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Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
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Significant reductions in both the in-plane and cross-plane thermal conductivities of superlattices, in com-
parison to the values calculated from the Fourier heat conduction theory using bulk material properties, have
been observed experimentally in recent years. Understanding the mechanisms controlling the thermal conduc-
tivities of superlattice structures is of considerable current interest for microelectronic and thermoelectric
applications. In this work, models of the thermal conductivity and phonon transport in the direction perpen-
dicular to the film plane of superlattices are established based on solving the phonon Boltzmann transport
equation~BTE!. Different phonon interface scattering mechanisms are considered, including elastic vs inelas-
tic, and diffuse vs specular scattering of phonons. Numerical solution of the BTE yields the effective tempera-
ture distribution, thermal conductivity, and thermal boundary resistance~TBR! of the superlattices. The mod-
eling results show that the effective thermal conductivity of superlattices in the perpendicular direction is
generally controlled by phonon transport within each layer and the TBR between different layers. The TBR is
no longer an intrinsic property of the interface, but depends on the layer thickness as well as the phonon mean
free path. In the thin layer limit, phonon transport within each layer is ballistic, and the TBR dominates the
effective thermal conductivity of superlattices. Approximate analytical solutions of the BTE are obtained for
this thin-film limit. The modeling results based on partially specular and partially diffuse interface scattering
processes are in reasonable agreement with recent experimental data on GaAs/AlAs and Si/Ge superlattices.
From the modeling, it is concluded that the cross-plane thermal conductivity of these superlattices is controlled
by diffuse and inelastic scattering processes at interfaces. Results of this work suggest that it is possible to
make superlattice structures with thermal conductivity totally different from those of their constituting mate-
rials. @S0163-1829~98!04523-8#
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I. INTRODUCTION

Thermal conductivities of superlattice structures are
tracting increasing attention due to their importance in d
ferent applications such as the development of thermoele
devices and the thermal management of semiconducto
sers. Studies over the past few years have demonstrated
the thermoelectric effects in quantum-well structures can
greatly enhanced above their corresponding bulk materia1,2

To realize highly efficient thermoelectric devices, the th
mal conductivity of superlattice structures should be mi
mized. Conversely, for semiconductor lasers, the ther
conductivity of quantum wells and the surrounding stru
tures, particularly the Bragg reflectors in vertical-cav
surface-emitting lasers, should be maximized.3 These appli-
cations have inspired several experimental studies on
thermal conductivity of superlattice structures. Yao4 per-
formed the first measurement on the thermal conductivity
GaAs/AlAs superlattice structures in the in-plane directio
His experiment showed that the thermal conductivities of
measured superlattices with equal layer thickness are sm
than that of these structures calculated according to the F
rier heat conduction theory based on the thermal conduc
ties of bulk GaAs and AlAs, but larger than that
Ga0.5Al0.5As alloy. Chenet al.3 measured the thermal con
ductivity of a GaAs/AlxGa12xAs multilayer structure for
vertical-cavity surface-emitting lasers in both the in-pla
and cross-plane directions. Their results indicate that
thermal conductivity of GaAs/AlxGa12xAs in the cross-plane
direction can be smaller than their corresponding alloy. T
phenomenon is more clearly demonstrated in the experim
570163-1829/98/57~23!/14958~16!/$15.00
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of Capinski and Maris5 on the temperature dependence of t
thermal conductivity of two GaAs/AlAs superlattices in th
cross-plane direction. The temperature dependence of th
plane thermal conductivity of a thick-period GaAs/AlAs s
perlattice was reported by Yuet al.6 More recently, Lee,
Cahill, and Venkatasubramamian7 measured thermal conduc
tivities of several Si/Ge superlattices in the cross-plane
rection, and further demonstrated that the thermal cond
tivities of superlattices in this direction can be smaller th
those of their corresponding alloys. Similar results have b
obtained on Bi2Te3/Sb2Te3 superlattices.8 In addition to
semiconductor superlattices, experimental results on the t
mal conductivities of other types of periodic thin-film stru
tures have also been reported.9,10

The thermal conductivity of superlattices may differ fro
the prediction of the Fourier heat conduction theory based
bulk material properties due to the presence of interfac
The new periodicity in a superlattice structure can alter
lattice vibrational properties, i.e., the phonon spectra, of
constituent materials.11–13 The change in phonon spectra r
sults from the interference effects among phonon waves s
tered at the interfaces, in analogy to the electron interfere
and transport in superlattice structures.14 Narayanamurti
et al.11 first observed phonon interference effects in super
tices by measuring phonon transmission through supe
tices at low temperatures. Many subsequent studies on
phonon spectra of superlattices further confirmed the form
tion of minibandgaps in superlattices due to phon
interference.12,13 This interference effect is best observed
low temperatures when the dominant phonon wavelengt
long. At room temperature, the dominant phonon wavelen
14 958 © 1998 The American Physical Society
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57 14 959THERMAL CONDUCTIVITY AND BALLISTIC-PHONON . . .
is ;10 Å in GaAs.15 Phonon transport in films much thicke
than 10 Å can be described by treating phonons as partic
and is governed by the Boltzmann transport equation~BTE!.
The presence of the interfaces in superlattices, however,
affect the transport properties as long as the phonon m
free path~MFP! is comparable to or longer than the film
thickness. This is the classical size effect transport regi
Studies of such a classical size effect on the electrical c
ductivity have been abundant.16 There have also been in
creasing research activities concerning size effects on
thermal conductivity of thin films, particularly during the la
decade.17 The first study on the thermal conductivity of s
perlattices was carried out by Ren and Dow.18 They modeled
the thermal conductivity of idealized Ge-type superlatt
structures by combining the classical BTE approach19 with a
quantum-mechanical treatment of the additional scatte
process caused by the minibandgaps. The predicted re
tion of the peak thermal conductivity from their model, how
ever, is too small (,25%) to explain the experimentall
observed 1–2 order-of-magnitude reduction of the ther
conductivity of semiconductor superlattices. Chen15 and
Hyldgaard and Mahan,20 established models based on t
BTE to calculate the thermal conductivity of superlatti
structures in the direction parallel to the film plane. Neith
of these two studies includes the phonon interference effe
Results of these models, however, demonstrated reason
agreement with the experimental data of Yao4 and Yuet al.6

on GaAs/AlAs superlattices in the same direction. The
studies suggest that the BTE is applicable for superlatt
and periodic structures with relatively thick constituent la
ers, and that diffuse interface scattering is the key facto
explaining the observed reduction in the thermal conduc
ity of GaAs/AlAs superlattices. Chen’s study15 further shows
that the in-plane thermal conductivity is very sensitive to
specularity of interface for phonon scattering. Totally spe
lar phonon scattering at interfaces does not have much e
on the in-plane thermal conductivity of superlattice stru
tures. A slight increase in the portion of diffuse phonon sc
tering, however, significantly reduces the superlattice th
mal conductivity. His modeling results indicate th
possibility of reducing the in-plane thermal conductivity
superlattices below that of their corresponding alloys, a
suggest the possibility of engineering the superlattices to
duce their thermal conductivities without much penalty
the electronic transport properties.

