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Single-particle Green functions in exactly solvable models of Bose and Fermi liquids
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Based on a class of exactly solvable models of interacting Bose and Fermi liquids, we compute the single-
particle propagators of these systems exactly for all wavelengths and energies and in any number of spatial
dimensions. The field operators are expressed in terms of Bose fields that correspond to displacements of the
condensate in the Bose case and displacements of the Fermi sea in the Fermi case. Unlike some of the previous
attempts, the present attempt reduces the answer for the spectral function in any dimension in both Fermi and
Bose systems to quadratures. It is shown that when only the lowest-order sea-displacement terms are included,
is the random-phase approximation in its many guises recovered in the Fermi case, and Bogoliubov’s theory in
the Bose case. The momentum distribution is evaluated using two different approaches, exact diagonalization
and the equation of motion approach; the novelty being, of course, the exact computation of single-particle
properties including short-wavelength behav{®@0163-182608)00624-9

l. INTRODUCTION the study of He-Il by Sunakawet al'® However, the authors
are not aware of a rigorous study of the meaning of this

Recent years have seen remarkable developments wbject, in particular, an explicit formula for the canonical
many-body theory in the form of an assortment of techniquesonjugate of the density operator has to the best of the au-
that may be loosely termed bosonization. The beginnings athors’ knowledge never been written down in terms of the
these types of techniques may be traced back to the work dield operators. The work by Shamt al® comes close to
Tomonaga and later on by Luttingérand by Lieb and what we are attempting here.
Mattis3 The work of Sawadaand Arponen and Pajarmin The concept of a sea displacement is a generalization of
recasting the Fermi-gas problem in a Bose language has tbe traditional approach used for bosonizing one-dimensional
be mentioned. Arponen and Pajanne recover corrections tdD) systems such as the Tomonaga-Luttifidemodels.
the random-phase approximatitRPA) of Bohm and Pine§  There, one introduces Bose fields that correspond physically
in a systematic manner. In nuclear physics, bosonization it displacement of the Fermi surfaga 1D, Fermi points.
widely used to study collective properties, for an introduc-These Bose fields have simple forms relating them to
tion see the book by lachello and Ariidn the 1970s an number-conserving products of Fermi fields. The field opera-
attempt was made by LutHeat generalizing these ideas to tor is obtained by exponentiating the commutation rule be-
higher dimensions. Closely related to this is the work bytween the surface-displacement operator and the field opera-
Sharpet al? in current algebra. More progress was made bytor. By analogy, we generalize these ideas, so that one is no
Haldané® which culminated in the explicit computation of longer restricted to be close to the Fermi surface. The way
the single-particle propagator by Castro-Neto and Frddkin this is done is to postulate the existence of Bose fields that
and by Houghtoret al'? and also by Kopietet al}®* Rigor-  correspond to displacements of the Fermi sea rather than just
ous work by Frohlictet al1*is also along similar lines. Also the Fermi surface. From this it is possible to write down
the work of Frauet al!® on algebraic bosonization is rel- formulas for the number-conserving product of two Fermi
evant to the present article as the authors have considerdelds in terms of the Bose fields. A similar construction is
effects beyond the linear dispersion in that article. The expossible when the parent fields are bosons, but here, we find
actly solvable models of Calogero and Sutherland are of relthat instead of sea displacements, we have to introduce op-
evance here as well, the exact propagators of these modedsators that correspond physically to displacements of the
have been computed by various authr&ecently, these condensate. Actually, the Bose case is much simpler and a
types of models have been generalized to more than ommathematically rigorous formulation of this correspondence
dimension by Ghosh’ is possible. This is a boon, since we use this fact and make

The attempt made here is to generalize the concepts gflausible the analogous correspondence in the Fermi case.
Haldané® to accomodate short-wavelength fluctuationsThe assertions in the Fermi case are not proved “rigor-
where the concept of a linearized bare fermion energy diseusly,” rather are made exceedingly plausible by analogy.
persion is no longer valid. To motivate progress in this di-This is the main drawback of this article.
rection, we find that it is necessary to introduce two different This article is organized as follows. In the next section,
concepts, one is the canonical conjugate of the Fermi/Bosee present some formulas that relate the number conserving
density distribution, the other is the concept of sea/product of two Fermi/Bose fields to the relevant sea/
condensate displacements. condensate-displacement operators that are postulated to be

Histrorically speaking, the idea that the velocity operatorcanonical bosons. The sea/condensate-displacement opera-
could serve as the canonical conjugate of the density ha®rs in turn may be related to the parent Fermi/Bose fields, as
been around for a long time, and this has been exploited iit happens, this formula is simple in the case when the parent
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fields are bosons but is difficult in the case when the parentising the equation of motion approach. Appendix E contains

fields are fermions. some technical statements regarding the proof of uniqueness
Following this, we write down a generic formula for the of the formula relating the Fermi field with the correspond-

Fermi/Bose field operator in terms of the density operatoing currents and densities.

(operator-valued distribution, to be pregised its canonical

conjugate. The new ingredient in this section is the canonical || EXPRESSING PRODUCTS OF PARENT FIELDS

conjugate of the density operator. This quantity may in turn IN TERMS OF SEA DISPLACEMENTS
be related to currents and densities. We find that these for-

mulas are ambiguous unless a proper choice is made for a In this section we introduce canonical Bose fields called

certain phase functional. For bosons, we find that this choic&ea displacements in the Fermi case and condensate displace-

is the zero functional but for fermions it has to be determinednents in the Bose case. First, we write down a formula for

by making contact with the free theofglone in Sec. IV. the number-conserving product of two Bose fields in terms
Combining the two previous sections, we write down in Of the condensate-displacement operators. A rigourous proof

Sec. IV, formulas for currents and densities in terms of theof this is relegated to Appendix A. The correspondence is

sea/condensate displacements, the field operator has a fépade plausible by making several observations about these

mula in terms of the sea/condensate-displacements as wellarmulas. Let us first focus on the Bose case. lhgand bg

Contact is made with the propagator of the free theory andbe canonical Bose operators. From these, we may construct

the undetermined phase functional of the previous sections sther Bose operators defined as follogg(0):

determined for the Fermi case. In Sec. V, interaction terms

are introduced that correspond to two-body repulsive inter- 1

actions. It is argued and demonstrated that selectively retain- dg(a) = ( W) boby D

ing parts of the interaction that are quadratic in the sea/ 0

condensate displacements amounts to using Bogoliuboynq

RPA theory. Corrections to this quadratic Hamiltonian are

easy to write down but are not used to compute corrections do(0)=0, 2)

to RPA/Bogoliubov theory as this requires significantly more

effort. It is found that the diagonalization of the RPA Hamil- where No=b{by. This is the condensate-displacement an-

tonian is rather tricky if one wants to recover both thenhilation operator. It is so named for the following reason.

particle-hole modes and the collective mode. In the endThe definition suggests that this operator removes a boson

closed formulas are written down for the Fermi propagator irfrom among those that are not in the condensate and returns

all three spatial dimensions and their various qualitative feait to the condensate, thereby displacing the latter. The reason

tures are examined. This completes the solution of the manyfor the redundant momentum label in the notatiiyy,(q)

body problem in the RPA/Bogoliubov limit. becomes clear if one realizes that a more general object
The Appendixes are as follows: Appendix A contains awould be a sea-displacement annhilation operdfqg,,(q)

detailed proof of the correspondence between the numbeBince the condensate correspond& 00, we have just the

conserving product of two Bose fields and the correspondingondensate-displacement annhilation operator. In fact, it will

condensate displacements. Appendix B involves writingbe shown subsequently that for the Fermi case we have to

down similar ideas for Fermi systems. However here, thaleal with this more general object namely, the sea-

various assertions are only made plausible unlike in the Bosdisplacement annhilation operator. It may be shown thet

case where a rigorous solution is possible. Appendix C iAppendix A this objectd,(q) satisfies canonical Bose

devoted to proving the assertion that retaining only termscommutation rules. Also a formula is possible for the

linear in the sea displacements in the definition of the densithumber-conserving product of two parent bosons in terms of

recovers the RPA. Appendix D involves a derivation of thethese condensate displacements. The formula is written

formula for the momentum distribution of the 1D system down below and proved in Appendix A:

bl+q/2bk—q/2: No6k,09q,01 [ Sk+qr2,0( VNg)di(—q) + 5k—q/2,odI(Q)( Ng) ]+ dzrllz)(k+q/2)(k+q/2)d(1/2)(k—q/2)(k_qlz)v(
3)

where
N=§ bibg. (6)

No=N-2> d:;l/z(%)dql/z(%) 4 _ o
a1 also the objectly(0) =0, by definition.
The way the authors initially derived this formula is as
and follows. One starts off with the observation that the object
qu,zbk_q,z is the only one that enters in the Hamiltonian of
[dge(a),N]=0, (5) number-conserving systems. Furthermore, it satisfies closed
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commutation rules amongst other members of its kind. Onéascinating to see if the ideas above were useful in getting
is therefore led to look for formulas for these objects in termanonperturbative information regarding gauge theories like
of other bosons with a view to make the full Hamiltonian QED, QCD, etc. But this is far into the future. For now, let
more easily diagonalizable. In particular, if there were Boseus try to write down a similar correspondence for the non-
operatorsdy»(q) anddg,z(q) such thaIqu,zbk_q,z was ex- relativistic Fermi system.

actly linear in these bosons, then the full Hamiltonian would ~As mentioned earlier, for Fermi systems, it is necessary to
indeed be exactly diagonalizable. We find that this is not thgoostulate the existence of a sea-displacement annhilation op-
case and there are corrections to this linear term and it serator, denoted bwg,(q). A formula for this in terms of the
happens that introduction of a quadratic term in the condenFermi fields is extremely difficult to deduce. In Appendix B,
sate displacements in fact makes the correspondence exaattempts are made to do exactly this. There it is pointed out
The authors are not aware of a deeper reason behind thibat these objects satisfy canonical boson commutation rules.
simple formula that terminates after including the quadraticThe important issues that enable one to draw practical con-
term, after all, the formula for the parent annhilation operatorclusions, fortunately do not depend very much on the tech-
b, in terms of the condensate displacements is formidable asical details. In Appendix B and in the sections that follow,
we shall soon see. The Bose case being so simple and exage show how to extract the necessary physics while cirum-
can be used as a benchmark to write down correspondingenting the technical details. It must be pointed out however
formulas in the Fermi case, where rigorous proofs are muckhat this drawback is regrettable. Let us merely quote the
harder to come by. The authors also have in mind generalifinal answers and later on make these formulas plausible.
zations to relativistic systems, where one might profit byThe RPA form of the number conserving product of two
following the above prescription. In particular, it would be Fermi fields in terms of the sea bosons is givends#0):

