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The electronic structure of black sodalite,SiO,)g, is determined in the local-spin-density approxima-
tion (LSDA). This structure has six Na atoms to compensate the six Al atoms, leaving two excess Na atoms.
A band-gap electronic state is induced in the wide oxide gap by the excess sodium, and has “particle in a box”
behavior. Magnetic orderings of these gap states are studied. Analytic models show that an antiferromagnetic
ordering is lowest in energy in the LSDA. A self-consistent LSDA calculation shows the system to change
from a metal to an antiferromagnetic insulator when spin orderings are allowed. Hopping and Hubbard-U
parameters are estimated, and the many-body correlated Hubbard model is solved using a constrained path
Monte Carlo technique, which again predicts the system to be antiferromagnetic Wittofaorder 50 K.
[S0163-182698)00723-1

[. INTRODUCTION totypical charge-transfer encapsulated cluster—a periodic ar-
ray of Na " clusterg in sodalite. This actual material is
Zeolites are open framework structures, which generalljknown as black sodalite, W& (AISiO,);3~ . In particular we
contain large polyhedral cages of tetrahedrally bonded atomsvestigate the formation of magnetic electronic states in this
connected to each other by channels. The tetrahedral &iom (system, i.e., antiferromagnetic and ferromagnetic states. The
atom is usually Si and is surrounded by four oxygen atoms.Na, cluster forms a narrow band in the wide aluminosilicate
It is common that the element Al is substituted for some ofband gap, and this band, which is nominally metallic, is
the Si atoms. In these aluminosilicates, an additional catiogreatly influenced by many-body electron effects, due to the
(e.g., Na is incorporated interstitially within a cage or chan- large spatial separation between,fNaclusters. We use the
nel. Its donated electron resides near an Al site to satisfy thimcal-spin-density approximation to examine these magnetic
bonding requirements of a tetrahedral framework. states in this mean-field-like theory. From these calculations
The cavities of the material can be occupied by gueswe are able to extract model parameters for a many-body
atoms, ions, or moleculgsuch as water and allow consid- treatment of a Hubbard-like model.
erable freedom of movement. These materials permit ion ex- Alkali-metal clusters in zeolites and their electronic prop-
change and reversible dehydration. As such, zeolites play erties have been under continuous investigation since the late
major role in petrochemical catalysis, and also are widelyl960s’° It was noticed that the absorption of alkali-metal
used in radioactive waste storage, water treatment, gas sepatoms by zeolites causes simultaneously the introduction of
ration and purification, and animal feed supplements—all beexcess electrons and extra cations into the zeolite. The excess
cause of their exceptional abilities for ion exchange ancklectron is said to be solvated by the counter-ion trap. More
sorption? information and the latest references can be found in two
Zeolite frameworks offer a unique opportunity for creat- recent reviews!'? Magnetic properties of sodium and po-
ing new three-dimensional arrays of clusterspr tassium clusters in supercages of zeolite A have been studied
supralattices; % i.e., artificial periodic lattices of clusters or experimentally by Nozueet al!® and by Kodairaet al*
“quantum dots” of semiconductingor othe) materials Hubbard models were recently applied to study magnetic
whose dimensionality and electronic properties can be pamproperties of potassium doped zeolite"®and Na®* clus-
tially controlled” There are three basic bonding schefffes ters in the sodalite cage of zeolite Y by Ursenbatlal 1° Of
for the incorporation of clusters in zeoliteshemiencapsula- particular relevance to the current paper is the pioneering
tion, physiencapsulatigrandcharge-transfer encapsulation work on Na®* clusters in sodalite, which were studied both
Chemiencapsulation of a cluster occurs when the clusteexperimentally and theoretically by the Santa-Barbara
forms covalent bonds with the host matrix. Physiencapsulagroup!’=>° The optical-absorption spectrum was mea-
tion is more common and is the case in which the moleculsured and calculatéd:'® The theoretical description was
in the cage partially or completely fills the void, and the later refined by Monnieet al!® and by Blakeet al*°
interstitial molecule is only very weakly bound to the frame- It has only been recently that density-functional theory
work. The final category is the case of charge encapsulatiohas been applied to zeolites due to the large unit cells and the
in which the cluster in the cavity is charged due to chargecomplexity of these materials. A recent review can be found
transfer between it and the framework. in Ref. 7. Traveet al?! have studied microclusters of I1I-V
In this paper we study the electronic properties of a prosemiconductors in sodalite, which is an example of a che-
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miencapsulated system. Demket al®’ have investigated Na cluster in the sodalite cage
Si microclusters in silaceous sodalite as a model system, and
have studied other complex oxid&sOf particular relevance

to the present work is that of Filipponet al,?® who per-
formed LDA calculations of sodalite. They performed a
comprehensive study of this material, including optimization
of the geometrical structure and vibrational modes. An ex-
amination of the material was made with different guest spe-
cies, and they investigated the electronic density of states.
Many silica polymorphs have been studied using density-
functional theory by the Missouri grodfi. Other zeo-
lites such as offretit? have been studied using density-
functional methods, and density-functional theory has
been applied to complex minerafs?’ Other electronic-
structure methods have been applied to zeolites and ex-
amples can be found in Ref. 28 and Ref. 29.

Part of the motivation of this work is a recent report of
Srdanovet al,>® who studied the NMR spectra of Na in
black sodalite. They find clear evidence from the temperature
dependence of the susceptibility that the system transforms
from a paramagnetic state to an antiferromagnetic state be-
low the transition temperature of 55 K. They note that this
system provides the first example of sslectron antiferro-
magnet.

In this paper we will study the electronic properties of
black sodalite NgAISiO4)s using local-spin-density-
functional theory. To our knowledge, this is the first appli-
cation of spin-density-functional theory to a zeolite. We will
first simplify the system theoretically, and construct an ana-
lytical model with parameters, then determine the type of€sonanceESR signal of the Ng* cluster® shows a 13-
magnetic orderings of the electrons that are possible in thige€ak hyperfine structure indicative that an unpaired electron
system. The values of the parameters that give each type & shared over the four Na atoms.
ordering are established. Next, a self-consistent solution of The material we study here contains a,Nacluster in
the LSDA is found and the system is shown to be antiferro€ach of the sodalite cages. A Neluster is normally incor-
magnetic. This result is found to be consistent with the anaporated in the sodalite cage along with a central anion to
lytical model. Finally, a Hubbard model is solved that prop-form the material NgAISiO,);X, whereX is an anion(e.g.,

erly includes the many-body effects and electronCl). Smeulderset al*® have found that by exposing the ma-
correlations. terial to Na vapor, the anion can be removed and black so-

dalite Ng>* (AISiO,)3>~ is formed. Samples of black sodalite
have been prepared by Srdaffbusing a similar Na vapor
Il. STRUCTURE OF SODALITE technique.

