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Single-particle Green functions in exactly solvable models of Bose and Fermi liquids
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Based on a class of exactly solvable models of interacting Bose and Fermi liquids, we compute the single-
particle propagators of these systems exactly for all wavelengths and energies and in any number of spatial
dimensions. The field operators are expressed in terms of Bose fields that correspond to displacements of the
condensate in the Bose case and displacements of the Fermi sea in the Fermi case. Unlike some of the previous
attempts, the present attempt reduces the answer for the spectral function in any dimension in both Fermi and
Bose systems to quadratures. It is shown that when only the lowest-order sea-displacement terms are included,
is the random-phase approximation in its many guises recovered in the Fermi case, and Bogoliubov’s theory in
the Bose case. The momentum distribution is evaluated using two different approaches, exact diagonalization
and the equation of motion approach; the novelty being, of course, the exact computation of single-particle
properties including short-wavelength behavior.@S0163-1829~98!00624-9#
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I. INTRODUCTION

Recent years have seen remarkable development
many-body theory in the form of an assortment of techniq
that may be loosely termed bosonization. The beginning
these types of techniques may be traced back to the wor
Tomonaga1 and later on by Luttinger2 and by Lieb and
Mattis.3 The work of Sawada4 and Arponen and Pajanne5 in
recasting the Fermi-gas problem in a Bose language ha
be mentioned. Arponen and Pajanne recover correction
the random-phase approximation~RPA! of Bohm and Pines6

in a systematic manner. In nuclear physics, bosonizatio
widely used to study collective properties, for an introdu
tion see the book by Iachello and Arima.7 In the 1970s an
attempt was made by Luther8 at generalizing these ideas
higher dimensions. Closely related to this is the work
Sharpet al.9 in current algebra. More progress was made
Haldane10 which culminated in the explicit computation o
the single-particle propagator by Castro-Neto and Fradk11

and by Houghtonet al.12 and also by Kopietzet al.13 Rigor-
ous work by Frohlichet al.14 is also along similar lines. Also
the work of Frauet al.15 on algebraic bosonization is re
evant to the present article as the authors have consid
effects beyond the linear dispersion in that article. The
actly solvable models of Calogero and Sutherland are of
evance here as well, the exact propagators of these mo
have been computed by various authors.16 Recently, these
types of models have been generalized to more than
dimension by Ghosh.17

The attempt made here is to generalize the concept
Haldane10 to accomodate short-wavelength fluctuatio
where the concept of a linearized bare fermion energy
persion is no longer valid. To motivate progress in this
rection, we find that it is necessary to introduce two differe
concepts, one is the canonical conjugate of the Fermi/B
density distribution, the other is the concept of se
condensate displacements.

Histrorically speaking, the idea that the velocity opera
could serve as the canonical conjugate of the density
been around for a long time, and this has been exploite
570163-1829/98/57~24!/15144~23!/$15.00
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the study of He-II by Sunakawaet al.18 However, the authors
are not aware of a rigorous study of the meaning of t
object, in particular, an explicit formula for the canonic
conjugate of the density operator has to the best of the
thors’ knowledge never been written down in terms of t
field operators. The work by Sharpet al.9 comes close to
what we are attempting here.

The concept of a sea displacement is a generalizatio
the traditional approach used for bosonizing one-dimensio
~1D! systems such as the Tomonaga-Luttinger1,2 models.
There, one introduces Bose fields that correspond physic
to displacement of the Fermi surface~in 1D, Fermi points!.
These Bose fields have simple forms relating them
number-conserving products of Fermi fields. The field ope
tor is obtained by exponentiating the commutation rule
tween the surface-displacement operator and the field op
tor. By analogy, we generalize these ideas, so that one i
longer restricted to be close to the Fermi surface. The w
this is done is to postulate the existence of Bose fields
correspond to displacements of the Fermi sea rather than
the Fermi surface. From this it is possible to write dow
formulas for the number-conserving product of two Fer
fields in terms of the Bose fields. A similar construction
possible when the parent fields are bosons, but here, we
that instead of sea displacements, we have to introduce
erators that correspond physically to displacements of
condensate. Actually, the Bose case is much simpler an
mathematically rigorous formulation of this corresponden
is possible. This is a boon, since we use this fact and m
plausible the analogous correspondence in the Fermi c
The assertions in the Fermi case are not proved ‘‘rig
ously,’’ rather are made exceedingly plausible by analo
This is the main drawback of this article.

This article is organized as follows. In the next sectio
we present some formulas that relate the number conser
product of two Fermi/Bose fields to the relevant se
condensate-displacement operators that are postulated
canonical bosons. The sea/condensate-displacement o
tors in turn may be related to the parent Fermi/Bose fields
it happens, this formula is simple in the case when the pa
15 144 © 1998 The American Physical Society
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fields are bosons but is difficult in the case when the pa
fields are fermions.

Following this, we write down a generic formula for th
Fermi/Bose field operator in terms of the density opera
~operator-valued distribution, to be precise! and its canonical
conjugate. The new ingredient in this section is the canon
conjugate of the density operator. This quantity may in tu
be related to currents and densities. We find that these
mulas are ambiguous unless a proper choice is made f
certain phase functional. For bosons, we find that this cho
is the zero functional but for fermions it has to be determin
by making contact with the free theory~done in Sec. IV!.

Combining the two previous sections, we write down
Sec. IV, formulas for currents and densities in terms of
sea/condensate displacements, the field operator has a
mula in terms of the sea/condensate-displacements as
Contact is made with the propagator of the free theory
the undetermined phase functional of the previous section
determined for the Fermi case. In Sec. V, interaction ter
are introduced that correspond to two-body repulsive in
actions. It is argued and demonstrated that selectively ret
ing parts of the interaction that are quadratic in the s
condensate displacements amounts to using Bogoliu
RPA theory. Corrections to this quadratic Hamiltonian a
easy to write down but are not used to compute correcti
to RPA/Bogoliubov theory as this requires significantly mo
effort. It is found that the diagonalization of the RPA Ham
tonian is rather tricky if one wants to recover both t
particle-hole modes and the collective mode. In the e
closed formulas are written down for the Fermi propagato
all three spatial dimensions and their various qualitative f
tures are examined. This completes the solution of the ma
body problem in the RPA/Bogoliubov limit.

The Appendixes are as follows: Appendix A contains
detailed proof of the correspondence between the num
conserving product of two Bose fields and the correspond
condensate displacements. Appendix B involves writ
down similar ideas for Fermi systems. However here,
various assertions are only made plausible unlike in the B
case where a rigorous solution is possible. Appendix C
devoted to proving the assertion that retaining only ter
linear in the sea displacements in the definition of the den
recovers the RPA. Appendix D involves a derivation of t
formula for the momentum distribution of the 1D syste
nt
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using the equation of motion approach. Appendix E conta
some technical statements regarding the proof of unique
of the formula relating the Fermi field with the correspon
ing currents and densities.

II. EXPRESSING PRODUCTS OF PARENT FIELDS
IN TERMS OF SEA DISPLACEMENTS

In this section we introduce canonical Bose fields cal
sea displacements in the Fermi case and condensate disp
ments in the Bose case. First, we write down a formula
the number-conserving product of two Bose fields in ter
of the condensate-displacement operators. A rigourous p
of this is relegated to Appendix A. The correspondence
made plausible by making several observations about th
formulas. Let us first focus on the Bose case. Letbq andbq

†

be canonical Bose operators. From these, we may cons
other Bose operators defined as follows(qÞ0):

dq/2~q!5S 1

AN0
D b0

†bq ~1!

and

d0~0!50, ~2!

where N05b0
†b0 . This is the condensate-displacement a

nhilation operator. It is so named for the following reaso
The definition suggests that this operator removes a bo
from among those that are not in the condensate and ret
it to the condensate, thereby displacing the latter. The rea
for the redundant momentum label in the notationdq/2(q)
becomes clear if one realizes that a more general ob
would be a sea-displacement annhilation operatordk1q/2(q) .
Since the condensate corresponds tok50, we have just the
condensate-displacement annhilation operator. In fact, it
be shown subsequently that for the Fermi case we hav
deal with this more general object namely, the se
displacement annhilation operator. It may be shown that~see
Appendix A! this object dq/2(q) satisfies canonical Bos
commutation rules. Also a formula is possible for th
number-conserving product of two parent bosons in term
these condensate displacements. The formula is wri
down below and proved in Appendix A:
bk1q/2
† bk2q/25N0dk,0dq,01@dk1q/2,0~AN0!dk~2q!1dk2q/2,0dk

†~q!~AN0!#1d~1/2!~k1q/2!
† ~k1q/2!d~1/2!~k2q/2!~k2q/2!,

~3!
s
ct

of
sed
where

N05N2(
q1

dq1/2
† ~q1!dq1/2~q1! ~4!

and

@dq/2~q!,N#50, ~5!
N5(
q

bq
†bq , ~6!

also the objectd0(0)50, by definition.
The way the authors initially derived this formula is a

follows. One starts off with the observation that the obje
bk1q/2

† bk2q/2 is the only one that enters in the Hamiltonian
number-conserving systems. Furthermore, it satisfies clo
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15 146 57GIRISH S. SETLUR AND YIA-CHUNG CHANG
commutation rules amongst other members of its kind. O
is therefore led to look for formulas for these objects in ter
of other bosons with a view to make the full Hamiltonia
more easily diagonalizable. In particular, if there were Bo
operatorsdq/2(q) anddq/2

† (q) such thatbk1q/2
† bk2q/2 was ex-

actly linear in these bosons, then the full Hamiltonian wou
indeed be exactly diagonalizable. We find that this is not
case and there are corrections to this linear term and i
happens that introduction of a quadratic term in the cond
sate displacements in fact makes the correspondence e
The authors are not aware of a deeper reason behind
simple formula that terminates after including the quadra
term, after all, the formula for the parent annhilation opera
bq in terms of the condensate displacements is formidabl
we shall soon see. The Bose case being so simple and e
can be used as a benchmark to write down correspon
formulas in the Fermi case, where rigorous proofs are m
harder to come by. The authors also have in mind gene
zations to relativistic systems, where one might profit
following the above prescription. In particular, it would b
fe
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fascinating to see if the ideas above were useful in get
nonperturbative information regarding gauge theories l
QED, QCD, etc. But this is far into the future. For now, l
us try to write down a similar correspondence for the no
relativistic Fermi system.

As mentioned earlier, for Fermi systems, it is necessar
postulate the existence of a sea-displacement annhilation
erator, denoted byak(q). A formula for this in terms of the
Fermi fields is extremely difficult to deduce. In Appendix B
attempts are made to do exactly this. There it is pointed
that these objects satisfy canonical boson commutation ru
The important issues that enable one to draw practical c
clusions, fortunately do not depend very much on the te
nical details. In Appendix B and in the sections that follo
we show how to extract the necessary physics while ciru
venting the technical details. It must be pointed out howe
that this drawback is regrettable. Let us merely quote
final answers and later on make these formulas plausi
The RPA form of the number conserving product of tw
Fermi fields in terms of the sea bosons is given by(qÞ0):
ck1q/2
† ck2q/25S N

^N& D
1/2

@Lk~q!ak~2q!1ak
†~q!Lk~2q!#1T1~k,q!(

q1

ak1q/22q1/2
† ~q1!ak2q1/2~q12q!

