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Optical phase conjugation in a single-level metallic quantum well
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We present a calculation of the phase conjugated response from a single-level metallic quantum well. The
description builds upon a recently developed local-field theory for degenerate four-wave mixing in mesoscopic
interaction volumes of condensed media. The single-level quantum well represents the simplest possible
configuration of a quantum well phase conjugator. Furthermore, the single-level quantum well is an interesting
object, since the optical response contains no dipole terms. The discussion of the response is based on the use
of linearly polarized light to excite the process. We demonstrate that the phase conjugation process is ex-
tremely efficient in the evanescent regime of the wave-vector spectrum. We also address the problem of
plane-wave excitation of the high wave-number end of the evanescent regime. We end our discussion by
suggesting the use of a broadband source to excite the process. One such broad angular band source is a
guantum wire, and the phase conjugated angular spectrum from a quantum wire is presented and discussed.
[S0163-182698)01823-3

[. INTRODUCTION conjugated signalpropagating oppositely to the probe. Once
generated the fourth beam interacts dynamically with the
Studies of the optical properties of quantum weédisigle  pumps and the probe, thus the name four-wave mixing. In
and multiple, surfaces and interfaces have drawn the attenthe context of a field quantized description a weak fourth
tion of researchers for two decades, and in recent years, ibeam is present from the outset due to fluctuations in the
particular, investigations of the nonlinear electrodynamicsracuum field. Crudely speaking one may say that the phase
have been in focus. Among the many nonlinear phenomeneonjugated field forms a real-time holographic image of the
studies of second-harmonic generatfof sum and differ-  probe field, and this of course points to a number of practical
ence frequency generatiri, photon drad ! dc electric-  applications of optical phase conjugation. The strength of the
field-induced second-harmonic generattét® the Kerr  degenerate four-wave mixing process depends on the fre-
effect!*~" electronic and vibrational surface Raman quency of light in a manner determined by the given nonlin-
scattering'®~2 two-photon photoemissioft;?° and genera- earity of the crystal used. To tailor the frequency response in
tion of higher harmonid$?” have played a prominent role. a controlled manner it would be nice to use a quantum-well
From a theoretical point of view the description of the system because the frequency dependence of the nonlinearity
above-mentioned structures belongs to the field of mesanmay be modified and brought to resonaitleigh efficiency,
scopic electrodynamics. This is so because the interactiofor instance, by changing the thickness of the well or by
length in the direction perpendicular to the plane of the strucusing a series ofdifferen quantum wells, as in a multiple
tures is much smaller than the electromagnetic wavelengthim arrangement.
in the optical regime. Since the refractive index concept usu- In a quantum well thenonlineaj dynamics associated
ally is meaningless for structures of only a few monolayerswith electron motions parallel and perpendicular to the plane
thickness macroscopic approaches have to be abandonetithe well is qualitatively different. Thus, in the direction
from the outset. Theoretical analyses therefore have to staperpendicular to the plane of the well the electrons may be
from the microscopic Maxwell equations combined with theexcited between different subbands, and this can lead to pro-
(single-electroh Schralinger equation. nounced atomiclike resonance effects. Electron motions par-
In the present paper we give a theoretical and numericalllel to the well plane are associated with intraband transi-
description of a nonlinear phenomenon not hitherto studiedtions in a quasicontinuum of states, and for this kind of
to our knowledge, at such interaction lengths, viz. opticalexcitations the Bloch character of the states is important. If
phase conjugation by degenerate four-wave mixing in ahe quantum well is sufficiently thin there is only one bound
quantum well structure. Optical phase conjugation is a nonlevel (subbangl and if this is located below the Fermi en-
linear process involving the mutual interaction of four differ- ergy, the electron dynamics is quasi-two-dimensional. In this
ent light waves in a nonlinear medium. If the four waveswork only single-level metallic quantum wells are consid-
have the same frequency the process is named degenerated, and for simplicity it is assumed that the electron dy-
four-wave mixing (DFWM). In the context of solid-state namics parallel to the well plane is free-electron like. In or-
physics one typically starts mixing two counterpropagatingder for a metallic quantum well to have only a single bound
beams(called pumps and a third beanicalled the probe level its thickness must not exceed @few) atomic mono-
usually not collinear with the pumps. The nonlinear responséayei(s). The phase conjugator we deal with in this paper
of the medium(crysta) due to momentum conservation therefore is essentially two-dimensional, and this in and of
(phase matchingthen generates a fourth beahe phase itself makes an analysis worthwhile.
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The usual steady-state description of DFWM is a macro<onjugated field. The nonlinear response function deviates
scopic description covering the DFWM process in photorefrom those hitherto established in the sense that it enables us
fractive media where the interaction length is long, and thgo calculate the spatially rapidly varying microscopic current
description is limited to cover the far field part of the elec-density on an atomic length scale and not only the spatially
tromagnetic signal. It is usually based on the assumptiondveragedmacroscopigcurrent density. This is essential for
that the amplitudes of the fields are slowly varying on thequantum-well systems where the well thickness is in the
optical wavelength scalslowly varying envelopéSVE) ap-  Angstran range. A general theory for DFWM conductivity
proximatior], and thus also constant across the individuall€NSOrs in mesoscopic interaction volumes we developed and
scattering units(atoms, molecules, ejc. Neglecting the discussed in a previous pagémvhere also formal aspects of

variation of the field across the nonlinear scatterers mean@e_unge_rrlzln% nogl_ocal n_onl|||1ear electrt(_)dynaflmlcs Wetre ex-
that the electric dipoléED) approximation can be employed. amined. 1he two-dimensional conservation ol momentum 1S

For a comprehensive review of the existing descriptions o{')resented and the nonlinear constitutive relation is reduced
optical phase conjugation, as well as of the experimentao its DFWM form. Having established the basic needs to

work, the reader is encouraged to consult Refs. 28—32. Sesinb(tahthe rr}esponse_ we tsec§ lfj'plghe szlflfcqtnsster:t;lels iﬂua_
In thin films (quantum welly however, it is crucial to lonfor the phase conjugated Tield, and limit our study 1o the

keep the microscopic dynamics perpendicular to the surf51c§impIeSt p(_)ssible config_uration, for which the explicit form

of the phase conjugating mirror when calculating the DFWMOf the nonlinear congiuctlwty tensors are presente_d. The con-
response. So far, four-wave mixing in media with two- sequenses_of choosing a probe field with only a single P'a”‘?'
dimensional translational invariance has only been studied i ave Fourier component are analyzed, and the section is

the context of phase conjugation of surface plasr?‘ﬁ?ﬁ% inished with a discussion of the infinite barriéB) model
and of a bulk wave by surface plasmdfign these investi- adopted to describe the quantum well in the numerical work.
gations a macroscopic approach was used With special attention drawn to the optical near field, our