N 1/2
CLq/zqu/z:(W) [Ak(q)ak(—q)+al(q)Ak(—q)]+T1(k,q)q2 aIJrq/27q1/2(q1)ak7q1/2(q1_q)

oKD 2 B g2 4y 01) 3 g0~ - )
1
|
Here ing product of two Fermi fields and the sea bosons may be
_ _ expected to involve the number operator itself under the
T.(k,q)= \/1— nk+q,2\/1— Nk —g/2s (8)  square-root sign. This is made exceedingly likely by analogy
with the Bose case, where the square root of the number
To(k,q) = ‘/nk+q/2ﬁk—q/2a (9)  operator in the zero momentum state appears. In Appendix B

the manner in which this exact correspondence may be de-

_ = duced is hinted at. At this stage, it is pertinent to merely
Ala)= \/E(+q,2(1 M) (10 rite down a formula for the sea-boson annhilation operator
Also, the sea-boson commutes with the total number of ferin the RPA limit. The sea boson is defined analogous to the
mions, condensate-displacement boson, except the Fermi case is
more complicated due to the presence of the Fermi surface.
[ax(9),N]=0 (1) The sea boson may be defined as follogtfe rest of the
and the operatoa, (0)=0. Further, details including a “proof” of this fact and how it fits into
the Fermi-bilinear-sea-boson correspondence is relegated to
N Appendix B,
nk=n5(k)m+% a&—q/z(Q)ak—qlz(Q) PP B
Bl 1/2
T ax(q)= ! Cl— /2( ik q/Z)) e a(k’q)ck+ /2
_% A+ gra( DA+ r2(q) (12 N (N) 4

(14
and
Here 6(k,q) is a c number phase that serves to randomly
s cancel out troublesome terms: this is also related to the “ran-
n”(k)= exp(Ber—p))+1° (13 dom phase” of the random-phase approximation of_B(_)hm
. and Pines. Thus the above formula for the sea boson is in the
Also n,=(n,). The expectation value is with respect to the “random-phase” approximation.
full interacting ground state. This quantity depends on the This correspondence recovers the salient features of the
interactions that are present in the system and must be evalfinite and zero-temperature aspects of the free theory pro-
ated self-consistently. In fact, there is a deeper reason forided we make the following assumption, the sea bosons do
introducing this. The exact formula for the number conserv-articipate in the thermodynamic averaging but come with
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an infinite negative chemical potential. This means that as falt is clear that redefinitions of this object by amounts that
as the free theory is concerned, the average value of thiavolve translations bymore or less arbitrapyfunctionals of
sea-boson occupation is zero in the noninteracting case. THee density are not going to spoil the nature of the commu-
kinetic energy operator in the sea-boson language is given ktation rules above. However, we shall take the point of view
thatIl is defined to be thatalmost uniqug object that sat-
k-q isfies the relation belowmaking mathematically rigorous
K=k2q T a(@a(a@)+Neo, (15 sense out of all this requires the use of functional analysis
' and will be attempted in Appendix)E
wheree, is the kinetic energy per particle. Therefore,

s
(@l(@an(a) = - ~0, (9 P il “
D= o k-am— g -1 Observe thap(xo) = ¢ (xo) ¥(xo) (technical problems in-

volving the multiplication of operator-valued distributions at
the same point are alleviated by assuming that we have the
whole system in a box, with periodic boundary conditions on
the fields, making any infinities only as large as the volume
of the box itself, please refer to Appendix E for more de-
tails). Observe thatvalid for both Bose as well as Fermi
systemy,

[p(x0), (X' 0")]= = 84X=X') 8y g th(X0).  (21)
Rewriting this as a differential equation,

where— ug=0. However, when there are interactions in the
system, the answer is likely to be different. In particular, it is
likely to be a nonanalytic function of the interaction in such
a way that it vanishes as the coupling goes to zén is
demonstrated explicitly in Appendix )DRoughly speaking
we may write

1
<al(q)ak(q)>%(v) exp(—1h), (17)

wherev is the Coulomb repulsion parameter axidis the 5
volume. All these do come out naturally from the correspon- —i——— (X' ") |=— 8NX—X") 8, 5 h(XT).
dece written down above as we shall soon see. We have thus Jll(xo) '

written down a useful correspondence between Fermi and (22)
Bose operators that recovers the salient features of the frékhis may be solvedexponentiation of commutation rules is
theory at zero and finite temperature and it is clear that thithe more technical terjras

correspondence is all that is needed to write down model )

Hamiltonians with any sort of interaction, such as Coulom- p(xo) =exp(—ill(xa))F([p];x0). (23
bic, with phonons, etc., and extract exact nonperturbativgypserve now thap=:,bT¢//. Therefore,

(more precisely, nonanalytic in the couplingsolutions.

These solutions possess features that are impossible to cap- F'([p];xo)F([p];xo)=p(x0). (24
ture via diagrammatic means let alone mean-field theory.
Thus a strong case is to be made for this method as a ne
paradigm for condensed-matter physics.

is may in turn be solved and the final density phase vari-
able ansatzDPVA for shor) may be written as

(/,(Xo_):efiH(Xa-)eiLIJ([p];xrr)(p(XU_))lIZ' (25)
lll. FIELD OPERATOR IN TERMS OF DENSITY - . .
AND ITS CANONICAL CONJUGATE It may be noted above that redefinitionsldfconsistent with

it being the canonical conjugate pomay be absorbed by a

In this section, we introduce the canonical conjugate ofsuitable redefinition of the phase functiordl Therefore,
the Fermi/Bose density distribution. The reason for doingEqg. (25) is in fact quite general. The crucial point of this
this is that we would like to express the field operator itselfwhole exercise is that the phase functioatletermines the
in terms of the density and its canonical conjugate and constatistics of the fieldy(xo). It may be shownthe proof is
sequently in terms of current and densities. None of theseather tedious and since this issue is not central to the prac-
ideas are really new. For example, Sunakawal® use the tical computations, we defer the proof to a future communi-
velocity operator as a canonical conjugate of the density iation) that imposition of Bose/Fermi commutation rules
their investigation of the properties of He-Il. The velocity on ¢ involves imposing the following restriction on the form
operator is somewhat related to the current operator but isf &:
not exactly equal to it. The reason is that the current operator
behaves like the conjugate of the density as far as commuta- ~ P([({p(y101) = 8(y1—X") 85, o} ];%0)
tion rules with the latter is concerned, but does not commute

with members of its own kindit is difficult to say this in +<I>([p];x'a’)—<D([p];xa)

words but will soon become clearLet us postulate the ex- ,

istence of the objedfl (xo) as the canonical conjugate of the —®([{p(y101) = 8(y1=X) 65 ot ;X 0')=mm,

density, 26)
[II(x0),p(yo' ) ]=i6(X—Y) 64 5» (18)  wherem is an odd integer for fermions and even for bosons.

This recursion is to be satisfied for akct)aé(x'a’). It will
[TI(xo),II(ya")]=0. (19 be shown later that the restriction is far more severe, brought
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about by the need to recover the free case properly. It magbjectX,,, when in fact it should. To put it differently, the
puzzle the reader that the above statement implies that féeld operator when commuted witk, should produce it-
random choice of the phase functional that ensures that theelf, whereas if we omit the obje,, then we find that the
recursion is satisfied does not suffice. This is mysterious, bifield operator commutes with the total number, which should
is clarified by a conjecture in Appendix E. This is done bynot happen. These nuances are not very important for the
relating the canonical conjugate to the current operator angractical computations as we shall see. It will be shown later
rewriting the DPVA in terms of current and densities. Againthat for bosonsb=0 is the only possible choice and for
this type of idea has been addressed in the paper by Goldfiermions® has to be fixed by making contact with the free
et al’ However, many in this field continue to be under thetheory. Uniqueness is assumed for the Fermi case by making
mistaken impression that the formula for the annhilation op-an analogy with the Bose case for which uniqueness may be
erator(say the Fermi operatpin terms of the corresponding proved.
currents and densities depends on whether the fields in ques-
tion are free or whether there are interactions in the system.
This is shown to be false in the Bose case, by demonstrating IV. MAKING CONTACT WITH THE FREE THEORY
that there is a uniqué® namely® =0 that reproduces the
free theory properly. Interactions just change the form of the In this section, we write down the kinetic energy operator
Hamiltonian but do not affect the form of the field operatorin terms of the sea displacements and determine the undeter-
in terms of currents and densities. The same is true but ndnined phase functionab in the Fermi case. The reason why
easily seen in the Fermi case; indeed throughtout this articlthe phase functiona®=0 in the Bose case will also be
we find that the Bose case is much simpler and we shall tak@ddressed here. Let us take the Bose case first. It is clear at
refuge under this rigorously justifiable edifice when con-the outset that the choic@ =0 satisfies the recursion Eq.
fronted by Fermi systems. Further, the formulas for the field26) for bosons when one assumes that 0, an even inte-
operators suggested by Goldin, Menikoff, and Sharp in theiger. That this is the only possible choice is not at all clear. In
famous papérare according to our results only partially cor- order to verify this, let us write down the kinetic energy
rect, since they have not actually introduced the phase fung@perator in terms of the density and its conjugate and show
tional ® and computed itthis will again become clear sopn that an expansion in terms of the density fluctuations recov-
Let us now write down a formula for the current operator€rs the correct form of the dynamical density correlation

in terms of the canonical conjugate and density, function of the free theoryjust the Bose case
1 dx (Vp)?
[ T _ T = | — 24 > 77 _
J—(2i>[z,// Vi— (Vi) ] (27 K me[p(VH) + P +c—number. (31

using the DPVA Eq(25),
It may now be verified that an expansion in terms of density
fluctuations leads to a Hamiltonian that describes free har-

