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Electronic structure of black sodalite

Otto F. Sankey, Alexander A. Demkov,* and Thomas Lenosky
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504

~Received 18 November 1997!

The electronic structure of black sodalite, Na8~AlSiO4!6, is determined in the local-spin-density approxima-
tion ~LSDA!. This structure has six Na atoms to compensate the six Al atoms, leaving two excess Na atoms.
A band-gap electronic state is induced in the wide oxide gap by the excess sodium, and has ‘‘particle in a box’’
behavior. Magnetic orderings of these gap states are studied. Analytic models show that an antiferromagnetic
ordering is lowest in energy in the LSDA. A self-consistent LSDA calculation shows the system to change
from a metal to an antiferromagnetic insulator when spin orderings are allowed. Hopping and Hubbard-U
parameters are estimated, and the many-body correlated Hubbard model is solved using a constrained path
Monte Carlo technique, which again predicts the system to be antiferromagnetic with aTc of order 50 K.
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I. INTRODUCTION

Zeolites are open framework structures, which gener
contain large polyhedral cages of tetrahedrally bonded at
connected to each other by channels. The tetrahedral atoT
atom! is usually Si and is surrounded by four oxygen atom
It is common that the element Al is substituted for some
the Si atoms. In these aluminosilicates, an additional ca
~e.g., Na! is incorporated interstitially within a cage or cha
nel. Its donated electron resides near an Al site to satisfy
bonding requirements of a tetrahedral framework.

The cavities of the material can be occupied by gu
atoms, ions, or molecules~such as water!, and allow consid-
erable freedom of movement. These materials permit ion
change and reversible dehydration. As such, zeolites pla
major role in petrochemical catalysis, and also are wid
used in radioactive waste storage, water treatment, gas s
ration and purification, and animal feed supplements—all
cause of their exceptional abilities for ion exchange a
sorption.1

Zeolite frameworks offer a unique opportunity for crea
ing new three-dimensional arrays of clusters,2 or
supralattices,3–6 i.e., artificial periodic lattices of clusters o
‘‘quantum dots’’ of semiconducting~or other! materials
whose dimensionality and electronic properties can be
tially controlled.7 There are three basic bonding scheme6,8

for the incorporation of clusters in zeolites:chemiencapsula-
tion, physiencapsulation, andcharge-transfer encapsulation.
Chemiencapsulation of a cluster occurs when the clu
forms covalent bonds with the host matrix. Physiencaps
tion is more common and is the case in which the molec
in the cage partially or completely fills the void, and th
interstitial molecule is only very weakly bound to the fram
work. The final category is the case of charge encapsula
in which the cluster in the cavity is charged due to cha
transfer between it and the framework.

In this paper we study the electronic properties of a p
570163-1829/98/57~24!/15129~11!/$15.00
ly
s

(
.
f
n

e

t

x-
a

y
pa-
-

d

r-

er
a-
le

n
e

-

totypical charge-transfer encapsulated cluster—a periodic
ray of Na4

13 clusters9 in sodalite. This actual material i
known as black sodalite, Na4

31~AlSiO4!3
32 . In particular we

investigate the formation of magnetic electronic states in
system, i.e., antiferromagnetic and ferromagnetic states.
Na4 cluster forms a narrow band in the wide aluminosilica
band gap, and this band, which is nominally metallic,
greatly influenced by many-body electron effects, due to
large spatial separation between Na4

31 clusters. We use the
local-spin-density approximation to examine these magn
states in this mean-field-like theory. From these calculati
we are able to extract model parameters for a many-b
treatment of a Hubbard-like model.

Alkali-metal clusters in zeolites and their electronic pro
erties have been under continuous investigation since the
1960s.9,10 It was noticed that the absorption of alkali-met
atoms by zeolites causes simultaneously the introduction
excess electrons and extra cations into the zeolite. The ex
electron is said to be solvated by the counter-ion trap. M
information and the latest references can be found in
recent reviews.11,12 Magnetic properties of sodium and po
tassium clusters in supercages of zeolite A have been stu
experimentally by Nozueet al.13 and by Kodairaet al.14

Hubbard models were recently applied to study magn
properties of potassium doped zeolite A,15 and Na4

31 clus-
ters in the sodalite cage of zeolite Y by Ursenbachet al.16 Of
particular relevance to the current paper is the pionee
work on Na4

31 clusters in sodalite, which were studied bo
experimentally and theoretically by the Santa-Barb
group.17–20 The optical-absorption spectrum was me
sured and calculated.17,18 The theoretical description wa
later refined by Monnieret al.19 and by Blakeet al.20

It has only been recently that density-functional theo
has been applied to zeolites due to the large unit cells and
complexity of these materials. A recent review can be fou
in Ref. 7. Traveet al.21 have studied microclusters of III-V
semiconductors in sodalite, which is an example of a c
15 129 © 1998 The American Physical Society
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15 130 57SANKEY, DEMKOV, AND LENOSKY
miencapsulated system. Demkovet al.8,7 have investigated
Si microclusters in silaceous sodalite as a model system,
have studied other complex oxides.22 Of particular relevance
to the present work is that of Filipponeet al.,23 who per-
formed LDA calculations of sodalite. They performed
comprehensive study of this material, including optimizati
of the geometrical structure and vibrational modes. An
amination of the material was made with different guest s
cies, and they investigated the electronic density of sta
Many silica polymorphs have been studied using dens
functional theory by the Missouri group.24 Other zeo-
lites such as offretite25 have been studied using densit
functional methods, and density-functional theory h
been applied to complex minerals.26,27 Other electronic-
structure methods have been applied to zeolites and
amples can be found in Ref. 28 and Ref. 29.