Especially if one wants to use the DFWM technique tc)numerical work is started in Sec. Il with a quantitative dis-
create focusing of phase conjugated dipole radiation with gussion of the phase conjugation reflection coefficient from a
spatial extent below the classical diffraction limit, where thesmgle-level quantum well, choosing two monolayers of cop-

hitherto appeared descriptions are based on an assumpti{gﬁ'r as th;.me?l:c'c qtl;]anturr]n well. F|_rst, vt\/edplr_eietznt ”;]‘? Leflec-
that the phase conjugator is id¥af® or Kerr like 0 it js 10N COETICIENt Tor he phase conjugated fignt, which 1n-

important also to consider the response in the optical nealc_ludes”all componentst n tgethFouner sggctrunlhpropatﬁatmg ¢
field region. A Fourier analysis of the field from a radiating as well as evanescent, and then we address the problem o

: - - : hoosing an appropriate relaxation time in a thin quantum
mesoscopic object in the coordinates of the plane of thr§vel| Togexciteptrr)le F\)Nhole Fourier spectrum with onqe plane
phase conjugator shows a large content of plane-wave com-~"™ ) g ; : .
ponents in the near-field regime. Due to the exponentiall)yvave at ﬁtt'me c_gn ptrr(])ve d'ff'c?lt' ':; notd|g1p<3155|ble. Instfead
decaying nature of optical near fields, the length scale und«jfne might consider the use of a broadband source or one

which the substantial part of any optical interaction, linear a |nd_ or ta'?jo;h%' lTokglvehan mp;ezsm.rt]hof how _tfhe bphaze
well as nonlinear, takes place is of the order of a fraction ofoniugated Tield looks when excited with a Specitic broad-

the optical wavelength. Considering interaction at such and source we consider the response when a quantum wire

length scale it is necessary to abandon the otherwise usual ! q-d|men3|(_)nal point dipojes placed in front of the phase
adopted SVE and ED approximations. onjugator. Finally, in Sec. IV, we conclude.

In the present work we shall present the simplest possible
result of using our model for the phase conjugation process.
It is achieved using a single quantum well with only one Il. THEORY
bound state below the Fermi energy. The use of such & |, order to describe nonlinear optical phenomena in me-
single-level quantum well has previously been shown to bgggcopic media it is in general necessary to abandon macro-
feasible to provide a simple description of photon drag ingcopic electrodynamics from the outéf® and therefore
metallic films® The consequence of choosing a single-levelske as a starting point the microscopic Maxwell-Lorentz
quantum well is that the phase conjugated response is limiteglyations. In these equations the material response at the
to be constructed of pure intrabarishtersubbang transi- space-time pointf(t) is completely characterized by the mi-

tions. . SN
Thus, in Sec. Il we present the theoretical framework forSTOSCOPIC current density(r,1), and the related charge den-

the present calculations starting from the wave equation fo?'ty' In the context of optical phase_comugatmn itis usually
the phase conjugated field, which is calculated using the migdequ_atg to treat the eIgctrodynamlcs in the space-frequency
croscopic Maxwell-Lorentz equations. We discuss the opti-domaIn if the involved light signals are no'F too shor't. In the
cal phase conjugation response function of an electron in S:Ear(‘)nfer?tz\ll\% \lljvsnneecél Oglsiuam?ﬁrr?r?;'(t:hzneallg;'rsoggtk_]e
two-dimensional translational invariant systéeng., a quan- o requency. by iming . 9
netic field driving the phase conjugated response is of mod-

tum wel), in the form it takes starting from the Liouville erate magnitude, it is sufficient to have a knowledge of the
equation of motion for the density-matrix operator and the 9 ’ 9

minimal coupling Hamiltonian. The nonlinear response func-inear, JW(F), and the lowest-order nonlinead®)(r),

tion we derive in the aforementioned manner allows us tgcurrent-density contributions at the fundamental frequency.
calculate the current density induced in the quantum well by/Vith this limitation the wave equation for the phase conju-
the nonlinear mixing of the two pumps and the probe. Thegated(PC) electric field,Ep(F; w)=Ep(F), takes the form
radiation from this nonlinear current density is the phasén a DFWM process
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2

w in a notation wherg{?) and p'?}, denote the second-order

1 32‘+V2 —VeV|-Epdr) dc and second-harmonic ¢ parts of the density-matrix
0 operator, respectively, ansf®) is the third-order part at the
= —iuew@® (F)+I% (7)), (1) fundamental frequency. From the explicit expression for
~ J® (F) one can find the nonlinear conductivity response ten-
wherel is the (3X3) unit tensor. sor. Details of the density-matrix calculation of
E(F,F’,F”,F”’;w) as well as the rather comprehensive for-
A. Microscopic constitutive relations mula for this quantity can be found in Ref. 41, where also a

The microscopic current densities appearing in EQ. discussion of the microscopic physics behind this nonlinear

may be expressed in terms of the relevant local electric fieldsESPONSe IS given. . . .
through appropriate constitutive relations. Within a single-, BY Inserting Egs(2) and (3) into Eq. (1), an integrodif-
electron random phase approximation approach it is usuall{ﬁrem'al equation is obtained for ttle phase conjugated field,
sufficient for a condensed matter system to assume that tH& which the forced current densit}®)(7') can be consid-
induced particle motion is driven by the prevailiritptal) ered as a prescribed quantity in the parametric approximation
electromagnetic field. This means that the linear constitutiv@dopted in the following. Since only a small amount of the
relation reads fundamental field, at least for single quantum-well systems
studied here, is converted nonlinearly, the parametric ap-
- R proximation is justified.
J&lg,(r):f F(FF)-EpdF)d3r’, )

B. Two-dimensional translational invariance

.

whered(F,F') = &(F,F’;w) is the linear and nonlocal single-

electron conductivity tensor. Thigh element of the first- Considering a structure exhibiting two-dimensional trans-

order current density is thus given by the volume integral ofiational invariance against displacements parallel to say the

[E'EPc]iZEJUijEpc,j- In analogy with the equation above, X7 plane, a bulklike material response is retained in two

the nonlinear constitutive relation is giveny dimensions, and thus through conservation of pseu_dom_o—
mentum the concept of phase matching has to be fulfilled in

the x-y plane.
3(_320(F)=f f J E(F,F,F"F") In the above-mentioned system it is natural to express the
various vector and tensor quantities in a mixed Fourier re-
CE(F")E(FME* (FH)d3r"d3"d3’,  (3) presentation, where only the coordinates are kept in real

space. Each space coordindtes then in the mixed Fourier
where f(F,F’,F",F"’)=§(F,F’,F”,F"’;w) is the nonlocal epresentation transformed into a pair afd), whereq is

single-electron conductivity tensor of the third order in theth® wave vector representation corresponding tocterep-

mixed space-frequency domain. Thik element of the third- fésentation in real space.