Chen21 also modeled the phonon transport and the eff
tive thermal conductivity of superlattice structures based
the BTE for heat flow across superlattice planes by assum
that phonons are scattered totally diffusely or totally spe
larly at the interface. The diffuse scattering model resu
were in reasonable agreement with experimental result
Capinski and Maris on a GaAs/AlAs superlattice.5 Hyld-
gaard and Mahan22 studied the thermal conductivity of
Si/Ge superlattice through the consideration of the pho
group velocity modification in superlattices by assuming
tally specular interface scattering. Results from their mo
show that an order-of-magnitude reduction in the therm
conductivity of Si/Ge superlattices is possible due to
acoustic mismatch between Si and Ge. More recently, C
and Neagu23 considered both diffuse and specular, but
elastic, interface scattering of phonons at interfaces of su
s,
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lattices. Their modeling results point to the importance
diffuse interface scattering in explaining the experimental
sults on the cross-plane thermal conductivity of GaAs/Al
and Si/Ge superlattices. These models, however, cannot
with interfaces that scatter phonons partially diffusely a
partially specularly, making it difficult to compare with th
in-plane model15 that suggests a strong influence of the
terface conditions on the superlattice thermal conductivit

In this work, several models on the effective thermal co
ductivity of superlattices for heat flow in the direction pe
pendicular to the film plane are presented, based on sol
the BTE for partially specular and partially diffuse interfa
scattering of phonons, with different interface scatteri
mechanisms. Section II describes these models and thei
derlying assumptions, followed by a discussion of the int
face scattering processes, the thermal boundary resist
~TBR!, and the mathematical treatment of the govern
equations. Such a treatment leads to a set of integral e
tions describing the temperature gradient distribution wit
each layer, the phonon intensity distribution, and the TBR
the interfaces. Approximate analytical solutions of the
equations, based on the observation of the numerical solu
that the majority of the temperature drop across one pe
of a superlattice occurs at the interfaces, are also present
this section. Section III discusses the numerical solution
the governing equations, and compares the solution with
proximate analytical solutions and experimental resu
These results show that the effective thermal conductivity
superlattice structures is generally controlled by heat tran
within each layer and the TBR between different layers, a
that the TBR is no longer an intrinsic property of the inte
face but depends on the layer thickness and the phonon M
In the very thin-film limit, however, the effective therma
conductivity is dominated by the interface TBR.

II. THEORETICAL MODELS AND ANALYSIS

The focus of this work is on the phonon transport wh
the heat-flow direction is perpendicular to the superlatt
film plane, as shown in Fig. 1, although it is believed th
some of the results obtained in this work can be extende
heat transfer by photons in periodic structures. Phonon tra
port in this type of structures possesses the following th
characteristics. First, the wave nature of phonons may

FIG. 1. Model and coordinate system.
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14 960 57G. CHEN
come important, as indicated in the phonon spectra
superlattices.13 Second, as the constituent layers beco
thicker than the phonon coherence length,15 wave effects
gradually disappear but the phonon MFP can be still lar
than the layer thickness. Unlike a single layer with free s
face types of boundary conditions, phonons in one layer
transmit through the interfaces ballistically, and thus aff
the temperature distributions in other layers directly. Thi
the interface will create additional resistance to the heat fl
To establish a model for heat conduction in a multilay
thin-film structure, the following two approximations a
made:~1! films are thick enough such that the phonon sp
trum in each layer can be represented by that of its b
material, and~2! the spectral-dependent scattering rate in
bulk medium is approximated by an average MFP. The fi
approximation excludes phonon wave effects, and the sec
one is a gray-medium approximation. The validity and lim
tations of these two approximations have been discusse
detail in a previous paper on the thermal conductivity
superlattices in the in-plane direction.15 More discussion per-
tinent to transport in the cross-plane direction will be giv
in Sec. III.

Under the above-stated approximations, the BTE is ap
cable to phonon transport across superlattices, and ca
expressed in terms of the total phonon intensity defin
as,24,25

I i5
1

4p (
m

E
0

nmax
uvmiu f hnDmi~n!dn, ~1!

where the subscripti (51,2) denotes properties of one of th
two adjacent layers,D is the density of states per unit vo
ume, f the phonon distribution function,h the Planck con-
stant,uvmiu the magnitude of the phonon group velocity, a
n the phonon frequency. The summation indexm is over the
three phonon polarizations.

The BTE, under the single-mode relaxation-time appro
mation, can be written as24,25

sin u icosw i

]I i

]x
1cosu i

]I i

]zi
52

I i2I oi

L i
, ~2!

whereI oi is the equilibrium phonon intensity in thei th layer
that is obtained by substitutingf in Eq. ~1! with the Bose-
Einstein distribution,u andw are the polar and the azimuth
angles, respectively, andL the average phonon MFP tha
could be estimated from the thermal conductivityk, the
volumetric specific heatC, and the phonon group velocityv,
of bulk materials from

k5CvL/3. ~3!

We should point out that the purpose of introducing t
phonon intensity concept is for the mathematical con
nience, particularly because the concept of photon inten
is widely used in thermal radiation.26 By introducing the
phonon intensity, the BTE becomes similar to the radiat
transfer equation, and many results in radiative transfer
be used for phonon transport studies.24 Although intensity is
a function of both location and direction, as is clear from E
~2!, it is a scalar quantity. The directional dependence
intensity is due to the directional dependence of the distri
f
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tion function, because Eq.~1! is a scalar transformation. Th
distribution function is a scalar in the six-dimensional pha
space ~three space coordinates and three wave-ve
coordinates!.27 Its directional dependence is a result of e
pressing the velocity coordinates in the three-dimensio
space coordinates.

For heat conduction perpendicular to the superlatt
plane, the phonon distribution function does not depend
x. A formal solution of Eq.~2! can be obtained by introduc
ing a deviation functioni i ,

i i~zi ,u i !5I i~zi ,u i !2I oi~Ti !, ~4!

to rewrite Eq.~2! as

cosu i

] i i

]zi
1

i i

L i
52cosu i

dIoi

dz
. ~5!

The solution of the above equation in terms of the equil
rium phonon intensity has been well documented,26

i i~h i ,m i !5 i i
1~h i ,m i !5 i i

1~0,m i !e
2h i /m i

2E
0

h i dIoi

dti
e2~h i2t i !/m idti

~ for 0,m i,1! ~6!

i i~h i ,m i !5 i i
2~h i ,m i !5 i i

2~j,m i !e
~j i2h i !/m i

1E
h i

j i dIoi

dti
e2~h i2t i !/m idti

~ for 21,m i,0! ~7!

wherem i (5cos ui) is the directional cosine,h i (5zi /L i)
the nondimensionalz coordinate, andj i (5di /L i) the non-
dimensional layer thickness of thei th layer. The local heat
flux in the z direction can be obtained from26

qi~h i !5E
4p

I icosu idV i

52pE
0

1

@ i i
1~h i ,m i !2 i i

2~h i ,2m i !#m idm i , ~8!

HeredV i(52p sinuidui) is the differential solid angle. The
final expression for the heat flux depends on the interf
conditions, which determine the coefficients in Eqs.~6! and
~7!, and the distribution of the intensity gradientdI

oi
/dti .

To determinei i
1(0,m i) and i i

2(j i ,m i) in Eqs. ~6! and ~7!,
boundary conditions for phonon scattering at interfaces m
be imposed. Our previous papers21,23 considered the limiting
cases when the interfaces scatter phonons totally specu
and totally diffusely. In the following subsections, bounda
conditions for the more general case when the interfaces
partially specular and partially diffuse will be establishe
followed by a discussion about the interface scattering p
cesses, and an outline of the solution method.

A. Partially diffuse and partially specular scattering interfaces

In this subsection, appropriate boundary conditions for
totally diffuse and the totally specular scattering interfac
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will first be elucidated. The boundary conditions for partia
diffuse and partially specular interfaces are established
combining these two cases.

By definition, the phonon intensity leaving a diffuse sc
tering interface does not depend on direction, thus coe
cients i i

1(0,m i) and i i
2(j,m i) in Eqs. ~6! and ~7! should be

direction independent. Energy balance at the interface
tween layer 2p and layer 1, as shown in Fig. 1, gives

E
2p

I 1
1~0,m1!m1dV15Rd12E

2p
I 1

2~0,2m1!m1dV1

1Td21E
2p

I p2
1 ~j2 ,m2!m2dV2 ,

~9!

where the integration with respect to the solid angle is o
the half space, andRdi j and Tdi j are the energy reflectivity
and transmissivity at an interface for phonons incident fr
the i th layer towards thej th layer, which are direction inde
pendent for diffuse interface scattering. The symb
I p2

1 (j2 ,m2) in Eq. ~9! represents the phonon intensity corr
sponding toh25j2 in the layer preceding layer 1. Becau
phonons are scattered diffusely at the interfaces, phon
leaving an interface are isotropically distributed, and Eq.~9!
can be written as

I 1
1~0,m1!52Rd12E

2p
I 1

2~0,2m1!m1dm1

12Td21E
2p

I p2
1 ~j2 ,m2!m2dm2 . ~10!