2T2~k,q!(
q1

ak2q/21q1/2
† ~q1!ak1q1/2~q12q!. ~7!
be
the
gy
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T1~k,q!5A12n̄k1q/2A12n̄k2q/2, ~8!

T2~k,q!5An̄k1q/2n̄k2q/2, ~9!

Lk~q!5An̄k1q/2~12n̄k2q/2!. ~10!

Also, the sea-boson commutes with the total number of
mions,

@ak~q!,N#50 ~11!

and the operatorak(0)50. Further,

nk5nb~k!
N

^N&
1(

q
ak2q/2

† ~q!ak2q/2~q!

2(
q

ak1q/2
† ~q!ak1q/2~q! ~12!

and

nb~k!5
1

exp„b~ek2m!…11
. ~13!

Also n̄k5^nk&. The expectation value is with respect to t
full interacting ground state. This quantity depends on
interactions that are present in the system and must be e
ated self-consistently. In fact, there is a deeper reason
introducing this. The exact formula for the number conse
r-

e
lu-
or
-

ing product of two Fermi fields and the sea bosons may
expected to involve the number operator itself under
square-root sign. This is made exceedingly likely by analo
with the Bose case, where the square root of the num
operator in the zero momentum state appears. In Append
the manner in which this exact correspondence may be
duced is hinted at. At this stage, it is pertinent to mer
write down a formula for the sea-boson annhilation opera
in the RPA limit. The sea boson is defined analogous to
condensate-displacement boson, except the Fermi cas
more complicated due to the presence of the Fermi surf
The sea boson may be defined as follows~the rest of the
details including a ‘‘proof’’ of this fact and how it fits into
the Fermi-bilinear-sea-boson correspondence is relegate
Appendix B!,

ak~q!5
1

Ank2q/2

ck2q/2
† S nb~k2q/2!

^N& D 1/2

eiu~k,q!ck1q/2 .

~14!

Here u(k,q) is a c number phase that serves to random
cancel out troublesome terms: this is also related to the ‘‘r
dom phase’’ of the random-phase approximation of Bo
and Pines. Thus the above formula for the sea boson is in
‘‘random-phase’’ approximation.

This correspondence recovers the salient features of
finite and zero-temperature aspects of the free theory
vided we make the following assumption, the sea bosons
participate in the thermodynamic averaging but come w
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an infinite negative chemical potential. This means that as
as the free theory is concerned, the average value of
sea-boson occupation is zero in the noninteracting case.
kinetic energy operator in the sea-boson language is give

K5(
k,q

k–q

m
ak

†~q!ak~q!1Ne0 , ~15!

wheree0 is the kinetic energy per particle. Therefore,

^ak
†~q!ak~q!&5

1

exp„b~k•q/m2mB!…21
50, ~16!

where2mB5`. However, when there are interactions in t
system, the answer is likely to be different. In particular, it
likely to be a nonanalytic function of the interaction in su
a way that it vanishes as the coupling goes to zero~this is
demonstrated explicitly in Appendix D!. Roughly speaking
we may write

^ak
†~q!ak~q!&'S 1

VDexp~21/v !, ~17!

where v is the Coulomb repulsion parameter andV is the
volume. All these do come out naturally from the correspo
dece written down above as we shall soon see. We have
written down a useful correspondence between Fermi
Bose operators that recovers the salient features of the
theory at zero and finite temperature and it is clear that
correspondence is all that is needed to write down mo
Hamiltonians with any sort of interaction, such as Coulo
bic, with phonons, etc., and extract exact nonperturba
~more precisely, nonanalytic in the couplings! solutions.
These solutions possess features that are impossible to
ture via diagrammatic means let alone mean-field theo
Thus a strong case is to be made for this method as a
paradigm for condensed-matter physics.

III. FIELD OPERATOR IN TERMS OF DENSITY
AND ITS CANONICAL CONJUGATE

In this section, we introduce the canonical conjugate
the Fermi/Bose density distribution. The reason for do
this is that we would like to express the field operator its
in terms of the density and its canonical conjugate and c
sequently in terms of current and densities. None of th
ideas are really new. For example, Sunakawaet al.18 use the
velocity operator as a canonical conjugate of the density
their investigation of the properties of He-II. The veloci
operator is somewhat related to the current operator bu
not exactly equal to it. The reason is that the current oper
behaves like the conjugate of the density as far as comm
tion rules with the latter is concerned, but does not comm
with members of its own kind~it is difficult to say this in
words but will soon become clear!. Let us postulate the ex
istence of the objectP(xs) as the canonical conjugate of th
density,

@P~xs!,r~ys8!#5 id~x2y!ds,s8, ~18!

@P~xs!,P~ys8!#50. ~19!
ar
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It is clear that redefinitions of this object by amounts th
involve translations by~more or less arbitrary! functionals of
the density are not going to spoil the nature of the comm
tation rules above. However, we shall take the point of vi
that P is defined to be that~almost unique! object that sat-
isfies the relation below~making mathematically rigorous
sense out of all this requires the use of functional analy
and will be attempted in Appendix E!.

r~xs!52 i
d

dP~xs!
. ~20!

Observe thatr(xs)5c†(xs)c(xs) ~technical problems in-
volving the multiplication of operator-valued distributions
the same point are alleviated by assuming that we have
whole system in a box, with periodic boundary conditions
the fields, making any infinities only as large as the volu
of the box itself, please refer to Appendix E for more d
tails!. Observe that~valid for both Bose as well as Ferm
systems!,

@r~xs!,c~x8s8!#52dd~x2x8!ds,s8c~xs!. ~21!

Rewriting this as a differential equation,

F2 i
d

dP~xs!
,c~x8s8!G52dd~x2x8!ds,s8c~xs!.

~22!

This may be solved~exponentiation of commutation rules
the more technical term! as

c~xs!5exp„2 iP~xs!…F~@r#;xs!. ~23!

Observe now thatr5c†c. Therefore,

F†~@r#;xs!F~@r#;xs!5r~xs!. ~24!

This may in turn be solved and the final density phase v
able ansatz~DPVA for short! may be written as

c~xs!5e2 iP~xs!eiF~ [r];xs!
„r~xs!…1/2. ~25!

It may be noted above that redefinitions ofP consistent with
it being the canonical conjugate tor may be absorbed by a
suitable redefinition of the phase functionalF. Therefore,
Eq. ~25! is in fact quite general. The crucial point of th
whole exercise is that the phase functionalF determines the
statistics of the fieldc(xs). It may be shown~the proof is
rather tedious and since this issue is not central to the p
tical computations, we defer the proof to a future commu
cation! that imposition of Bose/Fermi commutation rule
on c involves imposing the following restriction on the form
of F:

F„@$r~y1s1!2d~y12x8!ds1 ,s8%#;xs…

1F~@r#;x8s8!2F~@r#;xs!

2F„@$r~y1s1!2d~y12x!ds1 ,s%#;x8s8…5mp,

~26!

wherem is an odd integer for fermions and even for boso
This recursion is to be satisfied for all (xs)Þ(x8s8). It will
be shown later that the restriction is far more severe, brou
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about by the need to recover the free case properly. It m
puzzle the reader that the above statement implies th
random choice of the phase functional that ensures that
recursion is satisfied does not suffice. This is mysterious,
is clarified by a conjecture in Appendix E. This is done
relating the canonical conjugate to the current operator
rewriting the DPVA in terms of current and densities. Aga
this type of idea has been addressed in the paper by Go
et al.9 However, many in this field continue to be under t
mistaken impression that the formula for the annhilation
erator~say the Fermi operator! in terms of the correspondin
currents and densities depends on whether the fields in q
tion are free or whether there are interactions in the syst
This is shown to be false in the Bose case, by demonstra
that there is a uniqueF namelyF50 that reproduces the
free theory properly. Interactions just change the form of
Hamiltonian but do not affect the form of the field operat
in terms of currents and densities. The same is true but
easily seen in the Fermi case; indeed throughtout this ar
we find that the Bose case is much simpler and we shall
refuge under this rigorously justifiable edifice when co
fronted by Fermi systems. Further, the formulas for the fi
operators suggested by Goldin, Menikoff, and Sharp in th
famous paper9 are according to our results only partially co
rect, since they have not actually introduced the phase fu
tionalF and computed it~this will again become clear soon!.

Let us now write down a formula for the current opera
in terms of the canonical conjugate and density,

J5S 1

2i D @c†¹c2~¹c!†c# ~27!

using the DPVA Eq.~25!,

J~xs!5r~¹F!2r~¹P1@2 iF,¹P#!. ~28!

From this it possible to deduce a formula for the conjugate
terms of currents and densities,

P~xs!5X0s1Ex
dl@21/r~ys!#J~ys!1F~@r#;xs!

2Ex
dl@2 iF,¹P#~ys!. ~29!

The line integral is along an arbitrary path from a remo
point where all quantities may be set equal to zero. The fi
operator may now be rewritten exclusively in terms of c
rents and densities, like

c~xs!5expH 2 iX0s2 i Ex
dl@21/r~ys!#J~ys!

2 iF~@r#;xs!1 i Ex
dl@2 iF,¹P#~ys!J

3eiF~ [r];xs!
„r~xs!…1/2, ~30!

whereX0s is canonically conjugate to the total number
fermions/bosons(@X0s ,Ns8#5 ids,s8) Ns5(kcks

† cks . The
need for this is clear. The gradient ofP does not involve the
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objectX0s , when in fact it should. To put it differently, the
field operator when commuted withNs should produce it-
self, whereas if we omit the objectX0s then we find that the
field operator commutes with the total number, which sho
not happen. These nuances are not very important for
practical computations as we shall see. It will be shown la
that for bosonsF50 is the only possible choice and fo
fermionsF has to be fixed by making contact with the fre
theory. Uniqueness is assumed for the Fermi case by ma
an analogy with the Bose case for which uniqueness may
proved.

IV. MAKING CONTACT WITH THE FREE THEORY

In this section, we write down the kinetic energy opera
in terms of the sea displacements and determine the und
mined phase functionalF in the Fermi case. The reason wh
the phase functionalF50 in the Bose case will also b
addressed here. Let us take the Bose case first. It is cle
the outset that the choiceF50 satisfies the recursion Eq
~26! for bosons when one assumes thatm50, an even inte-
ger. That this is the only possible choice is not at all clear
order to verify this, let us write down the kinetic energ
operator in terms of the density and its conjugate and sh
that an expansion in terms of the density fluctuations rec
ers the correct form of the dynamical density correlati
function of the free theory~just the Bose case!.

K5E dx

2mFr~¹P!21
~¹r!2

4r G1c2number . ~31!

It may now be verified that an expansion in terms of dens
fluctuations leads to a Hamiltonian that describes free h
monic oscillators, which may be easily diagonalized. It m
also be shown that this diagonalized form reproduces
correct dynamical density correlation functions. The e
panded form of the operator in Fourier space is reprodu
below for convenience:

K5 (
qÞ0

NeqXqX2q1 (
qÞ0

eq

4N
rqr2q . ~32!

A different choice ofF does not reproduce the free theo
correctly. This is attested to by a simple calculation made
1D. Let us assume a form,

F~@r#;x!52pE
2`

1`

dyu~x2y!@r~y!2r0#, ~33!

whereu(x) is the Heaviside step function. The above for
clearly satisfies the recursion but does not reproduce the
theory as may be easily verified by the reader.

