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ac conductance of a quantum wire with electron-electron interactions

G. Cuniberti,* M. Sassetti,† and B. Kramer
I. Institut für Theoretische Physik, Universita¨t Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
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The complex ac response of a quasi-one-dimensional electron system in the one-band approximation with an
interaction potential of finite range is investigated. It is shown that linear response is exact for this model. The
influence of the screening of the electric field is discussed. The complex absorptive conductance is analyzed in
terms of resistive, capacitive, and inductive behaviors.@S0163-1829~98!00403-2#
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I. INTRODUCTION

Experimental and theoretical investigations of the
transport in nanostructures are of profound scientific inter
since they provide insight into the behavior of~open! quan-
tum systems in nonequilibrium that are externally contr
lable within wide ranges of parameters. In addition, poss
applications of nanostructures in future electronic devic
which will have to operate at very high frequencies, requ
detailed knowledge of their frequency- and time-depend
transport behavior.

Electron transport in nanostructures is very strongly infl
enced by charging effects. Most striking is the Coulom
blockade1 of the dc current through tiny tunnel junction
when the bias voltage and the temperature are smaller
the ‘‘charging energy,’’EC5e2/2C (e is the elementary
charge,C the ‘‘capacitance of the tunnel junction’’!. The use
of a capacitance has been justified by observing that its
ues determined fromEC are consistent with those obtaine
from the geometry of the junction;2,3 C was found to be of
the order of 10215 F, and much smaller for metallic
junctions.4 Interactions also dominate transport through
lands between two tunnel contacts in series in a semicon
tor quantum wire. Thelinear conductance shows pronounce
peaks5 if the external chemical potential coincides with th
difference between the ground state energies ofN11 andN
electrons in the island. In the charging model, these ener
are again given in terms of a ‘‘capacitanceC,’’ E(N)
5N2e2/2C, C'10215 F. One can ask how small a capac
tance can be without being influenced by quantum effe
The limitations of the charging model become obvious in
nonlinear transport properties: fine structure in the curre
voltage characteristic is related to the quantum propertie
the interacting electrons.6–9

In recent years, frequency-dependent electrical respo
of systems with reduced dimensionality became the sub
of activities. These techniques are of particular interest, s
no current and voltage probes have to be attached to
sample. The current response to microwave and far-infra
radiation on the transport through semiconductor microstr
tures has been studied.10–13It has been found that the absor
tion of microwaves leads to a characteristic broadening
the conductance peaks of semiconductor quantum dots in
Coulomb-blockade region.14,15 Infrared absorption16–18 of
quantum dots and wires mainly provided information on
parts of the excitation spectrum that are only weakly infl
570163-1829/98/57~3!/1515~12!/$15.00
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enced by the interaction due to Kohn’s theorem. Howev
Raman scattering from quantum wires and dots showed
natures of the dispersion of the collective excitations.19–21

The absorption of microwaves in an ensemble of meta
grains has been investigated experimentally and theoretic
in many papers.22,23

Absorption and scattering of electromagnetic radiation
only one possibility to measure ac-transport properties w
out applying voltage and current probes that may disturb
system’s properties severely. More recently, other highly
phisticated, noninvasive techniques for determining ac c
ductances have been pioneered.24 Coupling a system of
about 105 mesoscopic rings to a highly sensitive superco
ducting microresonator, the perturbation of the resona
frequencies and quality factors has been used to determ
the real and imaginary parts of an ac conductance. Here
fundamental question arises about what the differences
tween the ‘‘conductances’’ as determined by different me
ods are.25

Theoretical approaches have been developed, ran
from semiclassical rate-equation approximations to fu
quantum-mechanical attempts. The linear theory of
quantum transport has been restricted to noninterac
systems.26–30 How to define quantum capacitances28 and
inductances27,29 was addressed. ac transport through mes
copic structures in the presence of Coulomb interaction w
considered by using a self-consistent mean-field method.31,32

This approach strongly relies on the presence of ‘‘res
voirs,’’ ‘‘contacts,’’ and ‘‘electrochemical potentials’’ which
are not necessary ingredients of high-frequency experim
such as the absorption of microwaves.

Photoinduced transport through a tunnel barrier33 and tun-
neling through semiconductor double-barrier structures34 has
been considered. Charging effects in small semicondu
quantum dots in the presence of time-varying fields w
treated.30,35The influence of high-frequency electric fields o
the linear and nonlinear transport through a quantum
with infinitely strong Coulomb repulsion36 was studied.
Photon-assisted tunneling through a double quantum dot
been investigated by using the Keldish technique.37 The
photoinduced transport through a single tunnel barrier i
one-dimensional interacting electron system has b
investigated.38 In most of the latter works, quantum effec
of the interaction have been treated only approximatively

In view of the importance of the interaction for the a
properties of nanostructures, Luttinger systems are of g
1515 © 1998 The American Physical Society
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1516 57G. CUNIBERTI, M. SASSETTI, AND B. KRAMER
interest. Here the interaction can be taken into account
actly. The conductance of a tunnel barrier in a Lutting
liquid with zero-range interaction has been shown39,40 to
scale with the frequency asv2/g22 (g is the interaction pa-
rameter; see below!. At v50 repulsive electron-electron in
teraction suppresses tunneling completely, even for a van
ingly small potential barrier. However, it has been a
shown that forv→0 there is adisplacement contributionto
the current which can dominate the transport for very stro
repulsive interaction and a very high barrier.41

