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Superfluidity and quantum vortices in systems with pairing of spatially
separated electrons and holes in crossed magnetic and electric fields
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B. I. Verkin Institute for Low Temperature Physics and Engineering, Academy of Sciences of Ukraine,
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The low-temperature behavior of two-dimensional systems with pairing spatially separated electrons and
holes is studied. We predict a transition to a superfluid state of a dilute gas of electron-hole pairs in a strong
magnetic field normal to conducting layers. In the superfluid phase the crossed electric and magnetic fields are
shown to create planar vortices where the pairs rotate in the structure plane.@S0163-1829~98!05420-4#
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About 20 years ago it was predicted1–3 that a rather un-
usual superconductivity mechanism due to pairing of s
tially separated electrons and holes~PSSEH! can exist. In
this superconductivity mechanism an electron supercurren
accompanied by a hole supercurrent, which is equal in va
and opposite in direction to the former one. During the l
5–7 years the ideas outlined in Refs. 1–3 have been de
oped in a number of theoretical papers,4–9 in which systems
with PSSEH have been studied in a strong magnetic fi
perpendicular to the layers. Experimental papers10,11reported
the observation of phenomena that are associated9,11 with the
superconductivity mechanism predicted.1–3 However, the
conclusion about superconductivity is drawn on the grou
of some indirect results, rather than on measuring, say,
electroresistance. Therefore the experimental observatio
a superconducting phase in systems with PSSEH rem
doubtful.

In this paper we will consider the behavior of system
with PSSEH below the temperature of a superconduct
transition in crossed electric and magnetic fields, and we
show that this behavior resembles the one of ordinary su
conductors in a magnetic field. Specifically, the cross
fields can lead to an effect similar to flux quantization
ordinary superconductors, and give rise to vortices in wh
electron-hole pairs rotate in the structure plane. The obse
tion of these phenomena would be an unequivocal indica
that a system with PSSEH experiences a transition to a
perconducting state.

Consider a three-layer sandwich consisting of a layer w
electron conductivity, a layer with hole conductivity, and
dielectric layer of thicknessd between them. Assume
strong magnetic fieldHW to be applied perpendicular to th
structure plane. We will consider the low-density limit, whe
the size of a bound electron-hole pair is less than the ave
distance between them. As is the case in the absence o
magnetic field, the low-density limit seems more favorab
for pairing and for a transition of pairs into a superfluid sta

The behavior of a single pair is described by the Sch¨-
dinger equation~see, e.g., Ref. 12!

H 2
\2

2m

]2

]rW2
1

ie\

2mc
gHW •S rW3

]

]rW
D 1

e2

8mc2
~HW 3rW !2

1eS PW 3HW

Mc
1EW D rW2

e2

«r
1

P2

2M J C~rW !5EC~rW !. ~1!
570163-1829/98/57~23!/14809~4!/$15.00
-

is
e
t
el-

ld

d
he
of
ns

g
ill
r-
d

h
a-
n
u-

h

ge
the
e
.

Here rW5rW12rW2 is a three-dimensional vector of the dis
tance between an electron and a hole,m5m1m2 /(m11m2)
is the reduced mass,M5m11m2 the total mass of the pair
PW the momentum of the pair as a whole,EW the strength of the
electric field, andg5(m22m1)/(m21m1). An electric field
EW consists of an external fieldEW ext and the fieldEW 8 created
by all remaining pairs. In what follows, we shall disrega
the fieldEW 8, whose account in the limit of low pair densit
yields only an inessential correction to the pair binding e
ergy. I shall confine myself to the case where the exter
electric fieldEW ext and the pair momentumPW are perpendicu-
lar to the magnetic fieldHW directed along the axisz.

Taking into account that in a strong magnetic field t
distance between Landau levels\eH/mc considerably ex-
ceeds the Coulomb energyme4/«2\2, at PW 50 andEW ext50
Eq. ~1! can be solved in the framework of the perturbatio
theory, taking the value (me4/«2\4)/(\eH/mc) as a small
parameter. IfPW Þ0 and EW extÞ0, then one needs at first to
make a transformation which eliminates from the Ham
tonian the term with the effective electric fieldEW eff5EW ext

1PW 3HW /Mc.
We seekC(rW) in the form ~cf. Ref. 13!