. : . We perform electronic-structure calculations on two dif-
Sodalite(SOD) (Ref. 3] is probably the simplest of the ) . ) X
zeolite framework structures. The building block of the SO_ferent sodalite structures—silica sodalite and black sodalite.

dalite structure is th or kelvin cage. Theg cage shown in The first structure, silica sodalite (Si)3s, is that of the pure

Fig. 1 is a truncated octahedron, with 24 vertices and 1Z§io.2 form Of. sodalite. This mate“?" has. no gluminum and no
faces. The faces are six square faces and eight hexagonsﬁd!um. cations, and the Bravais lattice is body—_centered-
faces. At each of the vertices isTaatom (tetrahedral Si or C.Ub'c since ‘fi"T atoms are of one type,34namely Si. It was
Al) and oxygen atoms bridge the atoms in puckered off- f'.f$t syntheslzed in 1985 by B'bb9§5a'" who named it
line positions. By stacking thg cages together at the square silica-sodalite, apd . Richardsoat a_I. performed further
faces, a body-centered-culflco array of 8 cages is formed work. The material is prepared using a nonaqueous solvent
that is the sodalite framework. Other zeolite structures can bEEthYene glycol or propanplA crystallographic description
formed by connecting th& atoms of different cages through ©Of the structure, which has space group3m, is given in
additional oxygen bridge atoms across hexagonal faces drable 1. i ) o
square faces to form faujastEAU) or Linde-type A(LTA), Th_e sg(;ond structure is that Qf black sodalite, which is an
respectively. aluminosilicate with an even mix of Si and Al atoms. _The
It was noted very earf§ that the interaction of Na vapor numb.er of T atoms per primitive cell is twice that_ of silica _
with a synthetic zeolite caused the sodalite to color andodalite and the Bravais lattice expands to a simple-cubic
darken. The interpretation is that excess Na atoms enter infattice of space grouf43n. The structural parameters for
the cages to form N&", which produce localized electronic black sodalite, NgAISiO,)s, are shown in Table Il. The
stategsimilar to color centejsin the lattice. These paramag- coordinates were determined by Pauffhgnd later refined
netic clusters are isolated from each other. An electron-spiby Lors et al*” This structure is, however, determined from

FIG. 1. A ball and stick model of a singl@ cage in black
sodalite. The four atoms in the center of the cage are Na atoms, and
are not part of thgg cage, but are the guest atoms in black sodalite.
The cage frameworl atoms are Si alternating with Abr just Si
in silaceous sodaliteOxygen atomgnot shown lie between thél
atoms in bent bridging sites.
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TABLE |. The structural parameters of all silicon sodalite,
(Si0y)1,. The parameters are from Biblet al. (Ref. 34 and Ri-
chardsonet al. (Ref. 35. Space grouplm3m (no. 229, a
=8.830 A.dg.0=1.587 A, 05.0.s=159.7°.

TABLE Ill. The structural parameters of all silicon sodalite,
(Si0y))1,, in a simple-cubic Bravais lattice. The geometry is iden-
tical to that of Table I, but is described here as a simple-cubic rather
than body-centered-cubic lattice. Space group psd&iZn (no.
218, a=8.830 A. dg.0=1.587 A, fg.0.5=159.7°.

Atom Site Position
i Atom Site Position
12 S 12 (72.0), etc.
- 6 Si 6d 11
24 0 2h (0y,y), etc.,y=0.6474 (7,0,3), etc.
6 Si 6c (3,3,0), etc.
24 0 24 (x,y,2) etc.,x=0,y=2=0.6474

that of chlorinated sodalite, NEAISIO,)sCl, in which the
four Na atoms, which form a tetrahedron inside fheage,
are surrounding a Clatom. We have assumed, therefore,tions of Bloch orbitals, and then this is decomposed into
little relaxation of the Na in the absence of the the anionplane waves. The matrix elements, charge density, and the
This assumption is in line with the recent x-ray analysis ofsolution of Poisson’s equations are then conveniently evalu-
black sodalite by Srdanc¥. ated using fast Fourier transforms in reciprocal space. The
In order to make comparisons of the electronic structurétamiltonian matrix, since it is in a local orbital basis, re-

of silica sodalite more transparent, we can describe the bo®ains relatively small compared to a full plane-wave calcu-
silica-sodalite as having a larger unit cell in the simple-cubidation. We have performed limited tests using a full plane-
P43n space group. In Table IIl we give the coordinates ofwave basis and have determined that the results for the bands
silica-sodalite in this space group. The Brillouin zone of the(@t l€ast for the unpolarized caseere very similar to those
structure of Table Ill is then identical to the Brillouin zone 9€nerated using a local basis, and thus we were not com-

for black sodalite in Table II, making band-structure com-Pelled to continue these far more lengthy calculations. In
parisons between the two clear. addition, we make use of the symmetry of the problem and

use a single speci& point*? [(7/2a)(111), wherea is the
cubic lattice constantin the irreducible wedge of the Bril-
louin zone.

In order to determine the spin polarization, we use the
al-spin-density approximatiofi SDA).*® Let the electron

density,n(F), be written in terms of its spin-up and spin-

an unpolarized spin charge density. The calculations ardOWn components)=n;+n, . The total exchange and cor-
done within the pseudopotential approximation, which is d€lation  energies —are  given by E.n;,n]
device to replace each atom by a pseudoatom that has onfydr[e(n;,n )+ e(n;,n;)In(r). A paramagnetic(un-
the valence electrons of the system. We use norm-conservir@plarized system has equal up and down spin densities,
separable forms for the semilocal pseudopotefti@he soft =n;. However, for a magnetic system, the spins polarize
pseudopotentials are generated by the Kerker-Troullierand a convenient measure is the spin polarization parameter
Marting® scheme. The pseudoatom wave functions are, where ¢=(n;—n )/n. The exchange energy of a para-
matched to the all-electron wave function at a radys,,, ~ magnetic free electron gas i (n)=— 3/4e?(3/m) 7,
The values chosen &, (in Bohr unitg are 1.5 for oxy-  while for a completely polarized ferromagnetic gas it is
gens andp states, 1.75 and 2.1 for both Si and #\and p e)f(n)=21’3ef(n). In the LSDA, the exchange energy
states, respectively, and 3.0 for the Blatate. Convergence ¢,(n;,n|) of an arbitarily spin polarized gas is given“By
in reciprocal space is limited by the strength and size of the
oxygen pseudopotential, since it is the strongest and most &x(N;,N)) = &(n,&) =er(n)+[eg(n)— e (N)]f(&).
compact.