The driving voltage has been assumedad hocin most of
these works. Since the driving electric field is determined
the interaction between the electrons,42,43 the current can be
expected to depend on how charges induced by an exte
electric field are rearranged by the interaction. Even in
limit of dc transport through a Luttinger system this has be
argued to be so.44,45The dependence of the ac properties o
tunnel barrier in a Luttinger system on the shape of the e
tric driving field has been investigated.42 It has been found
that the current depends only on the integral over the driv
electric field—the external voltage—only in the dc lim
even in the nonlinear regime. One of the side results wa
confirm that linear response is exact for the ideal Luttin
system.42,46,47The ac properties of the Luttinger liquid wit
spatially varying interaction strength were also studied.46–48

In this paper, we concentrate on the ac-transport pro
ties of electrons described by the Luttinger model with
interaction of finite range. The model is exactly solvab
Since its current response can be determined without
proximations, answers to fundamental questions can
found, such as~i! how to identify the specific signatures o
the electron-electron interaction in ac transport,~ii ! how to
understand the influence of the properties of the driving e
tric field, ~iii ! how to define conductances, and~iv! how to
understand ac-transport in terms of resistive, capacitive,
inductive behaviors. The latter yield quantum analogs of
pedances that are common in classical electrodynam
Such parameters are also often used for describing the tr
port in nanostructures. Therefore, a quantum approach
ward their definition is highly desirable. However, in th
quantum regime, they depend not only on the interaction,
also on the frequency and shape of the applied electric fi
Together with their microscopic definitions, it is thus impo
tant to determine the range of parameters for their validi

The interaction potential is obtained by using a thre
dimensional ~3D! screened Coulomb potential~screening
lengtha21) and projecting to a quasi-1D quantum wire of
finite width d. Whena21!d, we recover the Luttinger liq-
uid with zero-range interaction. On the other hand, wh
a21@d we obtain the 1D analog of the Coulomb interactio
The excitation spectrum of this model shows an inflect
point at a frequencyvp that increases monotonically with th
interaction strength, and with the inverse of a characteri
length associated with the interaction.49

By using linear-response theory, we obtain the comp
frequency-dependent nonlocal conductivity given by
current-current correlation function. It contains the disp
sion relation of the elementary excitations, and turns ou
be independent of the temperature within the model. Th
are no nonlinear contributions to the current in this mode

The conductivity describes the current response of
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system with respect to an electric fieldE(x8,v). In an ex-
periment, either the current as a function of anexternal volt-
age ~in the dc limit!, or the absorption of electromagnet
energy at frequencyv from an external field is determined
In both cases, not too much is known about the internal fie
Therefore, it is reasonable to search for quantities that do
depend on the spatial form of the field. One possibility is50 to
define the conductanceG1 by using the absorbed power. On
finds that, in the dc limit, the result is indeed independent
the shape of the field. However, in ac transport, the shap
the square of the Fourier transform of the electric field a
pears as a multiplicative factor. The remaining factor is
density of collective excitations of the interacting electron
It has a resonance atvp . For noninteracting electron
dq/dv5vF

21 , andG1(v) reveals merely the structure of th
electric field.

That the ac conductance depends on the shape of the
ing electric field leads to the question of the nature of t
field in an interacting system. We show that for the cond
tivity of an ideal Luttinger liquid, it is theexternal electric
field which has to be used, since linear response is ex
Furthermore, we will demonstrate that this is also true for
absorptive conductance.

Having determined the absorptive part of the cond
tance,G1(v), the reactive partG2(v) may be obtained by
Kramers-Kronig transformation. The complex conductan
G(v)5G1(v)1 iG2(v) relates the average current with th
voltage. The current as a function of time consists of t
parts. One,}G1, is in phase with the driving field. The sec
ond,}G2, is phase shifted by6p/2.

Whenv is small, we can expand

G1~v!5g
e2

h
1g1v21O~v4!. ~1!

The first term corresponds to the quantized cont
conductance51 RK

215e2/h. It is here renormalized by the in
teraction parameter39 g. The term}v2 indicates whether the
current is capacitive (g1.0) or inductive (g1,0). For G2
we find

G2~v!5vg21O~v3!. ~2!

This quantity also indicates if the system behaves cap
tively and inductively,g2,0 andg2.0, respectively. How-
ever, in the latter case,g1 can still be positive, indicating
capacitive behavior of the real part of the conductance.

For frequencies close to the resonance, the Kram
Kronig transformation gives

G2~v!'gm~v2vm* !, ~3!

with gm.0 when g2,0 and vm* 'vm @position of maxi-
mum ofG1(v)#. The quantitygm indicates capacitive and/o
inductive behavior close to the resonance frequency ('vp).

The height or, equivalently, the width of the resonance
G1 defines also a resistance,R. In contrast to the contac
resistance, it is truly ‘‘dissipative’’ and related to the pa
excitations of the Luttinger liquid. It is also contained ing1,
though its numerical value for smallv is different from the
one near the resonance. Generally, we find that it is o
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57 1517ac CONDUCTANCE OF A QUANTUM WIRE WITH . . .
possible to define resistances, capacitances, and inducta
in certain limited parameter regions.49

In order to observe capacitive behavior, the interact
between the electrons should besufficiently long range. This
is consistent with the results of a different approach in wh
Coulomb blockade behavior at a tunnel barrier between
Luttinger liquids has been discussed.52 Also there, a nonzero
range of the interaction is necessary for capacitive behav

In Sec. II, we briefly describe the model and the disp
sion relations for various interaction potentials. We calcul
the ac conductance and study external versus internal dri
fields in Sec. III. Section IV contains the identification
quantum impedances. Section V contains the discussio
the results.