C~rW ,z!5F~rW 2rW 0 ,z!expS 2 i
grW •PW 8

2\
D , ~2!

whererW is a two-dimensional radius vector in thexy plane,

PW 85PW 2MuW , uW 5
c

H2
EW ext3HW , rW 05

c

eH2
HW 3PW 8. ~3!

Equation~1! is reduced to the form
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The new Hamiltonian does not contain the term with t
field EW eff . For this, one has to pay with a shift ofrW by rW 0 in
14 809 © 1998 The American Physical Society
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14 810 57S. I. SHEVCHENKO
the potential energy, which seems to be a smaller nuisa
since the potential energy is accounted for in the framew
of the perturbation theory.

As Elliot and Loudon have shown,14 in the case when an
electron and a hole belong to the lowest Landau level,
wave functionF(rW) from Eq. ~4! can be written in the first
approximation as

F~rW !5
1

A2pl H

expS 2
r2

4l H
2D c~z![w~rW !c~z!, ~5!

wherel H5Ac\/eH is the magnetic length. The wave fun
tion c(z) must obey the equation obtained by averaging
~4! with the help ofw(rW ).

We consider two cases separately. First, we will assu
the thickness of conducting layers to be slightly above
Bohr radius, a05«\2/me2. Because of the relation
\eH/mc@me4/«2\2, the inequalitya0@l H holds. If the
dielectric thickness is small (d<l H), then one proves easil
that the functionc(z) obeys the equation

H 2
\2

2m

d2

dz2
1U~z!J c5S E2 P22P82

2M
2

\eH

mc Dc, ~6!

where

U~z!52
e2

2p«l H
2E e2r2/2l H

2

@~rW 1rW 0!21z2#1/2
d2r. ~7!

The consideration of Eq.~6! with the potentialU(z) from
Eq. ~7! shows that the binding energy of an electron-h
pair at rest is equal to (2\2/ma0

2)ln2(a0 /l H), whereas the

part of the pair energy depending on the momentumPW and
drift velocity uW , has the form13

dE5
P2

2MH
1S 12

M

MH
DuW •PW 2

1

2S 12
M

MH
D Mu2, ~8!

where the massMH is equal to

MH5m
a0

2

l H
2
2 lnS a0

A2l H
D . ~9!

If the thicknesses of the conducting layers are much
than l H and d, one can regard the layers as purely tw
dimensional. This permits one to omit the derivative ovez
in Eq. ~6!, and to substitute the coordinatez in expression~7!
with the dielectric thicknessd. As a result, the correction to
the energy of an electron-hole pair due to the Coulomb
teraction between an electron and a hole will amount to

dE52
e2

2p«l H
2E e2r2/2l H

2

@~rW 1rW 0!21d2#1/2
d2r. ~10!

Puttingr050, we find the pair binding energy as a fun
tion of l H andd:

dE52S p

2 D 1/2 e2

«l H
expS d2

2l H
2D F12FS d2

2l H
2D G , ~11!
e,
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e
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-

where F(x)5(2/Ap)*0
xexp(2t2)dt. This energy does no

depend on the masses of an electron and a hole. Below
will be interested in the case whend!l H .

With d!l H from Eq. ~10!, it follows that

dE52S p

2 D 1/2 e2

«l H
I 0S r0

2

4l H
2D expH 2

r0
2

4l H
2J , ~12!

whereI 0 is the Bessel function.
With small momentaPW and electric fieldsEext ~more pre-

cisely, with r0!l H) the part of the pair energy dependin
on the momentumPW and velocityuW is given by the previous
expression~8!; however, the massMH from Eq. ~9! should
be ~at d!l H) changed for

MH5
4«\2

A2pe2

1

l H
[m

4

A2p

a0

l H
. ~13!

Thus in the both cases in a strong magnetic field a
electric field perpendicular to it, the energy of an electro
hole pair is given by expression~8!. It follows from this that
due to the Coulomb interaction a pair acquires a finite~and
not infinite! transverse massMH when it moves in the struc
ture plane. It is useful to note that for conducting layers
small thickness the massMH as well as the energydE from
Eq. ~11! do not depend on the masses of an electron an
hole.