Part of the motivation of this work is a recent report
Srdanovet al.,30 who studied the NMR spectra of Na i
black sodalite. They find clear evidence from the tempera
dependence of the susceptibility that the system transfo
from a paramagnetic state to an antiferromagnetic state
low the transition temperature of 55 K. They note that t
system provides the first example of ans-electron antiferro-
magnet.

In this paper we will study the electronic properties
black sodalite Na8~AlSiO4!6 using local-spin-density-
functional theory. To our knowledge, this is the first app
cation of spin-density-functional theory to a zeolite. We w
first simplify the system theoretically, and construct an a
lytical model with parameters, then determine the type
magnetic orderings of the electrons that are possible in
system. The values of the parameters that give each typ
ordering are established. Next, a self-consistent solution
the LSDA is found and the system is shown to be antifer
magnetic. This result is found to be consistent with the a
lytical model. Finally, a Hubbard model is solved that pro
erly includes the many-body effects and electr
correlations.

II. STRUCTURE OF SODALITE

Sodalite~SOD! ~Ref. 31! is probably the simplest of the
zeolite framework structures. The building block of the s
dalite structure is theb or kelvin cage. Theb cage shown in
Fig. 1 is a truncated octahedron, with 24 vertices and
faces. The faces are six square faces and eight hexag
faces. At each of the vertices is aT atom ~tetrahedral Si or
Al ! and oxygen atoms bridge theT atoms in puckered off-
line positions. By stacking theb cages together at the squa
faces, a body-centered-cubic~bcc! array ofb cages is formed
that is the sodalite framework. Other zeolite structures can
formed by connecting theT atoms of different cages throug
additional oxygen bridge atoms across hexagonal face
square faces to form faujasite~FAU! or Linde-type A~LTA !,
respectively.

It was noted very early32 that the interaction of Na vapo
with a synthetic zeolite caused the sodalite to color a
darken. The interpretation is that excess Na atoms enter
the cages to form Na4

31, which produce localized electroni
states~similar to color centers! in the lattice. These paramag
netic clusters are isolated from each other. An electron-s
nd
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resonance~ESR! signal of the Na4
31 cluster33 shows a 13-

peak hyperfine structure indicative that an unpaired elec
is shared over the four Na atoms.

The material we study here contains a Na4
31 cluster in

each of the sodalite cages. A Na4 cluster is normally incor-
porated in the sodalite cage along with a central anion
form the material Na4~AlSiO4!3X, whereX is an anion~e.g.,
Cl!. Smeulderset al.33 have found that by exposing the ma
terial to Na vapor, the anion can be removed and black
dalite Na4

31~AlSiO4!3
32 is formed. Samples of black sodalit

have been prepared by Srdanov18 using a similar Na vapor
technique.

We perform electronic-structure calculations on two d
ferent sodalite structures—silica sodalite and black soda
The first structure, silica sodalite (SiO2)12, is that of the pure
SiO2 form of sodalite. This material has no aluminum and
sodium cations, and the Bravais lattice is body-center
cubic since allT atoms are of one type, namely Si. It wa
first synthesized in 1985 by Bibbyet al.,34 who named it
silica-sodalite, and Richardsonet al.35 performed further
work. The material is prepared using a nonaqueous solv
~ethylene glycol or propanol!. A crystallographic description
of the structure, which has space groupIm3̄m, is given in
Table I.

The second structure is that of black sodalite, which is
aluminosilicate with an even mix of Si and Al atoms. Th
number ofT atoms per primitive cell is twice that of silica
sodalite and the Bravais lattice expands to a simple-cu
lattice of space groupP4̄3n. The structural parameters fo
black sodalite, Na8~AlSiO4!6, are shown in Table II. The
coordinates were determined by Pauling36 and later refined
by Lon̈s et al.37 This structure is, however, determined fro

FIG. 1. A ball and stick model of a singleb cage in black
sodalite. The four atoms in the center of the cage are Na atoms
are not part of theb cage, but are the guest atoms in black sodal
The cage frameworkT atoms are Si alternating with Al~or just Si
in silaceous sodalite.! Oxygen atoms~not shown! lie between theT
atoms in bent bridging sites.
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57 15 131ELECTRONIC STRUCTURE OF BLACK SODALITE
that of chlorinated sodalite, Na4~AlSiO4!3Cl, in which the
four Na atoms, which form a tetrahedron inside theb cage,
are surrounding a Cl2 atom. We have assumed, therefo
little relaxation of the Na in the absence of the the ani
This assumption is in line with the recent x-ray analysis
black sodalite by Srdanov.38

In order to make comparisons of the electronic struct
of silica sodalite more transparent, we can describe the
silica-sodalite as having a larger unit cell in the simple-cu
P4̄3n space group. In Table III we give the coordinates
silica-sodalite in this space group. The Brillouin zone of t
structure of Table III is then identical to the Brillouin zon
for black sodalite in Table II, making band-structure co
parisons between the two clear.

III. COMPUTATIONAL DETAILS

In the self-consistent results given below, we will use t
local-spin-density approximation~LSDA! for systems with a
spin density, and the local-density approximation~LDA ! for
an unpolarized spin charge density. The calculations
done within the pseudopotential approximation, which is
device to replace each atom by a pseudoatom that has
the valence electrons of the system. We use norm-conser
separable forms for the semilocal pseudopotential.39 The soft
pseudopotentials are generated by the Kerker-Troull
Martins40 scheme. The pseudoatom wave functions
matched to the all-electron wave function at a radiusRmatch.
The values chosen forRmatch ~in Bohr units! are 1.5 for oxy-
gens andp states, 1.75 and 2.1 for both Si and Als andp
states, respectively, and 3.0 for the Nas state. Convergence
in reciprocal space is limited by the strength and size of
oxygen pseudopotential, since it is the strongest and m
compact.