II. LUTTINGER LIQUID WITH LONG-RANGE
INTERACTION

A. Outline of the model

The Luttinger liquid is a model for the low-energy exc
tations of a 1D interacting electron gas.53–56 Its excitation
spectrum can be calculated analytically. Also, many of
thermodynamical and transport properties, such as the li
conductivity, can be determined even in the presence of
turbing potentials. The main assumption is the linearizat
of the free-electron dispersion relation near the Fermi le
The starting point is the Hamiltonian for interacting fermio
with, say, periodic boundary conditions,57

H5\vF (
k,s56

~sk2kF!~cks
† cks2^cks

† cks&0!

1 (
k1 ,s1•••k4 ,s4

Vk1 ,s1•••k4 ,s4
ck1s1

† ck2s2

† ck3s3
ck4s4

. ~4!

Herecks
† andcks are the creation and annihilation operato

for fermions in the statesuks& of wave numberk52pn/L
(n50,61,62, . . . ) in the branchess56, kF the Fermi
wave number,V the Fourier transform of the electron
electron interaction, and̂•••&0 denotes an average in th
ground state.

Formally, the fermion Hamiltonian can be transform
into a bosonized form. For spinless particles with an inter
tion that depends only on the distance between the partic
V(ux2x8u), and taking into account only forward scatterin
one obtains a bilinear form in the boson operators which
be diagonalized by a Bogolubov transformation.56 The result
is

H5(
q

\v~q!bq
†bq . ~5!

The spectrum of the pair excitations corresponding to
bosonic creation and annihilation operatorsbq

† and bq is
given by the Fourier transform of the interaction potentia58

V(q),

v~q!5vFuquA11
V~q!

\pvF
. ~6!

The particle excitations which change the total electron nu
ber are omitted here. The number of particles is assume
ces
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be constant,N05kFL/p. The dispersion relation interpolate
between the limit of zero-range interaction (q→0), where
v(k)5vuqu, with the ‘‘charge sound velocity’’v[vF /g,
and the limit of noninteracting particles (q→`), v(q)
5vFuqu. The strength of the interaction is defined as

1

g2
[11

V~q50!

\pvF
. ~7!

Noninteracting fermions correspond tog51, repulsive inter-
action tog,1.

The particle densityr(x) can be written in terms of the
phase variable of the Luttinger model

q~x!5 i (
qÞ0

sgn~q!A 1

2Luqu
ew~q!2 iqx~bq

†1b2q! ~8!

where

e2w~q!5
vFuqu
v~q!

. ~9!

With the mean particle densityr05N0 /L, we write

r~x![r01
1

Ap
]xq~x!. ~10!

For later use in the linear-response theory, we need the
pling to the driving voltageU(x,t) and the current density.42

The former is given by

HU5eE
2`

`

dx r~x!U~x,t !. ~11!

The electric field isE(x,t)52]xU(x,t). The external volt-
age is assumed to be given by*2`

` dx E(x,t)[U(t). The
current operator is defined by using the 1D continuity eq
tion for the Heisenberg representation of the operators,

J~x,t ![2
e

Ap
q̇~x,t !. ~12!

B. Interaction potential

In order to obtain the dispersion relation explicitly, w
need a specific model for the interaction. Since we even
ally want to draw some conclusions on quantum wires,
start from a 3D screened Coulomb interaction

V~r !5V0

e2ar

r
, ~13!

with V05e2/4p««0, and project onto the quasi-1D states
the quantum wire.

For the latter, we assume a parabolic confining poten
in the y andz directions independent ofx. The correspond-
ing states are (z5Ay21z2)

ck~x,z!5
eikx

AL
w~z!. ~14!

In the following, we assume, for the confining wave functi
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w~z!5A 2

pd2
e2z2/d2

, ~15!

whered represents the ‘‘diameter’’ of the wire.
We obtain the effective interaction potential for the m

tion in thex direction from the matrix elements of Eq.~13! in
state~15! by performing the integrations with respect toy
andz,

V~x!52
2V0

ad2E0

`

dz e2z2/a2d2 d

dz
@e2Aa2x21z2

#. ~16!

Its Fourier transform is

V~q!5V0e~d2/4!~q21a2!E1S d2

4
~q21a2! D . ~17!

The functionE1 is the exponential integral.59

Two limiting cases are of particular interest. Whenz@1,
E1(z)'exp(2z)/z. Thus, forad@1,

V~q!5
4V0

d2

1

q21a2
. ~18!

This is the Fourier transform of

V~x!5 1
2 VLae2auxu. ~19!

For a→`, but with VL[4V0 /a2d25const, this isVLd(x),
the zero-range interaction, with the strengthVL of the con-
ventional Luttinger liquid.

Whenad!1 we still obtain the above result~18! as long
asqd@1 which implies that inx spaceV(x→0) behaves as
Eq. ~19!, but with V(x50)5ApV0 /d. For z→0, E1(z)'
2 lnz so that, forqd!1,

V~q!'2V0ln@~a21q2!d2#. ~20!

This is the same behavior as obtained by starting from
1D equivalent of the Coulomb interaction,49,58,60 implying
the interaction falls off asx21 in space.