J(Xo)=p(VP) —p(VII+[—i®,VII]). (28) " monic oscillators, which may be easily diagonalized. It may
From this it possible to deduce a formula for the conjugate iSO be shown that this diagonalized form reproduces the
terms of currents and densities, correct dynamical density correlation functions. The ex-

panded form of the operator in Fourier space is reproduced

X below for convenience:
I (Xo) = Xgs+ f dif = Yp(yo)]3(yo) +P([p];x0)

X €
. _ q
_f di[ —i®,VIT](yo). (29 K—q§#‘,0 NequX,q-i-qZ:o T pap—q. (32)

The line integral is along an arbitrary path from a remote

point where all quantities may be set equal to zero. The fieldy different choice of® does not reproduce the free theory
operator may now be rewritten exclusively in terms of cur-correctly. This is attested to by a simple calculation made in
rents and densities, like 1D. Let us assume a form,

¢<X0>=exp{—ixofr—i f diL=2p(ye) 1(ye) O([plix)=2m ffwdywx—y)[p(y)—po], (33

X
—i<I>([p];x<r)+iJ di[—id,VII](yo)
where 0(x) is the Heaviside step function. The above form
% eitb([p];xrr)(p(XO_))l/Z, (30) clearly satisfies the recursion but does not reproduce the free
theory as may be easily verified by the reader.
where Xg,, is canonically conjugate to the total number of  The Fermi case is somewhat more difficult. The difficulty
fermions/boson$Xo, ,N, 1=i6; 1) NU:Ekclgckg. The is due to the fact that we must have a choicelof 0 that
need for this is clear. The gradientdf does not involve the satisifes the recursion at the same time reproducing the free
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case. We shall take the point of view that the simplest choice - 1

for @ namely linear irp should suffice. In any event, for the Xq:( - m) > [A— Do @a(q)
scheme to have practical significance, it is importanidfaio al K

be a simple functional of the density. We fix the coefficient —Ak(Q)wk(—Q)aE(—Q)J, (39

in this ansatz by making contact with the free theory. Let us
focus on the case of spinless fermions. In what follows, wavhere the dispersion is given hy,(q)=k-g/m. From this
restrict ourselves to zero temperature and a weakly nonide#the Fermi-field operator may be written down as

system, in this case, we are allowed to replaceﬁhm the

definition of A, (q) by its noninteracting value at zero tem- — A iU (0 aiUs(X)

perature. More interesting situations arise when the quantity pix=e © \/p—o, 39
ny is evaluated self-consistently, but we shall relegate thesehere

issues to future publicatiog.From Eq.(30) it is clear that

redefinitions of the phase functional by amounts that do not

depend on the density, for examp®([p];xX)—P([p];X) Uy(x)= z eiq-xy(q, (40)
+f(x), do not affect the formula for the field operator in Eq. q#0

(30). Therefore, let us try the following ansatz fér.

= )Pq- (41)
@([pl0=3, Uqpq. (34) V0= 2, Vel

Let us now write down the kinetic energy operator for fer-
mions using the results of the first section. The kinetic en-,
ergy operator was written down as

Using these facts, let us compute the equal-time version of
the propagator below in the Bose language and in the usual
Fermi language and equate the two expressions. In the sea-
displacement language it comes out as

K.

K= “al(@ada)+Ne. (35
a (WD w(x' ,0)

It has been demonstrated in Appendix C that if one uses the = po€ T*.a#09i,qX)%k.q() g¥k.a+ 00, o X)Ok.oX"),

form of the density-fluctuation operator obtained by drop- (42)

ping quadratic terms in the sea displacemétiie existence

of such quadratic terms are hinted in Appendix tis re- where

produces the RPA dielectric function. Since we know from

prior experience that the RPA is exact in the ultrahigh den- 1

sity limit, we can use these two pieces of information to Geq(x)=—e 1o ><< ) (=)o (@)+iU () Ak(— Q)

deduce a formula fol 4(x) in terms of the properties of the 2Ne

free theory. First let us write down the RPA form of the

N +
density-fluctuation operator, =~ fiq™- (43

In the original Fermi language it is
pe=2 [A@al—a)+ Al —aal@], (36 .
where (WO D) =g 2 e 0(ki—al). (44

Ala)= \/F"*q"“(l_nk*q"“) (37 SetUy(x)=e '9*Uy(q) andUy(q) is real. In order to de-
and the corresponding conjugate variable may be writtemive a formula forUg(q), let us equate the logarithm of the
down (that is,IT in Fourier spacg two expressions

1 \?k-q\? , ,
s on=np+ 3|l [+ @ o -anerei-n
k,q#0 Eq

m

=In(pg) +In
q#

1 : ,
13, €Dk~ |

1 .
~In(po) + 172, (T =1)a(ki—]q]). (45)
q#0
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This leads to the following formula for the coefficient: write down and diagonalize the Hamiltonian of interacting
1 systems. It is shown that wher_l the lowest-order sea-
Ug(q) = E( 0(kf—|Q|)—W1(Q)) (46) displacement terms/condensate displacement terms are in-

0 N w,(q) ' cluded, it amounts to using RPA/Bogoliubov theory. This

Hamiltonian is diagonalized in the Fermi and Bose cases and
1 -q\? the single-particle spectral functions are computed. The Bose
2 . . e .
wy(q) = > ) (A (=), (47)  case comes out nicely since, it is just the Bogoliubov theory,

2 m . X :
4Neg/ & but in the Fermi case, we have to take extra care in properly
1 diagonalizing the Hamiltonian in order not to lose the
Wa(Q)= (N) ; (A(—q))2. (48)  particle-hole mode, the collective mode being more obvious.

In fact, in principle, we could go all the way back 0 the , gpecTRAL FUNCTION OF INTERACTING SYSTEMS
expression in Eq(30) and say that we now have a unique

correspondence between the Fermi-field operator and the Let us make the following observation for future refer-
corresponding currents and densities. In the next section, wence:

RPA/Bogoliubov — Leave out the quadratic part in Eq. (B4) and Eqg. (3). (49

It is pertinent at this stage to remark on the physical meaningn the above equatioN, is an operator, therefore this is the
of the above relation. In the case of bosons, it is simple tawonlocal Bogoliubov Hamiltonian. But we shall assume that
visualize. Bogoliubov’s theory is exact provided there areit is legitimate to replace it with it&-number expectation
large number bosons in the zero momentum state so that walue. It would be interesting to see what corrections to Bo-
may legitimately replace the number operator by itsgoliubov theory come about by incorporating this square root
c-number expectation value. Also it is important that theof the operator. These correction terms tell us that fluctua-
system be weakly interacting so that the fluctuations of théions of the number of particles in the condensate are impor-
number operator in the zero momentum state are small contant and lead to correlations beyond the Bogoliubov theory.
pared with its macroscopic expectation value. In the Fermirhis is in addition to correlations coming from quadratic
case an analogous statement would be that the momentuterms that the prescription Eq49) neglects. When these
distribution be sufficiently different from zero or unity for all approximations are implemented, and a further approxima-
values of the momenta. Also the fluctuations of the momention Ny~N is made, it becomes exactly the Bogoliubov
tum distribution must be small. Thus for the Fermi systemtheory introduced by Bogoliubov and Bogliubov and
our approach gives good answers even for strong interactiorgubarev?° It may be diagonalized quite easily,

that drive the momentum distribution away from zero or

unity for all momenta so long as the fluctuations around

these nonideal averages are small. In any event, the philoso- Hpog= 2 wqfify (53)

phy is that we have an exactly solvable class of models that a
describe correlation effects in many different contexts andand

this alone merits attention and serious study. In the end ex-

periments may have to be used to “calibrate” these models

so that they become a true description of the low-energy real fq=
world.

wqt €qT povg
2w

1/2
) dqlz( Q)
q

—wgt €qt po
+( q q q

1/2
5 )d*q,2<—q>, (52

A. Bose system q

Let us focus on the Bose case first. The Bogoliubov
Hamiltonian may be written down by following the prescrip- _
tion of Eq. (49): dgp2(a) =

12 12
wq+eq+povq) ¢ _(—wq+eq+povq ot
q

2w 2w -ar
(53

q

The dispersion is given by

wg= €2+ 2pouqeq (54)

wherep, is the density of bosons in the condensatet the
overall density. From this one may deduce the filling frac-
X [Nggra(@) +d g — @) VNo]. (50)  tion and dynamical structure factor,

Hpog= ; Ekdzrl/2)k(k)d(l/2)k(k)

+ 3 5 TNG_ gl ~ )+ dlfa(a) Vo)
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Filling fraction: gator predicted by the bosonized theory and in the numerator
use the free propagator obtained from elementary consider-
ations.

fo=No/N=1—<1/N>§ (d{12g(Ddaq(®), (55)
1
in other words <¢*(0,0>¢(x,t)>=exr{(m)2 fq(x,t)
o/ q
i —wyt €yt T
fo=No/N=1—(1/2w2p)f dq qz(—wq 26“ povq), X(P (0.0 h(X D)) eer (69
0 “q 56 where
wherep is the total density of bosons including those that are _[®qT €T Polq v
i A=|———" ., (65
not in the condensate. 4 2wq
Dynamical structure factor
—wgt €t po 12
S7(qt) =(pq(t)p—4(0)) Bq:(—q 5 “) (66)
q
=No([d— (1725( ~ D (D) +d{14(A) (V)] Similarly,
X[d 0)+d’ -q)(0)]), 5 . _
[ (1/2)q(q)( ) —(1/2)q( Q)( )]> ( 7) <l//(X,t)l/fT(O,0)>=p<ef|H(x’t)e|H(o’0)>
in other words
1
=exg |- E fq(=%,—1)
€q 4No/ “q
S7(q,t)=No| — | exp(—iwgt). (59
“@a X (PO $7(0,0)) e, (67)

This method is truly powerful when applied to compute
single-particle properties. The single-particle green function
is difficult to obtain using conventional digrammatic meth- (X t):(e—iq~xeiwqt_1)(Aq+Bq)z_(e—iq-xeisqt_l).