We use the local atomic orbitalsp3 basis on each of the
atoms.41 The atomic orbitals are written as linear combin

TABLE II. The structural parameters of black sodalit
Na8~AlSiO4!6. The parameters are from Pauling~Ref. 36! and Löns

et al. ~Ref. 37!. Space groupP4̄3n ~no. 218!, a58.881 Å. dSi-O

51.63 Å, dAl-O51.73 Å, dNa-O52.35 Å, dNa-Na54.46 Å, T-O-T
angle5138.3°.

Atom Site Position

6 Si 6d ( 1
4 ,0,12 ), etc.

6 Al 6c ( 1
4 , 1

2 ,0), etc.
24 O 24i (x,y,z), etc.,x50.1401,y50.4385,z50.1487
8 Na 8e (x,x,x), etc.,x50.1777

TABLE I. The structural parameters of all silicon sodalit
(SiO2)12. The parameters are from Bibbyet al. ~Ref. 34! and Ri-

chardson et al. ~Ref. 35!. Space groupIm3̄m ~no. 229!, a
58.830 Å. dSi-O51.587 Å, uSi-O-Si5159.7°.

Atom Site Position

12 Si 12d ( 1
4 , 1

2 ,0), etc.
24 O 24h (0,y,y), etc.,y50.6474
,
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tions of Bloch orbitals, and then this is decomposed in
plane waves. The matrix elements, charge density, and
solution of Poisson’s equations are then conveniently ev
ated using fast Fourier transforms in reciprocal space.
Hamiltonian matrix, since it is in a local orbital basis, r
mains relatively small compared to a full plane-wave calc
lation. We have performed limited tests using a full plan
wave basis and have determined that the results for the b
~at least for the unpolarized case! were very similar to those
generated using a local basis, and thus we were not c
pelled to continue these far more lengthy calculations.
addition, we make use of the symmetry of the problem a
use a single specialk point42 @(p/2a)(111), wherea is the
cubic lattice constant# in the irreducible wedge of the Bril-
louin zone.

In order to determine the spin polarization, we use
local-spin-density approximation~LSDA!.43 Let the electron
density,n(rW), be written in terms of its spin-up and spin
down components,n5n↑1n↓ . The total exchange and cor
relation energies are given by Exc@n↑ ,n↓#
5*d3r @ex(n↑ ,n↓)1ec(n↑ ,n↓)#n(rW). A paramagnetic~un-
polarized! system has equal up and down spin densities,n↑
5n↓ . However, for a magnetic system, the spins polar
and a convenient measure is the spin polarization param
j, where j5(n↑2n↓)/n. The exchange energy of a par
magnetic free electron gas isex

P(n)523/4e2(3/p)1/3n1/3,
while for a completely polarized ferromagnetic gas it
ex

F(n)521/3ex
P(n). In the LSDA, the exchange energ

ex(n↑ ,n↓) of an arbitarily spin polarized gas is given by43

ex~n↑ ,n↓!5ex~n,j!5ex
P~n!1@ex

F~n!2ex
P~n!# f ~j!.

The functionf (j) (0< f <1) interpolates between the par
magnetic and ferromagnetic limits, and is

f ~j!5
~11j!4/31~12j!4/322

24/322
.

The correlation energy is assumed to interpolate in the s
manner, and we use the correlation energyec of Ceperley44

~as parametrized by Perdewet al.!.

IV. SIMPLIFIED LSDA MODEL OF SPIN-POLARIZED
SODALITE

To gain an understanding of the possible spin polari
tions in black sodalite, we present in this section a sim
analytical modelof the LSDA theory, which will be useful in
seeing the full range of possible solutions, the limitations

TABLE III. The structural parameters of all silicon sodalit
(SiO2)12, in a simple-cubic Bravais lattice. The geometry is ide
tical to that of Table I, but is described here as a simple-cubic ra

than body-centered-cubic lattice. Space group pseudo-P4̄3n ~no.
218!, a58.830 Å. dSi-O51.587 Å, uSi-O-Si5159.7°.

Atom Site Position

6 Si 6d ( 1
4 ,0,12 ), etc.

6 Si 6c ( 1
4 , 1

2 ,0), etc.
24 O 24i (x,y,z) etc.,x50, y5z50.6474
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15 132 57SANKEY, DEMKOV, AND LENOSKY
the LSDA, and will be useful in interpreting the sel
consistent results of the next section. This analytical mode
useful for understanding not only black sodalite, but it m
also be generalizable under certain assumptions to other
lite systems that have excess cations in cages. In the
section, we will present the results of the fully self-consist
numerical LSDA calculation for black sodalite.

We assume that the excess electron trapped in the sod
cage can be approximated by ans state in a spherical box o
radius ‘‘a0 ,’’

c05A j0~kr !, ~1!

where j 0 is the spherical bessel function,k5A2mE/\2

5p/a0 , andA is a normalization constant. As will be see
from Sec. V, such a wave function represents a reason
~but incomplete! approximation for black sodalite.

Black sodalite is a bcc stacking of sodalite cages.
consider a simple-cubic lattice with two cages~i 51 and 2!
at basis vectorsbW 15(000) andbW 25(a/2)(111), respectively.
We assume a nearest-neighbor model in which an electro
each of these cages can tunnel or ‘‘hop’’ to eight near
neighbors with hopping integral2t.