In many of the quantum wire experiments metallic ga
are present in some distance, sayD, from the wire~diameter
d!D). In order to discuss the changes in the interact
induced by the presence of the gates, we can conside
infinite metal plate parallel to the wire. This changes t
interaction potential according to

VD~r !5V~r !2V~ urW1DW u!, ~21!

due to the presence of the mirror charge. It is clear that
influences the results only whena21>D. Assume then tha
a50. The cutoff of the Coulomb tail of the potential is i
this limit given byD instead ofa21. The results to be dis
cussed below forad!1 also apply for this limit, witha
replaced byD21.

C. Results for the dispersion law

Results for the dispersion are shown in Fig. 1 for inter
tion parameterg050.1 @V0[\pvF(g0

2221)# and various
ad. There is a crossover between the interacting and no
teracting limits forq→0 andq→`, respectively, at the in-
e

s

n
an
e

is

-

n-

termediate wave numberqp corresponding to the characte
istic frequencyvp . It is related to the finite range of th
interaction in the wave-number space. For zero-range in
action the dispersion becomes linear, andv(q)5vFq/g. Fig-
ure 2 shows the excitation densitydq/dv for variousg0 and
ad51.

The frequencyvp and the corresponding wave numberqp

as a function of (g0
2221)21 are shown in Fig. 3 for various

ad. For a broad range ofg0 the frequencyvp andqp decay
as g0

21 and g0
21/2, respectively. The data forvp obey the

scaling law (b0[g0
2221)

vp~b0 ;ad!5vp@b0h22~ad!;0#h~ad!. ~22!

The scaling functionh(ad) is shown in the bottom left inse
of Fig. 3, and it is proportional to the limit ofvp for infini-
tesimally small interaction.

III. LINEAR RESPONSE

In this section we outline the calculation of the condu
tance with linear-response theory.

FIG. 1. Double logarithmic plot of the dispersion relationv(q)
of the Luttinger model withg050.1 and different rangesad(a is
the inverse potential range in position space,d is the diameter of
quantum wire!.

FIG. 2. The density of pair excitations,dq/dv for ad51, dif-
ferentg0.
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A. Conductivity

Using the above current, Eq.~12!, one obtains the com
plex conductivity,s(x2x8;t2t8) which relates the curren
at a given pointx at time t with the driving electric field
Eext(x8,t8),

J~x,t !5E
2`

`

dx8E
2`

t

dt8s~x2x8;t2t8!Eext~x8,t8!.

~23!

While the nonlocality of the conductivity is unimportant
the dc limit, it is crucial for time-dependent transport. B
assuming that the electric field is concentrated only nea
given point, sayx85x0, we obtain

J~x,t !5E
2`

t

dt8s~x2x0 ;t2t8!Uext~ t8! ~24!

with the voltage dropUext(t8)5*dx8Eext(x8,t8) dropping
only nearx0. We see thats(x2x0 ,t2t8) then plays the role
of a ‘‘conductance’’ that relates the current at some poinx
in the system with a voltage dropping at some other po
By using near-field microscopy, one could possibly perfo
such a nonlocal experiment. However, it seems to us that
very hard to measure the current locally in a quantum w
especially in the region of high frequency.

By Fourier transformation, Eq.~23! is equivalent to

J~q,v!5s~q,v!Eext~q,v!. ~25!

The conductivity kernel can be expressed either by
current-current correlation function or, by using the contin
ity equation, as

s~q,v![s1~q,v!1 is2~q,v!5
2 ive2

q2
R~q,v!, ~26!

with the charge-charge correlation function

R~x,t !52
i

\
Q~ t !^@r~x,t !,r~0,0!#&. ~27!

FIG. 3. The resonance frequencyvp and the corresponding
wave number,qp ~inset, top right! as a function of the strength o
the interaction (g0

2221)21 of the Luttinger liquid with interaction
of finite range as indicated. Inset, bottom left: scaling funct
h(ad).
a

t.

is
,

e
-

Here ^•••&[Tr@exp(2bH)•••#/Tr exp(2bH) is the usual
thermal average~temperature}b21). By using expression
~10!, we find the exact result

R~q,v!5
vF

\p

q2

v2~q!2~v1 i01!2
. ~28!

B. Analogy with a Brownian particle

A most remarkable feature of the above result becom
transparent by applying the imaginary-time path-integral
proach. With this, the time-dependent nonlinear respons
an electric field of arbitrary spatial shape of a Luttinger s
tem was calculated recently.42 It was found that the averag
of the phase field~8! obeys the equation of motion of
Brownian particle with massM→0,

M q̈~x,t !1E
2`

t

dt8g~ t2t8!q̇~x,t8!5L~x,t !, ~29!

subject to an effective external force with the Fourier tra
form

L~x,v!52
e

Ap

1

s~x50,v!
E

2`

`

dx8E~x8,v!s~x2x8,v!,

~30!

and a damping termg(t) which is given by the nonloca
conductivity. The Fourier transform ofg(t) is

g~v!5
e2

p

1

s~x50,v!
. ~31!

From the solution of the equation of motion the current
found,

J~x,t !5E
2`

`

dx8E
2`

t

dt8s~x2x8,t2t8!E~x8,t8!. ~32!

The linear response is exact for the Luttinger liquid.

C. Driving electric field

In this section, we investigate the influence of screen
on the response to an external electric field. In particular,
discuss the dc limit, and show that the two limitsv→0 and
q→0 cannot be interchanged. It will turn out that for th
Luttinger model, where linear response is exact, one can
the external field for the calculation of the current. The
sults will be used to derive absorptive and reactive cond
tances.