The Fermi case is somewhat more difficult. The difficu
is due to the fact that we must have a choice ofFÞ0 that
satisifes the recursion at the same time reproducing the



ic
e

n
u
w
de

-
ti
e

no

q.

r-
en

t
p

m
en
to

e
e

tte

of
sual
sea-

e

57 15 149SINGLE-PARTICLE GREEN FUNCTIONS IN EXACTLY . . .
case. We shall take the point of view that the simplest cho
for F namely linear inr should suffice. In any event, for th
scheme to have practical significance, it is important forF to
be a simple functional of the density. We fix the coefficie
in this ansatz by making contact with the free theory. Let
focus on the case of spinless fermions. In what follows,
restrict ourselves to zero temperature and a weakly noni
system, in this case, we are allowed to replace then̄k in the
definition of Lk(q) by its noninteracting value at zero tem
perature. More interesting situations arise when the quan
n̄k is evaluated self-consistently, but we shall relegate th
issues to future publications.19 From Eq.~30! it is clear that
redefinitions of the phase functional by amounts that do
depend on the density, for example,F(@r#;x)→F(@r#;x)
1 f (x), do not affect the formula for the field operator in E
~30!. Therefore, let us try the following ansatz forF:

F~@r#;x!5 (
qÞ0

Uq~x!rq . ~34!

Let us now write down the kinetic energy operator for fe
mions using the results of the first section. The kinetic
ergy operator was written down as

K5(
k,q

k–q

m
ak

†~q!ak~q!1Ne0 . ~35!

It has been demonstrated in Appendix C that if one uses
form of the density-fluctuation operator obtained by dro
ping quadratic terms in the sea displacements~the existence
of such quadratic terms are hinted in Appendix B!, this re-
produces the RPA dielectric function. Since we know fro
prior experience that the RPA is exact in the ultrahigh d
sity limit, we can use these two pieces of information
deduce a formula forUq(x) in terms of the properties of th
free theory. First let us write down the RPA form of th
density-fluctuation operator,

r̃q5(
k

@Lk~q!ak~2q!1Lk~2q!ak
†~q!#, ~36!

where

Lk~q!5An̄k1q/2~12n̄k2q/2! ~37!

and the corresponding conjugate variable may be wri
down ~that is,P in Fourier space!,
e

t
s
e
al

ty
se

t

-

he
-

-

n

X̃q5S 2
1

2iNeq
D(

k
@Lk~2q!vk~q!ak~q!

2Lk~q!vk~2q!ak
†~2q!#, ~38!

where the dispersion is given byvk(q)5k–q/m. From this
the Fermi-field operator may be written down as

c~x!5e2 iU 1~x!eiU 2~x!Ar0, ~39!

where

U1~x!5 (
qÞ0

eiq–xX̃q , ~40!

U2~x!5 (
qÞ0

Uq~x!r̃q . ~41!

Using these facts, let us compute the equal-time version
the propagator below in the Bose language and in the u
Fermi language and equate the two expressions. In the
displacement language it comes out as

^c†~x,t !c~x8,t !&

5r0e2Sk,qÞ0gk,q* ~x!gk,q~x!eSk,qÞ0gk,q* ~x!gk,q~x8!,

~42!

where

gk,q~x!52e2 iq–xS 1

2Neq
DLk~2q!vk~q!1 iU q~x!Lk~2q!

52 f k,q* ~x!. ~43!

In the original Fermi language it is

^c†~x,t !c~x8,t !&5
1

V(
q

eiq•~x82x!u~kf2uqu!. ~44!

Set Uq(x)5e2 iq–xU0(q) and U0(q) is real. In order to de-
rive a formula forU0(q), let us equate the logarithm of th
two expressions
ln@^c†~x,t !c~x8,t !&#5 ln~r0!1 (
k,qÞ0

F S 1

2Neq
D 2S k–q

m D 2

1„U0~q!…2G„Lk~2q!…2~eiq•~x2x8!21!

5 ln~r0!1 lnS 11
1

N(
qÞ0

~eiq•~x2x8!21!u~kf2uqu! D
' ln~r0!1

1

N(
qÞ0

~eiq•~x2x8!21!u~kf2uqu!. ~45!
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This leads to the following formula for the coefficient:

U0~q!5
1

NS u~kf2uqu!2w1~q!

w2~q! D 1/2

, ~46!

w1~q!5S 1

4Neq
2D(k

S k–q

m D 2

„Lk~2q!…2, ~47!

w2~q!5S 1

ND(
k

„Lk~2q!…2. ~48!

In fact, in principle, we could go all the way back to th
expression in Eq.~30! and say that we now have a uniqu
correspondence between the Fermi-field operator and
corresponding currents and densities. In the next section
in
t
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write down and diagonalize the Hamiltonian of interacti
systems. It is shown that when the lowest-order s
displacement terms/condensate displacement terms ar
cluded, it amounts to using RPA/Bogoliubov theory. Th
Hamiltonian is diagonalized in the Fermi and Bose cases
the single-particle spectral functions are computed. The B
case comes out nicely since, it is just the Bogoliubov theo
but in the Fermi case, we have to take extra care in prop
diagonalizing the Hamiltonian in order not to lose th
particle-hole mode, the collective mode being more obvio

V. SPECTRAL FUNCTION OF INTERACTING SYSTEMS

Let us make the following observation for future refe
ence:
RPA/Bogoliubov ˜ Leave out the quadratic part in Eq. „B4… and Eq. „3…. ~49!
e
at

o-
oot
ua-
or-
ry.

tic

a-
v
d

-

It is pertinent at this stage to remark on the physical mean
of the above relation. In the case of bosons, it is simple
visualize. Bogoliubov’s theory is exact provided there a
large number bosons in the zero momentum state so tha
may legitimately replace the number operator by
c-number expectation value. Also it is important that t
system be weakly interacting so that the fluctuations of
number operator in the zero momentum state are small c
pared with its macroscopic expectation value. In the Fe
case an analogous statement would be that the mome
distribution be sufficiently different from zero or unity for a
values of the momenta. Also the fluctuations of the mom
tum distribution must be small. Thus for the Fermi syste
our approach gives good answers even for strong interact
that drive the momentum distribution away from zero
unity for all momenta so long as the fluctuations arou
these nonideal averages are small. In any event, the phil
phy is that we have an exactly solvable class of models
describe correlation effects in many different contexts a
this alone merits attention and serious study. In the end
periments may have to be used to ‘‘calibrate’’ these mod
so that they become a true description of the low-energy
world.

A. Bose system

Let us focus on the Bose case first. The Bogoliub
Hamiltonian may be written down by following the prescri
tion of Eq. ~49!:

Hbog5(
k

ekd~1/2!k
† ~k!d~1/2!k~k!

1 (
qÞ0

vq

2
@AN0d2q/2~2q!1dq/2

† ~q!AN0#

3@AN0dq/2~q!1d2q/2
† ~2q!AN0#. ~50!
g
o
e
we

e
-

i
um

-
,
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In the above equationN0 is an operator, therefore this is th
nonlocal Bogoliubov Hamiltonian. But we shall assume th
it is legitimate to replace it with itsc-number expectation
value. It would be interesting to see what corrections to B
goliubov theory come about by incorporating this square r
of the operator. These correction terms tell us that fluct
tions of the number of particles in the condensate are imp
tant and lead to correlations beyond the Bogoliubov theo
This is in addition to correlations coming from quadra
terms that the prescription Eq.~49! neglects. When these
approximations are implemented, and a further approxim
tion N0'N is made, it becomes exactly the Bogoliubo
theory introduced by Bogoliubov and Bogliubov an
Zubarev.20 It may be diagonalized quite easily,

Hbog5(
q

vqf q
†f q ~51!

and

f q5S vq1eq1r0vq

2vq
D 1/2

dq/2~q!

1S 2vq1eq1r0vq

2vq
D 1/2

d2q/2
† ~2q!, ~52!

dq/2~q!5S vq1eq1r0vq

2vq
D 1/2

f q2S 2vq1eq1r0vq

2vq
D 1/2

f 2q
† .

~53!

The dispersion is given by

vq5Aeq
212r0vqeq, ~54!

wherer0 is the density of bosons in the condensate~not the
overall density!. From this one may deduce the filling frac
tion and dynamical structure factor,
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Filling fraction:

f 05N0 /N512~1/N!(
q

^d~1/2!q
† ~q!d~1/2!q~q!&, ~55!

in other words

f 05N0 /N512~1/2p2r!E
0

`

dq q2S 2vq1eq1r0vq

2vq
D ,

~56!

wherer is the total density of bosons including those that
not in the condensate.

Dynamical structure factor:

S.~qt !5^rq~ t !r2q~0!&

5N0^@d2~1/2!q~2q!~ t !1d~1/2!q
† ~q!~ t !#

3@d~1/2!q~q!~0!1d2~1/2!q
† ~2q!~0!#&, ~57!

in other words

S.~q,t !5N0S eq

vq
Dexp~2 ivqt !. ~58!

This method is truly powerful when applied to compu
single-particle properties. The single-particle green funct
is difficult to obtain using conventional digrammatic met
ods or otherwise~see Kadanoff and Baym, Ref. 21!. For this
one must first write down the field operator in terms of t
condensate displacements:

P~x!'S i

2AN0
D(

q
exp~ iq–x!@dq/2~q!2d2q/2

† ~2q!#

~59!

and the expression for the field operator is

c~x!'e2 iP~x!Ar. ~60!

The propagator~all propagators in this article are evaluat
at zero temperature, this means we may set the chem
potential equal to zero in the Bose case! may now be com-
puted and shown to be equal to the free propagator at u
high density. The interacting case is more interesting. T
time-evolved version is

c~x,t !'e2 iP~x,t !Ar ~61!

and

P~x,t !5S i

2AN0
D(

q
exp~ iq–x!~Aq1Bq!

3@ f qe
2 ivqt2 f 2q

† eivqt#, ~62!

^c†~0,0!c~x,t !&5r^eiP~0,0!e2 iP~x,t !&. ~63!

In order to ensure that the free case is properly recovered
use this somewhat illegal trick, but a trick that should
very palatable to most physicists, namely multiply and div
by the free propagator and in the division use the free pro
e

n

al

a-
e

e

e
a-

gator predicted by the bosonized theory and in the numer
use the free propagator obtained from elementary consi
ations.

^c†~0,0!c~x,t !&5expF S 1

4N0
D(

q
f q~x,t !G

3^c†~0,0!c~x,t !& free, ~64!

where

Aq5S vq1eq1r0vq

2vq
D 1/2

, ~65!

Bq5S 2vq1eq1r0vq

2vq
D 1/2

. ~66!

Similarly,

^c~x,t !c†~0,0!&5r^e2 iP~x,t !eiP~0,0!&

5expF S 1

4N0
D(

q
f q~2x,2t !G

3^c~x,t !c†~0,0!& free, ~67!

where

f q~x,t !5~e2 iq–xeivqt21!~Aq1Bq!22~e2 iq–xei eqt21!.
~68!

From Kadanoff and Baym21 the spectral function may be
deduced as follows.

