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We report density-functional calculations based on the use of an exchange-correlation potential that depends
nonlocallyon the electron density at the surface and automatically yields the correct asymptotic shape of the
surface Kohn-Sham potential. In our scheme the density-functional nonlocality originates in the insertion of
long-range correlations into the electron self-energy, from which we evaluate the exchange-correlation poten-
tial for jellium. The solution to that problem is parametrized for use at real metal surfaces. Image-potential
surface states and crystal-induced surface states are obtained on the same footing without any fitting param-
eters. We apply our method in calculations of the surface-electronic structt®®fand (111) surfaces of
aluminum and palladiun{S0163-18208)03423-7

I. INTRODUCTION unoccupied states is typically 0.5-0.7 eV.
It is easy to understand the asymptotic form of the surface

There is a growing interest in accurate theoretical descripbarrier classically. The method of image chafggields
tions of the surface properties of solids. The reasons for thi¥(z) = — e?/4z for a particle with charge in front of a metal
interest are manifold: First, experimental techniques havéurface. However, this treatment does not address the micro-
been developed that allow for detailed investigations of thescopic many-body problem that is at the heart of a realistic
surface, such as, e.qg., two-photon-photoemissiorﬂuantum'meCha”ica| calculation. In this case the image
spectroscopy (2PPB and scanning-tunneling microscopy charge is identified with the exchange—porrelat(m) hole
(STM).2 A necessary condition for a full theoretical interpre- assomqted with an electron, in t_he limit that the electron is
tation of the results of such experiments is an accurate dd@' Out in the vacuum. Deep inside the crystal, the XC hole
scription of the surface potential and the surface electroni@roduced by each electron because of the Coulomb interac-

structure® Second, recent progress in the material science on and the Pauli principle is spherically symmetfignor-

: . : ng the crystal structujpeand centered at the electron’s posi-
has led to the production of surfaces of high purity, and ha%ic;qn Whe)rll one remo?/es an electron from the crystalie g
allowed the design of various structures with desired proper. a.n STM experiment—the electron and its XC hole fir.st”
ties. For the understanding of the physicochemical Processersve towards the surface together. As the electron crosses
of these systems one needs a detailed knowledge of the ele[%-

. ) S e surface, the XC hole begins to distort from sphericity.
tronic structure of these materials, and in this context surfac@\han the electron has left the metal its XC hole has split
states play an important role. Finally, the electronic-surfacg;qm, it, remaining at the metal surfaé&.This is a long-
problem constitutes an interesting and demanding manyrange correlation effect that yields a surface barrier that as-
body system that attracts theoreticigres se mptotically has the formV(z) = — e%/4(z—z,),° wherez,

On metal surfaces one observes two different types ofjenotes the effective image-plane position, which as a rule
surface states: crystal-induced and image-potential state§nes not coincide with the geometrical surface.
Crystal-induced surface states have maximal amplitude in The most successful theory in practical calculations for
the outermost crystal layers and decay rapidly into the bulkireg| many-electron systems is the density-functional
They owe their existence to the modified boundary condiyheory of Hohenberg, Kohn, and Shafin the Kohn-Sham
tions for a Bloch state at the surface. In an infinitely ex-formulation the many-body problem is mapped onto a
tended crystal only Bloch states with real wave vector argoninterecting-particle problem described by Sdimger-
allowed because otherwise the electron density becomes iflke one-particle equation. All many-body effects are taken
finite. In a semi-infinite crystal solutions with complex wave jnto account by an effective local potential, the XC potential,
vector k can exist when the imaginary part afis perpen-  defined as the functional derivative of the XC energy func-
dicular to the surfac&lmage-potential statesave their ori- tional Exc with respect to the electron densityx)
gin in the particular shape of the surface barrier, which de- ¢ '
cays asymptotically as 4/ where z denotes the distance