order current density is obtained upon integration ofh Plt_erforming a Fourier Ian_alysiskin thﬁar;dy coordinates,
[Z:EEE* ] =3B knEnEE? over thef”, F”, andF” the linear constitutive relation takes the form

spaces. In Eq(3), E(F)=E(F;w) denotes the local electric

driving field. IV (z:g =f &(z,2';G))-E(z';G))dz. 6
The explicit expression for the linear nonlocal conductiv- ~o% ) ( B ©

> oy

ity tensor&(f,f”; ) is well known?* and may be calculated
by various techniques. Starting for instance from the Liou- In the analysis of the nonlinear conductivity tensor in the
ville equation of motion for the density-matrix operater  mixed Fourier space described above, conservation of

the linear current density is obtained from pseudomomenturfphase matchingin the direction parallel
to thex-y plane appears directly from the general theory in
IO =Tr{p @ D+ Tr{p%), ), (4)  the form

wherep(©® andp) are the density-matrix operator in ther-
mal equilibrium and its first-order perturbation @f respec-

tively, and j©® and ), are the free part and the relevant This criterion implies thatf we want the phase conjugated
vector-potential-dependent pd#t w) of the current-density  field to be counterpropagating to the probe field in the trans-
operator. The quantity Tr- -} in Eq. (4) denotes the trace of |ationally invariant plane(as would be the natural choice
{---}. From the expression found for the linear current denyyhen considering phase conjugation at),athen the two
Slty in this manner, the linear nonlocal CondUCtiVity tensor iSother (pump fields mustalso be Counterpropagating in this
readily extracted. The density-matrix operator approach ig)jane.

convenient also for a determination of the nonlinear part of Thus limiting ourselves to the situation where the pump

qj’+qj—dj—d=0. )

the induced current density, thus obtaining fields are counterpropagating, and assuming each of the in-
) R R ) teracting fields contains only one plane-wave component
I®(A)=3Tr{p2, SV +Tr{pP L +Tr{p®) 5O, parallel to thex-y plane, the relevant nonlinear constitutive

(5) relation in the mixed Fourier representation takes the form
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3(3) = 1 = Pl R L (a) * T
J,w(z;qH)=W E(z,2",2",2";q; k) P
sE(z’”;—IZH)E(Z”;IZH)E*(Z’;—(j”)dz'”di’dz'
+i.t., (8

SN
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wherek; is the parallel component of the wave vector asso- g, 1. The propagators appearing in the calculation of the
ciated with the pump fields, argj is the parallel component phase conjugated field in the system we consider in this paper. The
of the wave vector associated with the probe and phase coRystem consists of a three-layer thin-film structure, namely,
jugated fields. The term “i.t.” denotes the so-called “inter- vacuum, film(quantum well, extending from 0 te-d), and sub-
changed term,” which is obtained from the first term by strate(crosshatched In the vacuum may be placed different kinds
interchanging the two pump fieIdEH(repIaced by |Z”)_ The  of sources, e.g., a quantum wire V\{ith its axis alongyhﬁrect'ion'
reason that such a term has to be added arises from the fdghown as a dotin (a) the propagation of the electromagnetic field
that each of the electric fields basically consists of a sum offom & source poinf” inside the quantum well to an observation
all three incoming fields, and that the phase conjugated terfCint " outside the quantum well is shown, while i) the propa-

from the product of the three fields thus must include bothgation of the electromagnetic field is illustrated in the case where
permutations of the pump fields both source and observation point are inside the quantum Bvédl.

the propagation path described by the direct propagtds,the
propagation path described by the indirect propagator, -
notes the self-field action propagator. In the center of the figure is

After having sketched the calculation of the nonlinearshown the Cartesian coordinate system used in our calculations.
DFWM response we turn our attention to the phase conju-

gated electric field. In the present case where the main partls;ne indirect term,r(z+z’;qH ), describes the propagation

of the interaction takes place in very small interaction vol- : s
: frgm the source point of the part of the electromagnetic field
umes, we can expect that the generated phase conjugat . ; : X .
at is going to the point of observation via the surface of the

f!eld does not affect the dynamics of the pump .and'prob%ulk medium. The expression for the indirect term reads
fields much, and thus take the parametric approximation.

Then from the linear constitutive relation and the wave
equation we obtain the following integral equation for the
phase conjugated field in the two-dimensional phase match-
ing casé?

C. Phase conjugated field

efiqi(erz’)

(z+2',G),0)= 2iq,

[ré,®&,+rPe ®&].
(13
EpdzG).0)=EpdZq ,w)—iuowf f G(z,2";G),0)
Finally, the self-field term characterizes the field generated at

-E(z”,z"ﬁ”,w)-EpC(z"cj”,w)dz”dz’, the observation point by the current density at the same
' ' point. The self-field part of the propagator is given by

whereé'(z,z”;ﬁ“ ,w) is the so-called pseudovacuum propa-

gator, and §(z—-7';0)=q7%8(z—2')&,0€,, (14
égc(z;qu aw):_il-Lowf é’(z,zf;q“ ,w)-jf‘;(z';q” ,w)dz' where g= w/cq is the vacuum wave number. In the above
equations,q, =[q?~qf]¥%  &=q *(q,,0,—q)), and &

(10 =q‘1(—qi,0,—qH), taking gy =q€,. The quantities ® and
is the nonlinear driving fiel@with 593»(2’?@\| ,w) taken from  rP are the amplitude reflection coefficients of the vacuum/
Eq.(8)]. In the quantum-well case, the pseudovacuum propasubstrate interface in the absence of the quantum well. In

gatorG(z,2"; ), ) can be written as a sum of three terms 9€neral these are functions @f. The appropriate propaga-
tors for a single quantum-well system are shown in Fig. 1.

é(z,z’;GH 0)=D(z— 26, 0)+ r(z+zf;q“ ) _ Ina mesoscopic film the electric flgld gengrau_ed via the
direct and indirect processes at a given point is roughly
+§(z-7';0), (1) speaking of the orderyow/q, )3 dz’, whereas the self-

where the first two are named after the processes they déeld has the magnitudeuow/q?)J3®), . Sinceqd<1, where
scribe. Thus the ternﬁ(z—z’;qu ,w) describes the direct d is the thickness of the film, we judge the self-field term to

propagation of the electromagnetic field from a source poinflominate the phase conjugated field inside the quantum well,

atz' to the observation point a It is given by at least for single-level metallic quantum wells that have
thicknesses on the atomic length scale. In the following we

~ eldLlz=7'| therefore use the so-called self-field approximation to calcu-
D(z—2';q ,w)=w[éy®éy+ 0O(z—2')E®E late the phase conjugated field inside the quantum well. With

the propagatoé’(z,z’;q” ,w) replaced byg(z—z';w), the
+0(z2'-2)E ®E]. (12 phase conjugated field fulfills the integral equation
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TABLE I. The tensor symmetries of the various pars-G) of

the DFWM conductivityjl—j4 are four in general different vectors
each obtained by a weighted superposition of single-particle transi-
tion current densities, angél,=A/A.