here

ods or otherwis¢see Kadanoff and Baym, Ref. RFor this (68)
one must first write down the field operator in terms of the
condensate displacements: From Kadanoff and BayAl the spectral function may be

deduced as follows.
The spectral functian

i ,
H(XW(Z\/N—O) Eq: expl(ig-X)[dgro(@) —d o — )]

(59 A(p,w)=f deJr:dte“p'X*‘wt(ex;{%M% fq(—x,—t)}

and the expression for the field operator is

1
w(x)%efln(x)\/g. (60) [P U(X,t)] eXF{4No§q‘4 fq(xat) P] (69)
The propagatofall propagators in this article are evaluated and
at zero temperature, this means we may set the chemical
potential equal to zero in the Bose caseay how be com- 1 Kot et
puted and shown to be equal to the free propagator at ultra- u(x,t)= V; gl*xgTlet, (70
high density. The interacting case is more interesting. The
time-evolved version is The above answer is the exact answer for the spectral func-
_ tion provided Bogoliubov's theory is adequate. Now we
P(x,t)~e MxJp (61)  move on to the Fermi case which is far more interesting and
important.
and
i B. Fermi system
I(x,H)= 2\/N_> > explig-x)(Ag+ Bg) In order to compute the full propagator for these systems,
o/ A it is desirable to first ascertain, under what conditions these
X[fqe*iwqt_ft e'“d], (620  formulas are going to be valid. The answer is given by the
a assertion in Eq.(49). Thus these answers for the single-
(7(0,0)(x,1)) = p(ei 100 TI(x D)y (63) particle properties are valid in the same limit in which RPA/

Bogoliubov’s theory is exact. The assertion in the Bose case
In order to ensure that the free case is properly recovered, wia Eq.(49) has been verified. In order to verify the analogous
use this somewhat illegal trick, but a trick that should beassertion in the Fermi case, we have to diagonalize the full
very palatable to most physicists, namely multiply and divideHamiltonian given below[The fact that the RPA dielectric
by the free propagator and in the division use the free propaunction comes out naturally from the prescription in Eg.
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(49) will be demsonstrated in Appendix ICln the Fermi  the corresponding inverted formula reads
case, we have to diagonalize the full Hamiltonian given be-
low:

ak<q>=2i [a(a),b] () ]bi(q)

H— t
& oD@ -3 [ad@b(-albl-a). (74

v
+ 2 502 [A@ad—a)+ A —)al(a)] The quantities]b;(q),a(—a)] and [ac(q),bl(q)] are c
q¢0 ka kr . .
' numbers and real. Thé here could span a continuum
X[Akr(—q)akr(q)+Ak/(q)al,(—q)], (71  (particle-hole modeor be finite (actually there is just one

collective mode The diagonalization continues unabated,
wherew(q)=(k-g/m)A,(—q). The zero-temperature case
is somewhat special, here we may assume that the sea boso too1 | A=) _ T
annhilates the noninteracting Fermi sea, which means that[hi(Q)'ak(q)]_ Z)-(q)—k-q/m gi(@)=[ax(a),bj (a)],
we have to introduce a factor @, (—q) in the dispersion ' (75)
that makes the kinetic energy operator positive definite. In

order to diagonalize this we proceed as follows. Assume that An(Q)
the diagonalized form is [bi(q),a(—q)]= —(~k—) gi(q), (76
wi(g)—k-g/m
H=2 wi(@)b](g)bi(a), (72 Ad—q)
h [ak(q).bi(—q)]=(~—)gi(—Q), (77)
wi(—q)+k-g/m

whereb;(q) and biT(q) are “dressed-sea-displacement” op-
erators. The objectstake on values from an index set. The ne(k=0/2) = ne(k+a/2)
size of this set is the big issue here. Is it finite or does it have giq=|> P 9 FIKT
the same size as the number of pointskirspace, or is it K [wi(q)—k-g/m]?
equal to the number of points on the Fermi surface? We shall ) ~

find that answers to these questions are hard, and may Pd1€ eigenvalues;(q) are zeros of the real part of the RPA
addressed only after coming to an agreement as to what sdifelectric function. The RPA dielectric function is written
of physics we hope to capture. Indeed, in many cases iHown below:

physics one is forced to bend the rules or reinterpret math-
ematical formulas in order to capture what one is looking for.
We find that we have to resort to such methods here as well.

In particular, we find the following general featute,(q) are

the roots of the RPA-dielectric function. Now the RPA-
dielectric function is a complex quantity, as it is usually in-
troduced in the textbooks. Therefore finding roots canno

mean finding the zeros of both the real and imaginary parts e RPA dielectric function. On th.e cher. hand, if one defers
the same time for this gives no root, and both the real an e taking of the thermodynamic limit until the very end, and

imaginary part cannot be zero simultaneously. This leaves u'QSt?ad takes the high density limit first, then one obtains the
with the following options, reinterpret the zeros of the RPA- particle-hole mode as the argument below will attest. Let us
dielectric function to be the maxima of the dynamical struc-reWrIte the sum in the RPA dielectric function as

ture factor, in which case one gets both the particle-hole AZ( )—Az(— )

mode as well as the collective mode. The better option is to (g, o)=1+ EZ M

delay taking the thermodynamic limit until after all the sum- V% w—k-g/m

mation over momenta have been performed. Then assume

-1/2

(78

Ne(kK+09/2) —ng(k—q/2)
w—k-g/m

~ v
erpa(0,0) =1+ U/ . (79
K
As it stands, the above sum is ill-defined. In particular, if one
takes the thermodynamic limit at the outset, and treats the
bove sum as the principal part, then one gets the real part of

that the density is high enough and at the very end go to the . Ug A¥(q) vg A¥(—q)
thermodynamic limit, this ensures that both the particle-hole =1+ VL ot o (—0) B Vk;&ki @ —w(q)
mode and the collective mode are properly recovered. These

are admitedly difficult issues to grapple with, and the authors AE (—q)

have attempted a different approach to deal with them. How- _Ya . (80)
ever, the traditional viewpoint on this matter is presented in Vo-— “’ki(Q)

the paper by Castro-Neto and FradkinThe diagonalization o

proceeds as follows: Let us now assume that the volurdas fixed and we now go

to the high density limit K.—oo, or equivalently when ,
|a|<k;), then we find, due to the fact below
bi(@) =2 [bi(a).ak(@)]ax(a)

K A(—q)=0; unless|k|~k; and k-g>0. (81)

— bi(q),a(—q)lal(— 73 The total number of terms in the above two sums is a small
; Lbi(a)a—aad—a) (73 fraction of the total volume and ds keeps increasing, the
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fraction gets smaller and smaller until it becomes small com-

pared to unity and may be neglected. This means

AL (—a) .

15153

() = wy,(q) +

VAR (-a). 83

As is clear from the above derivation, two points must be
borne in mind, one is, we have to defer the taking of the
thermodynamic limit until the very end, the other is to ex-

v
N,
Vwi(a) oy, () ploit the property of the objech(q), namely, if |q|<k;,

andA(—q)=1 (A (—q)=0,1 always ) then|k|~k;. Al-

From this we may deduce the particle-hole mode as ternatively, we can solve fop;(q) as shown below:

oi(0)= v (@) +] 1 N (84)
wi(Q)=w(q)+|
TV Jveg M@ ves M@
VE o (@+o(—q) Vg o (d)— o)
|
We shall find these formulas useful later on when we try to T P = e Skar09h o0k g0
write down the propagator. The collective mode in 1D and (P OO POE)) = poeHearofla ‘
3D may be written down as shown below: X @2k, 005 (¥ g el K DT =Y
> > (97)
. (q)_(|Q|) \/(kf+q/2) —(kt—0/2)%exp(—\(q))
c-108 T  'm 1—exp(—\ ’ . ,
N (85) (WX )T (x,1)) = poe™ Hearolia* ) fied)
% ezk,q#»of:,q(x)fk,q(x')eiwk(q)(l_[,>,
A —(qu)( 1) 86 92)
(@=|—" va)’ (86)
. . 1
We may also write fk,q<x>=e'Q'X(m)Ak<—q>wk<q>+iu —q()AK(—a),
a
kq)? kiq)  (N@) 9
f f
wg,lD(q)z m +€§+26q W)COI"(T). (87

A _
Y, = —e"q'x(m)Ak(—q)wk(q)+IUq(X)Ak(—q)
In 3D it is more familiaf? (only for Coulomb repulsion a

=~ 1), (94

3 (quy)?

1+

wc-3p(0) = wp (88) and

) o 2 = @i Zkq#0Uo(D) (12Neg) (A(~0) wy ()
For more general forms of interaction in 3D the answer may 0

be obtained by computing the roots of the equation below: Xe1/22kvq¢0(1/2Neq)2(Ak(7q))2(wk(q))2

x @112 i q20Uo(@)2(A(—a)?, 95
1— no(quz)/m 1+ 113 22 *
— e g(qu) €

] =0. (89

@ The time-evolved field operator in the interacting case is

In 2D, the answer is not available in the books and may be _ -
deduced after some algebra as>tk:|q|m) z//T(x,t)=exF( > Ui q(x)bi’f(q)e'wﬂq)t)
k,q#0,i '

_ (kflgl/m)(1+27/mivg)
Vamimlv g+ (2mimlvg)?’

oc_2p(q)

(90) xexp( - qEW :,;<x>bi<q>e-i5’i<q>t)nozs Jpo.