The spectral function:

A~p,v!5E dxE
2`

1`

dt e2 ip–x1 ivtH expF 1

4N0
(

q
f q~2x,2t !G

3@r1u~x,t !#2expF 1

4N0
(

q
f q~x,t !GrJ ~69!

and

u~x,t !5
1

V(
k

eik–xe2 i ekt. ~70!

The above answer is the exact answer for the spectral fu
tion provided Bogoliubov’s theory is adequate. Now w
move on to the Fermi case which is far more interesting a
important.

B. Fermi system

In order to compute the full propagator for these system
it is desirable to first ascertain, under what conditions th
formulas are going to be valid. The answer is given by
assertion in Eq.~49!. Thus these answers for the singl
particle properties are valid in the same limit in which RP
Bogoliubov’s theory is exact. The assertion in the Bose c
in Eq. ~49! has been verified. In order to verify the analogo
assertion in the Fermi case, we have to diagonalize the
Hamiltonian given below.@The fact that the RPA dielectric
function comes out naturally from the prescription in E
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~49! will be demsonstrated in Appendix C.# In the Fermi
case, we have to diagonalize the full Hamiltonian given
low:

H5(
k,q

vk~q!ak
†~q!ak~q!

1 (
qÞ0

vq

2V(
k,k8

@Lk~q!ak~2q!1Lk~2q!ak
†~q!#

3@Lk8~2q!ak8~q!1Lk8~q!ak8
†

~2q!#, ~71!

wherevk(q)5(k–q/m)Lk(2q). The zero-temperature cas
is somewhat special, here we may assume that the sea b
annhilates the noninteracting Fermi sea, which means
we have to introduce a factor ofLk(2q) in the dispersion
that makes the kinetic energy operator positive definite
order to diagonalize this we proceed as follows. Assume
the diagonalized form is

H5(
i ,q

ṽ i~q!bi
†~q!bi~q!, ~72!

wherebi(q) andbi
†(q) are ‘‘dressed-sea-displacement’’ o

erators. The objectsi take on values from an index set. Th
size of this set is the big issue here. Is it finite or does it h
the same size as the number of points ink space, or is it
equal to the number of points on the Fermi surface? We s
find that answers to these questions are hard, and ma
addressed only after coming to an agreement as to what
of physics we hope to capture. Indeed, in many case
physics one is forced to bend the rules or reinterpret m
ematical formulas in order to capture what one is looking f
We find that we have to resort to such methods here as w
In particular, we find the following general feature.ṽ i(q) are
the roots of the RPA-dielectric function. Now the RPA
dielectric function is a complex quantity, as it is usually i
troduced in the textbooks. Therefore finding roots can
mean finding the zeros of both the real and imaginary part
the same time for this gives no root, and both the real
imaginary part cannot be zero simultaneously. This leave
with the following options, reinterpret the zeros of the RP
dielectric function to be the maxima of the dynamical stru
ture factor, in which case one gets both the particle-h
mode as well as the collective mode. The better option is
delay taking the thermodynamic limit until after all the sum
mation over momenta have been performed. Then ass
that the density is high enough and at the very end go to
thermodynamic limit, this ensures that both the particle-h
mode and the collective mode are properly recovered. Th
are admitedly difficult issues to grapple with, and the auth
have attempted a different approach to deal with them. H
ever, the traditional viewpoint on this matter is presented
the paper by Castro-Neto and Fradkin.11 The diagonalization
proceeds as follows:

bi~q!5(
k

@bi~q!,ak
†~q!#ak~q!

2(
k

@bi~q!,ak~2q!#ak
†~2q! ~73!
-
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n
at

e
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the corresponding inverted formula reads

ak~q!5(
i

@ak~q!,bi
†~q!#bi~q!

2(
i

@ak~q!,bi~2q!#bi
†~2q!. ~74!

The quantities@bi(q),ak(2q)# and @ak(q),bi
†(q)# are c

numbers and real. Thei here could span a continuum
~particle-hole mode! or be finite ~actually there is just one
collective mode!. The diagonalization continues unabated

@bi~q!,ak
†~q!#5S Lk~2q!

ṽ i~q!2k–q/m
D gi~q!5@ak~q!,bi

†~q!#,

~75!

@bi~q!,ak~2q!#52S Lk~q!

ṽ i~q!2k–q/m
D gi~q!, ~76!

@ak~q!,bi~2q!#5S Lk~2q!

ṽ i~2q!1k–q/m
D gi~2q!, ~77!

gi~q!5F(
k

nF~k2q/2!2nF~k1q/2!

@ṽ i~q!2k–q/m#2 G21/2

. ~78!

The eigenvaluesṽ i(q) are zeros of the real part of the RP
dielectric function. The RPA dielectric function is writte
down below:

eRPA~q,ṽ !511
vq

V (
k

nF~k1q/2!2nF~k2q/2!

ṽ2k–q/m
. ~79!

As it stands, the above sum is ill-defined. In particular, if o
takes the thermodynamic limit at the outset, and treats
above sum as the principal part, then one gets the real pa
the RPA dielectric function. On the other hand, if one def
the taking of the thermodynamic limit until the very end, a
instead takes the high density limit first, then one obtains
particle-hole mode as the argument below will attest. Let
rewrite the sum in the RPA dielectric function as

eRPA~q,ṽ !511
vq

V (
k

Lk
2~q!2Lk

2~2q!

ṽ2k–q/m

511
vq

V (
k

Lk
2~q!

ṽ1vk~2q!
2

vq

V (
kÞki

Lk
2~2q!

ṽ2vk~q!

2
vq

V

Lki

2 ~2q!

ṽ2vki
~q!

. ~80!

Let us now assume that the volumeV is fixed and we now go
to the high density limit (kF→`, or equivalently when ,
uqu!kf), then we find, due to the fact below

Lk~2q!50; unless uku'kf and k•q.0. ~81!

The total number of terms in the above two sums is a sm
fraction of the total volume and askF keeps increasing, the



m

be
he
x-

57 15 153SINGLE-PARTICLE GREEN FUNCTIONS IN EXACTLY . . .
fraction gets smaller and smaller until it becomes small co
pared to unity and may be neglected. This means

12S vq

V D Lki

2 ~2q!

ṽ i~q!2vki
~q!

50. ~82!

From this we may deduce the particle-hole mode as
t
n

a
w

b

-

-
ṽ i~q!5vki

~q!1S vq

V DLki

2 ~2q!. ~83!

As is clear from the above derivation, two points must
borne in mind, one is, we have to defer the taking of t
thermodynamic limit until the very end, the other is to e
ploit the property of the objectLk(q), namely, if uqu!kf ,
andLk(2q)51 „Lk(2q)50,1 always … thenuku'kf . Al-
ternatively, we can solve forṽ i(q) as shown below:
ṽ i~q!5vki
~q!1S vq

V D Lki

2 ~2q!

11
vq

V (
k

Lk
2~q!

vki
~q!1vk~2q!

2
vq

V (
kÞki

Lk
2~2q!

vki
~q!2vk~q!

. ~84!
We shall find these formulas useful later on when we try
write down the propagator. The collective mode in 1D a
3D may be written down as shown below:

vc21D~q!5S uqu
m DA~kf1q/2!22~kf2q/2!2exp„2l~q!…

12exp„2l~q!…
,

~85!

l~q!5S 2pq

m D S 1

vq
D . ~86!

We may also write

vc21D
2 ~q!5S kfq

m D 2

1eq
212eqS kfq

m D cothS l~q!

2 D . ~87!

In 3D it is more familiar22 ~only for Coulomb repulsion!,

vc23D~q!5vpF11
3

10

~qv f !
2

vp
2 G . ~88!

For more general forms of interaction in 3D the answer m
be obtained by computing the roots of the equation belo

12
n0~vqq

2!/m

v2 H 11
1

v2F3

5
~qvF!22eq

2G J 50. ~89!

In 2D, the answer is not available in the books and may
deduced after some algebra as (v@kf uqum)

vc22D~q!5
~kf uqu/m!~112p/m/vq!

A4p/m/vq1~2p/m/vq!2
. ~90!

After all this, it is relatively simple to deduce the full propa
gator. For reference the free propagator is
o
d

y
:

e

^c†~x,t !c~x8,t8!&5r0e2Sk,qÞ0gk,q* ~x!gk,q~x!

3eSk,qÞ0gk,q* ~x!gk,q~x8!eivk~q!~ t82t !
,

~91!

^c~x8,t8!c†~x,t !&5r0e2Sk,qÞ0f k,q* ~x8! f k,q~x8!

3eSk,qÞ0f k,q* ~x! f k,q~x8!eivk~q!~ t2t8!
,

~92!

f k,q~x!5eiq–xS 1

2Neq
DLk~2q!vk~q!1 iU 2q~x!Lk~2q!,

~93!

gk,q~x!52e2 iq–xS 1

2Neq
DLk~2q!vk~q!1 iU q~x!Lk~2q!

52 f k,q* ~x!, ~94!

and

Z05eiSk,qÞ0U0~q!~1/2Neq!„Lk~2q!…2vk~q!

3e1/2Sk,qÞ0~1/2Neq!2
„Lk~2q!…2„vk~q!…2

3e1/2 Sk,qÞ0„U0~q!…2„Lk~2q!…2. ~95!

The time-evolved field operator in the interacting case is

c†~x,t !5expS (
k,qÞ0,i

Uk,q
i ~x!bi

†~q!ei ṽ i ~q!tD
3expS 2 (

k,qÞ0,i
Uk,q* i ~x!bi~q!e2 i ṽ i ~q!tDR0Z0* Ar0,

~96!

where
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Uk,q
i 5 f k,q* ~x!@ak~q!,bi

†~q!#1 f k,2q~x!@ak~2q!,bi~q!#,

R05expS 2 (
k,q,i

f k,q* ~x! f k,q~x!@bi~q!,ak
†~q!#@ak~q!,bi

†~q!# D
3expS 2

1

2(
k,q,i

f k,q* ~x! f k,2q* ~x!@ak~2q!,bi~q!#@ak~q!,bi
†~q!# D ~97!

3expS 2
1

2(
k,q,i

f k,q~x! f k,2q~x!@ak~2q!,bi~q!#@ak~q!,bi
†~q!# D . ~98!
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The two full Fermi propagators may be written down as

^c†~x,t !c~x8,t8!&

5uR 0u2uZ 0u2r0eSk,q,iUk,q* i
~x!Uk,q

i
~x8!ei ṽ i ~q!~ t82t !

, ~99!

^c~x8,t8!c†~x,t !&

5uR 0u2uZ 0u2r0eSk,q,iUk,q* i
~x8!Uk,q

i
~x!ei ṽ i ~q!~ t2t8!

. ~100!

Again, it is desirable to use the trick we used in the Bo
case, namely multiply and divide by the free propagator a
in the division use the form predicted by the bosoniz
theory and in the multiplication, use the form predicted
elementary considerations. This procedure also ensures
in spite of the fact we have not verified that the Fermi fie
written down in terms of the Bose fields anticommute, t
anticommutation rules are forced on the propagators by
free propagators which we know anticommute in the rig
fashion. This leads to the following forms for the propag
tors:

^c†~x,t !c~x8,t8!&

5uR 0u2uZ 0u4eSk,q,iUk,q* i
~x!Uk,q

i
~x8!ei ṽ i ~q!~ t82t !