€06,

|8(1)

EpdzG),0)=EpdZ,G),w) +

f o(z,2' qH ) PC(Z qH w)dz' (15

— i . DFWM Conductivity
inside the well and the background field is now

Tensor symmetry

. EAFT PP ToT
= ~ e2®eZ EBre 2 @ oEm T T
EEC(z;q”,w): o (16) 5 (AN 1®Ji®J2
0 EC(F,F’,F”,F"') éA®ﬂ®eA
In the self-field approach the phase conjugated field has only E°(F, F", 7" 8,0J,®3,08,
a component perpendicular to the surféte z component EE(7L PP jeled,
inside the well and only the component of the nonlinear EF(FE ) 5 oiel
1 7 H —_— ’ 1 ’ 1 2
current d ®) . Sy e on e -
ensityl'”) drives the process S e jelelel,

Once the phase conjugated field inside the quantum well
has been determined in a self-consistent manner from Eq.

(15), it can be determined outside using E@). The self- akes place in the-z plane, (ii) the interacting fields are

field does not of course contribute to the exterior field, anqt . . )
no loop problem is involved. All that needs to be done is to. inearly polarized in p) or perpendicular tog) the scatter-
integrate known quantities in thedirection over the well, 9 Planei(iil) the pump fields in the phase conjugating sys-
9 q tem are counterpropagating monochromatic plane waves
with a uniform amplitude along theaxis and propagating in

D. Nonlinear conductivity tensor

The nonlinear conductivity tensor appearing in E§)
may in general be written as a sum of seven pafts @)

a direction parallel to the axis, and(iv) the field is calcu-
lated within the self-field approximation.
From (i) above we get a mirror plane at=0, leaving

after the physical processes they describe. These have thely tensor elements of the conductivity tensors with an even
tensor symmetries shown in Table I. In the present communumber (0,2,4) of/’s in the Cartesian index nonzero. Con-
nication we use this conductivity tensor in the form it takesdition (i) implies as a consequence of conditi@n that no

for media with two-dimensional translational invariance as ittensor elements of the nonlinear conductivity tensor with one
was developed by the present authors in a previous {tork, or both of the last two Cartesian indicesasontributes to

but for quantum wells so thin that only a single bound levelthe phase conjugated response. Requirertiehtabove im-
exists. The quantum well may be free standing, or it may beplies that the first Cartesian index of a tensor element should
deposited on a substrate that can be described by a refractite z in order to contribute to the phase conjugated response.
index n relative to the vacuum on the other side of the film. The choice of a single level quantum well in itself restricts
The surface of the film is parallel to they plane in a Car- the transition current density to contairandy components
tesian coordinate system, and the interface between the fil@nly. Together with the fact that par® and E give pure

and the substrate is placedzt0 as shown in Fig. 1. We interband contributions, these choices leave two nonzero el-
further limit our study to the case whef® all scattering ements of the nonlinear conductivity tensor, namely,

e4
"o _ "o _ _ I om o |2 2
Eoydz.2.2.2"q—k)=E%,,42,2' ,2".2";0—K)) = YT gC(qu kpo(z' =2 8(z—2")|p(2")|| p(2)|%,

17
e4
Boyydz.2,2',2"0). k) = 55— D0 . K)) (2= 2") | (") Pl (2 )| )%, (18
where
o f(r)+[a =kl —f(x))

C(CIH k”)—ZJ ﬁ(qH—k”)[ZKX-‘rqH—kH]/(Zme)—i/T ZKH’ (19)

D(g k):2f K)Zl / f(l_()”)—f(l?H'f‘kHéx) f(l?H'f‘[kH"‘qH]é)x)—f(l?H‘i‘kHéx)
I A (ay+k[2kx+qp+k1/(2me) —i/ 7\ Rk [ 2k + K1/ (2Me) —i/7— @ Q[ 21, + G+ 2K 1/(2Me) =i/ T+

f(yp) —f (k) + )€
ﬁqH[ZKX-i- q“]/(2me) —iltTtw

f(I?H‘f‘ [kH+ qH]éx) — f(EH‘f‘ qHéx)
th[ZKX-I— kH+ ZqH]/(Zme) —ilT—w

2k (20)
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The number 2 appearing in front of the integrals above rep- (a) (b) (¢)
resents the summation over the degenerate spin energies. (M (p}R (IN

The free-particle character of the electron motion in the
plane of the quantum well enables us to write the solutions to (-2)—¢—> <-$—1) 2—¢—> o —o> <—¢—1
the light-unperturbed Schdinger equation in the form 1) @) @ (1)
W(F)=(2m) " 'i(2)exp(k)-T), where &= (xx,ky,0) is the FIG. 2. Schematic illustration showing three of the possible field
wave vector of the electron in consideration apf), ap-  polarization combinations that may give rise to a phase conjugated
pearing in Eqs(17) and(18), is thez-dependent part of the response in a single level quantum well, vi@) the purely
wave function, common to all electrons. They-dependent p-polarized configuration, antb)—(c) the mixed polarization con-
parts of the wave functions, 2~ texp( K|-F), are orthonor-  figurations where the pump fields are differently polarized while the
malized in the Dirac sense, i.e., #Z‘Zfexqi(;?“—;?ﬁ) probe iss polarized. The two mixed polarization states are closely
.r]er:(s(,;H_,z”’), and thez-dependent part fulfills the sepa- related, since replacing with — g in one of them_ yields the other. _
rate normalization conditiorfl z,//(z)|2dz: 1. In Egs. (19 In both _the(a) and (b)—(c) cases, the phgse conjugatet_ll response is
and(20) the response of all electrons is taken into account byP Polarized. The schemes are shown in the Cartesian coordinate
integrating over all possibl& wave vectors. The eigenen- system given in Fig. 1, such that the small arrows in the plane
ergyé‘(f?”) belonging to the stat® (F) is obtained by adding representp-polarized states and the_ C|rc_:les represg{plolanzed
to the common bound-state energythe kinetic energy in states. The large arrows show the directioafe Fourier compo-

the parallel motion. Thus Hslr;t(cg)the wave vectors of the pump fields and 2 and the probe

