is somewhat out of the range of validity of the modelthe impedance parameters used in the transport theory of
certain general features of the results remain valid. classical circuits. We found that they cannot be defined
In particular, the impedances strongly depend in generaliniquely in terms of the parameters of the microscopic
on the shape of the applied electric field. There is a compemodel, in accordance with the above general statement.
tition between the range of the field and the range of theHowever, certain scaling properties remain valid in astonish-
interaction, which determines whether the system behaves asgly large regions of parameters. They even resemble the
a capacitor fa<1) or as an inductor {a>1). In the scaling properties of the corresponding classical definitions.
former case, depending on the ratio between the interactiomhis encourages us to find similar quantities for more com-
parameteg and/ «a, the capacitance and the dissipative re-plicated systems such as tunnel barriers and multiple tunnel
sistance mayd// a<1) or may not §//a>1) depend on barriers in the presence of interactions.

VI. CONCLUSION
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