from the surface. As in the case of a hydrogen atom this SEL [ N(X)]
potential can bind a Rydberg series of states just below the XC:XC—é_ (1)
vacuum level. The binding energy of the first= 1) of these on(x)
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In principle the Kohn-Sham method provides an exact de- Il. THE METHOD
scription of the ground-state density and total energy of a
many-electron system. Although there is no formal justifica-
tion for interpreting the resulting one-electron-energy eigen- The limitations of the LDA in describing correctly the
values and wave functions as the corresponding quantitiesurface barrier of a crystal is due to the neglect of long-range
for real quasiparticles, such interpretation is often tacitlycorrelations and the fact that the strong charge inhomogene-
assumed—in many cases quite successfully. The key limitaty that occurs at a surface is not properly accounted for. In
tion in the application of the Kohn-Sham formalism is thatorder to improve over LDA description of the surface barrier
one does not know the exact form of the XC energy func-One has to take into account inhomogeneity from the outset
tional. The simplest, and most widely used, approximation igaind thereby retain the nonlocality of the XC energy func-
the local density approximatiofi. DA ).!! In this approxima- tional. Therefore, the XC potential that we use in this work is
tion one assumes that the XC energy density is a local fundiot derived for a homogeneous electron gas but for a jellium
tion of the density, i.e., one writes surface. The starting point is an exact integral equation that
relates the local, energy-independent XC potential of
density-functional theoryVyc, with the nonlocal, energy-
Exc=J d3xn(X)exc[n(X], ) dependent self-energy of many-body thedy,, namely,

A. Construction of a nonlocal exchange-correlation potential

_ f 0% Vxc(X1) f dEgy(X,X1;E)g(Xy, X E)
whereeyc is the XC energy per electron forrmmogeneous

electron gas whose density is equal to Ion(af). This ap- 3 3 - -

proximation gives total energies, lattice constants, bulk :f d le d Xzf dEgo(X,X1;E)Zxc

moduli, etc. usually in good agreement with experimént.

However, because of the neglect of long-range electron cor- x(il,iz;E)g(iz,i;E). 3

relations described above, and in the presence of the stron , . . .
inhomogeneity of the electron density at a surface, the LDA! "€ Green’s functiomy entering Eq(1) describes the propa-
yields aqualitatively incorrectsurface barrier: instead of de- 92ation of a real quasiparticle, whilg, describes the propa-

P ; ; tion of a Kohn-Sham electron. This integral equation was
caying like 1% the LDA XC potential decays exponentially. ga or 17 18
It is therefore not possible to describe image-potentiaf€rived by Sham and Schter, “and used by Godbgt al.

states—and other important phenomena associated wifild @lso by Hanke and Shatrfor the investigation of the

long-range correlations, such as Van der Waals forces—2and gap in semiconductors and insulators. For technical de-
within the framework of,the LDA. tails of the solution of this equation for a jellium surface the

Previous calculations of image states introduced the cor©ader is referred to Refs. 15 and 16. In that work the self-
rect asymptotics “by hand” and used the position of the €N€rgy is evalugted in th@W approximatiorf’ i.e., written
image plane as a fitting parameter to reproduce experimentdf the convolution of the propagatgrand the dynamically
findings'2 An exception was the calculation of Ossicini, Ber- Screéned Coulomb interactiof,
toni, and Gies? who obtained a Kohn-Sham potential with .
an imagelike tail through the use of an ansatz for the exixc(ilﬁzziE)zl—f dE'€'E'7g(X,, X, E+E')
change correlation functional introduced by Gunnarsson and 27
Jonest* However, such ad hoc procedure leads to unphysical - -,
results for the XC hole at the surface. By contrast to these XW(Xq,%2;,E"). 4

previous attempts, we use in this work an XC potential thatrhe screened Coulomb interactigwis given in terms of the

was derived from the interrelation between many-body peryare Coulomb interaction and the density-density response
turbation theory and density-functional theory. Such procesf;nction X7,

dure treated the long-range correlations and abrupt density
variation at the surface properly, and thus the surface barrier W=v+vxv, (5)
shows the correct asymptotic behavior® o B

The main purpose of this paper is to utilize the nonlocawhereyxr= x+ yv x1. The irreducible polarizability is cal-
framework of Eguiluzet al>® and to reporiab initio cal-  culated in RPA, which from the diagrammatic point of view
culations for real metals, in which the crystal induced and thés completely consistent with Eg4).* As is commonly as-
image-potential states are treated on the same footing wittsumed inab initio applications of th&sWapproximation, the
out the use of any fitting parameters, and result automatisubstitution of the Kohn-Sham propagatyy for the many-
cally. We illustrate the method by applying it to the case ofbody propagatog in Eq. (4) is a good approximation. This
(100 and(111) surfaces of the simple metal aluminum and assumption, which we follow also in this work, stems from
of the transition-metal palladium. computer CPU limitations for iterating Eg4) to self-