2

h 4
ER=e+ 5 —«f. (21) €
e

h .
JE) Aa) :m[c(%ﬁ k) + 4_meD(q” v k|)}

The quantity f(&)) =[1+exp{(&(x)) — )/ (kgT)}]1"* de- Do ok
notes the Fermi-Dirac distribution function for this eigen- == )E;J lw(z)|?e™ 91 dZ, (24)
state,u being the chemical potential of the electron system,

kg the Boltzmann constant, arfdthe absolute temperature. 4

TS (Gp= eay—k)+ ——D(ay k
Co )= (q—kp am, (ay.kp

58 67 3.2
E. Probe with single Fourier component 2 miihw Mg
In the following we calculate the phase conjugated field (1)=(2) *J N2a—i0¥2' 4o
. . XE;VE)E q z'. 2
generated by a probe field that consists of only one plane- : ByEy | l(@)|Pe0itd (25
wave component of wave vectgr=(q;,0, ). A probe field

of the form E(Z?q\\): Ee'%.2 js hence inserted in Eg8). In the above three equations, the superscript (1) refers to the
Then, when using linearly polarized light, three differentpump field propagating along the axis in the positive di-

combinations of polarization gives a nonlinear current dentection qzuzkuéx), and the superscript (2) refers to the other

sity, namely(i) the one in which all participating fields ape pump field. Thes to p transitions are symmetric in the sense

polarized ppp), and (i) the two combinations where the that if the probe wave vectdj is replaced by-qj in Eq.

pump fields are differently polarized and the probe field is (24), then the result of Eq.25) is obtained, and vice versa.

polarized §psandpssg. In all cases, the phase conjugated The p to p transition is symmetric to itself in this sense.

response i polarized, and thus characterized in terms of For a single-level quantum well, ttEz component of the

the polarization states of the probe and phase conjugatdihear conductivity tensor is given B

fields, casgi) may be classified as @ to p transition, and

cases(ii) ass to p transitions. A schematic illustration of i02
these interaction configurations is shown in Fig. 2. Defining 0,42,2';G)) = —./|1//(Z)|25(Z— z)), (26)
the z-independent quantity Me(w+i/7)
where
38, (z:6)
I (ap="—22"10, (22
|4(2)] 2
N: 2] f(l?||)d2K“. (27)
the above conditions yields for thto p transition (2m)
4 In order to take into account the coupling to the surroundings
3 (G)= Clai—ki) +Clai+k we have introduced a phenomenological relaxation tinne
T Ad) 28776iﬁw3m2[ (qy—ky) +C(ay+kp)] the diamagnetic expression for, [Eq. (26)].4* A factor of 2
e

in this equation again stems from the spin summation, and
D) (2) % N[2a—iq% 2" 4o the quantity N |(2)|? is the conduction electron density.
<EEE; f (@)%t dz (29 The phase conjugated field inside the quantum well has a
componentEpc,(z;G), only, and by combining Eqg15),
and for thes to p transitions (16), and(26) it appears that this is given by
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o img(w+i/7) @ @ i € I
EPCZ(Z’qH)_ezN|zp(z)lz—eomew(wﬂlr) I (). VAW P Clqi—kp + 4rneD(qn ki)
(28) X ELVERES, (34)
Using now EQq.(9), the z components of the phase conju-
gated field outside the quantum well can be calculated, antespectively.
the result is Thus the phase conjugated field from a single-level quan-
) _ tum well is described in the mixed Fourier space by 84)
O R | Me(w+i/7) with insertion of Eq/(32), (33), or (34), the expressions fat
EpcAZq)=J"0.q)€ 2q, [Eq. (19] and D [Eg. (20)] carrying the information on the

two-dimensional electron dynamics.

So far, the description of the phase conjugated response
has been independent of the actual wave functions in the
active medium, and thus independent of the form of the
(299  quantum-well potential. In order to prepare our theory for a
numerical study we now introduce a model potential in our
quantum-well system, namely, the infinite barrier potential.

Z/

Xf (€97 +rPe ') y(z')|?
N |y(2")|>— egmew(w+il 7)

where the relevant expression fgt®) () is taken from
Eq. (23), (24), or (25). Given thez component of the phase
conjugated field, th& component may be found from

q. F. Infinite barrier model
Epcx(z:q)) = q_HEPcz(Z;qn), (30

which follows from the expression for the electromagnetic

propagator, or equivalently from the demand that the phas

conjugated field must be transverse in vacuum.

The integral in Eq(29) is different from zero only in the
region of the quantum we[from approximatelyz’ = —d to
approximatelyz’ =0 in the chosen coordinate system, the
exact domain depending on the extent of the electronic wav

X , X . . i i
function ¢(z")]. Since the width {-d) of a single-level me states is of course infinite, and to use this model in the con-

tallic quantumlwell is in the Angstro range, gn@u IS typl- text of a single-level calculation, one must be sure that only
cally in the micrometer range for optical signals such that

q. d<1, it is a good approximation to put exbig, 7’)=1 in one of the bound statedhe ground stalehas an energy

Eq. (29). For electromagnetic frequencies so high that below the Fermi energy, and that the optical frequency is so

~d™1, the present theory would in any case be too simple téow that interlevel excitations are negligible.
; P y Y b For a metallic quantum well one may even at room tem-

rely on[the Bloch function character of the wave functions perature approximate the Fermi-Dirac distribution function

clong e suace and xctaton o 1e SO 2opearing  the expessins D, and ' Egs 19,
' ) P (20), and(27) by its value at zero temperature, i.e.,

above-mentioned approximation, EQ9) is reduced to

To achieve a qualitative impression of the phase conjuga-
tion from a single-level metallic quantum well it is sufficient
to carry out numerical calculations on the basis of the simple
fB model. In this model the one-dimensional potentidk)
is taken to be zero in the intervald<z<0 (inside the
guantum well and infinite elsewhere. The stationary-state
wave function now is given byy(z) = \/2/dsin(wrz/d) inside
g1e well andy(z) =0 outside, and the associated energy is
g=(mh)?/(2med?). In the 1B model the number of bound

o (L+rP)gf o [ 72 HW 2
G =79 (G)e tz— 1 Imf(&)=0{E&—5—|| 7| + , 35
Epc (z:q))=T=, Adpe "+ Zequd, o (<)) F™ 2mg\d) " (39
|2
X f Mdzg (31  Where® is the Heaviside step function aii is the Fermi
Yw(z)|*-1 energy of the system. In the low-temperature limit it is pos-

sible to find analytical solutions to the integrals ovgrap-

h =e?Nl +i/7)]. Using th imati
where y= e’ M[ égme(w+1/7)]. Using the approximation pearing in Eqs(19) and(20). This is adequately achieved by

exp(g, z')=1 and the normalization condition af(z'), Egs.