If phonons are specularly scattered at the interfaces, en
balance can be written down for a differential solid angle

I 1
1~0,m1!m1dm15Rs12~m1!I 1

2~0,2m1!m1dm1

1Ts21~m2!I p2
1 ~j2 ,m2!m2dm2 , ~11!

where Rs12(m1) and Ts21(m2) are the specular reflectivity
and transmissivity for phonons incident from layer 1 at an
u1 . Anglesu1 andu2 for specular reflection and refraction o
phonons obey the Snell law for acoustic waves,

sin u1

v1
5

sin u2

v2
. ~12!

Strictly speaking, Eq.~11! is valid only for transversely po
larized phonons in an isotropic solid experiencing elas
scattering processes at the interface. For longitud
phonons or transverse phonons polarized in the plane o
cidence, mode conversion at the interface can occur, lea
to three transmitted and three reflected phonon waves in
anisotropic crystal or two transmitted and two reflect
waves in an isotropic crystal.28 Consideration of such a mod
conversion would require modification of Eq.~11! to include
each of the transmitted and reflected phonon branches.
would make the solution of the BTE much more difficult.
addition, we are also interested in considering the inela
scattering of phonons at interfaces, for which there exist
simple relations among angles of the incident, transmit
y
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and reflected phonons. An approximate relation will be p
posed in the inelastic acoustic mismatch model presente
Sec. II B. Due to the approximate nature of these model
dealing with the phonon-scattering processes at the interf
we will neglect phonon mode conversion at interfaces. Th
are reasons to believe that the neglecting of the mode c
version does not introduce a large error and alter the con
sion of this work. In a recent work,29 we modeled the phonon
transmission through a single film including the mode co
version, but neglecting internal scattering and assuming o
elastic scattering at interfaces. The results show that
transverse phonons polarized both in and perpendicula
the plane of incidence contribute nearly equally to the fi
thermal conductivity. The assumption of no mode conv
sion for longitudinal phonons may lead to an overestimat
of the phonon transmission. It will be shown, however, th
the specular, elastic-scattering model underestimates the
perlattice thermal conductivity. A correction for the overe
timation of the longitudinal phonon transmissivity will mak
the calculated thermal conductivity even lower. To expla
the experimental data, inelastic phonon scattering mus
postulated to occur at the interfaces. For the inelas
scattering process, only approximate relations among
angles of incident, transmitted and reflected waves can
established, as stated above.

If the interfaces scatter phonons partially specularly a
partially diffusely, the corresponding boundary conditio
can be obtained by combining Eqs.~10! and ~11!,

I 1
1~0,m1!5p$Rs12~m1!I 1

2~0,2m1!1ts21~m2!I p2
1 ~j2 ,m2!%

12~12p!H Rd12E
2p

I 1
2~0,2m1!m1dm1

1Td21E
2p

I p2
1 ~j2 ,m2!m2dm2J , ~13!

wherep is the interface specularity parameter,15 representing
the fraction of phonons experiencing specular scattering
the interface, andts21 is related toTs21 by

ts21~m2!5Ts21~m2!m2dm2 /~m1dm1!. ~14!

Similar consideration on the energy balance at the two o
interfaces forming one period of a superlattice yields

I 1
2~j1 ,2m1!5p$Rs12~m1!I 1

1~j1 ,m1!

1ts21~m2!I 2
2~0,2m2!%12~12p!

3H Rd12E
2p

I 1
1~j1 ,m1!m1dm1

1Td21E
2p

I 2
2~0,2m2!m2dm2J , ~15!
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I 2
1~0,m2!5p$Rs21~m2!I 2

2~0,2m2!1ts12~m1!I 1
1~j1 ,m1!%

12~12p!H Rd21E
2p

I 2
2~0,2m2!m2dm2

1Td12E
2p

I 1
1~j1 ,m1!m1dm1J , ~16!

I 2
2~j2 ,2m2!5p$Rs21~m2!I 2

1~j2 ,m2!

1ts12~m1!I n1
2 ~0,2m1!%12~12p!

3H Rd21E
2p

I 2
1~j2 ,m2!m2dm2

1Td12E
2p

I n1
2 ~0,2m1!m1dm1J , ~17!

where I n1
2 (0,2m1) represents the phonon intensity corr

sponding toh150 in the layer next to layer 2. The above s
of interface conditions is generally applicable to multilay
structures, and is not subject to the periodicity requirem
of superlattices. For a periodic structure with heat flow in
z direction, temperatures at the corresponding locations
two identical layers, and thus the equilibrium intensiti
I po2

1 (j2) and I o2
1 (j2) do not equal to each other. We argu

however, that the angular distribution of the deviation fun
tion, i , must be similar between identical layers of
superlattice,21 i.e., i pi(h i ,m i)5Ki i(h i ,m i), where K is a
similarity constant. Substituting this similarity relation in
Eq. ~8!, it becomes clear thatK must equal 1 when there i
no internal heat generation. The above reasoning leads

i p2~h2 ,m2!5 i 2~h2 ,m2! and i n1~h1 ,m1!5 i 1~h1 ,m1!

~18!

Based on the four boundary conditions, Eqs.~13! and
~15!–~17!, the unknown coefficientsi i

1(0,m i) and i i
2(j i ,

2m i) in Eqs. ~6! and ~7! can, in principle, be expressed
terms of the unknown equilibrium phonon distributio
I 01(h1) and I 02(h2) and their derivatives. Expressions fo
the case of totally diffuse scattering interface have been p
lished before, and are very complicated.21 After the coeffi-
cients in Eqs.~6! and~7! are determined, these two equatio
can be substituted into Eq.~8! to yield two governing equa
tions for the temperature distribution and the interface te
perature drop. For partially diffuse interfaces, however,
explicit expressions, no matter how complex, can be
tained for the unknown coefficients in Eqs.~6! and ~7!. It is
found that the previously established methods21,23 for totally
diffuse and totally specular scattering interfaces are diffic
to apply to the partially diffuse and partially specular inte
faces. A solution method is thus developed. Before desc
ing this method, the phonon reflection and transmission p
cesses at interfaces and the associated TBR phenomeno
first be discussed.

B. Interface properties and thermal boundary resistance

The above formulation indicates that phonon trans
across superlattices depends on the interface transmiss
and reflectivity. These interface properties have been stu
t
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of
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extensively related to the work on the TBR.30,31 Despite
those studies, quantitative predictions of the TBR are still
satisfactory when compared with experimental results.32 One
possible explanation of the poor agreement between mo
ing and experimental results lies in the difficult of controllin
the interfaces. Most existing experimental studies were p
formed on interfaces formed by mechanically joining tw
materials or by deposition of polycrystalline films onto
substrate. Interface structures thus formed can deviate
nificantly from the assumptions underlying the models. T
nearly perfect interfaces in superlattice structures offer
ideal system to study TBR. In this work, two existing e
treme models on the TBR, with proper modifications, will
employed in evaluating the interface reflectivity and tran
missivity. These two models are the acoustic misma
model30 and the diffuse scattering model.31 Predictions based
on the acoustic mismatch model have been relatively s
cessful at very low temperatures where heat transfer is do
nated by long-wavelength phonons. At higher temperatu
where most phonons have short wavelengths, the diff
scattering limit model developed by Swartz and Pohl31 may
be more appropriate.

1. Diffuse scattering limit

The diffuse scattering limit model31 is established base
on the assumption that phonons experiencing scatterin
the interface totally lose their memory on the side which th
come from. In this case, there is no way to tell whethe
phonon leaving the interface is due to reflection from t
same side or transmission from the other side; hence

Td ji5Rdi j512Tdi j . ~19!