In Sec. Il A we describe how the nonlocal XC potential is consistency “ing.” We iterate, however, the Kohn-Sham
obtained. In Sec. Il B we show how the nonlocal potentialequations withVyc given by Eq.(3) in order to built in the
can be used in realistic band-structure calculations. In Sec#ong-range correlations into the Kohn-Sham propagator
[l and IV we present our results for aluminum and palla- Thus, from the viewpoint of the inclusion of long-range cor-
dium, which we compare with available experimental andrelations, is our method fully self-consistent.
theoretical results. The last section consists of a summary The solution of the integral equation, E), with the
and outlook. self-energy3. xc provided by Eqs(4) and (5) yields an XC
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FIG. 1. Exchange-correlation potential for the jellium surface
with bulk density of sodiumrs=3.93 \r=12.9 a.u.. The solid 00 02 o et 08 o
line shows the solution of Eq1) within the GW approximation for "
2 xc, the dotted curve shows the corresponding LDA potential, and FIG. 2. TheGW-based “nonlocal” exchange-correlation poten-
the dashed curve is a pure image potentigl(z) = — e%/4(z—z,). tial (solid line) as a function oh. Also plotted are th&&W-LDA

potential (dotted ling and the Ceperley-Alder LDA potential

potential with the correct asymptotic form far from the (dashed-dotted lineExcept for very small densities tt@W-LDA
surfacet® The solid line in Fig. 1 shows such a solution for a potential is identical to the XC potential of von Barth and Hedin,
metal whose density is in the middle of the range of metallicRef- 24 (another dotted line

densities. The—e?/4z image limit of the surface barrier is Egs. (3)(5). For this reason we parametrize the functional
due to the Coulomb correlations originated by the seconjependence of the jellium-surface nonlocal potential
term on the right-hand sidehs) of Eq. (5). The exchange- y,  (r_ 7) on the electron density(z), with which it is

only potential, i.e., due to the bare Coulomb interacfirst  oif consistent. Such a parametrization is possible because

a2 _ _ . .
term on the rhs of Eq5)], tends to—a/z” for largez, thus 5y the first Friedel peak out into the vacuum there exists a

contributing to the position of the image platfeNow, one ;16 to-one correspondence between both sets of values. As

S/aLBA define anGW-LDA exchange-correlation potential, ig the case in the LDA approximation, the electron density

xc » Within the framework of Eqs(3)—(5) as the solution st pe self-consistently determined through the iterational
of the integral equation for the homogeneous case. Such gocedure. The resulting surface potential of a metal shows
solution is simply given byv;2*=3yc(k=kr;E=Eg). The  the image tail, because the long-range Coulomb correlations
Vi potential is shown as the dotted line on Fig. 1. Theresponsible for this tail are built into the XC potential used.
Vi? yields, however, an incorrect asymptotic decay. This In our calculations we use a parametrization of the func-
means that for distances from the surface on the ordeérof tional dependence &fy- onn by a set of spline coefficients
(the Fermi wavelengdh which is relevant for STM experi- for the vacuum region. Inside the crystal we use the XC
ments, the LDA potential differs from the correct image po-potential obtained in th&W-LDA. This potential is shown
tential by nearly 1 eV. On the other hand, it is important toin Fig. 1 by the dotted line. Both potentials are identical deep
note that in the bulk and close to the surface the nonlocahside the metal and turn out to be indistinquishable even at
potential and the LDA potential are basically indistinguish-the jellium edge, therefore such a procedure is fully justified
able. and is only a convenient way of including surface nonlocal
effects in practical calculations in which marigiso infi-
nitely many crystal layers are used. Where the two poten-
tials deviate is the region of small densities out of the metal
surface. In particular, it is seen in Fig. 2 that all the LDA