Now I would like to discuss a question which has a fu
damental significance for the problem of the superfluidity
electron-hole pairs. As was first shown by Guseinov a
Keldysh,15 interband transitions always occurring in real sy
tems lead to the appearance in the Hamiltonian of the te

(
kW

@Tabâ~kW !b̂~2kW !1Tab* b̂†~kW !â†~2kW !#, ~14!

where â, â† and b̂, b̂† are operators of electron and ho
creation and annihilation. These terms lift the phase deg
eration of the order parameter, and lead to the appearanc
a gap in the perturbation spectrum, which, in contrast to
case of superconductors, is rigidly linked with the lattice b
not with current carriers. As a result, the current state
comes impossible, and, with account taken of interband tr
sitions, the system transfers to a dielectric, but not a su
fluid state.

For systems without spatially separated carriers the ma
elementsTab are determined by the potential of the ato
interaction in the lattice, and they cannot be varied by
experimenter’s wish. If electrons and holes are spatia
separated, then the interband transitions coincide with
interlayer ones, and the matrix elementsTab depend expo-
nentially on the thickness of the dielectric layer,d, which
separates the layers with the electron and hole conductiv
Since the Coulomb interaction of electrons and holes
creases with the growth ofd according to a power law, it is
easy to find such a thicknessd to leave the binding energy
sufficiently large while the interband transitions become n
ligibly small. Thus the genuine superfluidity of electron-ho
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pairs can occur only in systems with PSSEH. In what follo
we shall assume that interband transitions are comple
absent.

In the absence of interband transitions, the lifetime
electron-hole pairs is unlimited, and, since the pairs
bosons, they can pass to a superfluid state on lowering
temperature. Due to the two-dimensional nature of the s
tem considered this transition will occur via the Berezinsk
Kosterlitz-Thouless mechanism. The transition tempera
Tc obeys the equation

Tc5
p

2

\2ns~Tc!

MH
, ~15!

where ns(Tc) is the superfluid density of pairs. The ma
MH , not M , enters into this expression, since, as follo
from the dispersion law~8!, it is the former mass that dete
mines the dynamic of electron-hole pairs in the struct
plane. That is why the planar vortex energy~and, hence,Tc)
depend on the quantityMH . In the low density limit consid-
ered to estimateTc , one can change the superfluid dens
ns(Tc) in Eq. ~15! for the total density of pairsn.

A crystallization of pairs with the formation of a dipol
crystal can compete with a transition of electron-hole pairs
a superfluid state. The crystallization pointTm is determined
by an interaction of pairs between themselves that is
dipole-dipole one for a low density of pairs:V(rW12rW2)
5e2d2/«urW12rW2u3. If one neglects quantum effects, then f
the crystallization pointTm one can apply the estimateTm
'V(n21/2), i.e.,

Tm5
e2d2n3/2

«
. ~16!

We could obtain the same estimate using the Koster
Thouless melting criterion for two-dimensional systems.

Taking into account that the density of pairs isn
5n/2pl H

2 , wheren is the filling factor of the layers, one
can easily find from the inequalityTm,Tc the condition for
the existence of the temperature range where the pairs
superfluid:

d2,
p

2

m

MH
S 2p

n D 1/2

a0l H . ~17!

One should keep in mind that the quantum effects omit
may lower the temperatureTm considerably, and therefor
the condition for the existence of a superfluid phase actu
may not be so strict.

Below the temperature of a superfluid transition, one c
describe the behavior of a superfluid component with an
der parameter. From the dispersion law of pair~8!, it follows
that the part of the energy depending on the phase of
order parameterw has the form

E5E F ns

2MH
~\¹w!21nsS 12

M

MH
D\¹w•uW Gd2r. ~18!

It follows from this expression that for the correspondi
magnitude and direction of the vectoruW ;EW ext3HW , the ap-
pearance of flows of pairs is advantageous. This questio
not quite trivial, and it deserves a more detailed treatm
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Below we will consider it in the case where thep-i -n struc-
ture under study is a disc of radiusR.