The dielectric response function, which describes the
namical screening of a charge, is defined as

«~q,v!5
Uext~q,v!

U tot~q,v!
, ~33!

where

U tot~q,v!5Uext~q,v!1Usc~q,v! ~34!

is the total potential, andUext and Usc are the external and
screening potentials, respectively. Within the linear scre
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1520 57G. CUNIBERTI, M. SASSETTI, AND B. KRAMER
ing model, the dielectric response function can be written
terms of the charge-charge correlation function as

1

«~q,v!
512V~q!R~q,v!. ~35!

By using result~28! for R(q,v), we find the explicit expres-
sion

«~q,v!5
v2~q!2v2

v0
2~q!2v2

, ~36!

with the dispersion of the noninteracting electronsv0(q).
Equations~33! and ~34! imply that

Etot~q,v!5Eext~q,v!@12V~q!R~q,v!#

[Eext~q,v!F~q,v!. ~37!

Using conductivity~26! with Eq. ~28! and comparing with
Eq. ~36!, we see that

s~q,v!5
s0~q,v!

«~q,v!
. ~38!

Here s0 is the conductivity of the noninteracting electron
This implies that

Etot~q,v!s0~q,v!5Eext~q,v!s~q,v!. ~39!

If we calculated the conductivity from the response to
total field, the conductivity would turn out to be that of no
interacting electrons.

This result is true as long as one can use linear screen
It also implies that the voltage drop at frequencyv is the
same for both fields,

U tot~v!5E
2`

`

dx Etot~x,v!5Uext~v!, ~40!

since for any finite nonzero frequency«(q→0,v)51.
For a monochromatic external field,

Eext~q,t !5Eext~q!cosvt, ~41!

one finds the result

Etot~q,t !5Eext~q!@ReF~q,v!cosvt1ImF~q,v!sinvt#,
~42!

which means that there is a phase shift between the total
the external field.

A final remark concerns the static limit. While we hav
for any nonzero frequency«(q→0,v)51, we find, for v
50,

lim
q→0

«~q,0!5 lim
q→0

v2~q!

v0
2~q!

5
1

g
. ~43!

By inserting the dispersion relation of the Luttinger mod
into Eq. ~28!, one obtains

Etot~q!5Eext~q!
1

11V~q!/\vFp
. ~44!
n

.

e

g.

nd

l

The limits v→0 andq→0 cannot be interchanged. Th
latter result has been used recently, in order to explain tha
quantum wires the dc conductance is not renormalized by
interaction44,45 @see also Eq.~44!#. Here we are discussing
frequency-dependent properties. Thus for small frequen
we always obtain a conductance that is renormalized by
interaction, since we consider the limit of infinite syste
length.

D. Absorptive and reactive conductances

Since it is very difficult to detect the nonlocal conducti
ity, experimentally some average has to be performed. O
possibility is to use the absorbed powerP(t) in order to
define the conductance. This appears to be a natural cho
one wants to describe infrared or microwave experiment

P~ t !5E
2`

`

dx J~x,t !Etot~x,t !

5
1

2pE2`

`

dq J~q,t !Etot~2q,t !. ~45!

We define the average

P̄5 lim
T→`

1

TE0

T

dt P~ t !. ~46!

Using the Laplace transform

P~s!5E
0

`

dt e2stP~ t !, ~47!

we obtainP̄5 lims→0sP(s). Theabsorptive conductancecan
then be defined by

G15
P̄

U 2̄
ext

, ~48!

with Uext(t)5*dx Eext(x,t). It is independent of the ampli
tude of the external field, but depends on its shape in sp
and time. Physically, it is the absorption constant for elect
magnetic radiation. Using Eq.~42!, one can show that the
absorbed power for a monochromatic time dependence is
same for both fields due to the time average. We obtain

P̄v5
1

4pE2`

`

dq Res~q,v!uEext~q!u2. ~49!

With ~28! we find, for the real part of the conductivity,

Res~q,v!5
vFe2

2\
$d@v2v~q!#1d@v1v~q!#%. ~50!

This gives the expression

G1~v!5vF

e2

h
L@q~v!#

dq

dv
, ~51!

with the Fourier transformed autocorrelation function of t
external electric field
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L~q![
1

2U 2̄
ext

U E
2`

`

dx eiqxEext~x!U2

. ~52!

By a Kramers-Kronig transformation, we can also defi
a reactive conductance

G2~v!5
1

p
PE

2`

`

dv8
G1~v8!

v2v8

5
1

4pU 2̄
ext

E
2`

`

dq Ims~q,v!uEext~q!u2; ~53!

it contains information about phase shifts.
For a zero-range interaction the conductance become

G1~v!5
ge2

h
LS gv

vF
D , ~54!

the same as without interaction,26 except for the renormaliza
tion of the prefactor and the Fermi velocity with the intera
tion strengthg andg21, respectively. In the general case
an interaction potential of finite range, we obtain asympto
cally (v→`),

G1~v!'
e2

h
LS v

vF
D . ~55!

This reflects that for largeq the dispersion is not influence
by an interaction of a finite range.

A most important feature of result~51! is the factorization
into a part that depends only on the internal properties of
interacting electron system,dq/dv, and a part that contains
the information about the shape of the electric field. Only
the limit of vanishing frequency is the shape of the lat
unimportant.26,46 In general, the ac response depends on
spatial properties of the electric field,42 which is certainly
determined by the interactions.