(23)—(25) are reduced to performing a coordinate transformation into cylindrical coor-
dinates, since each Heaviside step function gives nonzero
et values in thex,-k, space only inside a circle with radius,
T (G =————[Cla— k) +Clay+kp] say, a. The explicit calculations are tedious but trivial to
' 287TG'ﬁwame carry out, and since the final expressions €oend D are

rather long we do not present them here. For the interested

DE@)p*
*EETE (32 reader some steps in the calculations are reproduced in the
et A Appendix.
G (q =——->—73— C(q;+k)+-—D(q —k The Fermi energy is calculated from the global charge
oodW) 2°mCihw’mg (i) 4me @~k neutrality conditiorf,” which for a single-level quantum well
(D2 * takes the form
XE, BBy, (33)

and N=ZN._d, (36
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whereN, is the number of positive ions per unit volume andi.e., a result that depends on the number of conduction elec-
Z is the valence of these ions. Sindé&=my(E-—¢)/(m4?),  trons in the film. The minimum thickness is in the IB model

cf. the calculation in the Appendix, one gets zero, but in reality the smallest thickness is a single mono-
layer.
£— h? INLd+ ™ 37) Inserting the IB model into the integral over the source
Fome | 2d?) region appearing in Eq31) we get
In order that just the ground statenergye) has an energy o
less than the Fermi energy, the film thickness must be less 2 o 2 sinz(—)
than a certain maximum valu, ... When the thickness of f ly(2')] Z,:j d dz’
the well becomes so large that the Fermi energy equals the Yl 1,0(2’)|2—1 -d 2 wz' d '
energys,=(27#)%/(2m.d?) of the first excited state a sec- 2y sinf| 7|~
ond bound state of energy less thgnwill appear. From the (39
condition E:(dmay =€2(dmay, dmax €&n be calculated, and ) o . )
one gets by means of E(7) which by substitution o= 7z'/d, addition and subtraction
of d in the nominator of the integral, and use of i’
dmax=3\/377/(22N+), (38 —d=2y[y1—-d/(2y)—cosd][y1—d/(2v)+cosd] gives
|
d d 1 2 dé d 1 d
— T — =—l-——|~—. (40)
Ty 4y J1-d/(2y)Jo J1-d/(2y)+cosh]| ¥ V2yld—1] 7

The solution to the integral in Eq40) is obtained by use of for the configurations with mixed polarization of the pump
Eqg. (A13), and since Py|/d>1 the last approximation fol- fields. Thex component of the phase conjugated field is ob-
lows [for metals,|y| lies typically between 1 and 100 in the tained using Eq(30).

optical region(e.g., for coppefy|~85 in the present study

andd is in the Angstion rangd. Using this result and the Il. NUMERICAL RESULTS
expression for the Fermi energy given in Eg7), we obtain ) o ) ]
by insertion into Eq(31) the result . The theorejucal descrl_ptlon presented in the previous sec-
tion resulted in expressions for the phase conjugated field
. qﬁme(w+ilr)(l+r") @ e i from a single-level quantum well. Thus for the numerical
Epcy(z:q)) = 5 To qpe 19z work, the phase conjugated field is given completely by Egs.
20, €°ZN. (42)—(44) and (30) with the insertion of the expressions for

(41)  the electron dynamics parallel to the surface plane, given by

By insertion of the relevant expressions fdrfi?,z(ﬁ”) we E0s.(A17)—(A18) in the Appendix. In the following we will

finally obtain the following results for the component of present the phase <_:onjugation r_eﬂectior_1 c_oefficient, suc-
the phase conjugated field outside the quantum well: ceeded by a discussion of a possible excitation scheme that

might be adequate for studies of phase conjugation of optical

(w+il7)(1+rP) of near fields!

Epc(z:q)) = 27 w®ZN, M, E[C(q\\_k\l)

A. Phase conjugation reflection coefficient

) i
+C(qp+ k) JESVEPES e, (42) To estimate the amount of light we get back through the
phase conjugated channel, we define the phase conjugation

for the purelyp-polarized configuration, and (energy reflection coefficient as

£ (Z_q):eZ(w-i-i/T)(l-i-rp) Q_|2[C(q k) o Z:6))
P 2 )= 59067 W3ZN, m, iq, | TN Red(Z; ) = |<1>|<2>T ’e( | s (45)
—d;q
A _ prob
+ —D(q,—ky) |E{VEPE; e 1917, in which 1M 1)1 andlpc are the intensities of the
4m p
e

two pump beams, the probe, and the phase conjugated field,
(43)  respectively. Each of the intensities are given by

e(w+ilm)(1+rP) qf €oCo E-E*

Epc(z:q)) = 2975 03ZN, m, E[C(m—k) |_T(2—)4,
K

(46)

+ ip(qu ,k||)}E(1)E(2)E* e 107 (44) where the factor of (2)* originates from the manner in
4me 2y which we have introduced the Fourier amplitudes of the
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FIG. 3. The phase conjugation reflection coefficient at the 1040 ]
vacuum/film interfaceRp —d; qj), is plotted for ppp) thep to p
transition [corresponding to Fig. (3], (sp9 one of thes to p .
transitions[corresponding to Fig.(®)], and (ps9 the others to p 1042 . 5ps
transition[corresponding to Fig.(2)], as a function of the normal- 04 1' 1'0 1(')0 10'00
ized component of the probe wave vector along the interfaoej. ’ /
The normalized Fermi wave number is indicated by the vertical n/q

line. FIG. 4. The phase conjugation reflection coefficient at the sur-

) ) ) ) ] face of the phase conjugator is plotted for different values (
fields. If the probe field is evanescent the intensity of thec {200,30,3 femtosecondsof the relaxation time. The main figure
phase conjugated fieldpz;q)), will depend on the dis- shows the result for thepsconfiguration, while the inset shows the
tance from the surface, and consequently the reflection coefpp result.

ficient is z dependent in such a case.

For the remaining part of this work we choose a coppe
quantum well withN,=8.47x10?® m 2 and Z=1 (data
taken from Ref. 46 Then from Eq{(38), the maximal thick- .
ness becomed,,,=3.82 A, which is more than two mono- stems_ from the th'rd_ te_:rm_. .
layers and less than three. Thus we have two obvious choices | © lllustrate the similarity between the two possibl® p
for the thickness of the quantum well, namely, a singlelf@nsitions, we can take E¢43) to describe the phase con-
monolayer or two monolayers. We choose two monolayersugated field, which for positive values @fj/q gives the
corresponding to a thickness df=3.6 A. The Cu quantum resultin Fig. 3 §p9. Using the othes to p transition, given
well can adequately be deposited on a glass substrate féy Ed. (44), we get instead the result in Fig. g9 for
which we use a refractive index of 1.51. With this sub-  positive values ofj/q. The symmetry between the two con-
strate, a reasonable description of the linear vaccum/substrafigurations is obtained by looking at the negative values of
amplitude reflection coefficient’ is obtained by use of the q/q, since Eq(43) plotted for negative values afj/q gives
classical Fresnel formula the (ps9 curve in Fig. 3. Similarly, by starting with Eq.