(96)
After all this, it is relatively simple to deduce the full propa-

gator. For reference the free propagator is where
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Ul q= i 00l ax(@), bl (@) 1+ i —q(¥)[ax(—a),bi(a)],

Ro=exﬁ( -2 E,q(X)fk,q(X)[bi(Q),aE(Q)][aK(Q),biT(Q)])

k,q,i
_1 * * _ . T
><exp( ZKEqi Fleq(O T — g [ak( q),b.(q)][ak(q),b.(q)]) (97)
X ex —EE Fia(0fi —qO0[a( — ), bi(a) I[ax(@), b (a)] (98)
2, K.q K,—q k(—d),0i(q k(Q),0;(q) 1]
|
The two full Fermi propagators may be written down as (cley=0(ks— k) F1(K)+[1— 6(ks—|Kk|)TFo(K),
(WP ) (103
IR o2 Zolpoe a0 e pag=1- S ot D e
1 [wi(—q)+k-a/m+ g
(X 1)yt (x,1) (104

do(@t—t)

=R o|?| Z o] 2poe™«aiVica* Vi g (100 F00=S) ne(k—q)

Again, it is desirable to use the trick we used in the Bose 10 [wi(—0q)+k-g/m—eg]

case, namely multiply and divide by the free propagator angy, the ahove sum over one must include both the collective
in the division use the form predicted by the bosonlzedmode and the particle-hole mode=(c,k;). A more general
. T . . 1IN
theory and in the multiplication, use the form predicted by eg it i possible for systems that are significantly more non-
elementary considerations. This procedure also ensures tr\ﬁbal This comes about when one does not use the zero-

in spite of the fact we have not verified that the Fermi fieldsyg heratyre noninteracting values in the Fermi-bilinear sea-
written down in terms of the Bose fields anticommute, the, oson correspondence. The form of the momentum

anticommutation rules are forced on the propagators by thg;siribution suggested by this is given in Appendix D. It is

;rei_propﬁ?at?rs dWhiCthi l|<|novy ar]lticomTutehin the rightnow very easy to write down a criterion for the breakdown of
ashion. This leads to the following forms for the propaga-gem;-jiquid behavior. It is given by equating the step at the

597(—a). (105

tors: Fermi surface to zer¢the quasiparticle residite
T Y
(P (XD e(x' 1)) Z=Fy(k;)—F(k{)=0. (106
=|Ro|2|Zo|4e2k,q,iUE,L(XNL,q(x’)ei‘”i“‘)“"” In the end, it is pertinent to address the claim made in the
_ , abstract namely that we are able to capture short-wavelength
Xesz Ok q08k,gC TVt b (x! 1)), behavior. The real issue here is that we have two length
.q

scales, one is the inverse of the Fermi momentum the other is
(101)  the Bohr radius. When one speaks of short wavelengths, one
means wavelengths comparable to the Bohr radius. In the

(p(X" 1) T (x,1)) ultrahigh density limit, where all the answers we have been
o @t deriving are valid, the inverse of the Fermi momentum is
=|R o|?| Z | *€*kaiVkaX )Yk e much too smallcompared to the Bohr radiuor the wave-
o @t length of any external field to be com_parable to |t In other
X @~ Tkl g Tkg(x)e ™k (P(X" )P (X 1)) . words, even if you have an external field that varies so rap-

(102 idly in space that it changes sign over a Bohr radius, the
effective field induced by such an external field is still de-
In the above formula, the indexruns over both the collec- scribed by the RPA. To put it yet another way, the RPA is
tive mode as well as the particle-hole mode=€,k;) The exact in the ultrahigh density limit. Some have argued that
momentum distribution may be evaluated in a different waythis limit is uninteresting since in this limit, the Coulomb
by computing the expectation value of the number operatointeraction is completely screened out and therefore in this
in Eq. (12). This leads to the following answer. It includes regime we just have a Fermi liquid. We find that this argu-
the contribution from both the particle-hole mode and thement is not entirely true. In fact, we have shdWthat when
collective mode. In Appendix D, we show how to derive thethe inverse of the Fermi momentum is small compared to the
same momentum distribution using the equation of motiorBohr radius, it is still possible to increase the value of the
approach(actually just the collective part, for purposes of dimensionless coupling strengtior a delta-function interac-
illustration). The full momentum distribution including the tion) sufficiently so that Fermi-liquid behavior is destroyed.
particle-hole mode is given below. We find that Fermi-liquid behavior persists in 1D for suffi-
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ciently weak-coupling strengthisvhen we assume the inter- ating an early version of this article. We thank Dr. S. Chi-
actions are hard-coré-function interactiong in contrast to  tanvis for correcting the authors’ misreading of the Lieb-
the Lieb-Mattis solution of the Tomonaga-Luttinger model. Mattis solution. This work was supported in part by ONR
We also find that Fermi-liquid behavior breaks down in moreGrant No. N0O0014-90-J-1267 and the University of lllinois,
than one dimension for sufficiently strong values of the cou-Materials Research Laboratory, under Grant No. NSF/DMR-
pling strength in contrast to the answers obtained by Castrd39-20539, and in part by the Department of Physics at the
Neto and Fradkirf! In fact we find that Fermi-liquid behav- University of lllinois at Urbana-Champaign.

ior persists in all three dimensions for sufficiently small
values of the coupling strength and is destroyed in all three
dimensions for sufficiently large values of the coupling
strength. It may be argued by the reader that our results are |n this appendix we prove some assertions made earlier.

not foolproof either, for one, we have neglected severaFirst the definition of the condensate-displacement annhila-
terms in the Hamiltonian and those terms are small only irtion operator:

the limit when RPA is exact. The other points are the tech-

nical shortcomings, such as the fact that we have not proved 1

the Fermi case as rigorously as the Bose case, like the Fermi dq/2(q):<_> bgbq. (A1)
commutation rules are not explictly verified, etc. Notwith- N

standing all these shortcomings, a case is to be made for the

revision of entrenched dogma about Fermi and Luttinger ligin order to define the quantit§y=(1/\/No) in a manner ac-
uids. ceptable to most physicists, we proceed as follo@sis
defined to be that operator that commutes with the number
operatorN,

APPENDIX A

VI. CONCLUSIONS

Let us summarize the results obtained so far. We have [O,Ng]=0 (A2)
succeeded in reducing to quadratures the propagators of both
Bose and Fermi systems. We have also computed the men the basis in which\, is diagonal and possesses nonzero
mentum distribution of interacting Fermi systems and writteneigenvaluegnot an unreasonable assumption considering the
down a formula for the quasiparticle residue in terms of thefact that even in the most strongly interacting systédgss

electron-electron repulsion. From this we obtain a criterionmacroscopic, call therfNb}), then the matrix elements 6

for the breakdown of Fermi-liquid behavior. The results we; ; ; ;
in the same basis are going to be/Mf,. Having thus pro-
obtain contradict some widely held views about 1D system e 0 > P

Svided all the matrix elements, the definition 6f is com-
in particular the Lieb-Mattis solutionof the Tomonaga- i

. LY lete. We have to now show thdf,,(q) satisfies canonical
Luttinger mode.l suggesfcs that the mome”“?”? d|str|b.ut|on %Bose commutation rules. The simplest way of doing this is to
a 1D system withs-function interactions exhibits no discon- use the polar decomposition bf
tinuity at the Fermi momentum. This is in contrast with the
results obtained above that does in fact exhibit such a dis- .
continuity for sufficiently weak values of the coupling bo=exp( —iXo) VNo, (A3)
strength and is destroyed only for larger values of the cou-
pling strength. We attribute this discrepency to assumption¥hereX, is the Hermitian operator canonically conjugate to
used in the linearized dispersion modék., Tomonaga- No=bibo, that is, [X,Ng]=i. This decomposition cor-
Luttinger model. Luttinger-liquid theory is based on the as- rectly reproduces the Bose commutation rulepgandby .
sumption that the low-energy behavior of the homogeneouEor example,
interacting Fermi system in one dimension is correctly de-
scribed by the exactly so!vable Tomonggq—Luttinger model. [bo,b$]=b0b$—b$bo= exp(—iXo)Noexp(iX o) —No=1.

Our results show that the important qualitative features of the (Ad)
homogeneous interacting Fermi system namely the presence
or absence of a .Fermi surface cannot be.surmised by examthis means thad»(q) = z5 by, Wherezj =exp(iX,). Since,
ining the properties of the Tomonaga-Luttinger model, e5pe[zo,bq]=0 and[zo,bg]zo, and[zy,z5]=0, it follows that
cially when the interactions are weak. dg2(q) andbg both satisfy the same commutation rules since
z5 now behaves effectively asanumber(as regards com-
ACKNOWLEDGMENTS mutation rules wittb, bg, andz,. It is worthwhile pointing

It is a pleasure to thank Professor A. H. Castro-Neto an(?Ut
Professor D. K. Campbell for providing important references
and encouragement and the former for useful discussions as [dg2(),No]#0,
well, and Professor A. J. Leggett for giving his valuable time
and advice on matters related to the pursuit of this work and@ther
also for providing important references and for useful discus-
sions. Thanks are also due to Professor llias E. Perakis for [dg2(d),N]=0, (A5)
providing the authors with an important reference. We also
acknowledge Professor P. W. Anderson for critically evalu-though not obviously so. In order to prove this
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[dg2(a),N]=[dg2(a),No]+

dgr2(@), 2 bl by
q’ #0
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=[exp(iXo),Nolbg+exp(iXo) X [bg.bl,by]
0

q'#

=[exp(iXq)Ng— Ngexp(iXy) Jbg+exp(iXq)bg

:[iXO,No]quiXO)bq'f‘ quixO)bq: _eX[XiXO)bq'i‘ eX[XiXO)bqZO.

Next, one would like to prove Eq3). For this we simply
plug in definition Eq.(Al) into Eg. (3) and verify that is
reduces to an identity. The details are as follows:

Lk,q: N05k,o5q,o
+[ Serqr2,00 N A — Q) + 8,001 (9 (VNg) ]

+d(T1/2)(k+q/2)(k+q/Z)d(m)(k—q/z)(k_q/z)- (A7)
The proof involves these cases:
(i) k=0 andg=0. In this case,
LO,O= Nozbgbo (A8)
(i) k+g/2=0 butk—qg/2#0
Li-—qq=(VNo)d_go(—a)=blb_q.  (A9)
(i) k—g/2=0 butk+qg/2#0
L= 2= day2(@) (VNg) = blbg. (A10)
(iii) k—g/2#0 andk+q/2#0
Lk,q:d(Tl/2)(k+q/2)(k+q/Z)d(llz)(k—qlz)(k—q/z)
:bl+qlzeXF1_ixo)exmxo)bk—qlz
= bl gD qz- (A1)
Therefore in all cases,
Licq=Ds bk gz (A12)

and thus Eq(3) follows. Finally, we would like to clarify the

(A6)

whereu is the chemical potential of the parent bosons. Then
it follows that

1
<d31/2)q(Q)d(1/2)q(Q)>= expBeq—m)—1° (A15)

In other words, the chemical potential of the condensate dis-
placement bosons is the same as that of the parent bosons

Mparent= Mcond/displ (A16)

APPENDIX B

In this appendix, we try to to make plausible the corre-
spondence between the number-conserving product of two
Fermi fields and the sea bosons. Let us rewrite the Bose case
[Eq. (3)] more suggestively,

bl+q/2bk—q/2: O(K) 8,0 [ VNk+ gr2Ak(— &)+ AL(A) Vi _g12]

+ qE Al+q/2—ql/2(q1)Ak—ql/2( —q+0a)
1

- % Al—q/2+q1/z(Q1)Ak+q1/2( —q+0y).