Most remarkably, the temperature does not enter the
sult, althoughT50 was assumed in the derivation. This
due to the linearization of the spectrum. As long as this
sumption is justified, the response of the Luttinger liquid
independent of temperature.

A typical result forG(v) is shown in Fig. 4. The Fourier

FIG. 4. Real and imaginary parts,G1(v) andG2(v), of the ac
conductance of a Luttinger wire with finite range interaction;ad
51, g50.1, range of the electric fieldl /d51/4.
e

-

i-

e

r
e

e-

s-

transform of the electric field has been assumed to b
GaussianE(x)5E0exp(22x2/l 2). If the range of the electric
field is zero, the zero ofG2(v), vm* , and the position of the
maximum ofG1(v), vm , do not agree. However, as soon
l is finite, vm'vm* for a wide region of parameters. In th
Coulomb case,a50, G1}(lnv)21/2 for v→0, due to the
logarithmic singularity of the dispersion forq→0.

IV. ‘‘QUANTUM IMPEDANCES’’

In this section, we analyze the results for the comp
conductance presented above with respect to ‘‘resistiv
‘‘capacitive,’’ and ‘‘inductive’’ behavior. We compare the
Luttinger system with an equivalent classical circuit.

A. Impedance network

Our system of interacting electrons shows a resonanc
the ac conductance. It can be useful to consider a circui
capacitances, inductances, and resistances, in order to s
late the frequency behavior. The circuit shown in Fig. 5 co
tains the minimum set of elements that are necessary
reproducing both the low-frequency behavior and near
resonance. Its complex impedanceZ(v) is given by

Z21~v!5
ivC

11 ivRC2v2LC
1

1

R01 ivL0
. ~56!

The resistanceR0 is fixed to be the resistance at zero fr
quency, h/ge2. The circuit shows a resonance nearv0
5(LC)21/2, with a width depending onR.

At low frequency, the real and imaginary parts
Z21(2v), G1(v) andG2(v), respectively, behave as

G1~v!5R0
211g1v2, G2~v!5g2v, ~57!

with

g15RC22
L0

2

R0
3

, g252C1
L0

R0
2

. ~58!

The circuit is defined to behave ‘‘capacitively’’ ifg1.0 and
g2,0 simultaneously. Ifg1,0 andg2.0, simultaneously,
the circuit is clearly ‘‘inductive.’’ If g250, i.e., there is no
phase shift between current and voltage,g1 indicates capaci-
tive or inductive behavior depending on whetherR/R0 is
larger or smaller than 1, respectively. Note that untilO(v2)
the inductanceL does not play any role. Whether the circu

FIG. 5. Classical circuit for simulating the frequency behav
of the complex conductance.
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behaves capacitively or inductively near the resonanc
therefore to a certain extent independent of its behavio
small frequency.

B. Low frequency

We have extracted the parametersg1 andg2 @cf. Eqs.~1!
and ~2!# which characterize the low-frequency behavior
the conductance from the ac-conductance of the Luttin
liquid. By assuming, as above, the electric field to be Gau
ian distributed, we obtain the explicit results@in units ofe2/h
with V(0)5V(q50)#

g15
g3d2

4vF
2 F3~12g2!

2 S 4V0

a2d2V~0!
21D 2

l 2

d2G ,

g252
2vF

p E
0

`

dq e2q2l 2/4F 1

v2~q!
2

1

vg
2~q!

G1
g2l

vFAp
,

~59!

wherevg(q)5vFuqu/g.
Figure 6 showg1 andg2 as functions ofg. Depending on

the range of the field,l , the behavior changes from capac
tive ~small l , g1.0, g2,0) to inductive~large l , g1,0,
g2.0). As functions ofg, g1 and g2 also change signs
Always, this change of sign happens at smaller value ofg for
g2. The ‘‘phase separation’’ lines defined byg1(l ,g1)
5g2(l ,g2)50 are shown in Fig. 7 forad51. By decreas-
ing ad, i.e., increasing the range of the interaction, the e
points of the two trajectories atg50 are shifted to higher
values of l /d. The region of capacitivelike behavior in
creases at the expense of the inductive region for increa
interaction strength.

From the behaviors deep in the capacitive and induc
regions, one can deduct formulas for equivalent inductan
and capacitances. However, these are not always unique
though their scaling properties with the parameters of
system are. For instance, in the region denoted byL in Fig.
7, g2 is given by the second term in Eq.~59! only. This
leads, by comparing with Eq.~58!, to defining L0

FIG. 6. The parametersg1 and g2 ~in units of e2d2/hvF
2 and

e2d/hvF , respectively! which characterize the low-frequency b
havior of the ac conductance of the Luttinger liquid as a function
the interaction parameterg for different ranges of the electric field
l .
is
at

f
er
s-

d

ng

e
es
al-
e

5hl /Ape2vF independently of the interaction paramete
Qualitatively the same result is obtained when using the
pression forg1. Apart from a different numerical prefacto
the scaling of the inductance withl is the same. This is
related to the fact that the behavior ofG2 at low frequency is
determined via the Kramers-Kronig transformation to the
havior of G1, also at high frequency. The latter depen
strongly on the shape of the field. Only if this is assumed
order to reproduce thev22 behavior of the classical circuit
can one expectg1 andg2 to yield the sameL0.