In the previous section an approach was outlined to derivgotentials approach zero faster than the “nonlocal” poten-

a density-functional potential at a surface of a solid, whichtial. In the way the “nonlocal” potential approaches zero is
although is a local potential in space, depends nonlocally oimplicitly included in its image shape. Since the nonlocal
the electron density and shows a correct asymptotic behavigrotential Vyc is parametrized, its use in the band-structure
in vacuum. The approach is general and in principle appliesodes for real systems is as easy as is the use of the conven-
to any system, however, the self-consistent solution of Eqgional local-density approximation. An iterative solution of
(3)—(5) is at present computationally extremely difficult at the Kohn-Sham equation in the presence of the nonMgal
the surface of a real solid. Therefore, in previous pdfers vyields a self-consistent potential, in which both long-range
new method of the construction of the Kohn-Sham potentiatorrelations and crystal effects are included in the same time.
at a metal surface was proposed beyond the usual local- The dashed-dotted curve in Fig. 2 shows the Ceperley-
density approximation. The idea is very simple: instead ofAlder XC potential? It is in the whole range of densities a
assuming locally(i.e., in small portions of spagethe few tenths of an eV higher than the new poterftiaThere-
exchange-correlation potential of themogeneous electron fore, the work function we get with the new potential is
gas determined by the value of the local electron density always higher than that obtained with the Ceperley-Alder
we take outside the metal surface thenlocal exchange- potential. The reason for this difference is not a specific sur-
correlation potential of the jellium surface calculated fromface problem. It comes from the fact that the RPA correlation

B. Realistic band-structure calculations in the presence
of long-range correlations
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energy (therefore alsoVyc) for the homogeneous electron ~ TABLE I. Image-plane positions for different aluminum sur-
gas differs from the quantum Monte Carlo results by aboufaces and jellium of s=2.07. Values are given in atomic units with
10%. In principle this difference should be “absorbed” by réspect to the jellium edge. In first three rows the image-plane po-
the self-consistent inclusion of vertex correctfdThere are ~ Sition is obtained from the tail o¥xc; in the last row, from the
some indications that the simple form of the vertex provided®e"70id of the induced charge.

by the time-dependent LDA theory could be useful Here.

One of the consequences of the nonlocality of the new XC“';: 823 Ia!: 0; zxc 8'23
potential is that it not only depends on the local densityut Jell Tal'|OfVXC 0'72
also on the bulk densitys of the jellium. Thus, a question is "™ allolVe '

Jellium Linear response 1.49

posed at the outset: what is the proper choice ofor a
given metal? This is a long-standing question and several
pregcription_s; exist for the choice _ofa properfor a metal. layers, for which the potential equals the self-

While for simple metals the choice based on the averagegngistent potential of the central layers in our original thin
charge density works very well, fa metals the situation is  gap The rationale for this stretching procedure is that the
more complicated and it is nat priori obvious what pre- oqtential so defined should be very close to the self-

scription is appropriate. Our choice is the following: We first ¢ gistent potential for the stretched slab, which one would
calculate within LDA the charge density and self-consstenlget from a costly iterational procedure. Finally, since the

potential for the pulk of this met.al. From this calcglation We image states tail far out into the vacuum, it was necessary to
deduce an effectives by averaging the XC potential over a gyretch also the vacuum, for aluminum as well as for palla-
bulk unit cell. In other words, we solve fokg the following  giym. we first determined the image-plane position from the
equation:Vyc(rs) = Vxc, where the jelliumVyc(rs) and the  self-consistent potential of the thin slab and used this to ex-
unit-cell averageVyc of a real crystal must be calculated trapolate the potential sufficiently far out into the vacuum.
within the same LDA scheme. Independently of the LDA

scheme used.e., Ceperley-Alder oGW-LDA), this proce- IIl. RESULTS FOR Al (1000 AND Al (111)

dure yields for aluminunr g=2.07, the value that is com- . .
monly found in the literature. For palladium we determine !N order to study the electronic structure of aluminum
r<=1.50. Interestingly, this value is very close to the valueStrfaces we first calculated the self-consistemplocal

rs=1.51, which one needs to reproduce the main experimeHSOhn'Sh"?‘m potential for a periodically repeated supercell
that consisted of 9 crystal layers and 7 or 6 vacuum layers for