(B1)
In the Bose case
A(Q) = S gr2,0dg2(a) (B2)
and
O(K)=N¥y . (B3)

Observe that the suggestively extravagant notation in Eq.
(B1) is meant to imply that a very similar relation holds in

finite-temperature case. In particular, what is the chemicalhe Fermi case which we reproduce below:
potential of the condensate-displacement bosons? Is it zero, .
or is it the same as that of the parent bosons? The answék+q/:2Ck—g2= O(K) g0 [ VNt gr2Ak(— &) + A () VNk— 2]

may be found by computing the thermodynamic expectation

value of the number of bosons in the condendéie

<No>:N_q§0 (dl1oq(Dda24(D)- (AL3)

+ qz Al+q/2—q1/2(ql)Ak—q1/2( —q+qy)
1

2 Al gy 0 A o2~ 0T ). (B4)

We also know the answer from elementary considerations, ilr-lereAk(q) depends on two momentum labels unlike in the

IS

1
<N0>:N_q§0 exp(B(eqg—u))—1’

(A14)

Bose case. This has to do with the fact the nGk) no
longer has the simple structure we saw in the Bose case. We
must now invert this relation and obtain a formula for the
operatorA.(q). It is not at all clear that this object will
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behave like an exact boson annhilation operator. The alter- The only negative aspect of this correspondence is that
native is to write down an ansatz for an exact boson in analthe mutual commutation rules between the off-diagonal
ogy with the Bose case and determine the unknown in th@&ermi bilinears is recovered correctly only up to terms linear
formula by imposing canonical Bose commutation rules:  in the sea bosons. That is, somehow the operators on the
right side of these commutations rules should not be too
different from their approximations obtained by dropping
terms higher than the linear order. This is no doubt a strong

assumption. This is in fact equivalent to R rhaps even
The unknown operatoM (k,q) has to be related to some better Fhan RPA a Rerhap

number-conserving Fermi bilinear by demanding that the op-
eratora,(q) obey canonical Bose commutation rules

1
+
a(q)= ——c,_goM(k,q)c . B5
k(Q) \/rq/z k—q/2 ( Q) k+aq/2 ( )

The definition of the sea boson is incomplete without a
prescription for the phasé(k,q). In order to derive an ex-

[a(a),a,(q')]=0, (Be)  Pression for this, we again make heavy use of the Bose case
which we have proved rigorously in Appendix A. There we
[ak(Q),aEr(Q’)]Z5k,kr5q,q'- (B7)  found that plugging in the expression for the condensate-

. ) displacement boson into the correspondence resulted in an
It is at present beyond the authors to arrive at a formula fofdentity when g#0 (the q=0 case being special This

M(k,q). Notwithstanding this, it is still useful to capture identity comes about in a very specific fashion. In the

some sort of an approximate correspondence like the OnSeneraI form of the correspondence outlined in 1), we

mtroducec_i n Seg.. Il. The relations written down there haV":‘find that the sum on the right that comes with a negative sign
the following positive features is identically zero(for g#0) and the sum on the right that
(i) They recover the RPA dielectric function at zero and Uy org-"b) a 9 )
comes with a positive sign is equal to the left-hand side,

finite temperatures. - " ; _
(if) They capture the correct four-point and six-point func-EXCept in “rare” cases when eithde+q/2=0 or k—g/2

tions at zero and finite temperatures. =0. We shall adopt the same approach in the Fermi case and

(i) The formula for the sea boson in E¢l4) when j[ry to fix the ph:_:lse9(k,q) ;uch that the identity.is satisfied
plugged into the correspondence for the number operator it the.m{?\nner. just described. Let us now write down the
Eq. (12 gives an identity. potential identity,

1 nf(k+q/2)\¥2 . _
Cl+q/2Ckq/2=Ak(q)\/n—CI+qlz< ) ol f(k,—a)
k-+q/2

Ck—qi2

b nf(k—q/2)|"? 1
T A=) gt 0(k,a) Ny Ck—q/2

T Tl(k,q)ch,z( q;‘avo Wei 0(k—01/2,-q+0dp) g~ 0(k+ql2q1/2,q1)) Ci_ g2
—To(k,q)Ck—qr2 ! ! CL /2(nﬁ(k+q/2)>m(nﬁ(k_q/Z))m

NN LG R (Y) (N)
x S nkiq/2+q1ei9(k+q1/2,—q+ql)e—i0(k—q/2+ql/2,q1)_ (B8)

q:#9.,0

Here, since we are not involved in proving the rigorous cor- _ _ _

respondence, but just the salient features, we are entitled to > N g2+ g € MK W2-atae iok-aZraza) = o,

some leeway. In particular, we shall turn a blind eye to the %7 %9 (810

fact that there exist these objecIs(k,q) and T,(k,q), in

fact set them both equ_al to unity, just for the moment. Theyq, ) is well. Terms that were linear in the sea bosons are

exact corr_espondence_ln terms_ of thgq) seems to suggest vanishingly small in the thermodynamic limit, and are im-

exactly this. Then we find that, if we choose @ifk,q) tobe  ,1ant only when both the sums on the right side are iden-

such that tically zero for some reason, that is, it is “rarely” important
just like in the Bose case. It is not really important to write

6(k—0a:1/2,—q+0q;)=06(k+0a/2-q;/20;)  (B9)  down an explicit formula for the phase functiénk,q), it is

merely sufficient to show that it does what is required of it,

and namely, it provides the “random phase” that cancels terms
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that enable the whole machinery to run smoothly. Lastly, weemerge in such systems when the interaction stre(with
have not yet verified that this sea boson obeys canonicdhe same functional formbecomes strong enough. These
commutation rules. This is again a tricky problem, it is likely considerations also tell us that for an interaction of the
to be resolved by the exact approach which is beyond théunction type in 1D, provided the strength is weak enough,
scope of this article. It is merely sufficient to point out that we have a Fermi liquid in contrast to the Lieb-Mattis solu-
this is likely to come about due to the strong likelihood thattion of the Tomonaga-Luttinger model.
the phased(k,q) is actually a functional of the number op- In any event, the philosophy is that having introduced sea
erator. bosons, we more or less forget about the fact that it was
The correspondence that we have just defended is nothinfgrmions that motivated their introduction in the first place,
but a more elegant version of the correspondence introducezhd instead try to write down a whole new set of models in
by the pioneers like Castro-Neto and Fradkimny criti- terms of the sea bosons and calibrate them appropriately so
cism that may be leveled against our approach may equallthat they capture the salient features of the real world. It is
well be leveled against theirs. The only difference betweemot a tautology to remark that we have in our hands a whole
our approach and theirs is that the single-particle propertieslass of exactly solvable models of correlated fermions that
which they are so fervently seeking are far more elegantlys easier to use than mean-field theory itself but with capture
recovered by our approach since we do not linearize the bareffects significantly beyond diagrammatic perturbation
fermion dispersion or use the clumsy Luther construction. theory, like the nonanalytic dependence of the momentum
Indeed, we have even shown that the answers for the 1D caskstribution on the coupling strengtfwritten down in Ap-
are different from the Tomonaga-Luttinger model that linear-pendix D).
ize the bare fermion dispersion.
The other issue worth addressing at this stage is the va- APPENDIX C

lidity of the prescription in Eq(49). It can be seen from the ) ) ) ]
exact correspondence in E(B4) that asq—O0 terms that In this appendix we demonstrate that the RPA dielectric

correspond to corrections to the RPA form of the full Hamil- function is recovered exactly by selectively retaining parts of
tonian vanish at least as fast|a/k; . The RPA terms them- the Coulomb interaction that lead to RPA. We know that the

selves do not vanish and tend towgtith, oA, (—q)#0 as kinetic energy in the Bose language is given by
in the Bose cade k-q
Hign= 2 | —

g Jn—kAk(—qH; AL(@)Vny. (B11)

al(q)ax(). (C1)

For this let us choose
In order for the prescription in Eq49) to be accurate, it is Ug~ ~

_ q
important for the interactiom, to possess these properties, H _q;o o\PaP-q: (€2
but first it must vanish for large enough(or small interpar-
ticle separation where
lim —0, B12 ~
o (B12 pa= > [A@a—D+ Ad-aal@].  (C3

wherecg is small compared to unity and positive. This en-

sures that the only possible contributions come from sppall From this it may be shown that the RPA dielectric function is

where corrections to the RPA form themselves are small. Ifiecovered as the following demonstration shows. Assume
addition, if we also make sure that the interaction vanishe#hat a weak time-varying external perturbation is applied as

fast enough for large interparticle separations so that shown below
limq_ovq—|al®, B13 ~
a-ovaldl (813 Her= > [Uod @D +US(~qT5q.  (C4
whereD=0,1,2 ... (larger the bettgr then our formalism q#0

is in fact exact ak;— (or sufficiently large. It may be \where
argued that this state of affairs is most likely uninteresting > g —iet
since it may not be realizable in practice, when it is, it Uex(r,1)=Uoe : (€9
merely leads to a Fermi liquid. This is a valid point. But it is Let us now write down the equations of motion for the vari-
worth pointing out that non-Fermi-liquid behavior can still ous Bose fields

d
- (@) = w(@) (@ (@) + %)Au—q)Z [A (=)@ (@) + A (@) (@ (—a))]
k!
+[Ue @) + Uz~ a0 ]A(—0), (C6)

17

—i5<a‘k*<—q>>:wk<—q)<aE<—q>>+($)Ak<q>2 [Aw (=)@l (@) +Aw(@)(@g(—a)]
k!