3e2(
k,q

gk,q* ~x!gk,q~x8!eivk~q!~ t82t !
^c†~x,t !c~x8,t8!& ,

~101!

^c~x8,t8!c†~x,t !&

5uR 0u2uZ 0u4eSk,q,iUk,q* i
~x8!Uk,q

i
~x!ei ṽ i ~q!~ t2t8!

3e2Sk,qf k,q* ~x! f k,q~x8!eivk~q!~ t2t8!
^c~x8,t8!c†~x,t !& .

~102!

In the above formula, the indexi runs over both the collec
tive mode as well as the particle-hole mode (i 5c,k i) The
momentum distribution may be evaluated in a different w
by computing the expectation value of the number opera
in Eq. ~12!. This leads to the following answer. It include
the contribution from both the particle-hole mode and
collective mode. In Appendix D, we show how to derive t
same momentum distribution using the equation of mot
approach~actually just the collective part, for purposes
illustration!. The full momentum distribution including th
particle-hole mode is given below.
e
d
d

hat
s
e
e
t
-

y
r

e

n

^ck
†ck&5u~kf2uku!F1~k!1@12u~kf2uku!#F2~k!,

~103!

F1~k!512(
i ,q

12nF~k1q!

@ṽ i~2q!1k–q/m1eq#2
gi

2~2q!,

~104!

F2~k!5(
i ,q

nF~k2q!

@ṽ i~2q!1k–q/m2eq#2
gi

2~2q!. ~105!

In the above sum overi , one must include both the collectiv
mode and the particle-hole mode (i 5c,k i). A more general
result is possible for systems that are significantly more n
ideal. This comes about when one does not use the z
temperature noninteracting values in the Fermi-bilinear s
boson correspondence. The form of the moment
distribution suggested by this is given in Appendix D. It
now very easy to write down a criterion for the breakdown
Fermi-liquid behavior. It is given by equating the step at t
Fermi surface to zero~the quasiparticle residue!:

Zf5F1~kf !2F2~kf !50. ~106!

In the end, it is pertinent to address the claim made in
abstract namely that we are able to capture short-wavele
behavior. The real issue here is that we have two len
scales, one is the inverse of the Fermi momentum the oth
the Bohr radius. When one speaks of short wavelengths,
means wavelengths comparable to the Bohr radius. In
ultrahigh density limit, where all the answers we have be
deriving are valid, the inverse of the Fermi momentum
much too small~compared to the Bohr radius! for the wave-
length of any external field to be comparable to it. In oth
words, even if you have an external field that varies so r
idly in space that it changes sign over a Bohr radius,
effective field induced by such an external field is still d
scribed by the RPA. To put it yet another way, the RPA
exact in the ultrahigh density limit. Some have argued t
this limit is uninteresting since in this limit, the Coulom
interaction is completely screened out and therefore in
regime we just have a Fermi liquid. We find that this arg
ment is not entirely true. In fact, we have shown19 that when
the inverse of the Fermi momentum is small compared to
Bohr radius, it is still possible to increase the value of t
dimensionless coupling strength~for a delta-function interac-
tion! sufficiently so that Fermi-liquid behavior is destroye
We find that Fermi-liquid behavior persists in 1D for suf
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ciently weak-coupling strengths~when we assume the inte
actions are hard-cored-function interactions!, in contrast to
the Lieb-Mattis solution of the Tomonaga-Luttinger mod
We also find that Fermi-liquid behavior breaks down in mo
than one dimension for sufficiently strong values of the c
pling strength in contrast to the answers obtained by Cas
Neto and Fradkin.11 In fact we find that Fermi-liquid behav
ior persists in all three dimensions for sufficiently sm
values of the coupling strength and is destroyed in all th
dimensions for sufficiently large values of the coupli
strength. It may be argued by the reader that our results
not foolproof either, for one, we have neglected seve
terms in the Hamiltonian and those terms are small only
the limit when RPA is exact. The other points are the te
nical shortcomings, such as the fact that we have not pro
the Fermi case as rigorously as the Bose case, like the F
commutation rules are not explictly verified, etc. Notwit
standing all these shortcomings, a case is to be made fo
revision of entrenched dogma about Fermi and Luttinger
uids.

VI. CONCLUSIONS

Let us summarize the results obtained so far. We h
succeeded in reducing to quadratures the propagators of
Bose and Fermi systems. We have also computed the
mentum distribution of interacting Fermi systems and writ
down a formula for the quasiparticle residue in terms of
electron-electron repulsion. From this we obtain a criter
for the breakdown of Fermi-liquid behavior. The results w
obtain contradict some widely held views about 1D syste
in particular the Lieb-Mattis solution3 of the Tomonaga-
Luttinger model suggests that the momentum distribution
a 1D system withd-function interactions exhibits no discon
tinuity at the Fermi momentum. This is in contrast with t
results obtained above that does in fact exhibit such a
continuity for sufficiently weak values of the couplin
strength and is destroyed only for larger values of the c
pling strength. We attribute this discrepency to assumpti
used in the linearized dispersion model~i.e., Tomonaga-
Luttinger model!. Luttinger-liquid theory is based on the a
sumption that the low-energy behavior of the homogene
interacting Fermi system in one dimension is correctly
scribed by the exactly solvable Tomonaga-Luttinger mod
Our results show that the important qualitative features of
homogeneous interacting Fermi system namely the pres
or absence of a Fermi surface cannot be surmised by ex
ining the properties of the Tomonaga-Luttinger model, es
cially when the interactions are weak.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor A. H. Castro-Neto a
Professor D. K. Campbell for providing important referenc
and encouragement and the former for useful discussion
well, and Professor A. J. Leggett for giving his valuable tim
and advice on matters related to the pursuit of this work
also for providing important references and for useful disc
sions. Thanks are also due to Professor Ilias E. Perakis
providing the authors with an important reference. We a
acknowledge Professor P. W. Anderson for critically eva
.

-
o-

l
e

re
l

n
-

ed
mi

he
-

e
oth
o-

n
e
n

s,

f

s-

-
s

s
-
l.
e
ce
m-
-

d
s
as

d
-
or
o
-

ating an early version of this article. We thank Dr. S. Ch
tanvis for correcting the authors’ misreading of the Lie
Mattis solution. This work was supported in part by ON
Grant No. N00014-90-J-1267 and the University of Illino
Materials Research Laboratory, under Grant No. NSF/DM
89-20539, and in part by the Department of Physics at
University of Illinois at Urbana-Champaign.

APPENDIX A

In this appendix we prove some assertions made ear
First the definition of the condensate-displacement annh
tion operator:

dq/2~q!5S 1

AN0
D b0

†bq . ~A1!

In order to define the quantityO5(1/AN0) in a manner ac-
ceptable to most physicists, we proceed as follows.O is
defined to be that operator that commutes with the num
operatorN0

@O,N0#50 ~A2!

in the basis in whichN0 is diagonal and possesses nonze
eigenvalues~not an unreasonable assumption considering
fact that even in the most strongly interacting systemsN0 is
macroscopic, call them$N0

r %), then the matrix elements ofO
in the same basis are going to be 1/AN0

r . Having thus pro-
vided all the matrix elements, the definition ofO is com-
plete. We have to now show thatdq/2(q) satisfies canonica
Bose commutation rules. The simplest way of doing this is
use the polar decomposition ofb0

b05exp~2 iX0!AN0, ~A3!

whereX0 is the Hermitian operator canonically conjugate
N05b0

†b0 , that is, @X0 ,N0#5 i . This decomposition cor-
rectly reproduces the Bose commutation rules ofb0 andb0

† .
For example,

@b0 ,b0
†#5b0b0

†2b0
†b05exp~2 iX0!N0exp~ iX0!2N051.

~A4!

This means thatdq/2(q)5z0* bq , wherez0* 5exp(iX0). Since,
@z0 ,bq#50 and@z0 ,bq

†#50, and@z0 ,z0* #50, it follows that
dq/2(q) andbq both satisfy the same commutation rules sin
z0* now behaves effectively as ac number~as regards com-
mutation rules withbq , bq

†, andz0. It is worthwhile pointing
out

@dq/2~q!,N0#Þ0,

rather

@dq/2~q!,N#50, ~A5!

though not obviously so. In order to prove this
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@dq/2~q!,N#5@dq/2~q!,N0#1Fdq/2~q!, (
q8Þ0

bq8
† bq8G

5@exp~ iX0!,N0#bq1exp~ iX0! (
q8Þ0

@bq ,bq8
† bq8#

5@exp~ iX0!N02N0exp~ iX0!#bq1exp~ iX0!bq

5@ iX0 ,N0#exp~ iX0!bq1exp~ iX0!bq52exp~ iX0!bq1exp~ iX0!bq50. ~A6!
ic
ze
sw
tio

s,

en

dis-
ns

e-
two
case

Eq.
in

he

We
he
l

Next, one would like to prove Eq.~3!. For this we simply
plug in definition Eq.~A1! into Eq. ~3! and verify that is
reduces to an identity. The details are as follows:

Lk,q5N0dk,0dq,0

1@dk1q/2,0~AN0!dk~2q!1dk2q/2,0dk
†~q!~AN0!#

1d~1/2!~k1q/2!
† ~k1q/2!d~1/2!~k2q/2!~k2q/2!. ~A7!

The proof involves these cases:
~i! k50 andq50. In this case,

L0,05N05b0
†b0 . ~A8!

~ii ! k1q/250 but k2q/2Þ0

Lk52q/2,q5~AN0!d2q/2~2q!5b0
†b2q . ~A9!

~iii ! k2q/250 but k1q/2Þ0

Lk5q/2,q5dq/2
† ~q!~AN0!5bq

†b0 . ~A10!

~iii ! k2q/2Þ0 andk1q/2Þ0

Lk,q5d~1/2!~k1q/2!
† ~k1q/2!d~1/2!~k2q/2!~k2q/2!

5bk1q/2
† exp~2 iX0!exp~ iX0!bk2q/2

5bk1q/2
† bk2q/2 . ~A11!

Therefore in all cases,

Lk,q5bk1q/2
† bk2q/2 , ~A12!

and thus Eq.~3! follows. Finally, we would like to clarify the
finite-temperature case. In particular, what is the chem
potential of the condensate-displacement bosons? Is it
or is it the same as that of the parent bosons? The an
may be found by computing the thermodynamic expecta
value of the number of bosons in the condensateN0,

^N0&5N2 (
qÞ0

^d~1/2!q
† ~q!d~1/2!q~q!&. ~A13!

We also know the answer from elementary consideration
is

^N0&5N2 (
qÞ0

1

exp„b~eq2m!…21
, ~A14!
al
ro
er
n

it

wherem is the chemical potential of the parent bosons. Th
it follows that

^d~1/2!q
† ~q!d~1/2!q~q!&5

1

exp„b~eq2m!…21
. ~A15!

In other words, the chemical potential of the condensate
placement bosons is the same as that of the parent boso

mparent5mcond/displ. ~A16!

APPENDIX B

In this appendix, we try to to make plausible the corr
spondence between the number-conserving product of
Fermi fields and the sea bosons. Let us rewrite the Bose
@Eq. ~3!# more suggestively,

bk1q/2
† bk2q/25O~k!dq,01@Ank1q/2Ak~2q!1Ak

†~q!Ank2q/2#

1(
q1

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1!