For simplicity, we only consider the exchange interacti
in this model, and neglect the correlation energy.~Note that
this is not Hartree-Fock, since we use the LDA exchan
functional, which will reduce to the Hartree-Fock limit on
in the limit of the uniform electron gas.! To justify the ne-
glect of correlation, we may make an estimate of relat
importance of exchange and correlation to be certain that
exchange is the dominant effect. First we estimateex andec
for the entire black sodalite system, including framewo
atoms and the Na guest interstitial atoms. The 194 vale
electrons of Na8~AlSiO4!6 in the volume of the cubic cel
gives an average electron number density ofn50.275/Å3.
At this value average ofn, uexu'5uecu. Another point of
view is to ignore the framework and consider only a sin
Na atom in a cage of approximately 3.5 Å in diameter, wh
we obtain an averagen of 0.006/Å3, and uexu'3uecu. This
latter estimate is probably more appropriate for the curr
problem. However, in either case the exchange energ
expected to be dominant, and neglecting the correlation
ergy is expected to be a sensible approximation.

We construct a model LSDA Hamiltonian, and take

E52tS i , lWS i 8, lW8
8 @ âi

†~ lW !âi 8~ lW8!1âi 8
†

~ lW8!âi~ lW !#

1S i , lWUni~ lW !ni~ lW !2KS i , lW„ni~ lW !…4/3@11~21/321! f ~j!#.

~2!

The first term is the hopping or kinetic energy term, whe
the sum overi 8,l 8 is restricted to first neighbors of the bas
cagei in the unit celllW. The second term is a Hartree on-s
~or Hubbard-like! interaction, and the final term is the ex
change energy, which has strengthK. The exchange energ
being proportional to n3n1/3 ~or n4/3! and eF(n)
521/3eU(n) has been used.

We let c0(kurW2 lW2bW 1u) and c0(kurW2 lW2bW 2u) be the
wave functions of Eq.~1! centered in cage 1 and cage
respectively, in the cell atlW. We replace the Brillouin zone
sum, by a single specialk point, kW05(p/2a)(111), which is
is
y
o-
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the specialk point of a simple-cubic lattice. The Bloch state
at thisk point areckW0 ,s(rW)5@af1(kW0)1bf2(kW0)#s, where

f i(kW0)5(1/AN)SeikW0•( lW1bW i )c0(kurW2 lW2bW i u), and the spin
states is either up or down. Without loss of generality, w
choose the phases for this bcc system so thata and b are
real, and write the wave-function expansion in terms o
mixing angleu,

ckW0 ,s~rW !5@cos~u!f1~kW0!1sin~u!f2~kW0!#s. ~3!

For normalization purposes, we assume the overlap betw
neighbors is small so that cos2u1sin2u51.

For a simple paramagnetic system, each electron will
found with equal probability in each of the two cages~i 51
or 2!, which corresponds tou545°. However, the competi
tion between the kinetic and exchange interactions may y
magnetic states where up and down spin densities are
equal. There are two excess Na atoms per unit cell
Na8~AlSiO4!6, and these excess Na atoms contribute th
electrons to the two cages of the unit cell. The state of
first electron is determined byu1 ,s1 , and the second elec
tron by u2 ,s2 . We now write the expression for the tota
energy per unit cell in terms of these two angles~u1 andu2!
for the three possible choices of the spin quantum numb
The three choices are~i! s15a, s25a ~ferromagnetic!, ~ii !
s15a, s25b, and u1 ,u2Þ45° ~antiferromagnetic!, and
~iii ! s15a, s25b, u15u2545° ~paramagnetic!. The ki-
netic ~hopping! energy at a givenkW is given for all cases as

Ehop~kW !528t cos~kxa/2!cos~kya/2!

3cos~kza/2!2@cos~u1!sin~u1!1cos~u2!sin~u2!#,

~4!

which simplifies forkW5kW0 to

Ehop~kW0!524&t@cos~u1!sin~u1!1cos~u2!sin~u2!#.
~5!

We now consider the total energy per cell for each of
three cases in turn. We work in energy units oft, and thus
have rescaled variables to reduce the number of param
in the problem.

We first examine the ferromagnetic case~i!. The two
Bloch states must be orthogonal, which gives the condit
thatu25u16p/2. A change of mixing angle ofp/2 changes
the bonding state into an antibonding state~and vice versa!.
The net kinetic energy then becomes zero. The other co
butions havenini51, ni

4/351, and f (j)51. We obtain

EF~u1 ,u25u16p/2!/t52~U/t221/3K/t !. ~6!

Note that the angleu1 drops out.
We next consider the antiferromagnetic~AF! state ~ii !,

where one electron per unit cell has spin up, and the o
spin down, but the charge density for a given spin is n
equally distributed over the two cages. The two wave fu
tions are already orthogonal due to spin, and there is
explicit relationship betweenu1 andu2 . The energy per cell
for this case is
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57 15 133ELECTRONIC STRUCTURE OF BLACK SODALITE
EAF~u1 ,u2!524&@cos~u1!sin~u1!1cos~u2!sin~u2!#

1U/t@~cos2u11cos2u2!2

1~sin2u11sin2u2!2#

2K/t$~cos2u11cos2u2!4/3

3@11~21/321! f ~j1!#1~sin2u11sin2u2!4/3

3@1~21/321! f ~j2!#%, ~7!

where j15@cos2(u1)2cos2(u2)#/@cos2(u1)1cos2(u2)#, and j2
5@sin2(u1)2sin2(u2)#/@sin2(u1)1sin2(u2)#. We know of no
analytic solution of this equation, so we minimize this e
pression numerically with respect tou1 andu2 for different
choices of the parametersU/t andK/t.

The paramagnetic case is a special case of the antife
magentic system above, but whereu15u2 , and the spin po-
larizationsj1 andj2 are zero. The energy per cell is

EP~u1!/t5EAF~u1 ,u25u1!/t528& cosu1sin u1

14U/t~cos4u11sin4u1!224/3K/t~cos8/3u1

1sin8/3u1!. ~8!