We use the local atomic orbitalp® basis on each of the
atoms*! The atomic orbitals are written as linear combina-

IIl. COMPUTATIONAL DETAILS

In the self-consistent results given below, we will use theIOC
local-spin-density approximatiof. SDA) for systems with a
spin density, and the local-density approximat{@®A ) for

The functionf(¢) (0<f<1) interpolates between the para-
magnetic and ferromagnetic limits, and is

(1+%+(1-9*-2

f ( é‘:) = 24/3_ 2

TABLE Il. The structural parameters of black sodalite,
Nag(AlSiO,)s. The parameters are from PaulitRef. 36 and Lans

et al. (Ref. 37. Space grougP43n (no. 218, a=8.881 A. dg;.o
=1.63 A, dyo=1.73 A, dyao=2.35 A, dyan=4.46 A, T-O-T
angle=138.3°.

Atom  Site Position

6Si & (3,03), etc.

6Al  6C (3,3.0), etc.

24 O 24 (x,y,2), etc.,x=0.1401,y=0.4385,z=0.1487
8 Na & (x,x,X), etc.,x=0.1777

The correlation energy is assumed to interpolate in the same
manner, and we use the correlation eneegyf Ceperley*
(as parametrized by Perdest al.).

IV. SIMPLIFIED LSDA MODEL OF SPIN-POLARIZED
SODALITE

To gain an understanding of the possible spin polariza-
tions in black sodalite, we present in this section a simple
analytical modebf the LSDA theory, which will be useful in
seeing the full range of possible solutions, the limitations of
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the LSDA, and will be useful in interpreting the self- the speciak point of a simple-cubic lattice. The Bloch states

consistent results of the next section. This analytical model igt thisk point arey;; ,(r)=[ab1(Ko) +beh,(Ko)]or, where
useful for understanding not only black sodalite, but it may . = JN nz(f’.(ns.) S TR :
also be generalizable under certain assumptions to other ze@i(Ko) _,(1/, N)Ze ' ‘/’0(k|.r —I—Dby[), and the Spin
lite systems that have excess cations in cages. In the nef}at€o is either up or down. Without loss of generality, we

section, we will present the results of the fully self-consistenh00S€ the phases for this bcc system so éhandb are
numerical LSDA calculation for black sodalite. real, and write the wave-function expansion in terms of a

We assume that the excess electron trapped in the sodalff&Xing anglee,

cage can be approximated by sstate in a spherical box of R R . R
radius “ay,” ¥, ,o(1) =[c0g0) p1(Ko) +siN(0) pa(Ko)Jo.  (3)

Po=Ajo(kr), 1) For normalization purposes, we assume the overlap between

where j, is the spherical bessel functiok=2mE/#? nelghbors_|s small so that C&. sinf¢=1. .
o ) o . For a simple paramagnetic system, each electron will be
=1lay, andA is a normalization constant. As will be seen

from Sec. V, such a wave function represents a reasonabrgunoI with equal probability in each of the two cades 1

. S : or 2), which corresponds té=45°. However, the competi-
(but incomplete approximation for black sodalite. tion between the kinetic and exchange interactions may yield
Black sodalite is a bcc stacking of sodalite cages. We : 9 ) 'S may'y
) . . . : . Mmagnetic states where up and down spin densities are not
consider a simple-cubic lattice with two cagés-1 and 2 :
equal. There are two excess Na atoms per unit cell of

at basis vectorb; = (000) andb,=(a/2)(111), respectively. Ng (AISIO,)s, and these excess Na atoms contribute their
We assume a nearest-neighbor model in which an electron ilectrons to the two cages of the unit cell. The state of the
each of these cages can tunnel or “hop” to eight nearesfist electron is determined by, ,o;, and the second elec-
neighbors with hopping integrat t. _ . tron by 6,,0,. We now write the expression for the total

. F(_)r simplicity, we only consider the_exchange |nteract|onenergy per unit cell in terms of these two anglés and 6,)

in this model, and neglect the correlation ener@yote that ¢4 the three possible choices of the spin quantum numbers.
this is not Hartree-Fock, since we use the LDA exchang€rpe three choices al®) o,=a, o=« (ferromagnetig, (ii)
functional, which will reduce to the Hartree-Fock limit only o1=a, g,=8, and 6,,0,#45° (antiferromagnetic and

in the limit of the uniform electron gasTo justify the ne- (iil) oy=a, oy=p, 0,=0,=45° (paramagnetic The Ki-

glect of correlation, we may make an estimate of relative tic (hooDi t a giverk is ai for all
importance of exchange and correlation to be certain that thB8® ic (hopping energy at a giver is given for all cases as
exchange is the dominant effect. First we estimgtand e,

for the entire black sodalite system, including framework Ehop(lz): — 8t cogk,a/2)cogk,a/2)

atoms and the Na guest interstitial atoms. The 194 valence ; ;

X +
electrons of NgAISIO,)g in the volume of the cubic cell cogkza/2)2[ c0g 6,)Sin(6y) +COL b2)SI(62)],
gives an average electron number densitynef0.275/A%. 4

At this value average ofi, |e,|~5|e.|. Another point of L .

view is to ignore the framework and consider only a singlewhich simplifies fork=Kk, to

Na atom in a cage of approximately 3.5 A in diameter, where R

we obtain an average of 0.006/A°, and|e,|~3|e.|. This Eno Ko) = — 4v2t[cog 6;)sin( 6;) + cog 6,)sin( 6,)].
latter estimate is probably more appropriate for the current (5)

problem. However, in either case the exchange energy is )
expected to be dominant, and neglecting the correlation enlVeé Now consider the total energy per cell for each of the

ergy is expected to be a sensible approximation. three cases in turn. We work in energy unitstpfand thus
We construct a model LSDA Hamiltonian, and take have rescaled variables to reduce the number of parameters
in the problem.
E=—t3, 3/ r[éf(r)éi/(r’HéT(r’)éi(r)] We first examine the ferromagnetic cag¢ The two
A i’

Bloch states must be orthogonal, which gives the condition
+3, iU ni(r)ni( N — K3, I-(ni(r))4/3[1+(21/3_ 1)f(6)]. that 6,= 6, = /2. A change of mixing angle o#/2 changes
’ ’ the bonding state into an antibonding stédad vice verspa
(2 The net kinetic energy then becomes zero. The other contri-
The first term is the hopping or kinetic energy term, wherebutions haven;n;=1, n*3=1, andf(¢)=1. We obtain
the sum ovei’,l’ is restricted to first neighbors of the basis
cagei in the unit celll. The second term is a Hartree on-site EF(61,60,=0,+m/2)/t=2(U/t—2"%/t). (6)
(or Hubbard-like interaction, and the final term is the ex-
change energy, which has strength The exchange energy
being proportional to nxn'® (or n*3 and €F(n)
=2Y3¢Y(n) has been used.