H[Uex(a,t) UG —a.0)JAK(9). (C7
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Now, let us decompose the expectation values as follows:
(@) =Uex( @) C(@) + U —0,) Dy (a), ()
(8l (= @) =Ug(—a,)CE (—a) + Ue(a,) D (= q). (C9)

The coefficientsC,(q) andDj (—q) satisfy

oCy(q)=w(q)Cy(q)+

A= [A(=DC (@) + A (@D (~ )]+ A(—a), (€10
k/

wDE (=) =w(—q)DE(—q)+

VMO A @PL(-0)+ A (- @C @1+ A@). (C1D

Now, the effective potential may be written as

Uen(@) =Ua a0+ 12 (00 Ue(@,), (12
where
<Pfq>:Uext(qixpfqy+U:xt(_qi)<97q>”a (C13
using the fact that
<pfq>'=§ Ak<—q>ck(q>+§ A(@)D} (—0). (C14

Solving these equations and using the fact that the dielectric function is just the ratio of the external divided by the effective
potential we get

Ne(k+9/2) —ne(k—qg/2)
w—k-g/m

e(q,w)= Uex{(q’t)—l-l— %Ek: , (C15

Ueff(Qvt) B

which is nothing but the RPA dielectric function of Bohm and Pines.

APPENDIX D

In this appendix we use the equation of motion approach to solve for the momentum distribution and compare it with the
solution obtained via exact diagonalization as described in the main text. The equations of motion for the Bose propagators
read as

(_ P )—i(TaL(q)aL(q'»
'ﬁ_wk(Q) <T1>
v ~i(Ta(d)ay(a') ~i(Tap(~a)a,(a")
= 5k,k/5q,q/5<t>+(V")Ak<—q>§ Al =gy Aw(@) | oY
- )—i<Ta&t<—q>aL<q'>>
Ia—’_wk(_q) <T1>
: Tt T ’ H t t ’
B Uq \_|<Takn(_q)ak'(q )> \_|<Tak”(q)ak’(q »}
__<V)Ak(q)%; Ak"(q/ <T1> +Ak”(_q} <T1> (DZ)
The boundary conditions on these propagators may be written doforasteracting systemg.g=0)
—i(Ta(—g)a(a))  —i(Tal""P(-aay(a)
(T1) B (T1) : (O3
—i(Tal(@a (a))  —i(Ta ay.(a) -

(T1) (T1)
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1
5(t)=(_—i'8); explo,t),

expw,t)

Wn

H(t):( —?ﬁ);

The boundary conditions imply that we may write

—i(Tal(g)a.(a")) —i(Tal(a)a,,(q")
(T1) :; eXplwnt (T1)

—i(Ta(—aay(q) —i(Tal"(—q)a(a")
(T1) :; eXplnt) (T1)

and, w,=(2mn)/B. Thus,

—i(Ta(@)a,(a")

[iwn_wk(q)J <Tl>
S Oaq (Ve —i(Tag(qa (") —i(Tag(-9)a,(a")
—_—iﬁ+(v)Ak<—q>§ {Akw—q) T + A9 T
—i(Tal"(—a)ay,(q"))
[0+ (=) —— 33—
fvg ~i(Tall(—aL(q) —i(Tag.(q)ag(q'))
__(V)Ak(q)g |:Ak”(q) <T1> +Ak”(_q) <T1>
Define
—i(Taj(q)al(q")
S A=y =Guak A,
S A (T (—ay(q) o
- k(q/ <T1> _GZ(q! ,d vn)'

Multiplying the above equations with ,(—q) and summing ovek one arrives at simple formulas f@; and G,:

Oy
Gi(a,k’,q;n)=Ap (—q)———2 +(@[G1(a,k’,q";n) +Go(q,k’,q";n)]
_|ﬂ[|wn_wk’(q)]

and
Ga(a.k",q";n) =11 (—q)[G1(a,k’,q";n)+Gy(q,k’,q";n) ],

fa(—a)

Ga(a.k’,q’;m) = ———
A Ty

Gl(qvk’vq,;n)a

Gi(a,k’,q";n)+Gy(q,k’,q";n)=G4(q,k’,q";n)/[1— 5 (—0q)],

1 ) [1_f:(_q)]Ak’(_q)5q,q’

ky ’. — -
Gl(qv e ’n) (_|'[)’ [1_f:(_q)—fn(q)][iwn_wk'(q)],

1 ) fz(_q)Ak’(_q)éq,q’
—IBI[1-f}(—a)— (@[ wp— @i (a)]

Gz(q,k’.q’;n)=<

(D5)

(D6)

(D7)

(DY)

(D9)

(D10

(D11)

(D12)

(D13)

(D14)

(D15)

(D16)
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1 A (=) 8g,qr
Gi1(q,k’,q";n) +Ga(q,k’, ’;n)=( - ) ) :
A T B i (0 f(@ Tl on @ (@]
—i(Ta(@a () S +( 1 )(ﬁ) Ad—9) A (=9 daq (D17)
(T1) —ipliog—o(@) \=iB/\ V/[iog= ok @] [1-f*(—q)— (@) i wn— wr(9)]
The zero-temperature correlation function of significance here is
—i(ag(q")aw(9)). (D18)
This may be obtained from the above formulas as
—i(a}.(q")a (q)>:—(E A(— QA (—a)§ fd—w - (D19
o v R o2 [ — w0 — e (][ 1= T (— o)~ fo(a)]

where C is the positively oriented contour that encloses the upper half-plapper half-plane, because we need
(al,(q’)ak(q» and not(ak(q)al,(q’))]. Thus the problem now reduces to computing all the zeroglof fy(—q)
—f,(q)] that have positive imaginary parts. It may be shown quite easily that

erpa(Qsiwn)=1—1}(—q)—f,(0q). (D20)
In 1D, the dielectric function is evaluated as follows:

)t 1s i)(T)| (ke +a/2)%+(malq)?| (D21)
n( q) n(q)— Ug 27\ q n (kf—q/2)2+(mw/q)2 =
This leads to the root
~(lal\  [(ke+a/2)? = (ki—a/2)%exp(— (2q/m) (1))
“’"(F \/ 1—exp(— (2mq/m)(1lvy)) ' (b22)
Therefore the final result may be written as
1 A (=D A (=) 6g,qr
a;.(a")ay(q) =(— . 1 , (D23
(ldada=|y [wr(A) + o (A) [ @r(A) + 0 (@) 1(M/g%) (1/27ks) 2(M/ ) wr(g)[ coshA(q)) — 1]
where
(R
AQ)= e v_q , (D24)
(ks +9/2)%— (ks —q/2)%exp(— N (q))
“’R(“):(%)\/ @ (029
In other words,
+odgy Ak—q,2(—=01)
el =ne(K) +(27ks) | =
(6= ne o f 27 20r(qy)[ @R(01) + k- q2(01) JAMY G [COSHA (1)) — 1]
+o A + (_q )
—(2mky) dn . (D26)

= 27 20p(01)[ 0R(G1) + O g a0 (MG cOSHA(d1)— 1]

Note that the above formula possesses a nonanalytic dependence in the coupling $tesigtérq/m)(1/v,)—1], an
unmistakable signature of a nondigrammatic result. Next, we would like to provide formulas for the momentum distribution
when we use the correct interacting expectation values in the Fermi-bilinear sea-boson correspondence. The results obtained
from these formulas are likely to be very different from the weakly nonideal case, which in any case is not very interesting.
The answers are given below:

— (k) Sy(k)
TSk T Sik)’

(D27)
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where
Hk—q 2 1_Hk+q 2
Sy(k) = - 2(— - 2(—q), 28
1(k) 1+%[wi(—q)+k~q/m—eq]zg'( q)+q,i [wi(—q)+k.q/m+eq]2g'( D (028
K)=> — 2(—q), D29
Sy(k) %[wi(—q)Jrk-q/m—eq]zg'( a) (D29)

also the form of the “RPA” dielectric function and its zerag(q) are now different. The RPA dielectric function is given by

v Ny /2_Fk— 2

erpa(d,w)=1+ vq; —;q—k-q/mq , (D30)
W F -1/2
k—q/2™ Hk+aq/2
gila)=| X =———— (D31)
| < (0i(q)—k-a/m)?
The commutators are given as before, except for three changes. In the new approach

A= Vs g2l 1= i) (D32)

Next, the zeros are slightly different. The collective mode has to be computed self-consistently, whereas the particle-hole mode
may be written down as described earlier,

. Vg Aﬁi(_q) D33
@i(d) = (a) S AR o AZ(—q) (b33
ratg w (D + o (—a)  ViFk o ()~ o)

The last change is in the form &f,(q), here we have to

make sure we use the finite-temperature noninteracting val- [P, lﬁT(X)]ZKE alaf(max(@),#'(x]
ues. The other issue that is also of interest is whether the 4

momentum distribution evaluated using the Fermi-bilinear/ . :
sea-boson correspondence is the same as that suggested by ZKE qa (A~ Gk,q(¥) 1 (%)
the full propagator. We have found that the answer to this is 4

difficult and probably in the negative. This does not mean

that the whole program is wrong. Some comfort and confi- +k2 al — gk (0T () aK(a)
dence in these manipulations may still be retained by dem- 4
onstrating that the expression for the number operator is con- =iVy'(x),

sistent with the RPA form of the Fermi creation operator.