The second equality in the above relations comes from
energy conservation requirement. When both sides of
interface are at the same temperature, the principle of en
balance requires

Td12E
2p

I o1~T!cosu1dV15Td21E
2p

I o2~T!cosu2dV2 .

~20!

At low temperatures, the integration limit in Eq.~1! can
be extended to infinity. Substituting Eq.~1! into Eq. ~20!
leads to the following expression for the phono
transmissivity:31

Tdi j5

(
m

vm j
22

(
m

vmi
221(

m
vm j

22
, ~21!

wherevmi is the magnitude of the phonon group velocity
the m branch ~m is transverse or longitudinal! in the i th
layer. When the temperature is high, the above relation is
longer valid. A similar relation can be obtained by utilizin
the relation between intensity and specific heat,25

dIo

dT
5

1

4p (
m

E vmhnD~n!
d fo

dT
dn5

vC

4p
. ~22!

Assuming that the temperature variation across superlatt
is small and the specific heat can be treated as a consta
this temperature range, the intensity can be written as
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I o5
vC~T2Tref!

4p
, ~23!

whereTref is a reference temperature. From Eqs.~19!, ~20!,
and~23!, the following expression for phonon transmissivi
at the totally diffuse scattering limit is obtained:

Tdi j5
Cjv j

Civ i1Cjv j
. ~24!

In deriving Eq.~24!, it is assumed that phonons of all fre
quencies can transmit through the interface. This assump
implies that scattering at the interface can be inelastic,
phonons in one layer with frequency higher than the ma
mum frequency of phonons in the adjacent layers can tra
mit into adjacent layers by splitting into two or mor
phonons through anharmonic interatomic interactions. In
diffuse scattering model, these inelastic-scattering proce
redistribute phonons isotropically in all directions.

2. Elastic acoustic mismatch model

From the acoustic mismatch theory, the interface refl
tivity and transmissivity for specular interfaces can be
pressed as30

Rs12~m1!5UZ1m12Z2m2

Z1m11Z2m2
U2

~25!

and

Ts12~m1!5
4Z1Z2m1m2

~Z1m11Z2m2!2 , ~26!

whereZi5r iv i is the acoustic impedance of thei th layer.
The above expressions neglect possible phonon mode
version, as stated above. Another restriction on the vali
of the above two equations is that the interface scatterin
an elastic scattering process, i.e., the reflected and trans
ted phonons are at the same frequency as the inci
phonons. In this case, the following reciprocal relations
the spectral reflectivity and transmissivity are val
Rs12(m1)5Rs21(m2) and Ts12(m1)5Ts21(m2). These rela-
tions hold true for the spectrally integrated interface prop
ties only if the incident phonons from both sides have id
tical spectra. In real superlattices, however, the pho
spectra in two layers are seldom identical. Without loss
generality, it is assumed here that the maximum acous
phonon frequency in layer 2 is higher than that in layer
Phonons in layer 2 with frequencies above the maxim
acoustic-phonon frequency in layer 1 are confined in laye
if only elastic scattering is allowed at the interfaces. T
phonon confinement effect has been studied extensivel
literature.13 Since the phonon confinement occurs inside
second layer, Eqs.~25! and ~26! are valid for the spectrally
integrated reflectivity and transmissivity in the first laye
The total phonon transmissivity from layer 2 into layer 1 c
be related toT12 based on the energy balance requirement
a differential solid angle. If phonons at the two sides of
interface are at an equal temperature and the interfaces
totally specular, Eq.~11! yields

Ts12~m1!I o1~T!5ts21~m2!I o2~m2!. ~27!
on
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Based on Eqs.~12! and ~23!, Eq. ~27! can be written as

Ts21~m2!5
Ts12~m1!I o1~T!m1dm1

I o2~m2!m2dm2
5

C1v1
3

C2v2
3 Ts12~m1!.

~28!

Equations~24!–~28! are valid when the angle of incidence
less than the critical angle. Above the critical angle, to
internal reflection occurs, and we have

Rs12~m1!51, Ts12~m1!50. ~29!

3. Inelastic acoustic mismatch model

The above elastic acoustic mismatch model takes
consideration the phonon confinement effect by modify
the transmissivity for confined phonons. Studies by Sto
and Maris32 suggest that inelastic scattering should be
cluded to explain some of their experimental data on
TBR between solids at high temperatures. Although Eq.~24!
has included the inelastic-scattering effect in the diffuse s
tering limit model, the model neglects the possibility th
certain directional properties of the incoming phonons
persevered during the inelastic-scattering process. To m
the inelastic-scattering processes at interfaces, Stoner
Maris32 used lattice-dynamic simulations by assuming an
terfacial atomic layer with a different interatomic potenti
from those of the bulk materials. Here we propose a sim
analytical model to account for the inelastic-scattering p
cesses that preserve the direction of incident phonons.

For elastic scattering processes, the Snell law@Eq. ~12!#,
is satisfied. For inelastic-scattering processes such as th
phonon scattering, the wave vectors of other two involv
phonons will no longer obey the Snell law but in princip
can be calculated. As an approximate treatment, we can
an average angle of refraction for these two phonons.
relation between the refraction angle and the incident an
can be obtained from Eq.~27! by requiring that the transmis
sivity T12 must equal toT21. This leads to

m2dm2

m1dm1
5

C1v1

C2v2
or

sin u1

sin u2
5S C2v2

C1v1
D 1/2

. ~30!

In the low-temperature limit, the specific heatC is propor-
tional tov23 and the above relation reduces to Eq.~12!. We
will use Eq. ~30!, combined with Eqs.~25! and ~26! to cal-
culate the reflectivity and transmissivity and call this the
elastic acoustic mismatch model.

4. Thermal boundary resistance

After the transmissivity at the interface is known, th
TBR can be determined. The prevailing model accepted
the TBR, as shown in Fig. 2~a!, bears a strict analogy with
radiative transfer.31 Assuming that the phonon MFP in eac
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solid is infinite and that phonons at temperatureTe1 or Te2
are emitted by the solid on each side, the following relat
between the heat flux and the temperature drop can be
tained,

q5E
2p

T12~m1!I o1~Te1!cosu1dV1

2E
2p

T21~m!I o2~Te2!cosu2dV2 . ~31!

In the totally diffuse limit, the above equation gives

q5Td12C1v1DTe12/4, ~32!

whereDTe12 is the temperature difference between those
the emitted phonons.

For totally specular interfaces, Eq.~31! becomes

q5
C1v1DTe12

2 E
2p

Ts12~m1!m1dm1 . ~33!

From the above relation, the TBR can be expressed as

We5
DTe12

q
5H 4

Td12C1v1
diffuse limit

2

C1v1*Ts12~m1!m1dm1
specular limit.

~34!

The above definition for TBR is based on the temperat
of the emitted phonons. For heat conduction in very t
films, the local thermodynamic condition is far from equili
rium, and temperature losses its conventional meaning
representing a thermal equilibrium state.25,31 In the current
work, temperature is a representation of the average en
of all phonons around a local point, and is equivalent to
equilibrium temperature of those phonons if they redistrib
adiabatically to an equilibrium state. This temperature d
nition is inconsistent with the above definition for the TB
based on the temperature of emitted phonons because
lustrated in Figs. 2~a! and 2~b!, the equivalent equilibrium
temperature on each side is different from that of the emi
phonons. A more consistent picture of TBR is provided
Simons33 based on the equivalent equilibrium temperature
phonons on each side of the interface. It can be shown
the equivalent equilibrium temperature,T1 and T2 , can be
expressed in terms ofTe1 andTe2 as

T15Te12~Te12Te2!E T12~m1!m1dm1

and

T25Te21~Te12Te2!E T21~m2!m2dm2 , ~35!

such that
n
b-

f

e
n

of

gy
e
e
-

il-

d
y
f
at T12T25DT125F12E T12~m1!m1dm1

2E T21~m2!m2dm2G~Te12Te2!. ~36!