It is easy to see that the paramagnetic case allows two
sible charge densities—one corresponds to equal charge
sities in the two cages, and the second corresponds
charge-density wave in which the symmetry is broken a
one cage has an excess charge compared to the other
equal charge-density case occurs whenu15p/4545°, so
that the charge density in the first cage is cos2u51/2, and the
charge density in the other cage is sin2u51/2. This amounts
to the usual bonding orbital wave function ofc51/&(f1
1f2).

The charge-density-wave situation occurs whenuÞ45°.
We let u5p/41d, and expand the energy in Eq.~8! to sec-
ond order in d and to find E(d)524&12U/t22K/t
1(8&18U/t216/9K/t)d2. The curvature changes from
concave upward to concave downward at the critical value
(K/t)crit5

9
2(&1U/t). For K/t values larger than (K/t)crit ,

the charge-density wave forms, and the two cages have
equivalent densities even in the paramagnetic case. The f
tion EP(u)2EP(45°) determined by Eq.~8! for two values
of K/t is shown in Fig. 2. The double minimum curve is th
signature of the charge-density wave.

We may make an estimate of the relative size ofK andU
from our approximate wave functionc0 @see Eq.~1!#. The
Hartree repulsionU is given by

U5e2E
sphere

radius a0 uA j0~pr /a0!u2uA j0~pr 8/a0!u2

urW2rW8u
d3rd3r 8,

~9!

which numerically givesU'26 eV Å/a0 , while the ex-
change integral is

K5
3e2

4 S 3

p D 1/3E
sphere

radius a0XUA j0S pr

a0
D U2C4/3

d3r

58.8 eV Å/a0 . ~10!
-

o-

s-
en-

a
d
The

f

in-
c-

We will see in the next section thatt!U,K, and thus ne-
glecting t shows that the criterion for the charge-dens
wave isK. 9

2 U, which using our estimate forK andU gives
8.8 eV Å/a0.117 eV Å/a0 , which is never satisfied. Thu
charge-density waves are unlikely in sodalite~at least within
this model! and we no longer include this possibility.

We now search for the minimum energy configuration
the ferromagnetic system@Eq. ~6!#, the antiferromagnetic
system@Eq. ~7!#, and the paramagnetic system@Eq. ~8!#. We
restrict our minimization to cases in which there is
charge-density wave so that the total densities in the
cages are equal, leading to a Hartree contribution of 2U.
ThusU is effectively removed from the problem, and diffe
ent spin polarizations occur in the two cages because of
interplay between exchange and kinetic energies~i.e., be-
tween theK and t parameters!.

By comparing Eqs.~6! and~8!, it is easy to show that the
phase boundary between ferromagnetic and paramag
systems is given byK/t.2&/(21/321)510.88 with the fer-
romagnetic state favored for large values ofK/t. The ferro-
magnetic state, however, is never found to be the abso
ground state. A numerical minimization of the antiferroma
netic energy@Eq. ~7!# is always found to be lower than th
ferromagnetic state. The results for the minimum energy
all three possible states are shown in Fig. 3. We plot
energy (E22U)/t versus the ratioK/t. We see that the fer-
romagnetic energy crosses the paramagnetic term atK/t
510.88 as discussed above. More importantly, we find t
the absolute minimum energy state is paramagnetic for sm
K/t, and forK/t.1.59 it is antiferromagnetic.

There are two immediate conclusions that we can dr
The first is that this analysis predicts that if the assumpti
of this model are met, then it is very easy for an antifer
magnetic spin density to form in black sodalite. We come

FIG. 2. A plot of EP(u)2EP(45°) for a paramagnetic system
with and without a charge-density wave. The single minimum cu
is for K/t51/2(K/t)crit , and yields a minimum at 45° indicating
equal charge densities in the two cages of the unit cell. The do
minimum curve is forK/t51.5(K/t)crit and exhibits a charge
density wave where the minimum occurs atuÞ45°, indicating un-
equal charge densities in the two cages.
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15 134 57SANKEY, DEMKOV, AND LENOSKY
this conclusion by approximatingK using Eq.~9! with a0
'4 Å, which givesK'2 eV, so that the antiferromagnet
transition will occur fort,K/1.59'1.26 eV. A t value of
1.26 eV is of the same order~within a factor of 2 or 3! as that
of a covalent bond, such as between two Si atoms in
diamond structure. We will estimate ‘‘t ’’ in the next section
when we perform self-consistent LDA calculations, but o
would certainly expect tunneling~or hopping! of an electron
from one cage to another in sodalite to be less than tha
the usual covalent bond, and thus the system should be
ferromagnetic.

The second conclusion is that the model has uncertain
for large values ofK/t, which is in the regime we expect t
be in. The reason is thatfractionally, the energy difference
between all three spin states is becoming small. For exam
at K/t510, the fractional energy difference between all thr
spin states is only about 10%. Thus flaws in the model m
upset the balance between the energetics of these three
sible spin systems.

V. SELF-CONSISTENT LDA AND LSDA RESULTS

We now give the results of the self-consistent dens
functional calculations. We first discuss the electronic ba
structure and total energy of silica sodalite and black soda
using the local-density approximation, which does not all
for spin polarization. Shown in Fig. 4 is the band structu
for silica sodalite (SiO2)12 in the simple-cubic lattice~see
Table III!. The doubling of the unit cell~from the bcc cell of
Table I! allows a clearer comparison with the band struct
of black sodalite. The top of the valence band is deriv
from oxygenp-like states and is arbitrarily set to zero e
ergy, and the conduction band begins about 6 eV. Thus
band gap is approximately 6 eV. When we examine the fi
several wave functions of the conduction band at theG point
@k5(000)#, we find that the wave functions are localized
the SiO2 framework, and not in the cavities of theb cages. A
clue that this is the case can also be seen by the high de

FIG. 3. A plot of the minimum total energyE, (E22U/t) as a
function of K/t for the three possible spin states: ferromagne
(F), antiferromagnetic~AF!, and paramagnetic (P). The model
used is the simplified LSDA model. The lowest energy state
paramagnetic for lowK/t but switches to antiferromagnetic fo
larger values ofK/t. The transition region is indicated by the a
rows. The spin densities are determined by allowing a periodic
density of the two cages in the sodalite unit cell.
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eracy of the bands at theL point @k5(p/a)(111)#. Thus
even though one would expect particle-in-a-box states to
ist for the b cage, these states are not near the conduct
band edge, and likely lie high in energy above the low
several conduction-band states.