2(
q1

Ak2q/21q1/2
† ~q1!Ak1q1/2~2q1q1!.

~B1!

In the Bose case

Ak~q!5dk2q/2,0dq/2~q! ~B2!

and

O~k!5Ndk,0 . ~B3!

Observe that the suggestively extravagant notation in
~B1! is meant to imply that a very similar relation holds
the Fermi case which we reproduce below:

ck1q/2
† ck2q/25O~k!dq,01@Ank1q/2Ak~2q!1Ak

†~q!Ank2q/2#

1(
q1

Ak1q/22q1/2
† ~q1!Ak2q1/2~2q1q1!

2(
q1

Ak2q/21q1/2
† ~q1!Ak1q1/2~2q1q1!. ~B4!

HereAk(q) depends on two momentum labels unlike in t
Bose case. This has to do with the fact the nowO(k) no
longer has the simple structure we saw in the Bose case.
must now invert this relation and obtain a formula for t
operatorAk(q). It is not at all clear that this object wil
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behave like an exact boson annhilation operator. The a
native is to write down an ansatz for an exact boson in a
ogy with the Bose case and determine the unknown in
formula by imposing canonical Bose commutation rules:

ak~q!5
1

Ank2q/2

ck2q/2
† M ~k,q!ck1q/2 . ~B5!

The unknown operatorM (k,q) has to be related to som
number-conserving Fermi bilinear by demanding that the
eratorak(q) obey canonical Bose commutation rules

@ak~q!,ak8~q8!#50, ~B6!

@ak~q!,ak8
†

~q8!#5dk,k8dq,q8 . ~B7!

It is at present beyond the authors to arrive at a formula
M (k,q). Notwithstanding this, it is still useful to captur
some sort of an approximate correspondence like the
introduced in Sec. II. The relations written down there ha
the following positive features

~i! They recover the RPA dielectric function at zero a
finite temperatures.

~ii ! They capture the correct four-point and six-point fun
tions at zero and finite temperatures.

~iii ! The formula for the sea boson in Eq.~14! when
plugged into the correspondence for the number operato
Eq. ~12! gives an identity.
or
d
th

h
t

r-
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e

-

r

ne
e

-

in

The only negative aspect of this correspondence is
the mutual commutation rules between the off-diago
Fermi bilinears is recovered correctly only up to terms line
in the sea bosons. That is, somehow the operators on
right side of these commutations rules should not be
different from their approximations obtained by droppin
terms higher than the linear order. This is no doubt a stro
assumption. This is in fact equivalent to RPA~perhaps even
better than RPA!.

The definition of the sea boson is incomplete withou
prescription for the phaseu(k,q). In order to derive an ex-
pression for this, we again make heavy use of the Bose c
which we have proved rigorously in Appendix A. There w
found that plugging in the expression for the condensa
displacement boson into the correspondence resulted in
identity when qÞ0 ~the q50 case being special!. This
identity comes about in a very specific fashion. In t
general form of the correspondence outlined in Eq.~B1!, we
find that the sum on the right that comes with a negative s
is identically zero~for qÞ0) and the sum on the right tha
comes with a positive sign is equal to the left-hand si
except in ‘‘rare’’ cases when eitherk1q/250 or k2q/2
50. We shall adopt the same approach in the Fermi case
try to fix the phaseu(k,q) such that the identity is satisfie
in the manner just described. Let us now write down t
potential identity,
ck1q/2
† ck2q/25Lk~q!

1

Ank1q/2

ck1q/2
† S nb~k1q/2!

^N& D 1/2

eiu~k,2q!ck2q/2

1Lk~2q!ck1q/2
† e2 iu~k,q!S nb~k2q/2!

^N& D 1/2

ck2q/2

1

Ank2q/2

1T1~k,q!ck1q/2
† S (

q1Þq,0

nb~k1q/22q1!

^N&
eiu~k2q1/2,2q1q1!e2 iu~k1q/22q1/2,q1!D ck2q/2

2T2~k,q!ck2q/2

1

Ank2q/2

1

Ank1q/2

ck1q/2
† S nb~k1q/2!

^N& D 1/2S nb~k2q/2!

^N& D 1/2

3 (
q1Þq,0

nk2q/21q1
eiu~k1q1/2,2q1q1!e2 iu~k2q/21q1/2,q1!. ~B8!
are
-

en-
t
te

it,
ms
Here, since we are not involved in proving the rigorous c
respondence, but just the salient features, we are entitle
some leeway. In particular, we shall turn a blind eye to
fact that there exist these objectsT1(k,q) and T2(k,q), in
fact set them both equal to unity, just for the moment. T
exact correspondence in terms of theAk(q) seems to sugges
exactly this. Then we find that, if we choose ouru(k,q) to be
such that

u~k2q1/2,2q1q1!5u~k1q/22q1/2,q1! ~B9!

and
-
to

e

e

(
q1Þ0,q

n̄k2q/21q1
eiu~k1q1/2,2q1q1!e2 iu~k2q/21q1/2,q1!50,

~B10!

then all is well. Terms that were linear in the sea bosons
vanishingly small in the thermodynamic limit, and are im
portant only when both the sums on the right side are id
tically zero for some reason, that is, it is ‘‘rarely’’ importan
just like in the Bose case. It is not really important to wri
down an explicit formula for the phase functionu(k,q), it is
merely sufficient to show that it does what is required of
namely, it provides the ‘‘random phase’’ that cancels ter
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that enable the whole machinery to run smoothly. Lastly,
have not yet verified that this sea boson obeys canon
commutation rules. This is again a tricky problem, it is like
to be resolved by the exact approach which is beyond
scope of this article. It is merely sufficient to point out th
this is likely to come about due to the strong likelihood th
the phaseu(k,q) is actually a functional of the number op
erator.

The correspondence that we have just defended is not
but a more elegant version of the correspondence introdu
by the pioneers like Castro-Neto and Fradkin.11 Any criti-
cism that may be leveled against our approach may equ
well be leveled against theirs. The only difference betwe
our approach and theirs is that the single-particle proper
which they are so fervently seeking are far more elega
recovered by our approach since we do not linearize the
fermion dispersion or use the clumsy Luther constructio8

Indeed, we have even shown that the answers for the 1D
are different from the Tomonaga-Luttinger model that line
ize the bare fermion dispersion.

The other issue worth addressing at this stage is the
lidity of the prescription in Eq.~49!. It can be seen from the
exact correspondence in Eq.~B4! that asq→0 terms that
correspond to corrections to the RPA form of the full Ham
tonian vanish at least as fast asuqu/kf . The RPA terms them-
selves do not vanish and tend toward@ limq→0Ak(2q)Þ0 as
in the Bose case#

(
k

AnkAk~2q!1(
k

Ak
†~q!Ank. ~B11!

In order for the prescription in Eq.~49! to be accurate, it is
important for the interactionvq to possess these propertie
but first it must vanish for large enoughq ~or small interpar-
ticle separation!

limuqu→c0kf
vq→0, ~B12!

wherec0 is small compared to unity and positive. This e
sures that the only possible contributions come from smaq
where corrections to the RPA form themselves are smal
addition, if we also make sure that the interaction vanis
fast enough for large interparticle separations so that

limuqu→0vq→uquD, ~B13!

whereD50,1,2, . . . ~larger the better!, then our formalism
is in fact exact askf→` ~or sufficiently large!. It may be
argued that this state of affairs is most likely uninterest
since it may not be realizable in practice, when it is,
merely leads to a Fermi liquid. This is a valid point. But it
worth pointing out that non-Fermi-liquid behavior can st
e
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.
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emerge in such systems when the interaction strength~with
the same functional form! becomes strong enough. The
considerations also tell us that for an interaction of thed
function type in 1D, provided the strength is weak enou
we have a Fermi liquid in contrast to the Lieb-Mattis sol
tion of the Tomonaga-Luttinger model.

In any event, the philosophy is that having introduced s
bosons, we more or less forget about the fact that it w
fermions that motivated their introduction in the first plac
and instead try to write down a whole new set of models
terms of the sea bosons and calibrate them appropriatel
that they capture the salient features of the real world. I
not a tautology to remark that we have in our hands a wh
class of exactly solvable models of correlated fermions t
is easier to use than mean-field theory itself but with capt
effects significantly beyond diagrammatic perturbati
theory, like the nonanalytic dependence of the moment
distribution on the coupling strength~written down in Ap-
pendix D!.

APPENDIX C

In this appendix we demonstrate that the RPA dielec
function is recovered exactly by selectively retaining parts
the Coulomb interaction that lead to RPA. We know that t
kinetic energy in the Bose language is given by

Hkin5(
k,q

S k–q

m Dak
†~q!ak~q!. ~C1!

For this let us choose

HI5 (
qÞ0

vq

2V
r̃qr̃2q , ~C2!

where

r̃q5(
k

@Lk~q!ak~2q!1Lk~2q!ak
†~q!#. ~C3!

From this it may be shown that the RPA dielectric function
recovered as the following demonstration shows. Assu
that a weak time-varying external perturbation is applied
shown below

Hext5 (
qÞ0

@Uext~q,t !1Uext* ~2q,t !#r̃q , ~C4!

where

Uext~rW,t !5U0eiq•rW2 ivt. ~C5!

Let us now write down the equations of motion for the va
ous Bose fields
i
]

]t
^ak

t ~q!&5vk~q!^ak
t ~q!&1S vq

V DLk~2q!(
k8

@Lk8~2q!^ak8
t

~q!&1Lk8~q!^ak8
t†

~2q!&#

1@Uext~q,t !1Uext* ~2q,t !#Lk~2q!, ~C6!

2 i
]

]t
^ak

t†~2q!&5vk~2q!^ak
t†~2q!&1S vq

V DLk~q!(
k8

@Lk8~2q!^ak8
t

~q!&1Lk8~q!^ak8
t†

~2q!&#

1@Uext~q,t !1Uext* ~2q,t !#Lk~q!. ~C7!
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Now, let us decompose the expectation values as follows:

^ak
t ~q!&5Uext~q,t !Ck~q!1Uext* ~2q,t !Dk~q!, ~C8!

^ak
t†~2q!&5Uext* ~2q,t !Ck* ~2q!1Uext~q,t !Dk* ~2q!. ~C9!

The coefficientsCk(q) andDk* (2q) satisfy

vCk~q!5vk~q!Ck~q!1S vq

V DLk~2q!(
k8

@Lk8~2q!Ck8~q!1Lk8~q!Dk8
* ~2q!#1Lk~2q!, ~C10!

vDk* ~2q!5vk~2q!Dk* ~2q!1S vq

V DLk~q!(
k8

@Lk8~q!Dk8
* ~2q!1Lk8~2q!Ck8~q!#1Lk~q!. ~C11!

Now, the effective potential may be written as

Ueff~q,t !5Uext~q,t !1S vq

V D ^r2q&8Uext~q,t !, ~C12!

where

^r2q&5Uext~q,t !^r2q&81Uext* ~2q,t !^r2q&9, ~C13!

using the fact that

^r2q&85(
k

Lk~2q!Ck~q!1(
k

Lk~q!Dk* ~2q!. ~C14!

Solving these equations and using the fact that the dielectric function is just the ratio of the external divided by the e
potential we get

e~q,v!5
Uext~q,t !