By defining the TBR based on the difference of t
equivalent equilibrium temperature,DT12, the classical para-
dox on the existence of a finite TBR for an imaginary inte
face in the same material30 can be eliminated. This is be
cause whenT125T2151, Eq. ~36! leads toDT1250. Based
on DT12 rather thanDTe12, the following expressions for the
TBR are obtained:

FIG. 2. Interpretation of thermal boundary resistance:~a! pho-
non reflection and transmission,~b! equilibrium and emitted phonon
temperature for infinite phonon mean free path, and~c! effect of the
finite phonon mean free path.
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W5
DT12

q
55

4@120.5~Td121Td21!#

Td21C2v2
diffuse limit

2F12E Ts12~m1!m1dm12E Ts21~m2!m2dm2G
C1v1E Ts12~m1!m1dm1

specular limit.

~37!
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It should be emphasized that both the classical defini
@Eq. ~34!# and the temperature consistent definition@Eq.
~37!# lead to the correct result for heat flux. Which definitio
is more appropriate depends on the actual experimental
figuration, i.e., whether the temperature sensor measure
temperature of emitted phonons or the equivalent equ
rium temperature of all the phonons on each side.34 For heat-
transfer calculations involving both conduction inside a m
dium and the TBR at an interface, the equivalent equilibri
temperature is clearly a more appropriate choice.

C. Method of numerical solution

The four boundary conditions in Eqs.~13! and~15!–~17!,
plus Eqs.~6! and ~7!, involve a total of eight equations bu
ten unknowns: the eight forward and backward intensitie
the interfaces, and the distribution of the effective tempe
ture in each layer. In this work, it is assumed that no inter
heat generation occurs in the medium; thus the heat flu
given by Eq.~8! is a constant. By normalizing temperature
the heat flux, two additional equations are obtained. In p
ciple, the intensity distribution at the boundaries as well
the normalized temperature distribution in each layer can
determined from this set of equations.
re
e

n

n-
the
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-

at
-
l

as

-
s
e

Clearly, exact analytical solutions of these equations
impossible. So far, we have reported numerical results
two special cases, i.e., when the interfaces are totally diff
and totally specular.21,23 Numerical solutions for these two
cases are obtained by eliminating the unknown intensitie
the interfaces and solving two integral equations govern
the nondimensional temperature distributions in one per
For the partially diffuse and partially specular interface
elimination of all the intensities is impossible. We have
tempted to solve the equations simultaneously by discre
ing the integrals using the Gauss-Legendre quadrature.
merical instability was encountered in these attempts.

A new method of solution is developed here based on
symmetry implied by the governing equations and the co
sponding boundary conditions. As shown in the Append
the following antisymmetric relations exist:

i j
1~0,m j !52 i j

2~j j ,2m j !

and

i j
1~j j ,m j !52 i j

2~0,2m j !. ~38!

Using these relations and Eqs.~7! and~8!, the boundary con-
ditions can be written as
@11pRs12~m1!e2j1 /m1#i1
1~0,m1!2pts21~m2!e2j2 /m2i2

1~0,m2!12~12p!Rd12E
0

1

e2j1 /m1i1
1~0,m1!m1dm1

22~12p!Td21E
0

1

e2j2 /m2i2
1~0,m2!m2dm22pRs12~m1!P1E

0

j1
G1~ t1!e2~j12t1!/m1dt1

1pts21~m2!E
0

j2
G2~ t2!e2~j22t2!/m2dt222~12p!Rd12P1E

0

j1
G1~ t1!E3~j12t1!dt1

12~12p!Td21E
0

j2
G2~ t2!E3~j22t2!dt25C21P1@pTs12~m1!1~12p!Td12#, ~39!
ub-
,

wherei i , Gi , andC i j are normalized intensity, temperatu
gradient distribution, and TBR, respectively, which are d
fined as

i i5
p i i

q
, Gi5

C2v2

4q

dTi~ t i !

dti
, C i j 5

C2v2DTi j

4q
,

~40!

andP i are
-
P15C1v1 /~C2v2! and P251, ~41!

The exponential integral functionEn (n53) in Eq. ~39! is
defined as26

En~ t !5E
0

1

mn22e2t/mdm. ~42!

A similar equation can be obtained by permuting the s
script indices 1 and 2 in Eq.~39!. Using these two equations
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the number of unknown intensity distribution at the inte
faces is reduced from eight to two. Two additional equatio
can be obtained from Eq.~8!,

E
0

1

~e2h i /m i1e2~j i2h i !/m i !i i
1~0,m i !m idm i

2P iE
0

j i
Gi~ t i !E3~ uh i2t i u!dti5

1
2 , ~43!

wherei 51 and 2.
The above integral equations@Eqs.~39! and ~43!# can be

solved numerically to yield the intensity distribution at th
interfaces, the TBR, and the nondimensional tempera
distributions. The Gauss-Legendre integration scheme
used here to approximate the integrals in Eqs.~39! and~43!.
In doing such a discretization, two complications arise. O
is due to the fact that the roots of the Gauss quadrature
pend on the integration interval and the number of integ
tion points. Such roots in layers 1 and 2 will not satisfy t
Snell law as given by Eq.~12!, while the directional cosines
m1 andm2 in Eq. ~39! are related to each other according
the Snell law. To overcome this problem, discretization m
also be carried out for those angles that are conjuga
through the Snell law, to the angles in the adjacent layer
determined by the Gauss quadrature. Thus, if thenth-order
Gauss quadrature is used, a total of 43n discrete equations
must be written down fori1

1(0,m1) and i2
1(0,m2). The sec-

ond complication is due to the occurrence of the total int
nal reflection. At the critical point, the reflectivity and tran
missivity vary drastically. This sharp variation requires t
separation of integration over angle into two parts for
layer in which the total internal reflection occurs, as dem
cated by the critical angle. A total of 63n descretized equa
tions is thus used for the intensity distributionsi1

1(0,m1) and
i2

1(0,m2). In addition, the discretization over the distributio
of nondimensional temperature gradientG will give 23m
sets of discretized equations, for anmth-order Gauss quadra
ture in theh-coordinate direction. Two more discrete equ
tions can be obtained by settingh i50 in Eq.~39! or ~43!, to
s
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compensate for the two additional unknowns related to
TBR, C i j . The final total number of discretized equations
63n123m12, with 63n unknowns in intensity, 23m
unknowns in the nondimensional temperature gradient dis
bution, and two unknowns in the nondimensional therm
boundary resistance. Direct matrix inversion is employed
obtain the final solution fori i , Gi , and C i j , followed by
integration ofGi to yield the nondimensional temperatu
distribution in each layer. The accuracy of the results
tested by doubling the number of integration points. Anoth
way to check the results is to investigate their asympto
behavior. In the limit where each layer is thick compared
the MFP, the Fourier law should be valid. Combining Eq
~3! and ~40! leads to the following asymptotic solution

lim
j i→`

Gi~ t i !523/4P i . ~44!

D. Approximate solutions

As will be shown by the numerical results in Sec. I
most of the temperature drop across the superlattice occu
the interfaces when the layers are very thin. Based on
observation, approximate analytical solutions for the eff
tive thermal conductivity of superlattices can be obtained
neglecting the temperature drop inside the film, and ass
ing that the effective thermal conductivity of superlattices
dominated by the interface TBR. Under this approximatio
in dimensional form, Eq.~39! becomes

~11pRs12!i 1
12pts21i 2

15$C1v1DT12@pTs121~12p!Td21#

12~12p!@Td122Rd21#q%/4p,

~45!

and a similar equation is obtained by permuting the subsc
indices. Solving the above equations fori 1

1 and i 2
1 , and

substituting the solutions back into Eq.~8!, yields an expres-
sion for the heat flux, from which the effective thermal co
ductivity can be expressed as
ke5
0.5~d11d2!C2v2*0

1$2pTs211~12p!Td21@11pRs121pts12#/D~m2!%m2dm2

122~12p!*0
1$@~11pRs12!~2Rd211Td12!1pts12~2Rd121Td21!#/D%m2dm2

, ~46!

where

D~m1!5~11pRs21!~11pRs12!2p2Ts12Ts21. ~47!