We now examine the band structure for black sodal
Na8~AlSiO4!6. The band structure for the paramagnetic s
tem is shown in Fig. 5~a!. The valence bands of the unde
lying aluminosilicate are those bands of negative energy,
again the top of the aluminosilicate bands is defined to h
zero energy. We see the formation of a pair of bands that
centered at about13.6 eV, which did not exist in the silica
sodalite, (SiO2)12. These bands are generated by t
‘‘particle-in-a-box’’ states. Figure 6 shows a consta
charge-density contour of the lowest energy band state
;3.1 eV at theG point. The large ‘‘spherical’’ charge den
sity in the center of theb cage is the particle-in-a-box stat
represented analytically by Eq.~1!. However, Fig. 6 shows
appreciable charge density localized around the oxygen
oms decorating the framework, which are seen in the fig
as ‘‘spheroidal blobs.’’ Thus the particle-in-a-box state
better described as a particle in a box hybridized with fram
work oxygen atoms.

The particle-in-a-box state did not appear in silaceous
dalite, so the presence of theb cage alone is not enough t
generate the particle-in-a-box state near the conduction-b
edge. The attractive Coulomb potential of Na is required
drive the average potential of the cage to lie near the b
gap. The Na atoms of black sodalite contribute two exc
electrons, and these two excess electrons fill the lowest b
in the pair of ‘‘particle-in-a-box’’ bands. Since these tw
bands are capable of containing four electrons~including
spin!, the system is predicted to be metallic.

A close up view of the ‘‘particle-in-a-box’’ bands is
shown in Fig. 5~b!. The double degeneracy that exists alo
the line running from (p/a)(100) to (p/a)(110) is a conse-
quence of the equivalency of the two box states, one fr
each of the two cages in the unit cell of the sodalite unit c

c

s

in

FIG. 4. Band structure of paramagnetic silica sodalite, (SiO2)12.
The valence-band maximum is at zero energy and the conduc
bands begin around 6 eV. The simple cubic unit cell is used, and
k points along the abscissa are in units ofp/a. The lowest several
conduction states have wave functions spread over the framew
and have little amplitude inside theb cages.
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57 15 135ELECTRONIC STRUCTURE OF BLACK SODALITE
The Fermi level will cut through this line and the system
metallic. Notice that the total width of the bands is about
eV, which can be used to estimate the hopping paramett.
In a nearest-neighbor model the bandwidth at theG point is
16t, so t'0.06 eV.

We now investigate the electronic structure of black
dalite allowing the spin system to polarize. The possible s
consistent polarization could be paramagnetic~no polariza-
tion!, ferromagnetic, or antiferromagnetic. We make
initial guess for the charge density, which includes a sli
spin polarization of the system. This breaks the symme
We then minimize the total energy by interacting to a se
consistent solution of the density-functional equations. Af
several iteration cycles, the minimum energy solution
found to be antiferromagnetic. Here one cage@say centered
at ~000!# has a net spin polarization up, while the seco
cage @centered at (a/2)(111)# has a net spin polarizatio
down. The polarization is mainly due to a polarization of t

FIG. 5. Band structure of black sodalite, Na8~AlSiO4!6, in the
paramagnetic state obtained from non-spin-polarized LDA the
~a! A plot of all of the low-lying bands. The valence-band max
mum is defined to be at zero energy. The ‘‘particle-in-a-box’’ ban
are those in the 3–4 eV range. Bands at 5 eV and above are
duction bands of the aluminosilicate.~b! A blowup of the ‘‘particle-
in-a-box’’ bands induced by Na that lie in the aluminosilicate ba
gap. The Fermi level cuts through these bands near the center
the system is predicted to be metallic.
9
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particle-in-a-box state. Figure 7 shows the polarizationj in
the ~11̄0! plane, which passes through the centers of the
cages~1 and 2! of the unit cell. We see that cage 1 ha
positive polarization and cage 2 has negative polariza
corresponding to antiferromagnetic ordering. The energy
ference between the spin-polarized and the non-s
polarized system is very small, and is 0.030 eV per c
while the total energy of the unit cell is'211 500 eV.

The band structure for the antiferromagnetic system
shown in Fig. 8~a!, and is for spin up. The band structure f
spin down is of course identical, but the spatial extent of
wave functions in the two cases is different. Thek-dependent
dispersion of the particle-in-a-box state lying near14.0 eV

y.

s
n-

nd

FIG. 6. A constant probability density contour for the N
induced state at theG point of energyj53.1 eV @see Fig. 5~b!# of
black sodalite. Theb-cage framework ofT atoms is superimposed
as a ball-and-stick model. The large near-spherical density in
center of theb cage is the particle-in-a-box state, and the ‘‘spheri
blobs’’ around the framework are probability density localized
the oxygen atoms. The eight ‘‘wings’’ on the outside of the cage
replicas of the central large near-spherical density in the center
the neighboring cages along the eight~111! directions.