Note that the angl®, drops out.

We next consider the antiferromagnetiaF) state (ii),
where one electron per unit cell has spin up, and the other
IO . spin down, but the charge density for a given spin is not
We let gio(k|r—1—Dby[) and go(K|r—1—by[) be the oo a1y distributed over the two cages. The two wave func-
wave functions of Eq(1) centered in cage 1 and cage 2, yjons are already orthogonal due to spin, and there is no
respectively, in the cell at. We replace the Brillouin zone - explicit relationship betwee#l; and ¢,. The energy per cell
sum, by a single speci&l point, ko= (7/2a)(111), which is  for this case is



57 ELECTRONIC STRUCTURE OF BLACK SODALITE

EAF(01,6,) = —4v2[cog 0)sin( 6;) + oS 6,)SiN( 6,)]
+ U/t[(coS 6+ cogb,)?
+ (SirP 6, +sirf6,)?]
—K/t{(cog 6, +cogh,)*?
X[1+(2Y3—1)f(&;)]+ (SinPO, + sinPa,)*3
X[+(2MB-Df (&)1} (7

where &, =[cog(6,)—co(6,) [cog(6,) +cos(6,)], and &,
=[sir?(6y) —sir’(6,) /[ sir?(6,) +sir?(6,)]. We know of no

analytic solution of this equation, so we minimize this ex-

pression numerically with respect 8§ and 6, for different
choices of the parametets/t andK/t.

The paramagnetic case is a special case of the antiferro-

magentic system above, but whete= 6,, and the spin po-
larizations¢é; and &, are zero. The energy per cell is

EP(6,)/t=E*7(6,,60,= 6,)/t=—8V2 cos 6,sin 6,
+4U/t(cos 0, + sirt6,) — 23K /t(co$le,

+sirf?9,). (8)

It is easy to see that the paramagnetic case allows two po
sible charge densities—one corresponds to equal charge d
sities in the two cages, and the second corresponds to

charge-density wave in which the symmetry is broken an.rgllgctingt shows that the criterion for the charge-density

one cage has an excess charge compared to the other.
equal charge-density case occurs whr= 7w/4=45°, so
that the charge density in the first cage is“@esl/2, and the
charge density in the other cage is?1/2. This amounts
to the usual bonding orbital wave function ¢f=1V2(¢,
+ o).

The charge-density-wave situation occurs wieh45°.
We let = 7/4+ 6, and expand the energy in E®) to sec-
ond order iné and to find E(8)=—4v2+2U/t—2K/t

+(8v2+8U/t—16/K/t)82. The curvature changes from
concave upward to concave downward at the critical value o.

(K/t) git=3(vV2+U/t). For K/t values larger thanK/t) .,

the charge-density wave forms, and the two cages have
equivalent densities even in the paramagnetic case. The fun

tion EP(9) —EP(45°) determined by Eq(8) for two values

of K/t is shown in Fig. 2. The double minimum curve is the

signature of the charge-density wave.

We may make an estimate of the relative siz&adndU
from our approximate wave functiog, [see Eq.(1)]. The
Hartree repulsiotdJ is given by

d3rd3r’,
9

which numerically givesU~26 eV A/a,, while the ex-

change integral is
3e2 [ 3\ 13 fradius a, 2\4i3
K=— —) f A d3r

sphere
=8.8 eV Ala,.

¥ 2J‘radiusao |Ajo(77r/a0)|2|Ajo(7Tl"/ao)|2
=g > -
sphere |I’—I"|

r

2\ 7 ]Oa_o

(10
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FIG. 2. A plot of EP(#)—EP(45°) for a paramagnetic system
with and without a charge-density wave. The single minimum curve
is for K/t=1/2(K/t) i, and yields a minimum at 45° indicating
equal charge densities in the two cages of the unit cell. The double
minimum curve is forK/t=1.5(K/t).; and exhibits a charge-
density wave where the minimum occurséat 45°, indicating un-
%Equal charge densities in the two cages.

en-

e will see in the next section tha&U,K, and thus ne-

wave isK>32U, which using our estimate fd¢ andU gives
8.8 eV Alay>117 eV Alay, which is never satisfied. Thus
charge-density waves are unlikely in sodali least within
this mode) and we no longer include this possibility.

We now search for the minimum energy configuration for
the ferromagnetic systerfEq. (6)], the antiferromagnetic
system[Eq. (7)], and the paramagnetic syst¢Eg. (8)]. We
restrict our minimization to cases in which there is no
charge-density wave so that the total densities in the two

ages are equal, leading to a Hartree contribution 0f 2
husU is effectively removed from the problem, and differ-

ine_nt spin polarizations occur in the two cages because of the

interplay between exchange and kinetic enerdies, be-
veen theK andt parameters

By comparing Eqs(6) and(8), it is easy to show that the
phase boundary between ferromagnetic and paramagnetic
systems is given bit/t>2v2/(23— 1)=10.88 with the fer-
romagnetic state favored for large valueskgt. The ferro-
magnetic state, however, is never found to be the absolute
ground state. A numerical minimization of the antiferromag-
netic energy{Eq. (7)] is always found to be lower than the
ferromagnetic state. The results for the minimum energy for
all three possible states are shown in Fig. 3. We plot the
energy €—2U)/t versus the ratiik/t. We see that the fer-
romagnetic energy crosses the paramagnetic terrk/at
=10.88 as discussed above. More importantly, we find that
the absolute minimum energy state is paramagnetic for small
K/t, and forK/t>1.59 it is antiferromagnetic.