For totally specular interfaces, the above equation is simplified to

ke5~d11d2!C2v2E
0

1 Ts21~m2!m2dm2

@11Rs12~m1!#@11Rs21~m2!#2Ts12~m1!Ts21~m2!
. ~48!
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For totally diffuse interfaces under the diffuse scatter
limit, Eq. ~46! leads to

kde50.5~d11d2!C1v1Td12. ~49!

E. Specific heat, group velocity, and phonon mean free path

The above models need several bulk material proper
as input parameters, including the specific heat, the pho
group velocity, and the phonon MFP. The simplest meth
to calculate the bulk phonon MFP is from Eq.~3! based on
the speed of sound, the bulk thermal conductivity, and
specific heat. This method, however, neglects the fact tha
room temperature most phonons are populated close to
zone boundary where the phonon group velocity is sign
cantly smaller than the sound velocity. In addition, a sign
cant portion of the specific heat is due to optical phonons
contributes little to heat transfer.35,36 A better estimation of
the phonon MFP and the group velocity can be obtain
from a more realistic approximation of the phonon disp
sion relations.15,20 In a previous paper,15 we have shown tha
the specific heat of GaAs can be calculated without any
ting parameters~including the Debye temperature! by ap-
proximating the dispersion of the transverse and
longitudinal-acoustic phonons with simple sine function
Similar calculations have been done for silicon and germ
nium. Figures 3~a! and 3~b! demonstrate the satisfactor
agreement between the calculated and listed specific-
data of Si and Ge. At room temperature, about one-third

FIG. 3. Specific heat of~a! Si and~b! Ge, showing contributions
from different phonon modes.
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the specific heat of Si is due to optical phonons, and, for
the optical-phonon contribution accounts for about one-h
of the total specific heat. Since optical phonons have a v
low group velocity, we will neglect their contribution to th
bulk thermal conductivity as well as to the superlattice.
addition to excluding the optical phonons, the phonon gro
velocity is also calculated from approximate dispersion re
tions weighed over the model specific heat.15 Table I lists the
phonon properties based on the two estimation methods,
the method based on the speed of sound and the total spe
heat~Debye model!, and the method based on a sine functi
approximation to each acoustic-phonon polarization and
exclusion of the optical phonons~dispersion model!.15

III. RESULTS AND DISCUSSION

Sample calculations are carried out for GaAs/AlAs a
Si/Ge superlattices. Figures 4~a!–4~c! show the distributions
of the nondimensional temperature gradient, and Figs. 5~a!–
5~c! the distributions of nondimensional temperature in tw
adjacent layers of GaAs/AlAs superlattices. For large la
thickness @Figs. 4~a! and 5~a!#, the gradient distribution
approaches a constant of2 3

4 in layer 2 and 20.825
(53/4P1) in layer 1 over a large portion of each layer,
agreement with the Fourier heat conduction theory, i.e.,
~44!. Near the interfaces, the temperature gradient increa
sharply, reflecting the nonequilibrium nature of the transp
process near the interface as shown in Fig. 2~a!. In this case,
the majority of temperature drop occurs inside the layer a
the interface conditions have little effect on the overall te
perature drop@Fig. 5~a!#. For small layer thickness, say
100-Å period superlattice, the temperature gradient beco
more nonuniform and its value deviates from the Four
results. For totally specular interfaces, large differences e
in the TBR and the distribution of the temperature gradi
between results obtained from the elastic acoustic mism
@Figs. 4~b! and 5~b!# and inelastic acoustic mismatch@Figs.
4~c! and 5~c!# models. Under the elastic acoustic mismat
model, phonons are confined in the AlAs layer and a la
temperature drop occurs at the interface due to the redu
phonon transmissivity. For inelastic scattering at interfac
phonons are not confined, and, correspondingly, only a sm
temperature drop develops at a totally specular scattering
terface. Similar results have been obtained for Si/Ge su
lattices. Because the mismatch in the specific heat and g
velocity is larger between Si and Ge than between GaAs

TABLE I. Room-temperature properties used in the calculat
of the thermal conductivity of GaAs/AlAs and Si/Ge superlattice

Material Model
Specific heat
3106 J/m3 K

Group velocity
m/s

Mean free
path Å

GaAs Debye 1.71 3700 208
Dispersion 0.88 1024 1453

AlAs Debye 1.58 4430 377
Dispersion 0.88 1246 2364

Si Debye 1.66 6400 409
Dispersion 0.93 1804 2604

Ge Debye 1.67 3900 275
Dispersion 0.87 1042 1986
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FIG. 4. Distributions of the nondimensional temperature gradient in one period of GaAs/AlAs superlattices with equal thicknes
unders different interface scattering models;~a! d15d251000 Å, ~b! d15d2550 Å, and~c! d15d2550 Å, where~a! and~b! are based on
elastic acoustic mismatch model for contributions from specular scattering processes, and~c! is based on inelastic acoustic mismatch mod
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AlAs, the temperature drop at a Si/Ge interface is larger th
that at a GaAs/AlAs interface.

The distribution of the normalized intensity deviations
two interfaces is shown in Figs. 6~a!–6~d! for GaAs/AlAs
superlattices. Figures 6~a! and 6~b! are results based on th
elastic-acoustic-mismatch model, while Figs. 6~c! and 6~d!
are results based on the inelastic acoustic mismatch mo
The total internal reflection occurs in GaAs under the elas
acoustic mismatch model@Fig. 6~a!#, but changes to the
AlAs layer under the inelastic-scattering model@Fig. 6~d!#.
This switching is a consequence of modifying the Snell la
according to Eq.~30!. In interpreting the angular distribu
tions of the normalized intensity deviations, it should be ke
in mind that they represent the deviation from the equil
rium intensity. A positive value means phonons contribute
the energy flow in the heat flux direction, and vice vers
When the incident angle is smaller than the critical angle,
intensity decreases monotonously with increasing angle
incidence. Above the critical angle, the deviation in intens
increases with angle, due to scattering of phonons inside
layer into these directions. For diffuse interfaces, the dis
bution of intensity is isotropic, as expected.

Figures 7~a!–7~d! illustrate the behavior of the TBR as
function of the layer thickness. First, it should be emphasiz
that numerical solution indeed shows that the TBR is ind
pendent of the phonon incident direction, i.e.,C125C21, as
required by symmetry. Second, the TBR also becomes th
ness dependent. Third, the TBR calculated for thick film
does not approach the limit as given in Eq.~37!. The reason
for this latter discrepancy lies in the temperature nonunif
mity near the interface. The previous derivation of the TB
assumes that the phonon MFP is infinite, and thus the in
n
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dent phonons from each side will be at one uniform tempe
ture, as illustrated in Fig. 2~b!. When the phonon MFP is a
finite value, all phonons within the range of the order of o
MFP can reach the interface ballistically and thus affect
TBR. Equation~37! defines the TBR based on the temper
tures of phonons exactly at the two sides of an interfa
Figure 2~c! shows, however, that phonons away from t
interface but within the range of one MFP participate in t
energy exchange across the interfaces directly. This me
that the TBR depends on the temperature gradient in
media. For superlattices, the temperature gradient is fur
related to layer thickness, leading to the dependence of
TBR on the film thickness. Such a thickness dependence
the TBR is similar to the separation dependence of the e
trical conductance of two constrictions in parallel37 or in
series.38 Both are due to the influences of the interfaces
constrictions to the distributions of the incident phonons
electrons. Quantum interference of electron waves is
cause of the incident electron wave redistribution in the ci
references, while the thickness dependence of the TRB
cussed here is caused by the phonon density change in
films.