Eg'”ﬁ{jzgéon peak of palladium with a simple, free electronthe (100 or (111) surface, respectively. The corresponding
work function is 4.59 eV for Al100 and 4.82 eV for
Al(111). These values are about 0.4 eV higher than those
obtained with the Ceperley-Alder LDA formula for exchange
We performed density-functional calculations in the peri-and correlatiori° This difference(illustrated in Fig. 2 is due
odic slab geometry using norm-conserving pseudopotentialg the overestimate of the correlation energy of the homoge-
of the Bachelet-Hamann-Schéu type?’ Our basis consisted neous electron gas by the RPfor GW) self-energy
of plane waves for aluminum and additionally btype  diagram'® On the other hand, the values of work function
Gaussians at each atomic site for palladium. The energy cutietermined with the Ceperley-Alder potentfasre in very
off for plane waves was 9.5 Ry for Al and 12.5 Ry for Pd. good agreement with experimeﬂt.
Integrations irk space were performed with a uniform mesh ~ From an analysis of the long-rangleng distancg form
of Monkhorst and Pack poirfs and a Gaussian energy Of the self-consistent potential we can determine the image-
smearing scheme for the determination of the Fermi I&/el. plane positionsz,. The values, calculated for (400,
As an artifact of the slab geometry all surface states occufl(111) and for jellium withrs=2.07, are listed in Table I.
pairwise, one from each surface of the slab. For an infinitelyThe first three numbers were obtained via‘afit from the
thick slab the two states would be degenerate but for finitglanar average of the XC potential in the vacuum. The last
slabs the two states hybridize and the degeneracy is liftedow gives the value one obtains in the linear response
The splitting depends on the thickness of the fifor usual  theory®?in which the image-plane position is identified with
surface statgsthe width of the vacuum regioffor image the center of mass of the charge induced by an external clas-
surface statgsand the decay properties of a given state.sical test charge placed infinitely far away from the surface.
Since on surfaces of both aluminum and palladium there ar&n immediate conclusion drawn from Table | is that the
surface states decaying slowly, in order to determine unanimage-plane position derived from the image tail\gfc is
biguously the energy position of surface states one shoulthuch closer to the surface than its counterpart determined
use very big slabs. We have performed therefore our calcuwithin linear response. This is because in the case of an
lation in two steps: First, we determine the self-consistenexternal classical charge there are no exchange processes that
surface potential with smaller slabs, typically 7 or 9 crystalcontribute to building up the surface barrt8Therefore the
layers and 6 to 9 vacuum layers. Such constructed slabgiage plane position is different fa Kohn-Sham electron
proved big enough to calculate accurate self-consistent supf the quantum systeand for an external test charge. Our
face potential, but were too thin from the point of view of the value forz, for jellium of rs=2.07 is 0.72. It is substantially
hybridization just alluded to. Thus, in the next step, for thesmaller than our result from the linear response theagy (
calculations of the surface-electronic structure we widened=1.49), or the analogous result of Lang and Kohrg (
our slabs by inserting an appropriate numk6—39 of =1.60) 22 Our result is consistent with the result of Ossicini,

C. Technical details
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FIG. 3. Projected bulk band structure and electronic surface FIG. 4. Projected bulk band-structure and electronic surface
states for energies below the vacuum level fot180. The free-  states for energies below the vacuum level fof1AL). The free-
electron-like band close to the vacuum level arolindorresponds  electron-like band close to the vacuum level arolindorresponds
to the image-state resonances. to the image-state resonances. The dark-shadowed areas correspond

to broad surface resonances. For a full discussion of these states see

Bertoni, and Gied?® who have obtained the value af  Ref 30.

=0.85 for the surface of jellium ofs=2.0 from the Kohn-

Sham potential calculated within a model ansatz for the eXpf the T M line (see Fig. 3 of Ref. 34
change correlation functional of Gunnarsson and J&hes. Yang et al335 and previousely Heskett a

. ; have re-
One can also conclude from Table | that the inclusion ofyqrteq in their inverse photoemission experiments an image-

the ion cores brings a further significant decrease of the pasiate resonance at the(al1) surface located 0.45 eV below
sition of z. This fact was also shov_vn_by Inglesfieftiwho the vacuum level. As seen in Figs. 3 and 4, on (b0 as
obtained a value of,=1.1 for a realistic model of AL0O.  \ve|l as on the(111) surface we obtain an=1 image state