There are two immediate conclusions that we can draw.
The first is that this analysis predicts that if the assumptions
of this model are met, then it is very easy for an antiferro-
magnetic spin density to form in black sodalite. We come to
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00 — - T Silica SOD
F 10.0 8
< -200 t 501
x
) < 0.0 £
i 3 ===
— -40.0 t S 50 | ]
E ’ ————
[ = [ —
L
-10.0 & ——
-60.0 : : :
0.0 5.0 10.0 15.0 20.0 -15.0 r
Kt —
L -20.0
FIG. 3. A plot of the minimum total energy, (E—2U/t) as a (111) (000) (100) (110) (000)
function of K/t for the three possible spin states: ferromagnetic
(F), antiferromagnetidAF), and paramagneticR). The model FIG. 4. Band structure of paramagnetic silica sodalite, (5iO

used is the simplified LSDA model. The lowest energy state isThe valence-band maximum is at zero energy and the conduction
paramagnetic for lowK/t but switches to antiferromagnetic for pands begin around 6 eV. The simple cubic unit cell is used, and the
larger values oK/t. The transition region is indicated by the ar- k points along the abscissa are in unitsmof.. The lowest several
rows. The spin densities are determined by allowing a periodic spigonduction states have wave functions spread over the framework,
density of the two cages in the sodalite unit cell. and have little amp"tude inside tf&cagesl

this conclusion by approximating using Eq.(9) with 8y eracy of the bands at the point [k=(m/a)(111)]. Thus
~4 A which givesk~2 eV, so that the antiferromagnetic eyen though one would expect particle-in-a-box states to ex-
transition will occur fort<K/1.59=1.26 eV. At value of |St for theB Cage’ these states are not near the Conduction_

of a covalent bond, such as between two Si atoms in thgeyeral conduction-band states.

when we perform self-consistent LDA calculations, but ONeNa,(AISiO,). The band structure for the paramagnetic sys-
would certainly expect tunnelin@r hopping of an electron  tem js shown in Fig. &). The valence bands of the under-
from one cage to another in sodalite to be less than that qfing aluminosilicate are those bands of negative energy, and
the usual covalent bond, and thus the system should be anfiyain the top of the aluminosilicate bands is defined to have
ferromagnetic. o ~zero energy. We see the formation of a pair of bands that are
The second conclusion is that the model has uncertaintieSentered at about 3.6 eV, which did not exist in the silica
for large values oK/t, which is in the regime we expect to sodalite, (SiQ)y,. These bands are generated by the
be in. The reason is thdtactionally, the energy difference “particle-in-a-box” states. Figure 6 shows a constant
between all three spin states is becoming small. For exampl%harge—density contour of the lowest energy band state at
atK/t=10, the fractional energy difference between all three _3 1 v/ at thel’ point. The large “spherical” charge den-
spin states is only about 10%. Thus flaws in the model mayity in the center of the cage is the particle-in-a-box state
upset th_e balance between the energetics of these three PP8presented analytically by E¢L). However, Fig. 6 shows
sible spin systems. appreciable charge density localized around the oxygen at-
oms decorating the framework, which are seen in the figure
as “spheroidal blobs.” Thus the particle-in-a-box state is
better described as a particle in a box hybridized with frame-
We now give the results of the self-consistent density-work oxygen atoms.
functional calculations. We first discuss the electronic band The particle-in-a-box state did not appear in silaceous so-
structure and total energy of silica sodalite and black sodalitelalite, so the presence of tiecage alone is not enough to
using the local-density approximation, which does not allowgenerate the particle-in-a-box state near the conduction-band
for spin polarization. Shown in Fig. 4 is the band structureedge. The attractive Coulomb potential of Na is required to
for silica sodalite (Si®) i, in the simple-cubic latticdsee drive the average potential of the cage to lie near the band
Table Ill). The doubling of the unit cellfrom the bcc cell of gap. The Na atoms of black sodalite contribute two excess
Table ) allows a clearer comparison with the band structureelectrons, and these two excess electrons fill the lowest band
of black sodalite. The top of the valence band is derivedn the pair of “particle-in-a-box” bands. Since these two
from oxygenp-like states and is arbitrarily set to zero en- bands are capable of containing four electrdimeluding
ergy, and the conduction band begins about 6 eV. Thus thgpin), the system is predicted to be metallic.
band gap is approximately 6 eV. When we examine the first A close up view of the “particle-in-a-box” bands is
several wave functions of the conduction band atlthmoint  shown in Fig. 8b). The double degeneracy that exists along
[k=(000)], we find that the wave functions are localized onthe line running from ¢/a)(100) to (w/a)(110) is a conse-
the SiQ framework, and not in the cavities of tiecages. A quence of the equivalency of the two box states, one from
clue that this is the case can also be seen by the high degesach of the two cages in the unit cell of the sodalite unit cell.

V. SELF-CONSISTENT LDA AND LSDA RESULTS
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FIG. 6. A constant probability density contour for the Na-
4.4 ¢ ] induced state at thE point of energyé=3.1 eV[see Fig. )] of
black sodalite. Theg-cage framework off atoms is superimposed
42 as a ball-and-stick model. The large near-spherical density in the
/ center of the3 cage is the particle-in-a-box state, and the “spherical
< 40 ¢ 1 blobs” around the framework are probability density localized on
L 38 | / | the oxygen atoms. The eight “wings” on the outside of the cage are
5 ' replicas of the central large near-spherical density in the centers of
L% 36 | i the neighboring cages along the eighil) directions.
34 : particle-in-a-box state. Figure 7 shows the polarizatfan
the (110) plane, which passes through the centers of the two
32 y cages(1 and 2 of the unit cell. We see that cage 1 has
positive polarization and cage 2 has negative polarization

(b) 3'?111) (000) (100) (110) (000) corresponding to antiferromagnetic ordering. The energy dif-

ference between the spin-polarized and the non-spin-
FIG. 5. Band structure of black sodalite, j4AlSiO,)s, in the  polarized system is very small, and is 0.030 eV per cell,
paramagnetic state obtained from non-spin-polarized LDA theorywhile the total energy of the unit cell is —11 500 eV.
(@ A plot of all of the low-lying bands. The valence-band maxi-  The band structure for the antiferromagnetic system is
mum is defined to be at zero energy. The “particle-in-a-box” bandsshown in Fig. 8a), and is for spin up. The band structure for
are those in the 3—4 eV range. Bands at 5 eV and above are cogpin down is of course identical, but the spatial extent of the
duction bands of the aluminosilicatéa) A blowup of the “particle-  wave functions in the two cases is different. Tkidependent

in-a-box™ bands induced by Na that lie in the aluminosilicate banddispersion of the particle-in-a-box state lying nea#.0 eV
gap. The Fermi level cuts through these bands near the center, and

the system is predicted to be metallic. Antiferromagnetic polarization of Sodalite