To understand heat conduction mechanisms in supe
tices further, the effective thermal conductivity of superla
tice structures will be calculated and compared with rec
experimental results on GaAs/AlAs~Ref. 5! and Si/Ge
superlattices.7 All of the above calculations are performe
based on the bulk specific heat and the speed of sound~val-
ues listed under the Debye model in Table I!. Since the pre-
sented temperature distributions are normalized to the pr
uct of the specific heat and the group velocity, these res
should not change much even when the optical-phonon c
FIG. 5. Nondimensional temperature distribution for the corresponding superlattices in Figs. 4~a!–4~c!.
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FIG. 6. Distribution of nondimensional intensity in the forward direction ath50 as a function of polar angle;~a! and ~b! are results
based on elastic acoustic mismatch model, and~c! and ~d! are based inelastic acoustic mismatch model;~a! and ~d! represent the layer in
which total internal reflection occurs.
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tribution is excluded and an average phonon group velo
is used~values listed under the dispersion model in Table!.
For the thermal conductivity modeling, however, we must
more discriminative on the values of the specific heat and
phonon group velocity used in the calculations. Table I li
two groups of properties for each material. One is based
the total specific heat and the average of the sound velo
and the other is based on the specific heat of the acou
phonons only and a group velocity averaged over the
Brillouin zone. Modeling results based on both groups
properties will be discussed.

Figures 8~a!–8~d! show the modeling results on the thic
ness dependence of the thermal conductivity of GaAs/A
superlattices that are calculated under different conditio
and compare them with experimental results of Capinski
Maris.5 Figures 9~a!–9~d! illustrate a similar comparison
with Si/Ge superlattices.7 The specular reflectivity and trans
missivity in Figs. 8~a!, 8~b!, 9~a!, and 9~b! are based on the
elastic acoustic phonon mismatch model, and thus incl
the phonon confinement effect. The differences among th
figures are in the values of the specific heat and the pho
group velocity. Figures 8~a! and 9~a! represent the cas
where no consideration is given to the phonon dispersion
the effect of optical phonons on the specific heat, while F
8~b! and 9~b! are calculated with these two factors taken in
consideration. Although the experimental data of both Ga
AlAs superlattices and Si/Ge superlattices are close to
calculations in Figs. 8~a! and 9~a!, a more realistic treatmen
on the specific heat and phonon group velocity leads to o
prediction of the thermal conductivity based on the elas
acoustic-mismatch model, as demonstrated by Figs. 8~b! and
9~b!. The experimental data can be better explained base
the inelastic acoustic mismatch model, as can be seen
Figs. 8~d! and 9~d!. These calculations lead to an interfa
specularity parameter;0.8, a value close to the one obtain
ty
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in modeling the in-plane superlattice thermal conductivity15

We should point out that phonon confinement has been
perimentally confirmed in many superlattices.13 These ex-
periments were done for phonons in specific directions~typi-
cally normal incidence!, and they did not yield quantitatively
how much phonons were actually confined. The above
sults indicate that in terms of total heat flux, the phon
confinement effect is small. The conclusion that inelas
scattering plays a role in the observed thermal conducti
of superlattices also agrees with lattice-dynamic simulat
results by Stoner and Maris32 on the interface TBR.

There are several possible explanations for the mec
nisms of the diffuse interface scattering of phonons. T
most obvious one is the interface roughness. It is well kno
that even the best superlattices have certain interf
structures such as long-range terraces and short-ra
mixing of atoms.39 At molecule-beam-epitaxy-grown
GaAs/AlxGa12xAs interfaces, roughness often extends
1–3 atomic layers, or;3 – 9 Å. This roughness is compa
rable to the dominant phonon wavelength,15 and will cause
diffuse scattering of phonons. The effect of interface roug
ness on phonon propagation has been reported in direct
non imaging experiments.40 Many studies have been carrie
out to investigate the effects of interface roughness on
phonon dispersion and Raman spectrum of superlattices.41–43

The effect of interface roughness on the TBR of a sin
interface is also a subject of numerous studies.31 In addition
to the diffuse scattering caused by interface roughness,
other mechanisms may also cause the diffuselike scatte
These are the inelastic scattering caused by the anharm
interatomic force interaction and the phonon mode conv
sion at the interface. Due to the existence of these proces
the phonon distribution at the interface may not follow t
simplified model used in this work, i.e., the interface scatt
ing may be neither partially diffuse nor partially specula
he elastic
FIG. 7. Normalized thermal boundary resistance as a function of layer thickness for GaAs/AlAs and Si/Ge superlattices under t
acoustic mismatch model@~a! and ~c!#, and under the inelastic acoustic mismatch model@~b! and ~d!#.
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FIG. 8. Thickness dependence of the thermal conductivity of GaAs/AlAs superlattices@~a! and ~b!# under the elastic, and@~c! and ~d!#
under the inelastic acoustic mismatch model.~a! and~c! are based on the the total specific heat and the speed of sound, while~b! and~d! are
based on the exclusion of optical phonons and a spectrally averaged phonon group velocity.
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Modeling of the more general case that includes the deta
interface scattering processes is beyond of the scope of
work.

For Si/Ge, there is also a sudden reduction in the ther
conductivity with increasing layer thickness. Reference 7
dicated that this reduction is due to the existence of dislo
tions. Chen and Neagu23 used a dislocation scattering mode
and indeed calculated a comparable reduction of ther
conductivity at a dislocation density;1012 cm2. At this dis-
location density, the dominant scattering mechanism is
to strain field around the dislocations. Because the dislo
tion scattering is a bulk process, the measured thermal
ductivity becomes thickness independent.

Although the elastic acoustic mismatch model has b
ruled as an unlikely interface scattering process, it is in
esting to note that in this case, the thermal conductivity
GaAs/AlAs superlattices depends on the interface specula
parameter differently from that of Si/Ge superlattices,
shown in Figs. 8~a! and 9~a!. For GaAs/AlAs superlattices
increasing the interface specularity parameter increases
thermal conductivity, while, for Si/Ge superlattices, the th
mal conductivity decreases with the increasing interfa
specularity parameter. This is because of the large acou
mismatch between Si and Ge compared to that betw
GaAs and AlAs. The average reflectivity at a Si/Ge interfa
calculated based on the elastic acoustic mismatch mod
larger than that based on the diffuse scattering model,
increasing the interface specularity parameter increases
TBR, while the reverse is true for a GaAs/AlAs interfac
The overall differences in the reflectivity between the diffu
mismatch and elastic acoustic mismatch models are sm
and thus the spread of the thermal conductivity under the
models is small. Under the inelastic acoustic misma
model, the specular reflectivity is relatively weak for bo
d
is
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al
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Si/Ge and GaAs/AlAs superlattices and the thermal cond
tivity becomes sensitive to the interface specularity para
eter around the totally specular scattering interface lim
similar to the in-plane thermal conductivity.15 The sensitivity
of the cross-plane thermal conductivity to the interfa
specularity parameter is shown in Figs. 10~a! and 10~b! for
the two different models on the specular interfaces, i.e.,
elastic and the inelastic acoustic mismatch models.

Figures 11~a! and 11~b! compare the calculated temper
ture dependence of the thermal conductivity of Si/Ge a
GaAs/AlAs superlattices with experimental data of Refs
and 5. Only results obtained from the consideration of
phonon dispersion and the inelastic scattering at the bou
ary are presented. For Si/Ge superlattices, the model re
are in reasonable agreement with the experimental data.
GaAs superlattices, the model is able to explain the exp
mental data on the 12314 superlattice~12 ML of GaAs and
14 ML of AlAs!. For the 333 superlattice, the model pre
dicts the correct order of magnitude in the thermal cond
tivity reduction, but cannot explain well the temperature d
pendence. Two mechanisms may be responsible for
stronger measured temperature dependence of the the
conductivity of this superlattice. One of the mechanism is
phonon wave effect such as tunneling and interference
analogy to the photon tunneling and interference throug
narrow gap.44,45 Our modeling on the heat conductio
through a Ge/Si/Ge double heterojunction structure indica
that tunneling can increase the thermal conductivity o
10-Å layer by 20%,29 but tunneling alone cannot explain th
observed stronger-than-predicted temperature dependen
the thermal conductivity of the 333 superlattice. The stron
ger temperature dependence of the thermal conductivity
this superlattice can be explained by assuming that
specularity parameter is a function of temperature. Althou
FIG. 9. Thickness dependence of the thermal conductivity of Si/Ge superlattices@~a! and~b!# under the elastic model, and@~c! and~d!#
under the inelastic acoustic mismatch model.~a! and~c! are based on the the total specific heat and the speed of sound, while~b! and~d! are
based on the exclusion of optical phonons and a spectrally averaged phonon group velocity.
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the variation ofp with temperature is small, its effect on ver
thin films is strong, as indicated in Fig. 10~a!.