Ueff~q,t !
511

vq

V (
k

nF~k1q/2!2nF~k2q/2!

v2k–q/m
, ~C15!

which is nothing but the RPA dielectric function of Bohm and Pines.

APPENDIX D

In this appendix we use the equation of motion approach to solve for the momentum distribution and compare it w
solution obtained via exact diagonalization as described in the main text. The equations of motion for the Bose pro
read as

S i
]

]t
2vk~q! D2 i ^Tak

t ~q!ak8
†

~q8!&

^T1&

5dk,k8dq,q8d~ t !1S vq

V DLk~2q!(
k9

FLk9~2q!
2 i ^Tak9

t
~q!ak8

†
~q8!&

^T1&
1Lk9~q!

2 i ^Tak9
†t

~2q!ak8
†

~q8!&

^T1&
G , ~D1!

S i
]

]t
1vk~2q! D2 i ^Tak

†t~2q!ak8
†

~q8!&

^T1&

52S vq

V DLk~q!(
k9

FLk9~q!
2 i ^Tak9

†t
~2q!ak8

†
~q8!&

^T1&
1Lk9~2q!

2 i ^Tak9
t

~q!ak8
†

~q8!&

^T1&
G . ~D2!

The boundary conditions on these propagators may be written down as~for interacting systemsmB50)

2 i ^Tak
†t~2q!ak8

†
~q8!&

^T1&
5

2 i ^Tak
†~ t2 ib!~2q!ak8

†
~q8!&

^T1&
, ~D3!

2 i ^Tak
t ~q!ak8

†
~q8!&

^T1&
5

2 i ^Tak
~ t2 ib!~q!ak8

†
~q8!&

^T1&
, ~D4!



15 160 57GIRISH S. SETLUR AND YIA-CHUNG CHANG
d~ t !5S 1

2 ib D(
n

exp~vnt !, ~D5!

u~ t !5S 1

2 ib D(
n

exp~vnt !

vn
. ~D6!

The boundary conditions imply that we may write

2 i ^Tak
t ~q!ak8

†
~q8!&

^T1&
5(

n
exp~vnt !

2 i ^Tak
n~q!ak8

†
~q8!&

^T1&
, ~D7!

2 i ^Tak
†t~2q!ak8

†
~q8!&

^T1&
5(

n
exp~vnt !

2 i ^Tak
†n~2q!ak8

†
~q8!&

^T1&
, ~D8!

and,vn5(2pn)/b. Thus,

@ ivn2vk~q!#
2 i ^Tak

n~q!ak8
†

~q8!&

^T1&

5
dk,k8dq,q8

2 ib
1S vq

V DLk~2q!(
k9

FLk9~2q!
2 i ^Tak9

n
~q!ak8

†
~q8!&

^T1&
1Lk9~q!

2 i ^Tak9
†n

~2q!ak8
†

~q8!&

^T1&
G , ~D9!

@ ivn1vk~2q!#
2 i ^Tak

†n~2q!ak8
†

~q8!&

^T1&

52S vq

V DLk~q!(
k9

FLk9~q!
2 i ^Tak9

†n
~2q!ak8

†
~q8!&

^T1&
1Lk9~2q!

2 i ^Tak9
n

~q!ak8
†

~q8!&

^T1&
G , ~D10!

Define

(
k

Lk~2q!
2 i ^Tak

n~q!ak8
†

~q8!&

^T1&
5G1~q,k8,q8;n!, ~D11!

(
k

Lk~q!
2 i ^Tak

†n~2q!ak8
†

~q8!&

^T1&
5G2~q,k8,q8;n!. ~D12!

Multiplying the above equations withLk(2q) and summing overk one arrives at simple formulas forG1 andG2:

G1~q,k8,q8;n!5Lk8~2q!
dq,q8

2 ib@ ivn2vk8~q!#
1 f n~q!@G1~q,k8,q8;n!1G2~q,k8,q8;n!# ~D13!

and

G2~q,k8,q8;n!5 f n* ~2q!@G1~q,k8,q8;n!1G2~q,k8,q8;n!#, ~D14!

G2~q,k8,q8;n!5
f n* ~2q!

@12 f n* ~2q!#
G1~q,k8,q8;n!,

G1~q,k8,q8;n!1G2~q,k8,q8;n!5G1~q,k8,q8;n!/@12 f n* ~2q!#,

G1~q,k8,q8;n!5S 1

2 ib D @12 f n* ~2q!#Lk8~2q!dq,q8

@12 f n* ~2q!2 f n~q!#@ ivn2vk8~q!#
, ~D15!

G2~q,k8,q8;n!5S 1

2 ib D f n* ~2q!Lk8~2q!dq,q8

@12 f n* ~2q!2 f n~q!#@ ivn2vk8~q!#
, ~D16!
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G1~q,k8,q8;n!1G2~q,k8,q8;n!5S 1

2 ib D Lk8~2q!dq,q8

@12 f n* ~2q!2 f n~q!#@ ivn2vk8~q!#
,

2 i ^Tak
n~q!ak8

†
~q8!&

^T1&
5

dk,k8dq,q8
2 ib~ ivn2vk~q!!

1S 1

2 ib D S vq

V D Lk~2q!

@ ivn2vk~q!#

Lk8~2q!dq,q8

@12 f n* ~2q!2 f n~q!#@ ivn2vk8~q!#
. ~D17!

The zero-temperature correlation function of significance here is

2 i ^ak8
†

~q8!ak~q!&. ~D18!

This may be obtained from the above formulas as

2 i ^ak8
†

~q8!ak~q!&52S vq

V DLk~2q!Lk8~2q!dq,q8E
C

dv

2p i

1

@ iv2vk~q!#@ iv2vk8~q!#@12 f n* ~2q!2 f n~q!#
, ~D19!

where C is the positively oriented contour that encloses the upper half-plane@upper half-plane, because we ne
^ak8

† (q8)ak(q)& and not ^ak(q)ak8
† (q8)&#. Thus the problem now reduces to computing all the zeros of@12 f n* (2q)

2 f n(q)# that have positive imaginary parts. It may be shown quite easily that

eRPA~q,ivn!512 f n* ~2q!2 f n~q!. ~D20!

In 1D, the dielectric function is evaluated as follows:

12 f n* ~2q!2 f n~q!511vqS 1

2p D S m

q D lnF ~kf1q/2!21~mv/q!2

~kf2q/2!21~mv/q!2G50. ~D21!

This leads to the root

v5 i S uqu
m DA~kf1q/2!22~kf2q/2!2exp„2~2pq/m!~1/vq!…

12exp„2~2pq/m!~1/vq!…
. ~D22!

Therefore the final result may be written as

^ak8
†

~q8!ak~q!&5S 1

VD Lk~2q!Lk8~2q!dq,q8

@vR~q!1vk~q!#@vR~q!1vk8~q!#~m/q2!~1/2pkf !2~m/q!2vR~q!@cosh„l~q!…21#
, ~D23!

where

l~q!5S 2pq

m D S 1

vq
D , ~D24!

vR~q!5S uqu
m DA~kf1q/2!22~kf2q/2!2exp„2l~q!…

12exp„2l~q!…
. ~D25!

In other words,

^ck
†ck&5nF~k!1~2pkf !E

2`

1`dq1

2p

Lk2q1/2~2q1!

2vR~q1!@vR~q1!1vk2q1/2~q1!#2~m3/q1
4!@cosh„l~q1!…21#

2~2pkf !E
2`

1`dq1

2p

Lk1q1/2~2q1!

2vR~q1!@vR~q1!1vk1q1/2~q1!#2~m3/q1
4!@cosh„l~q1!…21#

. ~D26!

Note that the above formula possesses a nonanalytic dependence in the coupling strength@cosh(2pq/m)(1/vq)21#, an
unmistakable signature of a nondigrammatic result. Next, we would like to provide formulas for the momentum distr
when we use the correct interacting expectation values in the Fermi-bilinear sea-boson correspondence. The result
from these formulas are likely to be very different from the weakly nonideal case, which in any case is not very inte
The answers are given below:

n̄k5
nb~k!

S1~k!
1

S2~k!

S1~k!
, ~D27!
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where

S1~k!511(
q,i

n̄k2q

@ṽ i~2q!1k–q/m2eq#2
gi

2~2q!1(
q,i

12n̄k1q

@ṽ i~2q!1k–q/m1eq#2
gi

2~2q!, ~D28!

S2~k!5(
q,i

n̄k2q

@ṽ i~2q!1k–q/m2eq#2
gi

2~2q!, ~D29!

also the form of the ‘‘RPA’’ dielectric function and its zerosṽ i(q) are now different. The RPA dielectric function is given b

eRPA~q,v!511
vq

V (
k

n̄k1q/22n̄k2q/2

v2k–q/m
, ~D30!

gi~q!5F(
k

n̄k2q/22n̄k1q/2

„ṽ i~q!2k–q/m…

2G21/2

. ~D31!

The commutators are given as before, except for three changes. In the new approach

Lk~q!5An̄k1q/2~12n̄k2q/2!. ~D32!

Next, the zeros are slightly different. The collective mode has to be computed self-consistently, whereas the particle-h
may be written down as described earlier,

ṽ i~q!5vki
~q!1S vq

V D Lki

2 ~2q!

11~vq /V!(
k

Lk
2~q!

vki
~q!1vk~2q!

2
vq

V (
kÞki

Lk
2~2q!

vki
~q!2vk~q!

. ~D33!
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The last change is in the form ofU0(q), here we have to
make sure we use the finite-temperature noninteracting
ues. The other issue that is also of interest is whether
momentum distribution evaluated using the Fermi-biline
sea-boson correspondence is the same as that suggest
the full propagator. We have found that the answer to thi
difficult and probably in the negative. This does not me
that the whole program is wrong. Some comfort and co
dence in these manipulations may still be retained by d
onstrating that the expression for the number operator is c
sistent with the RPA form of the Fermi creation operat
Again here, we have to be content with a weak form of t
requirement. We take the point of view that it is sufficient
show that the commutator between the total momentum
the electrons and the field operator comes out the sam
both the original Fermi language and in the sea-boson
guage. The total momentum of the electrons has the for

P5(
k

kck
†ck . ~D34!

In the sea-boson language, it takes the form

P5(
k,q

qak
†~q!ak~q!. ~D35!

Therefore in the original Fermi language we have

@P,c†~x!#5 i¹c†~x!. ~D36!

In the sea-boson language we have
l-
e
/

by
is
n
-
-

n-
.
s

of
in

n-
:

@P,c†~x!#5(
k,q

q@ak
†~q!ak~q!,c†~x!#

5(
k,q

qak
†~q!@2gk,q~x!#c†~x!

1(
k,q

q@2gk,q* ~x!#c†~x!ak~q!

5 i¹c†~x!,

as it should be. All this points to the fact that the answers
the momentum distribution and propagators should not
taken too literally, rather one must be content with the qu
tative predictions that are most likely accurate, which a
seem to contradict conventional wisdom.