The Fermi level will cut through this line and the system is
metallic. Notice that the total width of the bands is about 0.9
eV, which can be used to estimate the hopping paranteter
In a nearest-neighbor model the bandwidth atihgoint is
16t, sot~0.06 eV. 13
We now investigate the electronic structure of black so-
dalite allowing the spin system to polarize. The possible self-
consistent polarization could be paramagnétio polariza-
tion), ferromagnetic, or antiferromagnetic. We make an
initial guess for the charge density, which includes a slight
spin polarization of the system. This breaks the symmetry.
We then minimize the total energy by interacting to a self- 5 7 contour of spin polarizatiogin the (110) plane, which
consistent solution of the density-functional equations. Aftef,555es through the centers of cages 1 and 20af) and
several iteration cycles, the minimum energy solution iS(a/2)(111) in the unit cell, respectively. The cages “1” are polar-
found to be antiferromagnetic. Here one cggay centered ized spin up, and the cages “2” are polarized spin down in an
at (000] has a net spin polarization up, while the secondantiferromagnetic arrangement. The near-spherical spin density re-
cage[centered at /2)(111)] has a net spin polarization sults from the polarization of the “particle-in-a-spherical-box”
down. The polarization is mainly due to a polarization of thestates.
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Antiferromagnetic SOD -- Spin Up qualitative result that the system prefers antiferromagnetism
100 e and has a small gap<0.3 eV) is probably reliable.

: — We can model the electronic structure of the antiferro-
magnetic system using a tight-binding approach. We assume
each cage contains odike orbital, with the orbital¢, of
the first cage at000 having a self-energy 0€;, and the
orbital ¢, of the second cage atr{a)(111) having a self-
energy ofe,. The overlap matrix between nearest-neighbor
orbitals isS; and between second neighbor$js There are
100 | | eight first neighbors and a line connecting an atom with its
first neighbor passes through a hexagonal face of a sodalite
cage, while there are six second neighbors and a line con-
necting an atom with its second neighbor passes through a
square face of a sodalite cage. Similarly the “hopping”
(Hamiltonian matrix elements between first neighbors,

($1|A|d,), is —t;, while the hopping matrix element be-
tween second neighbors ist,. We find by fitting to the
LSDA results that €,=3.742eV, €,=4.039eV, t;

Energy (eV)

= %

20.0 ‘
(@) (111) (000) (100) (110) (000)

Antiferromagnetic SOD -- Spin Up

4.4 1 =0.087 eV, t,=—0.007 eV, S;=—0.005, andS,=0.011.
- The results using the simple tight-binding model and the fit
42 s, ] are shown as the symbols in Figh® The fit is good, indi-
a0l ST cating that this simple physical picture is reasonable. The
< ' main physics when the spin is allowed to polarize differently
% 38 | in the two cages is that; # €,, which means that the two
> “noninteracting” particle-in-a-box states from the two so-
S 36+ 9 dalite cages within the unit cell have different energies for a
given spin. This energy difference4s0.3 eV(4.039-3.742
34r and accounts for the approximate 0.3 eV energy difference
32 between the two states a@/@)(111), @/2)(110), and
(a/2)(000).
3.0 The small values of the hopping parameters just deter-
(b) (111) (000) (100) (110) (00OQ) mined, or the hopping parameter of 0.06 eV estimated from

. . . the unpolarized band structure, indicate tKat>1 (using
FIG. 8. Band structure of black sodalite, JWalSiO,)e, in the  the estimateK~2 eV of Sec. IV. Thus according to the
antiferromagnetic state obtained from LSDA functional theday. analysis of Sec. IV, this should put us well into the antifer-
All of the low-lying bands. The valence-band maximum is deﬁnedromagnetic regime. It is gratifying that the simple model and

to be at zero energy. The “particle-in-a-box” bands occur near 4y,q qet consistent LSDA are in complete agreement on this
eV. Bands at 5 eV and above are conduction bafisA blowup point

of the “particle-in-a-box” bands in the band gap. At zero tempera-
ture the lowest band is occupied, and the upper band is unoccupied,
forming a narrow gap antiferromagnetic insulator. The square and
plus symbols are generated using a simple second-neighbor tight-
binding model that is fit to the LSDA results.

VI. CONSTRAINED PATH MONTE CARLO
AND HARTREE-FOCK RESULTS

We have fit tight-binding parameters for the electronic
nd structure of sodalite in the paramagnetic state, obtained
from non-spin-polarized LDA theory. A rough fit was given

S€%y €,=3.84 eV, ;= 0.0625 eV, and,=—0.03 eV. These
eparameter:s are similar to the antiferromagnetic fit, with a

somewhat greater second-neighbor coupling.

We propose to use either set of parameters within a Hub-

rd model Hamiltoniatd describing the system:

is quite different from that of the paramagnetic system., o
There now exist small gaps at the Brillouin zone edg€&ke
minimum indirect gap between the bands is 23 meV,
below) For example, a gap exists at th¥ point
[(w/a)(100)] of about 0.3 eV. This gap occurs because th
two sodalite cages within the unit cell are no longer equiva-
lent for a given spin. This inequivalency forces gaps to 0Cyq
cur, and with the inclusion of spithe system transforms
from a paramagnetic metal to an antiferromagnetic insula-
tor. "
A blow up view of the “particle-in-a-box” bands for the H= —“E) tijcioCJaJrEi Uni;nj; . (11)
antiferromagnetic system is shown in FigbBas solid lines. 7
The lowest band is occupied with electrons and the upper
band is empty(at zero temperatuye The gap between the Here,ciT(, is the fermion operator that creates an electron of
two bands is about 23 meV, which is very small and coinci-Spin o at sitei, andt;; is composed of “hopping” matrix
dentally roughly equal to the thermal energy at room tem-elements. We definm(,:cfrgci,,, the number density of spin
perature. The LSDA, however, is not accurate enough te electrons at site. We estimatedJ to be the Coulomb
draw a firm conclusion concerning the gap; however, theaepulsion between two electrons in a spherical well of radius
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ro=4.45 A, each with a wave function proportional to N
jo(rm/a). This integral was evaluated numerically, giving e "=]] e ™47, (14)
U=5.8eV. =1