The approximate expressions, Eqs.~46!, ~48!, and ~49!
can be expected to be valid for the cases where the maj
of temperature drop in superlattices occurs at interfaces.
is the case for totally diffuse interfaces with very thin sup
lattice period. Similar is true for specular interfaces w
phonon confinement. For specular interfaces under
inelastic-acoustic-mismatch model, the approximate exp
sions are no longer valid because the interface TBR is v
small. Figure 5~c! shows, however, that as long as a sm
fraction of phonons are diffusely scattered, the TBR
creases significantly and the approximation expressions
come applicable. Figures 12~a! and 12~b! support the above
discussion by comparing the numerical solutions of the B
with results obtained from the approximate expressions.

The above results and discussion demonstrate that
cross-plane thermal conductivity of superlattices is c
trolled by the interface scattering of phonons. The tempe
ture drop inside the layers is small compared to the temp
ture drop at interfaces, i.e., phonon transport acr
superlattices is ballistic and thermal conductivity is less
fected by the scattering mechanisms in bulk materials.
superlattices with layer thickness thinner than the pho
MFP, the effective thermal conductivity is almost excl

FIG. 10. Sensitivity of thermal conductivity to the interfac
specularity parameter for Si/Ge superlattices:~a! inelastic acoustic
mismatch model and~b! elastic acoustic mismatch model.
ity
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n

sively controlled by the interfaces and is independent of t
bulk scattering processes. This indicates that many go
thermal conductors may be engineered to yield low therm
conductivity structures, and thus opens a way to engin
materials for thermoelectric applications.

It is also interesting to compare the cross-plane therm
conductivity modeling with the in-plane modeling. For th
in-plane modeling, the superlattice thermal conductivity a
ways depends on the phonon MFP in bulk materials.15,46Due
to this dependence, it becomes necessary to include the
quency dependence of the relaxation time in the in-pla
thermal conductivity modeling. For the cross-plane therm
conductivity modeling, since the thermal conductivity at th
very thin-film limit is almost totally independent of the bulk
relaxation time, we do not expect a large difference in t
effective thermal conductivity calculated based on the gra
medium approximation and the frequency-dependence tre
ment of the phonon MFP.

IV. CONCLUSIONS

Thermal conductivity of superlattices is of current intere
for microelectronic and thermoelectric applications. Larg
reductions on the thermal conductivity of superlattices ha
been observed in recent years. In this work, we carry o

FIG. 11. Temperature dependence of the thermal conductivity
~a! Si/Ge and~b! GaAs/AlAs superlattices.
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theoretical investigations on heat conduction mechanism
superlattice structures in the direction perpendicular to
film plane based on solving the BTE. Several models for
interface scattering processes are established by exten
the acoustic mismatch model and the diffuse misma
model previously developed in the study of the TBR to
clude the possibility of phonon confinement and inelas
scattering at interfaces. These models are incorporated
the boundary conditions of the BTE. Computational stra
gies were developed for numerical solution of the BTE. A
proximate analytical solutions are also obtained for the
fective cross-plane thermal conductivity of superlatt
structures. These analytical solutions are shown to be v
good at the thin-film limit.

Results of this study demonstrate that the equivalent t
mal conductivity of superlattices is controlled by both t
size effects on heat transfer within each layer and the T
between different layers when the superlattice period th
ness is comparable to the phonon MFP. The TBR is
longer an intrinsic property of the interface, but also depe
on the layer thickness. When the period thickness is thin
the phonon MFP in their corresponding bulk materials,
TBR at the interfaces becomes the major factor limiting
thermal conductivity in this direction. Comparison of th
modeling results with recent experimental data on Si/Ge

FIG. 12. Comparison of numerical results and approximate
lution for ~a! the inelastic acoustic mismatch model and~b! the
elastic acoustic mismatch model.
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GaAs/AlAs superlattices suggests that the measured the
conductivity can be explained by assuming that phon
transport at the interfaces is partially diffuse and partia
specular, and that inelastic phonon scattering occurs at
interfaces.

It is clear from this study that the large thermal condu
tivity reduction experimentally observed in GaAs/AlAs an
Si/Ge superlattices results from the interface scattering
phonons. Phonon transport in thin period superlattices is
listic, and the thermal conductivity of superlattices is almo
independent of the scattering mechanisms in bulk mater
but is determined by the mismatch of specific heat, gro
velocity, and density of adjacent layers. Based on this c
clusion, we can envision the possibility of engineering sup
lattices to obtain low thermal conductivity structures ev
from good bulk thermal conductors. These low thermal co
ductivity structures may have applications in thermoelec
devices.

Our model cannot explain satisfactorily the experimen
thermal conductivity data of a 333 GaAs/AlAs superlattice.
Possible reasons are due to phonon tunneling and the
perature dependence of the interface specularity param
Tunneling increases the heat conduction through supe
tices, and the interface specularity parameter may incre
with decreasing temperature. These two effects can lea
higher-than-predicted thermal conductivity as well as str
ger temperature dependence.
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APPENDIX

In this appendix, we prove that the solution for the dev
tion of intensityi i

1 andi i
2 must be antisymmetric. The proo

starts from Eq.~5!, which can be written as

cosu1

] i 1
1~u1 ,h1!

]h1
1 i 1

1~u1 ,h1!52cosu1

dI01~h1!

dh1

~0,u1,90°!, ~A1!

cosu1

] i 1
2~u1 ,h1!

]h1
1 i 1

2~u1 ,h1!52cosu1

dI01~h1!

dh1

~90°,u1,180°!. ~A2!

Introducing the transformations

w15p/22u1 and z15j12h1 , ~A3!

Equation~A2! becomes

cosw1

] i 1
2~p2w1 ,z1!

]z1
1 i 1

2~p2w1 ,z1!

5cosw1

dI01~h1!

dh1
~0,w,90°!. ~A4!

The above equation is identical to Eq.~A1! if

-
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i 1
1~u1 ,h1!52 i 1

2~p2u1 ,z1!

or

i 1
1~m1 ,h1!52 i 1

2~2m1 ,j12h1!. ~A5!

Such an antisymmetry relation will hold if it can also b
proven that the boundary conditions are not violated. Eq
tions ~13! and ~15! yield

i 1
1~0,m1!2p@Rs12~m1!i 1

2~0,2m1!1ts21~m2!i 2
1~j2 ,m2!#

22~12p!FRd12E
0

1

i 1
2~0,2m1!m1dm1

1Td21E
0

1

i 2
1~j2 ,m2!m2dm2G

5C12P1@pTs12~m1!1pTd12# ~A6!
y

fe

tt.

ys

nd

.

s

a-

and

i 1
2~j1 ,2m1!2p@Rs12~m1!i 1

1~j1 ,m1!1ts21~m2!i 2
2~0,2m2!#

22~12p!FRd12E
0

1

i 1
1~j1 ,m1!m1dm1

1Td21E
0

1

i 2
2~0,2m2!m2dm2G

5C21P1@pTs12~m1!1pTd12#. ~A7!

If Eq. ~A5! and the corresponding equation fori 2 are satis-
fied, and in addition, if the TBR is symmetric, i.e.,C12

5C21, the above two boundary conditions become iden
cal. Numerical solution shows that the TBR is indeed sy
metric. The antisymmetric relations are thus proved.
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