FIG. 7. Contour of spin polarizationj in the ~11̄0! plane, which
passes through the centers of cages 1 and 2 at~000! and
(a/2)(111) in the unit cell, respectively. The cages ‘‘1’’ are pola
ized spin up, and the cages ‘‘2’’ are polarized spin down in
antiferromagnetic arrangement. The near-spherical spin densit
sults from the polarization of the ‘‘particle-in-a-spherical-box
states.
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15 136 57SANKEY, DEMKOV, AND LENOSKY
is quite different from that of the paramagnetic syste
There now exist small gaps at the Brillouin zone edges.~The
minimum indirect gap between the bands is 23 meV;
below.! For example, a gap exists at theX point
@(p/a)(100)# of about 0.3 eV. This gap occurs because
two sodalite cages within the unit cell are no longer equi
lent for a given spin. This inequivalency forces gaps to
cur, and with the inclusion of spinthe system transform
from a paramagnetic metal to an antiferromagnetic insu
tor.

A blow up view of the ‘‘particle-in-a-box’’ bands for the
antiferromagnetic system is shown in Fig. 8~b! as solid lines.
The lowest band is occupied with electrons and the up
band is empty~at zero temperature!. The gap between the
two bands is about 23 meV, which is very small and coin
dentally roughly equal to the thermal energy at room te
perature. The LSDA, however, is not accurate enough
draw a firm conclusion concerning the gap; however,

FIG. 8. Band structure of black sodalite, Na8~AlSiO4!6, in the
antiferromagnetic state obtained from LSDA functional theory.~a!
All of the low-lying bands. The valence-band maximum is defin
to be at zero energy. The ‘‘particle-in-a-box’’ bands occur nea
eV. Bands at 5 eV and above are conduction bands.~b! A blowup
of the ‘‘particle-in-a-box’’ bands in the band gap. At zero tempe
ture the lowest band is occupied, and the upper band is unoccu
forming a narrow gap antiferromagnetic insulator. The square
plus symbols are generated using a simple second-neighbor t
binding model that is fit to the LSDA results.
.
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qualitative result that the system prefers antiferromagnet
and has a small gap (,0.3 eV) is probably reliable.

We can model the electronic structure of the antifer
magnetic system using a tight-binding approach. We ass
each cage contains ones-like orbital, with the orbitalf1 of
the first cage at~000! having a self-energy ofe1 , and the
orbital f2 of the second cage at (p/a)(111) having a self-
energy ofe2 . The overlap matrix between nearest-neighb
orbitals isS1 and between second neighbors isS2 . There are
eight first neighbors and a line connecting an atom with
first neighbor passes through a hexagonal face of a sod
cage, while there are six second neighbors and a line c
necting an atom with its second neighbor passes throug
square face of a sodalite cage. Similarly the ‘‘hopping
~Hamiltonian! matrix elements between first neighbor

^f1uĤuf2&, is 2t1 , while the hopping matrix element be
tween second neighbors is2t2 . We find by fitting to the
LSDA results that e153.742 eV, e254.039 eV, t1
50.087 eV, t2520.007 eV, S1520.005, andS250.011.
The results using the simple tight-binding model and the
are shown as the symbols in Fig. 8~b!. The fit is good, indi-
cating that this simple physical picture is reasonable. T
main physics when the spin is allowed to polarize differen
in the two cages is thate1Þe2 , which means that the two
‘‘noninteracting’’ particle-in-a-box states from the two so
dalite cages within the unit cell have different energies fo
given spin. This energy difference is'0.3 eV~4.039–3.742!
and accounts for the approximate 0.3 eV energy differe
between the two states at (a/2)(111), (a/2)(110), and
(a/2)(000).

The small values of the hopping parameters just de
mined, or the hopping parameter of 0.06 eV estimated fr
the unpolarized band structure, indicate thatK/t@1 ~using
the estimateK'2 eV of Sec. IV!. Thus according to the
analysis of Sec. IV, this should put us well into the antife
romagnetic regime. It is gratifying that the simple model a
the self-consistent LSDA are in complete agreement on
point.

VI. CONSTRAINED PATH MONTE CARLO
AND HARTREE-FOCK RESULTS

We have fit tight-binding parameters for the electron
band structure of sodalite in the paramagnetic state, obta
from non-spin-polarized LDA theory. A rough fit was give
by e153.84 eV, t150.0625 eV, andt2520.03 eV. These
parameters are similar to the antiferromagnetic fit, with
somewhat greater second-neighbor coupling.

We propose to use either set of parameters within a H
bard model HamiltonianH describing the system:

H52 (
~ i j s!

t i j cis
† cj s1(

i
Uni↑ni↓ . ~11!

Here,cis
† is the fermion operator that creates an electron

spin s at site i , and t i j is composed of ‘‘hopping’’ matrix
elements. We definenis5cis

† cis , the number density of spin
s electrons at sitei . We estimatedU to be the Coulomb
repulsion between two electrons in a spherical well of rad
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r 054.45 Å, each with a wave function proportional
j 0(rp/a). This integral was evaluated numerically, givin
U55.8 eV.

To use the fitted parameters for the antiferromagn
simulation, we ignore overlaps, settingS15S250. The en-
ergy splitting betweene1 ande2 is a potential output rathe
than input of the calculation. As input, we use an avera
on-site energy (e11e2)/253.8905 eV. The number of elec
trons in black sodalite is equal to the number of cages av
able for occupation, thus the model is half-filled since ea
cage can potentially hold both one spin up and one s
down electron. Half-filled Hubbard models are genera
thought to be antiferromagnetic.45 Our sites form a bcc lat-
tice with nearest-neighbor and second-neighbor couplingt1
andt2 . Becauset2 is considerably smaller in magnitude tha
t1 , our first expectation is antiferromagnetic order with t
two simple-cubic sublattices~body center and corner! having
opposite spin. We performed Hartree-Fock and quan
Monte Carlo calculations that confirm this picture.