To use the fitted parameters for the antiferromagnetiGyhereAris a small time step, and
simulation, we ignore overlaps, setti®j=S,=0. The en-
ergy splitting betweer; ande, is a potential output rather e HAT~ g KAT2g=VATg—KAT2 (15)
than input of the calculation. As input, we use an average
on-site energy ¢, + e,)/2=3.8905 eV. The number of elec- Is the'Trotter formula fothhe propagator, good to second
trons in black sodalite is equal to the number of cages availPrder INAT. K= =2t Ci,Cj, andV=Z2;Un;;n;  are the
able for occupation, thus the model is half-filled since eactinetic and potential energy contributions, respectively.
cage can potentially hold both one spin up and one spin _The propagator exp(KA#/2) acting on one Slater deter-
down electron. Half-filled Hubbard models are generallyMinant gives another, and is easy to apply exactly. The po-
thought to be antiferromagnette.Our sites form a bcc lat-  tential energy gives a propagator ep@), which is more
tice with nearest-neighbor and second-neighbor couplipngs complicated to apply. It is first expanded as a product of
andt,. Because, is considerably smaller in magnitude than t€rms expd7Un;;n; ). This term can be reexpressed using the
t,, our first expectation is antiferromagnetic order with thediscrete version of the Hubbard-Stratonovich transformation,
two simple-cubic sublattice®ody center and cornghaving 1
opposite spin. We performed Hartree-Fock and quantum — g—ArUnjni — g—A7U(nj;+n;))/2 E = e¥ilnig—nip),
Monte Carlo calculations that confirm this picture. x=*1 2

The Hartree-Fock solution of Eq11) is a single slater (16)

determinant wave function where coshf)=exp(A7U/2). This equation can easily be

_ ot gt verified for the four relevant cases;(; ,n; |)=(0,0), (0,1),
W)= b1+l 0), (12 (1,0, and(1,1). Each time such a terTm islencountered, one

where |0) is the zero-particle or vacuum state, amj term in the summation is selected at random. The relative
=3,®;;c/ creates a particle in the single-particle orbital Probability of selecting the two values fog is not equal.
that is a linear combination of local orbitals at sjteThe  ThiS weighting scheme and other necessary details of the
Hartree-Fock solution is chosen to minimize the total energyMethod are discussed in Ref. 46.
By the variational theorem it gives an upper bound on the Many such random walks are performed to sample the
ground-state energy. The error in this upper bound is th&rue, groundl—state Wave.functlon. It is also necessary to fur-
correlation energy; it is due to many-body correlations in thefn€r constrain the resulting random walkgts by a condi-
true ground state. tion (®1|P)=0. Wlthout this constraint, .paths tend toladd

Our earlier estimates from density-functional theory indi-incoherently, causing computed properties to be dominated
cated that the correlation energy is relatively small for thisPY Noise"> Because of the constraint, the random walk gives
system, in comparison to the contribution due to exchange® upper bound on the ground-state energy and does not
For this reason, we would expect the quality of Hartree-FocieOnverge to the true ground-state energy.
modeling to be excellent. Regardless of the tight-binding pa- N our QMC calculations, we again find the system to be
rameter set we use, we find an antiferromagnetic Hartreg@ntiferromagnetic. For the tight-binding parameter set fit to
Fock solution. For the tight-binding parameter set fit to thethe antiferromagnetic simulation, we find a moment per site
antiferromagnetic simulation, we find an average energy pefit —Ni;=0.9964£0.0001. For the other parameter set we
site of 3.880 eV, and a moment per sitg —n;, =0.9966. find n”—nilzo._9982t 0.0001. T[\Se correlation energy was
For the other parameter set we find an average energy p¥gry small. It is about 210" eV per electron and
site of 3.835 eV, anch;;—n; =0.9982. In each case the 6.7x10 © eV per electron in the two cases, respectlvely._
degree of antiferromagnetic ordering is nearly complete, These results can be better understood by the following
with the two simple-cubic sublattices having opposite spin adransformation. It is known that the half-filled Hubbard
expected. We used ax2x2 simple cubic cell, with 16 model becomes isomorphic to the spin-1/2 Heisenberg anti-
lattice sites, for these calculations. ferromagnet wherlJ is large*® The Heisenberg model is

As an additional check, we performed quantum Montedefined by the Hamiltonian
Carlo (QMC) (Ref. 45 calculations using the recently devel-
oped constrained path Monte CaffoPMC) method*®4" For _ H=> J,SS;. 17
two-dimensional Hubbard models with a range of coupling (i
parameters, this method recovers over 90% of the correlaticuilhe couplingsJ; :4ti2j/U replace the nearly forbidden hop-

feunnecrggr'] Elile;l)i/ﬁ tifr;]earri\r?;?ogir\;\/grks by evolving a trial wave ping degrees of freedom of the electrons. The couplings re-
T ginary : sult from a second-order perturbation treatment that removes
|Wy=e H7 ). (13) the hopping. For the tight-binding parameter filss 0.003
and 0.005 eV for the nearest-neighbor couplings of the para-
If 7is large,|¥) becomes an excellent approximation to themagnetic and the antiferromagnetic fits, respectively. From
ground state, as the imaginary time propagator amplifies ththis, the characteristic temperature scale for appearance of
lowest-energy components [0F 7). In our case, the Hartree- antiferromagnetismJ/kg=30 K or 50 K, can be deduced.
Fock solution is used fo1). This is in qualitative agreement with Srdaneval,* who
The imaginary time propagator is applied as follows:  find a transition temperature of 55 K.
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VII. CONCLUSIONS Finally a Hubbard model is developed using both a con-
strained path Monte Carlo and a Hartree-Fock approach.
Again estimates of the parameters are obtained from the
LSDA results and simple approximations, and again antifer-
romagnetic order is found. The characteristic temperature
for particle-in-a-box states, but that black sodalite has state%cgf_fg(r) tEe appearance of the antiferromagnetic transitions
in the band gap that have particle-in-a-box character. These '
states begin about 1 eV below the “true” conduction band,
and are metallic if spin polarization is neglected. When spin
polarization is allowed within the LSDA approximation, the  We thank the National Science Foundati@ontract No.
self-consistent charge density evolves into an insulating alBMR 95-26274 and the ASU MRSECContract No. DMR
tiferromagnetic ground state. 9632635 for supporting this work. Professor Kevin Schmidt
A simple analytical model is developed for this system.(ASU) was very helpful in instructing us on the subtleties of
Possible solutions of this model are paramagnetic, ferromaghe Monte Carlo method and we are indebted to him. We
netic, antiferromagnetic, and charge-density-wave states. Athank Professor Srdanov for sharing his work before publi-
estimation of the parameters of the model from the LSDAcation and for stimulating conversations. We thank Dr. Nick
calculation shows the antiferromagentic state to be the 0 Klake for stimulating conversations, particularly concerning
ground state. the local spin density approximation.