First, let us assume a potential differenceU to be applied
between the disc center and its edge. Then a radial ele
field will appear in the disc related to the potential differen
by the expressionEr5U/r ln(R/r), wherer is the size of the
electric contact at the disc center. The fieldEr together with
the magnetic fieldHz leads to a gradient¹w with only the
tangent component nonvanishing (¹w)t . On going along the
closed contour, the phasew can experience changes only b
2ps, wheres is an integer including zero; therefore we ha
(¹w)t5s/r. As a result, the energy of the system of pa
will be equal to~at T50)

E5
pn

MH
H F\s1~MH2M !

c

H

U

ln R/r G
2

2S MH

c

H

U

ln R/r D
2J ln

R

r
. ~19!

The integers in this expression is determined from th
requirement of the minimum for the energyE with fixed U
and H. If U changes, thens remains unchanged within
certain range ofU values, and then it becomes equal tos
11 ~or s21). This transition is associated with the appe
ance or disappearance of a quantized vortex with a cente
the disc axis. One sees thatE is a continuous function ofU;
however, the derivativedE/dU possesses discontinuities
the points where (MH2M )cU/\H ln R/r5s1 1

2. In the
neighborhoods of these points the second deriva
d2E/dU2 must possess spikes.

Assume now that thep-i -n structure considered is place
into an electric field created by a charged round disc of
dius a with a@R. If the distanceh from thep-i -n structure
to the charged disc satisfies the inequalityuh2au!a, and its
center coincides with the center of thep-i -n structure, then
the radial component of the electric field is equal toEr

5Qr/4a3, whereQ is the total charge of the disc~see, e.g.,
Ref. 16!. In this case the energy of a system of pairs is eq
to

E5E F ns

2MH
~\¹w!22nsS 12

MH

M D c

H
ẑ

3S Q

4a3
rW 3\¹w D Gd2r. ~20!

Energy~20! coincides exactly with the energy of the s
perfluid liquid in a vessel rotating with the angular veloci
V5Q(12M /MH)c/4Ha3. But it is well known that if the
angular velocity exceeds a critical valueV.Vc
[\ ln(R/j)/MHR2, then quantized vortices arise in the liqui
Therefore, under the condition

Q.Qc[
4\

MHR2

Ha3

~12M /MH!c
ln

R

j
, ~21!

the planar vortices will arise in the system considered.
these vortices every electron-hole pair rotates as a whol
the structure plane, so that an electron supercurrent is acc
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panied by a hole supercurrent that is equal in value and
posite in direction to the former one. At the angular velo
ties V@Vc the vortices will be distributed uniformly, and
their density will be equal tonv5MHV/p\. Here we de-
scribe vortices at the macroscopic level. A microscopic d
scription is not a simple task because in an electrically n
tral system the velocity field of a vortex decreases accord
to a power law rather than exponentially and one should t
into account the specimen boundaries.

Quantized vortices can also arise in the system with
arbitrary dependence of the electric field on coordinates,
one can show that for continuously distributed vortices th
density is equal to

nv5
c~MH2M !

2p\H U]Ex

]x
1

]Ey

]y U. ~22!

Let us give quantitative estimates for purely tw
dimensional layers. On the fieldH'105 G s, the magnetic
length isl H'80 Å. As a result, at«510 the massMH'9
op-
i-

e-
u-

ing
ke

an
nd
ir

-

310229 g @see Eq.~13!# and the temperature of a superflu
transition isTc'33n K. For n5 1

5 the temperatureTc'7. If
the radius of the charged disc isa510 cm, then the critical
charge on the disc above which the quantized vortices a
is Qc'

4
3 31029 C. This charge creates the electric-fie

strength perpendicular to the disc and equal toEext
z '24

V/cm. The density of vortices isnv;V/Vc .
In conclusion, we point out that, similar to the situation

superfluid4He, the most efficient tool for studying predicte
quantum vortices is the second sound. It is in order to not
recent paper17 in which a method of detection and measur
ment of quantum vorticity by scattering second sound
quantized vortices in superfluid helium has been sugges
We hope to consider this circle of problems in more deta
soon.
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