He identified the image-plane position with the center ofyjith the binding energy of about 0.4 eV, which agrees rather
gravity of the induced charge under the influence of an exye|| with experiment. Because on both surfaces there is no

ternal electric field; therefore, hig, is relevant for an exter- gap in the projected bulk band structure aroundfhpoint

nal classical charge. in the relevant energy range, these image states are reso-
The surface states for the00) and the(111) face of 9y g¢, . 9 .
nances. In our slab calculation we find a humber of eigen-

aluminum are shown in Flgs..3 anq 4, respectively. Theystates withn=1 character that occur over a finite range of
were calculated after stretching either the metal or the

vacuum part of the slab by inserting up to 39 crystal, oreneray. Due to the finite thickness of the slab the splitting

vacuum layers. The shadowed area in these figures shows tﬁgmﬁz ;hneesre s}igs;i:)snfglfriyr/lér%emaenrgt:telrso?ltf;lguét té)bit;:ter—
projected bulk band structure. Solid lines correspond to sur! oy y g

face states or surface resonances. The dark shadowed ar@ss <> It turn.ed out that with the present periodic-slab tech-
in Fig. 4 indicate broad surface resonan®dhe free- nique, very big slabs must be used, in order to resolve com-

_ — putationally for then=1 image state. However, because of
electron-like band close to the vacuum level arolihdor-

. Ao the small corrugation of the potential inside the vacuum re-
responds to image states. The energy positions of the crystalion and the vanishing amplitude of image states inside the

induced surface_st_ates, measured with respect to the F?”Eblk of the metal, the energy of the image states could be
level, agree to within a few hundreths of an electronvolt W'thdetermined from an additional calculation using a one-

the results of our LDA calculation where we used thegimensional model. In this model the planar average of the
Ceperley-Alder XC potential. The results of this LDA calcu- et consistent potential of the three-dimensional slab was

lation are described in detail elsewhéfe. taken in the Hamilton operator. Such a one-dimensional

Yang, Bartynski, and Vanderbilt investigated recently thep,oqe| allows for much bigger slabs of several hundred lay-
unoccupied electronic structure ofg_kll]) via thek-resolved o5 angd therefore for better computational resolution in the
inverse-photoemission spectroscopyDue to the experi-  cajculation of the density of states that we use to determine

mental §etup not the whole energy-momentum space WaRe energy position of surface resonances.
probed in these measurements and some data are reported in

the higher energy region than considered in the present cal-
culation. In addition, it is difficult to distinguish fully unam-
biguously in experiment between the bulk and surface struc-
tures. Nevertheless, the remarkable observation is in very As noted above, in our calculations for the transition-
good agreement with experiment, both in position and disinetal palladium our basis consisted of plane waves plus five
persion, for the unoccupied “broad” resonance in the middled-type Gaussians at each atomic site. As in the case of alu-

|36

IV. RESULTS FOR Pd(100 AND Pd(111)
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minum, we have determined in a first step the self-consistent 6.0
surface potential for thin slabs; in the present case the num-

ber of metal layers was set to seven. Then, in the investiga- 40
tion of the usual crystal-terminated surface states we
stretched the slab in its bulk region to include 19 metal lay- 2.0
ers, while in the investigation afmage states the vacuum
portion of the slab was stretched to include (Enpty lay-

ers. This proved enough to observe the 1l image state,
which on both surfaces issharpstate within the gap in the
projected bulk band structure. We therefore need not to
evoke the one-dimentional potential model in the study of
image states of Pd.

The work function obtained with the nonlocal potential
Vyc is 6.11 and 6.18 eV for Ri00 and Pd111), respec-
tively. For reasons discussed above, these numbers are larger 6o
than those resulting from the Ceperley-Alder exchange- o T 3 X Yy
correlation potential, which are 5.68 and 5.75 eV fo(1oxd) 2D wave vector
and Pd111), respectively. Both sets of numbers differ some-
what from experiment. The experimental value of the work  Fi. 5. projected bulk band structure and electronic surface

func_tlon- for Pd100 ,'S 5.8 eV while for Pdll:!') two in- states for PALOQ). Free-electron bands in the gaps around khe
vestigations, both via the two-photon photoemissiaRPE point, just below the vacuum level, correspond to thel image

technique, give differgnt valuegg Kubf&kreports a W9rk state. The dark shadowed areas are the regions of “broad reso-
function of 5.55 eV, Fischeet al>* obtain a work function ances” described in the text.