In the capacitive region, whereg!1, the second terms on
the right-hand sides of Eq.~59! can be neglected. The firs
terms can be used to define an equivalent capacitanceC and
a dissipative resistanceR by comparing with Eq.~58!. For
ad!1, in the limit of Coulomb interaction, we obtain, from
g2 ,

C'
e2

h

4b0

avF

1

~122b0lnad!2
, ~60!

which is independent of the electric field and diverges
infinite interaction range,a→0. By comparing with the first
term of g1 we obtain the dissipative resistance

R'
h

e2

3

32

1

b0
~122b0lnad!3/2. ~61!

For ad.1, we find

C'
e2

h

d

vF

b0

~z21b0
2!3/2

expFb01z2

8

l 2

d2G
3F12FS l

2d
Ab01z2

2 D G , ~62!

with z5ad/2, andF the error function. Here the capacitanc
depends on the electric field, for instance,

C5
e2

h
C1

g~12g2!

vFa
~63!

f

FIG. 7. ‘‘Phase trajectories’’ in the (l /d) g plane separating
capacitive from inductive behaviors of the Luttinger liquid forad
51.
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with C152 for g/l a@1 and C15(8A2/p)(g/al ) for
g/l a!1. The corresponding dissipative resistances are

R5
h

e2
R1

g

12g2
, ~64!

with R15 3
8 and R15(3p/256)(al )/g)2 for g/l a@1 and

g/l a!1, respectively.

C. Near resonance

As seen in Fig. 4, the absorptive conductance show
resonance near the frequencyvp . For this, the interaction
has to be very strong, i.e.,g!1. Furthermore, the range o
the electric field should not be too large~see below!. Due to
the scaling@cf. Eq. ~22!#, the results in the Coulomb an
Luttinger limits are closely related. Indeed, in contrast to
limit v→0, in the Coulomb limitad!1 the conductance
does not show any singular behavior near the resonance
quency vm . Since near the resonance the zero-freque
resistance does not play any role,R0 and L0 are neglected
when fittingC, L, andR to the ac conductance. The param
eters of the circuit can be obtained by fitting to the resona
frequency, and the width and the height of the resonanc

For small range of the electric field,l !qp
21 , we find

C}
e2

hvF
b1

3/2l, ~65!

L}
h

vFe2
b1

1/2l, ~66!

R}
h

e2
b1

1/2 ~67!

with b15g, l5a21 and b15g0 , l5d for ad@1 and
ad!1, respectively.

If, on the other hand, the range of the electric field
large, l .qp

21 , the resonance becomes smaller and v
broad. The parameters of the circuit depend here again on
field range. We find

C}
e2

hvF

l2

l
b1

2 , ~68!

L}
h

vFe2
l , ~69!

R}
h

e2

1

b1

l 3

l3
. ~70!

Remarkably, the capacitance obtained here scales in
same way with the system parameters as the one obtain
the limit of low frequency, cf. Eq.~63!. Also, the inductance
scales as forv→0, althoughLÞL0. The dissipative resis
tance, however, scales differently, and depends much m
strongly onl than onL andC. This reflects that the dissi
pative resistance is much more sensitive to the width
height of the resonance thanL and C. The product of the
latter is fixed by the resonance frequency, which is qu
a

e

re-
y

e

y
he

he
in

re

d

e

insensitive to the range of the electric field in a broad reg
of field ranges. If we assumeL5L0 the scaling behavior of
C near the resonance follows directly fromvm5(LC)21/2.
Thus the somewhat astonishing result of this is that one
identify a region of parameters for the 1D electron system
which the scaling properties ofL andC are independent o
the frequency, though the numerical prefactors can be dif
ent.

V. DISCUSSION

We considered the ac-transport properties of quan
wire with finite range interaction. The linear-response the
was found to be exact, consistent with earlier work, as
result of the linearization of the dispersion relation. The d
pendence of the current on the electric field is given by
microscopic nonlocal conductivity. However, the latter is n
very useful when aiming at a description of experimen
What is needed is a description in terms of externally acc
sible macroscopic quantities, as for instance given by Oh
law. Such a relation can also be found in the present, no
cal quantum region. By assuming the electric field to be n
zero near a given pointxj , and the current to be detected b
a probe at a pointxi one finds G(v)[G i j (v)5s(xi
2xj ,v). By generalizing to several probe position
x1 . . . xp , one obtains

Ji~v!5(
j

G i j ~v!U j~v!. ~71!

Such an approach has been used recently32 in order to gen-
eralize the Landauer dc approach to finite frequency. In
present work, the nonlocal conductancesG i j (v) are natural
results of the response theory when suitable assumptions
made for the shape of the electric field. However, it seem
us that in the ac regime this approach is not necessarily
propriate, since it may be very difficult to apply experime
tally ac fields locally.

We find it more suitable to define a global average co
ductance via the time average of the absorbed power. If
consider a monochromatic electric driving field, this abso
tive ac conductance can be considered as the real part
complex conductance. It provides information about t
magnitude of the current in phase with the electric field. T
imaginary part of the ac conductance provides informat
about the phase shift between current and voltage. It
obtained by a Kramers-Kronig transformation from the re
part.

We found that the absorptive ac conductance factori
into a product of the density of excitations and the Fouri
transformed autocorrelation function of the external elec
field. A question related to this is whether the electric field
be used is the external one or whether one has to use
internal electric field that contains screening contributio
We found that one can use the external electric field in or
to obtain the ac conductance of the interacting system. If
uses the total field, the same result is obtained for the c
ductance. In any case, the result forvÞ0 depends on the
spatial shape of the field.