(44), the resulting curve for negative valuesgpfq gives the

nzqi—(nzqz—qﬁ)m (sp9 resul'_[ in Fig. 3. o N
= PRTL (47 The ch0|ce_of an adequate re_Iaxatlon times a difficult
ap) problem and it appears from Fig. 4 that the value of the
relaxation time has a great impact on the phase conjugation

q=wl/cy being the vacuum wave number, as before. Thenyeflection coefficient. We have plotted the reflection coeffi-
having the pump fields parallel to theaxis gives a pump cent for three values of the relaxation time, namély30 fs
wave numberk =1.51g. The wavelengthn of the light is  and (i) 200 fs, which are typical values one would find for
chosen to be.=1061 nm. bulk coppef® at (i) room temperature an@i) at 77 K, and

The phase conjugation reflection coefficient at thegjii) 3 fs. The value in caséii) is obtained by a conjecture
vacuum/film interfaceRp —d; ) is plotted in Fig. 3 as a based on the difference between measured data for a lead
function of the parallel component() of the wave vector quantum wefl” and the bulk value for lead at room tempera-
for both thep to p transition and the twe to p transitions. ture. The difference between the relaxation time measured by
The reason that the two curves for teeto p transitions  Jalochowski, Streak, and Zdy®' is for two monolayers ap-
appear the same in the high end of théq spectrum is that proximately one order of magnitude. Based on the results of
for kj<q, we have C(q,—kj)=C(q;+kj) and D(q,k|) Jalochowski, Strozak, and Zd¥bwe have for the data pre-
=D(q;,—kj). The “bubble” appearing on thepsandpss  sented in this work chosen the value of the relaxation time to
curves from around);/q~100 toq/q~ke/q is due to the  be 3 fs. As it can be seen from Fig. 4, the bubble in the curve
two-dimensional electron dynamics hiddenTirq k). To  corresponding to thepsconfiguration appears earlier in the

've a little more specific, the left of the two peaks stems from
the second term, while the peak to the right in the bubble

rP
n?q, +(n%g*—
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FIG. 5. Theq,/q dependence of the phase conjugation reflec- pss
tion coefficient,Rp((z;G)), is plotted at different distanceg+d| .
e{\, M2, N4, N8, N16, N/32, /64, \/128, \/256} from the —
vacuum/film interface. The upper figure shows the results fopthe % 10 3
to p transition. The lower figure shows the results for thé p > ]
transition that corresponds to Figb2 =3 1
= i
q;/q spectrum for higher values of For theppp configu- X »
ration the lower end of the spectrum is damped where- o 107 A
comes smaller. & ]
We have in Fig. 5 plotted the phase conjugation reflection .
coefficient for thep to p transition and one of the to p 1 :
transitions, respectively, for different distances from the sur- L
face of the phase conjugator. Due to our particular interest in 05 1 1.5 2 25
the phase conjugation of the evanescent modes in the Fourier 9/

spectrum the chosen distances are fractions of the vacuum FIG. 6. The phase conjugation reflection coefficidRtd(z:d))
. . . 0. Y1)
wavelength. In Fig. 6 we have plotted the part of the Fourleris plotted at different distancés+d| e{\, N/2, \/4, \/8, \/16,\/32,

spectrum for all three configurations that is judged to be th.g\/64, N128,N\/256; from the vacuum/film interface as a function of

most easily accessible to single-mode excitation in EXPEMthe normalized probe wave numiggr/g. Results are shown for the

mental investigations_. . . three polarization combinationgpp, sps and pssin the range
It appears from Fig. Sgpp) that the phase conjugation \nere we expect single mode excitation to be experimentally fea-
reflection coefficient is independent of the distance from thejipje.

metal film in the region where /q<1. This is so because

the probe field, and hence also the phase conjugated field, aggnjugator. Already a single wavelength away from the sur-
of propagating characterq( =[q?—qf]"? is rea). In the  face of the phase conjugator the evanescent modes of the
region whereq;/q>1, both the probe field and the phase phase conjugated field have essentially vanished and only
conjugated field are evanesceqt €i[qf —g?]"?is a purely  propagating modes are detectable. Although the evanescent
imaginary quantity, and in consequence the reflection coef- Fourier components of the phase conjugated field are present
ficient decreases rapidly with the distance from the phasenly less than an optical wavelength from the surface, this
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does notimply that the nonlinear mixing of the electromag- Bloch character of the wave functions accounting for the
netic waves is less effective in the regime of the evanescentynamics in the plane of the well is doubtful in investiga-
modes. It is in fact the opposite, as may be seen, for instancéipns of the local field among the atoms of the quantum well.
from Fig. 3. The maximum coupling for theto p transition =~ The crucial quantity in the above-mentioned context is the
is obtained forg;/q=500, and in comparison witRpc at ~ Fermi wave numbekg=(2m.&r)Y4%4, and in relation to
qy/q=1, the maximum inRpc is nine orders of magnitude Fig. 5, only results for /q ratios less than approximately
larger, and, respectively, seven and eight orders of magni-

tude larger for the twes to p transitions, which have their Ke ZN.d 1
maxima at around /q=700. As we observe from Fig. 5, as E:)\ ppe + 442
the distance from the film increases the maximum value de-

creases and is shifted downwards in tfjéq spectrum. But  gppears reliable. Insertion of the appropriate values for two
only when the distance from the phase conjugator becomerﬁonolayers of copperZN,=8.47x10% m3, d=3.6 A,
larger than~\/10 (ppp) respectively ~\/60 (sp9, the  and the wavelength=1061 nm givekg=2.76x 10%q. The
phase conjugated signal is largestatq~1. data presented in Fig. 5 should therefore be well within this

The absolute value of the reflection coefficients may seemMmit of our model.
very small, but utilizing a high-power N.d:YAG laser with, Returning to the curve in Fig. 5p@p), which represents
say an energy of 100 mJ per pulse available for each of thghe reflection coefficient closest to the surface of the phase
three incoming fields, a puls@ssumed square for simplic- conjugator (z+d|=)/256) one finds approximately a rela-
ity) duration of 4 ns, and an interaction area of 25 mthe tion of the form Rpc=b(q;/q)® with a=5 in the lower
intensity of each of these fields will be of the order of wave-number end of the evanescent region. The falloff of
1TW/n?, and the phas-e conjugated intensity lies b_etweerppC with q/q after the maximunlocated atq;/q~50) is
100 pW/nf and 1 W/nt in the full range ofgy /g for which  mych stronger than the increase towards the maximum. As
the reflection coefficient has been plotted in Fig.@pf),  the distance from the phase conjugator is increased the value
and between JuW/m? and 1 kW/nf in relation to the data of a gradually decreases. In Fig(th we observe a similar
in Fig. 5 (sp9. behavior, but this time the value af in the approximate