The Hartree-Fock solution of Eq.~11! is a single slater
determinant wave function

uC&5f1
†
¯fn

†u0&, ~12!

where u0& is the zero-particle or vacuum state, andf i
†

5( jF i j cj
† creates a particle in the single-particle orbitai

that is a linear combination of local orbitals at sitej . The
Hartree-Fock solution is chosen to minimize the total ener
By the variational theorem it gives an upper bound on
ground-state energy. The error in this upper bound is
correlation energy; it is due to many-body correlations in
true ground state.

Our earlier estimates from density-functional theory in
cated that the correlation energy is relatively small for t
system, in comparison to the contribution due to exchan
For this reason, we would expect the quality of Hartree-Fo
modeling to be excellent. Regardless of the tight-binding
rameter set we use, we find an antiferromagnetic Hart
Fock solution. For the tight-binding parameter set fit to t
antiferromagnetic simulation, we find an average energy
site of 3.880 eV, and a moment per siteni↑2ni↓50.9966.
For the other parameter set we find an average energy
site of 3.835 eV, andni↑2ni↓50.9982. In each case th
degree of antiferromagnetic ordering is nearly comple
with the two simple-cubic sublattices having opposite spin
expected. We used a 23232 simple cubic cell, with 16
lattice sites, for these calculations.

As an additional check, we performed quantum Mon
Carlo ~QMC! ~Ref. 45! calculations using the recently deve
oped constrained path Monte Carlo~CPMC! method.46,47For
two-dimensional Hubbard models with a range of coupl
parameters, this method recovers over 90% of the correla
energy. Briefly, the method works by evolving a trial wa
function uCT& in imaginary time:

uC&5e2HtuCT&. ~13!

If t is large,uC& becomes an excellent approximation to t
ground state, as the imaginary time propagator amplifies
lowest-energy components ofuCT&. In our case, the Hartree
Fock solution is used foruCT&.

The imaginary time propagator is applied as follows:
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e2HDt, ~14!

whereDt is a small time step, and

e2HDt'e2KDt/2e2VDte2KDt/2 ~15!

is the Trotter formula for the propagator, good to seco
order inDt. K52( ( i j s)t i j cis

† cj s andV5( iUni↑ni↓ are the
kinetic and potential energy contributions, respectively.

The propagator exp(2KDt/2) acting on one Slater deter
minant gives another, and is easy to apply exactly. The
tential energy gives a propagator exp(VDt), which is more
complicated to apply. It is first expanded as a product
terms exp(DtUni↑ni↓). This term can be reexpressed using t
discrete version of the Hubbard-Stratonovich transformati

e2DtUni↑ni↓5e2DtU~ni↑1ni↓!/2 (
xi561

1

2
egxi ~ni↑2ni↓!,

~16!

where cosh(g)5exp(DtU/2). This equation can easily b
verified for the four relevant cases (ni ,↑ ,ni ,↓)5~0,0!, ~0,1!,
~1,0!, and ~1,1!. Each time such a term is encountered, o
term in the summation is selected at random. The rela
probability of selecting the two values forxi is not equal.
This weighting scheme and other necessary details of
method are discussed in Ref. 46.

Many such random walks are performed to sample
true, ground-state wave function. It is also necessary to
ther constrain the resulting random walkersuF& by a condi-
tion ^FTuF&>0. Without this constraint, paths tend to ad
incoherently, causing computed properties to be domina
by noise.46 Because of the constraint, the random walk giv
an upper bound on the ground-state energy and does
converge to the true ground-state energy.

In our QMC calculations, we again find the system to
antiferromagnetic. For the tight-binding parameter set fit
the antiferromagnetic simulation, we find a moment per s
ni↑2ni↓50.996460.0001. For the other parameter set w
find ni↑2ni↓50.998260.0001. The correlation energy wa
very small. It is about 2.131025 eV per electron and
6.731026 eV per electron in the two cases, respectively.

These results can be better understood by the follow
transformation. It is known that the half-filled Hubbar
model becomes isomorphic to the spin-1/2 Heisenberg a
ferromagnet whenU is large.48 The Heisenberg model is
defined by the Hamiltonian

H5(
~ i j !

Ji j SiSj . ~17!

The couplingsJi j 54t i j
2 /U replace the nearly forbidden hop

ping degrees of freedom of the electrons. The couplings
sult from a second-order perturbation treatment that remo
the hopping. For the tight-binding parameter fits,J50.003
and 0.005 eV for the nearest-neighbor couplings of the pa
magnetic and the antiferromagnetic fits, respectively. Fr
this, the characteristic temperature scale for appearanc
antiferromagnetism,J/kB530 K or 50 K, can be deduced
This is in qualitative agreement with Srdanovet al.,30 who
find a transition temperature of 55 K.
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VII. CONCLUSIONS

We have used anab initio electronic-structure method t
calculate the band structure of silica sodalite (SiO2)12 and
black sodalite Na8~AlSiO4!6. We find that the lowest few
conduction bands of silica sodalite do not show any signa
for particle-in-a-box states, but that black sodalite has st
in the band gap that have particle-in-a-box character. Th
states begin about 1 eV below the ‘‘true’’ conduction ban
and are metallic if spin polarization is neglected. When s
polarization is allowed within the LSDA approximation, th
self-consistent charge density evolves into an insulating
tiferromagnetic ground state.

A simple analytical model is developed for this syste
Possible solutions of this model are paramagnetic, ferrom
netic, antiferromagnetic, and charge-density-wave states
estimation of the parameters of the model from the LSD
calculation shows the antiferromagentic state to be the
ground state.
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Finally a Hubbard model is developed using both a co
strained path Monte Carlo and a Hartree-Fock approa
Again estimates of the parameters are obtained from
LSDA results and simple approximations, and again antif
romagnetic order is found. The characteristic temperat
scale for the appearance of the antiferromagnetic transit
is 30–50 K.
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