We have used aab initio electronic-structure method to
calculate the band structure of silica sodalite ($i®and
black sodalite NgAISiO4)s. We find that the lowest few

ACKNOWLEDGMENTS

*Present address: Motorola Inc., 2200 West Broadway Rd., Mes&*A. Trave, F. Buda, and A. Fasolino, Phys. Rev. L&, 5405
AZ 85202. (1996.
1A. Dyer, Chem. Industry, 241 (1984. 22A. A. Demkov, J. Ortega, O. F. Sankey, and M. P. Grumbach,
2V/. N. Bogomolov, E. L. Lutsenko, V. P. Petranovskii, and S. V. Phys. Rev. B52, 1618(1995.
Kholodkevich, Pis'ma Zh. Eksp. Teor. Fi23, 528 (1976 23E, Filippone, F. Buda, S. larlori, G. Moretti, and P. Porta, J. Phys.

[ JETP Lett.23, 483(1976]; V. N. Bogomolov, S. V. Kholod- Chem.99, 12 883(1995.
kevich, S. G. Romanov, and L. S. Agroskin, Solid State Com-2*Y.-N. Xu, and W. Y. Ching, Phys. Rev. B4, 11 048(1991).
mun. 47, 181(1983. 25 Canpana, A. Selloni, J. Weber, A. Pasquarelle, I. Papai, and A
3G. A. Ozin, A. Kuperman, and A. Stein, Angew. Chem. Int. Ed.  Goursot, Chem. Phys. Le226, 245 (1994.
Engl. 28, 359(1989. 26R. M. Wentzcovitch and L. Stixrude, Am. Minera82, 663
4G. D. Stucky and J. E. MacDougall, Scien247, 669 (1990. (1997).
5G. A. Ozin, Adv. Mater4, 612(1992. 27B. Wingler, V. Milman, and M. C. Payne, Miner. Ma§9, 589
6A. A. Demkov and O. F. Sankey, Chem. Mat8r.1793(1996. (1995.

"A. A. Demkov and O. F. Sankeyccess in Nanoporous Materi- 283, Sauer, Chem. Re89, 199 (1989.
als, edited by T. J. Pinnavaia and M. F. ThorgRlenum Press, 2°J. C. White and A. C. Hess, J. Phys. Che&#, 8703(1993.

New York, 1995, p. 273. 30y, I. Srdanov, G. D. Stucky, and G. Engelhardt, Phys. Rev. Lett.
8A. A. Demkov and O. F. Sankey, Phys. Rev58 10 497(1997. 80, 2449(1998.
9P. H. Kasai, J. Chem. Phy43, 3322(19695. 3Lw. Meier, D. Olson, and Ch. Baerlochektlas of Zeolite Struc-
103, A. Rabo, C. L. Angel, P. M. Kasai, and V. Shomaker, Discuss. ture Types4th ed.(Elsevier, London, 1996
Faraday Soc41, 328(1966. 32R. M. Barrer and J. F. Cole, J. Phys. Chem. Sola®s 1755
1IN. P. Blake and G. D. Stucky, J. Inclusion Phenom. Molec. Rec-  (1968.
ognition Chem21, 299 (1995. 333, B. A. F. Smeulders, M. A. Hefni, A. A. K. Klaasen, E. deBoer,
12p p Edwards, P. A. Anderson, and J. M. Thomas, Acc. Chem. U. Westphal, and G. Geismar, Zeolités347 (1987.
Res.29, 23 (1996. 34D. M. Bibby and M. P. Dale, Naturé_ondon 317, 157 (1985.
13Y. Nozue, T. Kodaira, and T. Goto, Phys. Rev. L&8 3789  3°J. W. Richardson, J. J. Pluth, J. V. Smith, W. J. Dytrych, and D.
(1992. M. Bibby, J. Chem. Phy<92, 243(1988.
14T Kodaira, Y. Nozue, S. Ohwashi, N. Togashi, and O. Terosaki>®L. Pauling, Z. Kristallogr.74, 213 (1930.
Surf. Rev. Lett.3, 717 (1996. 7Von J. Lins and H. Shulz, Acta Crystalloge3, 434 (1967).
15A. 7. Chowdhury and K. Nasu, J. Phys. Chem. Sobis 1193  38V. Srdanov(private communication The values corresponding
(1995. to those in Table Il given by Srdanov from x-ray data of black
16C. P. Ursenbach, P. N. Madden, I. Stich, and M. C. Payne, J. sodalite are Na at xxx) with x=0.1745, and Xy2)
Phys. Chem99, 6697(1995. =(0.1396,0.4354,0.1448) for oxygen.
Tk, Huag, V. Srdanov, G. Stucky, and H. Metiu, J. Phys. Chem.2°L. Kleinman and D. M. Bylander, Phys. Rev. Le#t8, 1425
96, 3495(1992. (1982.
18y, Srdanov, K. Huag, H. Matiu, and G. D. Stucky, J. Phys. Chem*°G. Kerker, J. Phys. 13, 189 (1980; N. Troullier and J. L.
96, 9039(1992. Martins, Phys. Rev. BI3, 1993(199)).
19A. Monnier, V. Srdanov, and H. Metiu, J. Chem. Phy80, 6944  “'R. W. Jansen and O. F. Sankey, Phys. Re®&686520(1987.
(1994. 42H. J. Monkhorst and J. D. Pack, Phys. RevliB 5188(1976.

20N, P. Blake, V. I. Srdanov, G. D. Stucky, and H. Metiu, J. Phys.*3S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys8, 7200
Chem.99, 2127(1995. (1980.



57 ELECTRONIC STRUCTURE OF BLACK SODALITE 15139

4D, M. Ceperley, Phys. Rev. B8, 3126 (1978; This was later  %5S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. R&&, B464

parametrized by J. P. Perdew and A. Zungbid. 23, 5048 (1997.
(1981. 473, zZhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. T&tt.
“SReviewed by H. De Raedt and W. von der Linden[Time Monte 4486(1997).

Carlo Method in Condensed Matter Physicsdited by K.  48a B. Harris and R. V. Lang, Phys. Re¥57, 295 (1967).
Binder (Springer-Verlag, Berlin, 1992