Only in the dc limit does the conductance become in
pendent of the shape of the applied electric field, and it
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pends only on the applied external voltage. It is renormali
by the interaction parameterG15ge2/h. This does not con-
tradict other recent results, which indicate that for a L
tinger system of a finite length connected to Fermi liqu
leads the conductance is not renormalized by the interac
We can argue that the interaction influences transport
system lengthsL above q21(v), the wave length of the
charge density wave. WhenL,q21(v), the effect of the
interaction can be neglected.61,62 Since we are considerin
the thermodynamic limit, this region is outside the range
the validity of our model.

There is a resonance in the absorptive conductance
frequency which corresponds to the inverse of a characte
tic length scale of the interaction. In the limit of a 1D Co
lomb interaction the latter is given by the cutoff lengthd. For
the Luttinger limit, it is the interaction rangea21. Its height
and width are influenced by the electric field, but its positi
is not. However, when keeping in mind a ‘‘realistic’’ situa
tion, a word of caution is in order here. If one wants to u
the Luttinger model as a model for a quantum wire, the
rameters should be such that~i! linearization of the free-
electron dispersion is a good approximation, i.e.q,kF ; and
~ii ! interband transitions are not important for the absorpt
conductance,m* v,hd22 (m* is the effective mass!. We
found above thatqp}d21 in the Coulomb limit. The Fermi
energy should be smaller than the interband energy dista
Therefore, the Fermi wave number is restricted tokF,d21.
Then, qp'kF , and corrections to linearization should b
taken into account. Since furthermorevm}vF /d}h/m* d2,
interband transitions could also become important near
resonance. For the Luttinger limit of the interaction the si
ation does not improve. One also needs to take into acc
interband mixing induced by the interaction for a proper d
scription of the frequency region near the resonance.

However, at low frequency, and if the Fermi level is we
below the onset of the second lowest subband, interact
induced mixing of the bands can be neglected, and interb
transitions are unimportant. Here the real and imaginary
of the conductance depend quadratically and linearly onv,
respectively. The signs of the prefactors of these terms i
cated capacitivelike or inductivelike behavior of the syste
By comparing the frequency behavior of the microsco
model with that of a ‘‘minimal’’ classical circuit of capaci
tances, inductances, and resistances, we find microscopi
pressions for these quantities. They are, however, not uni
Their validity is restricted to certain parameter regions. O
the scaling properties are the same. Astonishingly, one
identify a parameter region in which the scaling propert
with the parameters of the system are the same for low
quency and near the resonance. This fact gives us some
fidence that, although the frequency region near the re
nance is somewhat out of the range of validity of the mod
certain general features of the results remain valid.

In particular, the impedances strongly depend in gen
on the shape of the applied electric field. There is a com
tition between the range of the field and the range of
interaction, which determines whether the system behave
a capacitor (l a!1) or as an inductor (l a@1). In the
former case, depending on the ratio between the interac
parameterg and l a, the capacitance and the dissipative
sistance may (g/l a!1) or may not (g/l a@1) depend on
d
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the field range. The infinite range of the interaction remov
the dependence on the range of the field, such that one
interpret the impedances as genuine properties of the sy
that are only determined by the parameters of the mic
scopic model.

It is particularly interesting to note that the model allow
us to identify two conceptually different ‘‘resistances.’’ I
the dc limit, we have the equivalent of the ‘‘contact res
tance’’ h/ge2, which is, however, renormalized by the inte
action parameter. Near the resonance frequency, one ca
fine a ‘‘dissipative resistance,’’ approximately given by th
inverse of the height of the resonance. The former depe
on if and how the system is connected with the ‘‘outsi
world’’ via contacts. It changes toh/e2 if the system length
is smaller than the wavelength of the charge-density wave
contrast, we expect that the latter is not changed as lon
L.qp

21}d. By comparing with the classical circuit one als
notes that the dissipative resistance is also present at
frequency, though it scales differently with the system p
rameters.

VI. CONCLUSION

How to calculate the frequency-dependent lo
temperature electronic quantum transport properties of na
structures when interaction effects are important is prese
a subject of strong debate. Since experiment can access
regime by using modern fabrication technology, develop
theoretical concepts for the treatment of transport proces
taking into account interactions, is important. In additio
future information technology will require high-frequenc
signal transportation in nanoscale systems. A proper theo
ical understanding of the underlying microscopic proces
will be essential for developing this technology in the f
future.

In order to obtain insight into some of the peculiar micr
scopic features of this transport region, we investigated
ac response of a simple 1D model of an interacting elect
system. We found that in spite of the simplicity of the mod
the definition of transport parameters already provides n
trivial questions to be solved. The transport parameters
pend on the purpose for which they are supposed to be u
For instance, when asking for the current in some probe
response to an electric field applied to another probe, it is
nonlocal conductivity which has to be used as the ‘‘cond
tance.’’ On the other hand, when interested in the absorp
of electromagnetic radiation, an average of the conductiv
provides an ‘‘absorptive conductance.’’

By starting from the absorptive conductance, we made
attempt to define for our system the quantum counterpart
the impedance parameters used in the transport theor
classical circuits. We found that they cannot be defin
uniquely in terms of the parameters of the microsco
model, in accordance with the above general statem
However, certain scaling properties remain valid in astoni
ingly large regions of parameters. They even resemble
scaling properties of the corresponding classical definitio
This encourages us to find similar quantities for more co
plicated systems such as tunnel barriers and multiple tun
barriers in the presence of interactions.
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