of 5.44 eV. Our disagreement with experiment, especially for

Pd111), is a bit surprising. It could be caused either by

purely technical reasons, or the reason could be of a mor&@® find that there is a qualitative agreement between our
fundamental nature, indicating limitations of our method. In"esults and these experimental data, a question remains as to

regard to the technical reasons, it is possible that doing #hy so few states were detected experimentally compared
calculation of a better technical qualitwhich is “in prin- with the number predicted theoretically. In_ad(Euon, the dis-
ciple” always possiblg i.e., allowing for larger slabs or ex- persion of the lower experimental state frdhio X is some-
tending the variational freedom by solving Kohn-Sham equawhat different from our picture, but here the problem of the
tion at the surface, could help to some extent. More probableonnectivity of bands derived within a finite slab can play a
technical reason is, however, a proper choice of a corrergle. Finally, experimental data of Ellict al. show fairly
sponding jellium for which the nonlocal surface potential isproad features, which the authors interpret as being due to
calculated and used in a “real metal” calculation. In fegardmany-body effects. Such an interpretation need not be nec-

to more fundamental reasons, let us note that a part of thgssarily correct and the broad experimental features can hide
difference between our theoretical value of the work functionsne structures.

and the experimental value could be “absorbed” by a proper
choice of a vertex function to the self-energy of jellidh.
Most probably, this is the difference between both our theo o .
retical values: the one obtained with the nonlocal potentiaFoem.ISSIon experlments on the 200 su.rfacg. In our cal-
and the one resulting from the Ceperley-Alder potentiaI.CUI.atIon we qlo hot f'F‘d any resonance in this energy ‘lrgnge,
What remains could be due to either technical reasons or tH&S/ther was it found in the LDA calculation by Gay al.”
inapplicability of the jellium-derived nonlocal potentislyc An unoccupied resonance Btwas predicted in a calculation

L. K . ; 2
to the case of a transition metal surface. This question dd?y Smith etal,** it was placed, however, at somewhat
mands further studies. higher energy(1.5-2.0 eV and the calculation was based on

a simplified, one-dimensional model of the surface potential.
A. Pd(100) Experimentally the resolution of the low-lying unoccupied
surface resonances is very difficult, because they overlap
with a strong bulk peak due to the transitions idtdoands.
Since the accuracy of the inverse-photoemission technique is
enerally not too high, we think that the unoccupied surface

EFermi

0.0

energy(eV)

—4.0

-6.0

5]
-

Wu et al3” observed an unoccupied surface resonance at
I', 1.0+0.2 eV above the Fermi level, in their inverse pho-

Our results for the surface states of tf00) face are
compiled in Fig. 5. Overall they agree very well with the
calculation of Gayet al,;*> however, due to the less stringent

criterion for selection of surface states we adopt, our surfacg|ectronic structure of RHOO needs still an independent

_elelct(rjomc structur? s more far reaching. '”fp"’t‘rtt'cm?r:’ t"‘(eexperimental determination with high-precision means.
include among surface resonances groups of states thatina’, . . L = .
g group A similar situation occurs at th¥ point. Here Wuet al®’

certain energy region have a pronounced surface amplitude, .
but otherwise propagate periodically like normal bulk stateﬁ%"’“/e observed a resonance a2 eV above the Fermi

into the volume of the crystal. Such “broad surface reso-evel’ .WhiCh V‘Q%S previpusly predicteq in'model calculqtions
nances” predicted by us for AL11) according to the same of Sn_uthet al,” but which we do not find in 0L£cal_culat|0n.
criterion®® have been later on reported experimentiyhe ~ We find a resonance that starts at 2.1 eV atXhgoint and
occupied states have been investigated by E#ical?! by  follows up along the very edge of the energy gapXirv
means of angle-resolved photoemission spectroscopy. Whildirection. This state was also predicted by @ayl*° In the
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same results as Loufé,who also performed a mixed-basis
pseudopotential calculation. A slight shift in the relative po-
sition of calculated states with respect to the Fermi level
between our results could originate from the quality of
pseudopotentials used in both calculations. We use in this
work anab initio norm-conserving scalar-relativistic pseudo-

Epermi potential, not available yet in the time the calculation of
Louie was performed.