Again here, we have to be content with a weak form of thisas it should be. All this points to the fact that the answers for
requirement. We take the point of view that it is sufficient tothe momentum distribution and propagators should not be
show that the commutator between the total momentum ofaken too literally, rather one must be content with the quali-
the electrons and the field operator comes out the same tative predictions that are most likely accurate, which also
both the original Fermi language and in the sea-boson larseem to contradict conventional wisdom.

guage. The total momentum of the electrons has the form:

APPENDIX E

P=> kclcy. (D34)
K In the late 1970s and early 1980s, attempts were made to

write down field theories that describe scalar mesons in
terms of observables like currents and densities rather than
the creation and annhilation operators. The motivation for
P=> gaj(a)a(q). (D35)  doing this stems from the fact that a theory cast directly in
k,q terms of observables was more physically intuitive than the
more traditional approach based on raising and lowering op-
erators on the Fock space. This attempt however, raised a
+ —iv.t number of technical questions, among them was how to
[P 0)I=1VY(x). (D36) make sense of the various identities connecting say the ki-
In the sea-boson language we have netic energy density to the currents and particle densities and

In the sea-boson language, it takes the form

Therefore in the original Fermi language we have
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so on. Elaborate mathematical machinery was erected by the Proof. Proof is by brute force expansion. We know
authors who started this line of reseatdb address these
issues. However, it seems gaps still remain especially with
regard to the crucial question of how one goes about writing = FM(0)
down a formula for the annhilation operat@rermi or Bos¢ Fy)= 2

alone in terms of bilinears like currents and densities. The

bilinears in question namely currents and densities satisfy
closed algebra known as the current algebrais algebra is
insensitive to the nature of the statistics of the underlying

fields. On the other hand, if one desires information about o
single-particle properties, it is necessary to relate the annhi- F(F(x))=F0)+ 2
lation operatowhose commutation rules determine the sta- n=1
tistics) to bilinears like currents and densities. That such a n
correspondence is possible was demonstrated by Goldin, . 2 _

Menikoff, and Sharp. However, they have not explicitly ><ex;<|(i_l q') 'X)

written down such a formula nor have they clarified some

important issues such as whether this formula changes when _ Z eikg

one consider interacting fields rather than free fields. The n 9k

general belief is that these formulas are different for interact-

ing f|eIQS. It is shown here that this is in fact not the caser, .. meangtake the inverse Fourier transfoym
interactions in the system merely cause a change in the
Hamiltonian but do not affect how the annhilation operator is

related to local currents and densities. The attempts made FMO0) ) ~ ~ _ -
here are partly based on the work of Goldinal.® Ligouri ~ J(0) 8o+ >, o > afa, - -fqn5(k2 qi) 0= Ok -
and Mintchev on generalized statistfCsand the series by N i

Reed and Simoff* As has been demonstrated earlier, for the (E7)
Bose case we had to choode=0. We argued that this

choice was unique. In the Fermi case the choice was differThis may also be cleverly rewritten as

ent but was also unique due to the necessity of recovering the
free theory. In this section, we write down a mathematically

y, (ES)
%erefore

FMO0)a ~ ~ -
o fofa, - 1

Gn

(E6)

oo

rigorous statement of this uniqueness criterion. This exercise F0)8, o+ > ]—"(“)(0)2 FoFo . FoT o (K

also settles the issue regarding the delicate question of mul- T onl Gy "~

tiplying two operator-valued distributions at the same point -

and other related issues, like the meaning of the square root XT_g,(K) ... T_q (K)&k0=0k (E®

of the density distribution. For this we prove this lemma.

Lemma Let]_-'be a smooth function from a bounded sub- ;4 therefore,
set of the real line on to the set of reals. Alsofledndg be
smooth functions from some bounded subseRdfto reals.
Let us further assume that the range of these functions are ~ _ 2 T (k|8
such that it is always possible to find compositions such as 9k g 179 k.0
Fof and they will also be smooth functions with sufficiently

big domains. They possess Fourier transforms since they are J theProof is now complete.
well behaved. If

(E9

density operator. Physicists define it to bg(x)

FED=9(x) (ED =" (X) (x). Multiplication of two Fermi fields at the same
and point is a delicate issue and we would like to make more
sense out of it. For this we have to set our single-particle
~ Hilbert Space:
f(x)=2, T,e'e™, (E2)
q
H=Lp(R}eW.
909 =2 gee"*, (E3)

Here, Lp(Rg) is the space of all periodic functions with
then the following also holds: period L in each space directionV is the spin space
spanned by two vectors. An orthonormal basisfdris

f( % ?qTq(k)) } 8,0= Ok (E4)

whereT(k) =exp(q- V). Here the operatof (k) acts on
thek in the Kronecker delta on the extreme right, and everyA typical element ofH is given byf(x)® ¢, . A basis forH
time it translates th& by an amoung. is given by

{&.6}

Now we would like to capture the notion of the Fermi
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B:[ \/gexmiqn')()®§s] ;n:(nlvn21n3) EZS,SE{T,l}.

We move on to the definition of the Fermi-density distribu- [J(f®V)@]n(X101,%207, - . . Xq0n)
tion. The Hilbert Spacé+{®" is the space of alh-particle
wave functions with no symmetry restrictions. From this we K
=—|E f(x)a(o) Vet 5 [v f(x)la(o)

may construct orthogonal subspaces

'H%nzp_,_'}-[@n, X(pn(xl(fl,XZO'z, P ,Xno'n), (E12)

if eHE". For the bosonic current it is the other way
HON=Pp_H O around. Having done all this, we would now like to write the
DPVA more rigorously. Now for some notation. As before,
let g=exp(ky-X)® &, (the square root of the volume is not
needed as we want all operators in momentum space to be
dimensionless Then, as before

Tensors fron#3" are orthogonal to tensors froft®". The
only exceptions are when=0 orn=1. The spacé<%" is
the space of bosonic-wave functions and the spdcé is

the space of fermionic wave functions. The definition of the K.r)= E13
Fermi-density distribution proceeds as follows. Letbe Yk =c(9), (E13
written as
p(kmr)=p(9), (E14
v= a(o)é,.
ae%u () 3p(Kn )= p(Kpu) = NP S o, (E19
The Fermi-density distibution is an operator on the Fock i(kor)=J4(g), (E16)

space, given a vectdr®v e H in the single-particle Hilbert
space, and a tensar in the n-particle subspace af(H),
there exists a corresponding operapdif @ v) that acts as
follows:

) s(Kml) = js(Kmr). (E17)

Having done this, we would like to write down another for-
mula for the canonical conjugate:
[p(f®V)@]n(X101,X207, . . . Xy00) =0,
VII(xo)=(—1p(xa))I(x0)+VP([p];x0)—[—iP,VII].
if cH2" and (E18
Then we havébear in mind here that we have distinguished
between thec number N? and the operatop(0Or) whose
[p(f®V)@]n(X101,X202, . . . Xn0O7p) expectation value is\I?]
n

=i§1 f(X)a( ) @n(X101, X205, - - - Xn0n), 1

. 1
(i qm)xqmr: - ( 0
N 0
1+UNY Sp(Kar) Ty ()
wheng e H®". The physical meaning of this abstract opera- kn
tor will become clear soon. Let us now define the current
density in an analogous fashion, To physicists, it is,

X ; 6j(pnr>Tpn<qm>}5qm,o+ F(Lp:tml).

1
0= (E)W(w—(v W'yl (E10 E19
where
To mathematicians it is an operator similar to the derféity.
Given a typical element®v associated with the underlying E expiGQm- X)F([p]; Gl ) =V® —[—id,VIT].
single-particle Hilbert space, there is an operator denoted by am
J(fev), (s=1,2,3) that acts on a typical tensor from the (E20

n-particle subspace of the full Fock space as follows: . . .
As regards the object,, that is conjugate to the total num-

ber is concerned, we must retain it as it is, since, it will
[Js(f@v)eln(X101, X202, - .. Xh00)=0,  (E1D ensure that the total number when commuting with the field
operator is the field operator itself rather than the incorrect
if peH$", and answer zero. Fog,,#0
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1\ [ i 1 . idm-F([pl;dmr)
xqmr: _2) (m) {2 Om* 5J(pnr)Tpn(Qm)} 5qm,0_ m—zm (EZl)
A 1 INY Sp(ka ) T () ™ fm

In order to defineX,, in terms of Fermi fields, we have to make use of the fact that this object does not commute with the total
number of fermions. This means it cannot be expressed exclusively in terms of number-conserving Fermi bilinears like

currents and densities. This will mean that we merely invert the formula if3y.and solve forX, as

Xo=— 2, Xy +i2 In
K% 0 Km

Xex;{ —i; X ¢([P];an)an(km)) } 5km,0-

Define an operator which is defined to be the formal ex-

pansion that the formula itself suggests:
"Z(knr):eXF{ _iqz Tqm(kn)xqmr)
xexp(in Tqm(kn>¢<[p]:qmr>)

1/2
X N?+q2 5p<qmr>Tqm<kn>) 8¢, .0-

(E23

We would now like to write down a statement that would
require a proof. This conjecture when proven will vindicate

the DPVA.
Conjecture

There exists a unique function@ ([ p];xr) and a unique
odd (for fermions, even for bosonsntegerm such that the

following recursion holds:
D ([{p(y101) — 8(y1=X') 8, o} ]ix0) + P ([p];X o)
~®([plixa) —D([{p(y101) ~ 8(Y1=X) 85, ,}1:X o)

(E24)

=mar,

JN—?+qZ fw(an)an(km))

-1/2

N?+q2 8p(0a) Tq (Km)

(E22

(Kl = (Kol ). (E25

We know how the ingredients af(k,r) namely the current
j(k,r) and the densityp(q,r) act on typical elements of the
Fock space, and we know how(k,r) acts on the Fock

space, we just have to show that the complicakékl,r) acts

the same way as the simpigk,r). Moreover, this is true
for a unique phase functiondb. Lastly, we would like to
defend the above “Fourier gymnastics” by pointing out that
the real-space formulation is not well-defined due to the fact
that the line integral that appears in the formulas is difficult
to define, any attempt is equivalent to the above approach.
The other reason for attempting a rigorous formulation is the
fact well-known to mathematicians that it is not possible to
have a self-adjoint canonical conjugate of a positive definite
self-adjoint operator. Sincg is positive definite, the natural
guestion that arises is whethlris self-adjoint? We take the
naive physicist’s approach to this issue, namely we allow for
sign changes irp and argue that these merely amount to
translating the phase function@l by constant amounts, thus
not altering the general framework. Within this framework,
IT is indeed self-adjoint and all is well. It is also worth re-
marking that the overall conjugalé has two contributions,
one from the position independent pXg,,, and the other is
from terms involving currents and densities. The latter con-

and has the following additional effects. The domain of defi-tripution is manifestly self-adjoint. The possible lack of self-

nition of Y/(k,r) (in which the series expansion convergiss  adjointness of the overall conjugate stems from the canonical
the same as that af(k,r) and it acts the same way too. In conjugate of the total number which cannot be expressed in

other words

terms of Fermi bilinears.
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