APPENDIX E

In the late 1970s and early 1980s, attempts were mad
write down field theories that describe scalar mesons
terms of observables like currents and densities rather
the creation and annhilation operators. The motivation
doing this stems from the fact that a theory cast directly
terms of observables was more physically intuitive than
more traditional approach based on raising and lowering
erators on the Fock space. This attempt however, raise
number of technical questions, among them was how
make sense of the various identities connecting say the
netic energy density to the currents and particle densities
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so on. Elaborate mathematical machinery was erected by
authors who started this line of research9 to address these
issues. However, it seems gaps still remain especially w
regard to the crucial question of how one goes about writ
down a formula for the annhilation operator~Fermi or Bose!
alone in terms of bilinears like currents and densities. T
bilinears in question namely currents and densities satis
closed algebra known as the current algebra.9 This algebra is
insensitive to the nature of the statistics of the underly
fields. On the other hand, if one desires information ab
single-particle properties, it is necessary to relate the an
lation operator~whose commutation rules determine the s
tistics! to bilinears like currents and densities. That such
correspondence is possible was demonstrated by Go
Menikoff, and Sharp.9 However, they have not explicitly
written down such a formula nor have they clarified so
important issues such as whether this formula changes w
one consider interacting fields rather than free fields. T
general belief is that these formulas are different for intera
ing fields. It is shown here that this is in fact not the ca
interactions in the system merely cause a change in
Hamiltonian but do not affect how the annhilation operato
related to local currents and densities. The attempts m
here are partly based on the work of Goldinet al.,9 Ligouri
and Mintchev on generalized statistics,23 and the series by
Reed and Simon.24 As has been demonstrated earlier, for t
Bose case we had to chooseF50. We argued that this
choice was unique. In the Fermi case the choice was dif
ent but was also unique due to the necessity of recovering
free theory. In this section, we write down a mathematica
rigorous statement of this uniqueness criterion. This exer
also settles the issue regarding the delicate question of
tiplying two operator-valued distributions at the same po
and other related issues, like the meaning of the square
of the density distribution. For this we prove this lemma.

Lemma. LetF be a smooth function from a bounded su
set of the real line on to the set of reals. Also letf andg be
smooth functions from some bounded subset ofR d to reals.
Let us further assume that the range of these functions
such that it is always possible to find compositions such
Fo f and they will also be smooth functions with sufficient
big domains. They possess Fourier transforms since they
well behaved. If

F„f ~x!…5g~x! ~E1!

and

f ~x!5(
q

f̃ qe
iq–x, ~E2!

g~x!5(
k

g̃ke
ik–x, ~E3!

then the following also holds:

FFS (
q

f̃ qT2q~k! D Gdk,05g̃k , ~E4!

whereTq(k)5exp(q•¹k). Here the operatorTq(k) acts on
the k in the Kronecker delta on the extreme right, and ev
time it translates thek by an amountq.
he
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e
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in,

e
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Proof. Proof is by brute force expansion. We know

F~y!5 (
n50

` F ~n!~0!

n!
yn, ~E5!

therefore

F„f ~x!…5F~0!1 (
n51

` F ~n!~0!

n! (
$qi %

f̃ q1
f̃ q2

. . . f̃ qn

3expXi S (
i 51

n

qi D •xC
5(

k
eik–xg̃k . ~E6!

This means~take the inverse Fourier transform!

F~0!dk,01 (
n51

` F ~n!~0!

n! (
$qi %

f̃ q1
f̃ q2

. . . f̃ qn
dS k2(

i 51

n

qi D ,05g̃k .

~E7!

This may also be cleverly rewritten as

F~0!dk,01 (
n51

` F ~n!~0!

n! (
$qi %

f̃ q1
f̃ q2

. . . f̃ qn
T2q1

~k!

3T2q2
~k! . . . T2qn

~k!dk,05g̃k ~E8!

and therefore,

g̃k5FFS (
q

f̃ qT2q~k! D Gdk,0 ~E9!

and theProof is now complete.
Now we would like to capture the notion of the Ferm

density operator. Physicists define it to ber(x)
5c* (x)c(x). Multiplication of two Fermi fields at the sam
point is a delicate issue and we would like to make mo
sense out of it. For this we have to set our single-parti
Hilbert Space:

H5Lp~R 3! ^W.

Here, Lp(R 3) is the space of all periodic functions wit
period L in each space direction.W is the spin space
spanned by two vectors. An orthonormal basis forW is

$j↑ ,j↓%.

A typical element ofH is given byf (x) ^ j↓ . A basis forH
is given by
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B5HA 1

L3
exp~ iqn•x! ^ jsJ ;n5~n1 ,n2 ,n3!PZ 3,sP$↑,↓%.
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We move on to the definition of the Fermi-density distrib
tion. The Hilbert SpaceH ^ n is the space of alln-particle
wave functions with no symmetry restrictions. From this w
may construct orthogonal subspaces

H1
^ n5P1H ^ n,

H2
^ n5P2H ^ n.

Tensors fromH1
^ n are orthogonal to tensors fromH2

^ n . The
only exceptions are whenn50 or n51. The spaceH1

^ n is
the space of bosonic-wave functions and the spaceH2

^ n is
the space of fermionic wave functions. The definition of t
Fermi-density distribution proceeds as follows. Letv be
written as

v5 (
sP$↑,↓%

a~s!js .

The Fermi-density distibution is an operator on the Fo
space, given a vectorf ^ vPH in the single-particle Hilbert
space, and a tensorw in the n-particle subspace ofF(H),
there exists a corresponding operatorr( f ^ v) that acts as
follows:

@r~ f ^ v !w#n~x1s1 ,x2s2 , . . . ,xnsn!50,

if wPH1
^ n and

@r~ f ^ v !w#n~x1s1 ,x2s2 , . . . ,xnsn!

5(
i 51

n

f ~xi!a~s i !wn~x1s1 ,x2s2 , . . . ,xnsn!,

whenwPH2
^ n . The physical meaning of this abstract ope

tor will become clear soon. Let us now define the curr
density in an analogous fashion, To physicists, it is,

J~x!5S 1

2i D @c†~¹c!2~¹c!†c#. ~E10!

To mathematicians it is an operator similar to the densit24

Given a typical elementf ^ v associated with the underlyin
single-particle Hilbert space, there is an operator denoted
Js( f ^ v), (s51,2,3) that acts on a typical tensor from th
n-particle subspace of the full Fock space as follows:

@Js~ f ^ v !w#n~x1s1 ,x2s2 , . . . ,xnsn!50, ~E11!

if wPH1
^ n , and
k

-
t

by

@Js~ f ^ v !w#n~x1s1 ,x2s2 , . . . ,xnsn!

52 i (
k51

n H f ~xk!a~sk!¹s
k1

1

2
@¹s

kf ~xk!#a~sk!J
3wn~x1s1 ,x2s2 , . . . ,xnsn!, ~E12!

if wPH2
^ n . For the bosonic current it is the other wa

around. Having done all this, we would now like to write th
DPVA more rigorously. Now for some notation. As befor
let g5exp(ikm•x) ^ j r ~the square root of the volume is no
needed as we want all operators in momentum space t
dimensionless!. Then, as before

c~kmr !5c~g!, ~E13!

r~kmr !5r~g!, ~E14!

dr~kmr !5r~kmr !2Nr
0dkm ,0 , ~E15!

j s~kmr !5Js~g!, ~E16!

d j s~kmr !5 j s~kmr !. ~E17!

Having done this, we would like to write down another fo
mula for the canonical conjugate:

¹P~xs!5„21/r~xs!…J~xs!1¹F~@r#;xs!2@2 iF,¹P#.
~E18!

Then we have@bear in mind here that we have distinguish
between thec number Nr

0 and the operatorr(0r ) whose
expectation value isNr

0#

~ iqm!Xqmr52S 1

Nr
0D 1

111/Nr
0(

kn

dr~knr !Tkn
~qm!

3F(
pn

d j ~pnr !Tpn
~qm!Gdqm ,01F~@r#;qmr !,

~E19!

where

(
qm

exp~ iqm•x!F~@r#;qmr !5¹F2@2 iF,¹P#.

~E20!

As regards the objectX0r that is conjugate to the total num
ber is concerned, we must retain it as it is, since, it w
ensure that the total number when commuting with the fi
operator is the field operator itself rather than the incorr
answer zero. ForqmÞ0
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Xqmr5S 1

qm
2 D S i

Nr
0D 1

111/Nr
0(

kn

dr~knr !Tkn
~qm!

F(
pn

qm•d j ~pnr !Tpn
~qm!Gdqm ,02

iqm•F~@r#;qmr !

qm
2

. ~E21!

In order to defineX0r in terms of Fermi fields, we have to make use of the fact that this object does not commute with th
number of fermions. This means it cannot be expressed exclusively in terms of number-conserving Fermi biline
currents and densities. This will mean that we merely invert the formula in Eq.~30! and solve forX0r as

X0r52 (
kmÞ0

Xkmr1 i(
km

lnF SANr
01(

qn

dc~qnr !T2qn
~km! D S Nr

01(
qn

dr~qnr !Tqn
~km! D 21/2

3expS 2 i(
qn

3f~@r#;qnr !Tqn
~km! D Gdkm ,0 . ~E22!
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Define an operator which is defined to be the formal
pansion that the formula itself suggests:

c̃~knr !5expS 2 i(
qm

T2qm
~kn!Xqmr D

3expS i(
qm

Tqm
~kn!f~@r#;qmr ! D

3S Nr
01(

qm

dr~qmr !Tqm
~kn! D 1/2

dkn ,0 .

~E23!

We would now like to write down a statement that wou
require a proof. This conjecture when proven will vindica
the DPVA.

Conjecture.
There exists a unique functionalF(@r#;xr ) and a unique

odd ~for fermions, even for bosons! integerm such that the
following recursion holds:

F~@$r~y1s1!2d~y12x8!ds1 ,s8%#;xs!1F~@r#;x8s8!

2F~@r#;xs!2F~@$r~y1s1!2d~y12x!ds1 ,s%#;x8s8!

5mp, ~E24!

and has the following additional effects. The domain of de
nition of c̃(knr ) ~in which the series expansion converges! is
the same as that ofc(knr ) and it acts the same way too. I
other words
-

e

-

c̃~knr !5c~knr !. ~E25!

We know how the ingredients ofc̃(knr ) namely the current
j (knr ) and the densitydr(qnr ) act on typical elements of the
Fock space, and we know howc(knr ) acts on the Fock
space, we just have to show that the complicatedc̃(knr ) acts
the same way as the simplec(knr ). Moreover, this is true
for a unique phase functionalF. Lastly, we would like to
defend the above ‘‘Fourier gymnastics’’ by pointing out th
the real-space formulation is not well-defined due to the f
that the line integral that appears in the formulas is diffic
to define, any attempt is equivalent to the above approa
The other reason for attempting a rigorous formulation is
fact well-known to mathematicians that it is not possible
have a self-adjoint canonical conjugate of a positive defin
self-adjoint operator. Sincer is positive definite, the natura
question that arises is whetherP is self-adjoint? We take the
naive physicist’s approach to this issue, namely we allow
sign changes inr and argue that these merely amount
translating the phase functionalF by constant amounts, thu
not altering the general framework. Within this framewor
P is indeed self-adjoint and all is well. It is also worth re
marking that the overall conjugateP has two contributions,
one from the position independent partX0s , and the other is
from terms involving currents and densities. The latter co
tribution is manifestly self-adjoint. The possible lack of se
adjointness of the overall conjugate stems from the canon
conjugate of the total number which cannot be expresse
terms of Fermi bilinears.
.
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