As we already noted, the experimental investigation of the
occupied crystal-induced surface states is difficult because
there are many bulk transitions frothbands in the photo-
emission spectra. To our knowledge the most recent experi-
ment has been performed by Eberhaetial,** who found

two occupied states dt, one at 0.3 eV belovEg, and an-
other one at 2.2 eV belo,. These energies agree well
with our results, which are-0.2 and —2.45 eV, respec-

tively. At K Eberhardtet al. detected states at 0.3 eV and at
_ _ 2.1 eV below the Fermi level. In this case only the energy of
FIG. 6. Projected bulk band structure and electronic surfacgne |ower state agrees well with our result, which-i€.25

states for PALY. See caption to Fig. 5. eV; we find the higher state at 1.2 eV beld&y . At the M

_ point neither our calculation nor that of Lolfeyielded a
same gap around th¥ point we find another very sharp state detected experimentéflyat about 1 eV belovE .
unoccupied surface band at 5.1 eV, which was so far not The unoccupied surface states have been investigated by
detected experimentally. At tHd point Wuet al®” detected  Hulbert et al. via the inverse photoemission technide.
two surface states in the gap, one at9(82 eV and another They found a surface state Biwith an energy of 1.3 eV and
at 2.5+0.2 eV above the Fermi level. The energy location ofa free-electron-like dispersion of an effective mass
the lower state agrees well with the energy of the state we=0.3m,. In our calculation we predict an unoccupied sur-

find at 0.74 eV abové . face state with the energy of 0.9 eV and the effective mass
Now we come to discuss the image states. They argn* =0.22m,.

shown in Fig. 5 as free-electron parabola below the vacuum Qur value of the image-plane position z5=0.35 a.u.

level close to thd” point. From an analysis of the image tail outside the nominal jellium edggeometrical surfage The
of Vyc, we determine the image plane to be at 0.47 a.uenergy of then=1 image state is in our calculation0.69
outside the geometrical surface. This agrees quite well witleV with respect to the vacuum level, and its effective mass is
the valuezy=0.55 a.u., which was obtained in a model cal- 1.03n,. There is considerable scatter in the experimental
culation by Smithetal,*? in which an empirical, one- results for the binding energy of this state. The inverse pho-
dimensional barrier was fitted to the planar average of amoemission experiment of Hulbeet al*® gave a binding en-
LDA slab calculation. ergy of 0.5 eV. The effective mass was reported to be 1.0, in
We find then=1 image state af at 0.60 eV below the accordance with all other experiments. Coneddhl*® mea-

vacuum level; it has a free electronlike dispersion with ansured the elastic electron reflectivity at the zone boundary.
effective massn* = 1.04m,. This result agrees well with the By extrapolating their results to the zone center they deter-
value predicted by Smitht al*2 (E,_,=— 0.53 e\}. On the mined a binding energy of 0.75 eV. In the 2PPE measure-
other hand, Wiet al” report an experimental value of 0.9 ment, Kubiak® found the image state at 0.69.1 eV below

+0.2 eV for then=1 image state. This value seems, how- the vacuum level. Finglly, the m(_)st recent qnd probaply most
ever, unusually large. accurate 2PPE experiment of Fiscle¢ral *° yielded a bind-
Summarizing, the comparison with experiment for theind e€nergy of 0.55 eV.
(100) face of Pd seems somewhat unsettled. There are a few
experimentally obtained surface structures that are not
present in our results, while we predict some states that were
not seen in experiment. There is still a possibility that inclu- We have presented density-functional calculations to de-
sion of many-body effects associated with the presence dakrmine the electronic structure of low index surfaces of alu-
the d bands could improve the agreement with availableminum and palladium. In the evaluation of the electronic
measurements. We believe, however, that before such a hgtructure we use an XC potential in which long-range corre-
pothesis is advanced, it would be extremely useful to extenthtions are taken into account. Therefore, the calculated sur-
the existing experimental database with results obtained witface barrier automatically includes the correct asymptotic be-
high-resolution methods. havior, namely, the Z/decay, which is responsible for the
existence of the image-potential surface states. We are there-
fore able to calculate crystal-induced and image-potential
B. Pa11D) states on the same footing, without any fitting parameters.
We present our results for the surface states ¢LPH in For sp-bonded Al the agreement of our results with exper-
Fig. 6. For the crystal induced states we have basically thément is very good. For transition-metal Pd the agreement is

energy(eV)

=1l
=1l

T b M T X

2D wave vector

V. SUMMARY



57 14 981

NONLOCAL DENSITY-FUNCTIONAL CALCULATIONS OF ...
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