In many theoretical studies of the properties of phase conre|ation in the low end of the evanescent part of the Fourier
jugated fields it is assumed that the phase conjugator i§pectrum is smaller, namelg~1.5.
ideal®’~**By this is meant that the phase conjugation reflec- * The energy reflection coefficient calculated at the
tion coefficient is independent of the angle of incidense Ofvacuum/quantum-well interfac®po( —d; @), characterizes
the (propagating probe field(and maybe also of the state of he effectiveness with which a given) plane-wave probe
polarizat?oﬂ. _In the present case, the i.deal phase conjugz_atOﬁem (propagating or evanesceémhay be phase conjugated,
assumption is certainly not good. Prior to the observatioryng the results presented in Fig. 3 indicate that this effective-
that evanescent fields could be phase con]uéémad/vas ness(nonlinear coupling is particularly large for(part of
often assumed in thedfy that Rec=0 in the regiond;/  the) evanescent modes. The maximum in the effectivity is
g>1, and in later studié&* it has been assumed that also reached for a value ofjj/q as large as-500—700. The
the phase conjugation of evanescent waves is ideal, i.e_., iRtrong coupling in part of the evanescent region does not
dependent oy /q(=1). When it comes to the phase conju- necessarily reflect itself in any easy manner experimentally.
gation from quantum-well systems our analysis indicates thatirst of all, one must realize that the strong-coupling effect
use of an energy reflection coefficient independerjéé in  may only be observed close to the quantum well, i.e., at
general is bad. Only at specific distances the ideal phasgistancez=<\. Secondly, one must be able to produce eva-
conjugator assumption might be justified, see e.g., the resuligescent probe fields with relatively large values miq.
representin@Rpc at|z+d|=\/8in Fig. 6 (ppp). The kinkin  This is in and of itself by no means simple outside the range
the reflection coefficientwhich is most pronounced close to \where the standard Of%° (or possibly Kretschmanmt-52
the metal/vacuum interfagdound atq;/q=n(=1.51) ap-  techniques can be adopted. Roughly speaking, this range co-
pears when the probe field changes from being propagatingcides with the ones shown in Fig. 6. To create probe fields
to being evanescent inside the substrate. with larger q;/q values other kinds of experimental tech-

Above we have discussed the nonlinear reflection coeffiniques must be used, and in the following we shall consider
cient for thep to p configuration. It appears from Figs. 5 and 3 particular example and in a qualitative manner discuss the

6 that the quantitative picture is the same forstte p cases, resulting Fourier spectrum of the phase conjugated field.
though the reflection coefficient for the to p transitions

roughly speaking are five orders of magnitude larger in the
experimentally most adequate evanescent region of the Fou-
rier spectrum (¥q;/q=2.5) for single mode excitation. In near-field optics evanescent fields with relatively large
The IB model only offers a crude description of the elec-values ofq/q are produced by various methods, all aiming
tronic properties of a quantum well. Among other things, theat compressing the source field to subwavelength spatial ex-
electron density profile at the ion/vacuum edge is poorly actension(see, e.g., Refs. 53 and )54rom a theoretical point
counted for in this model, which gives too sharp a profile ancbf view the radiation from a subwavelength source may in
underestimates the spill-out of the wave function. Altogetheisome cases be modeled by the radiation from(elactrig
one should be careful to put too much reality into the IBpoint-dipole source, or an assembly of such sources. It is a
model when treating local-field variatiolated to, sayg; straightforward matter to decompose an electric point-dipole
or g,) on the atomic length scale. Also the neclect of thefield into its relevant evanescent and propagating modes, and

(48)

B. Phase conjugated response using a wire source
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thereby estimate the intensity of the phase conjugated field in 1 © L -

each of theq components. However, in order to determine  E(X,z;0)= W[ _E(zq ,0)e'9%5(qy ) d%q),
the characteristics of the phase conjugated light focus gener-
ated by the quantum well one would have to calculate the
four-wave mixing also for probe fields with wave vectors not
confined to thex-z plane, and to do this our theory must first w
be generalized to nonplanar phase conjugation.

Within the framework of the present theory, it is possible, -, qf 0 —qua.
however, to study the spatial confineméfucusing of the = = . gldL(z20) 0 2 g j
phase conjugated field generated by a quantum wire ad- (Z,9),0)= 2€00q, d ~Jo(@),
equately placed above the surface of the quantum3valhd -qq. O q
let us, therefore, as an example consider the case where the (51)
source of the probe field is @uantum wire. We imagine
that the axis of the wire is placed parallel to theaxis and  where as beforeqﬁJr g°=q? At the phase conjugating
cuts thex-z-plane in the point (G; zp), cf. Fig. 1. Under the mirror, the Fourier components of the wire probe are
assumption that the spatial electron confinement in the wir@(_d;qH ).
is perfect(complet¢ and the wire current density is the same T jllustrate the angular spectral distribution of the field
all along the wire at a given time, the harmonic source Curfrom this kind of wire source at the phase conjugator, we
rent density is given by look more closely at the cases where the current density is
polarized(i) along thex axis and(ii) along they axis. Thus,
in case(i) we usejo(w)zJo(w)éx, and by normalizing the
where Jo(w) is its possibly frequency dependent vectorial €lectric fields to the amplitude of the current density, the
amplitude. The spatial distribution of the field from this corresponding normalized differential intensityAl pope
source i8° =3 €0CoE(—d; 0, w) - E* (—d, g, w)(27) " *],

(50

here

J(Frw)=Jg(w)8(X)8(z+2,), (49)

Al prob&_d;a\\) _
[Jo(w)? 2'7"eCo

{OL—(ay/a)+O((a /)~ D[2(q/9)*~ Lexd — 2(zo—d)qv(a;/a)*~ 1]}  (52)

is shown in Fig. 7 for different values of the distange-d from the wire to the vacuum/film interface. In caée, jo(w)
=Jo(w)€,, and the associated normalized intensity, which is given by

Alpapd =diG) 1 [OQ—(q)/9)  O(q)/a)—1) .
B * extl —2(z-d)a(ay/a)*- 1], 53
()2 2'meoCo[ 1-(q/a)?  (ay/a)>-1 XL = 2(zo—d)av(g /a)"— 1] (53

is also presented in Fig. 7, for the same distances as in ca#igis integral can in all cases be proven finite. At each dis-
(). The third curve in Fig. 7 represents the case whergance of the wire from the phase conjugator the two curves
Jo(w)=Jo(w)€E,, and is shown for reference. Jo€, andJyE, in Fig. 7 becomes identical wheqH(/q)2>1,

Looking at the curve in Fig. 7 corresponding dg(w)  Since from Eq.(51) we may derive the rzglatiorEzz
=Jo(w)é, [and the curve corresponding tdy(w) —(9/9,)E, and sincey) /g, ~1 when @/9)"> 1. .
—J (w)éy] we notice that a sinqularity occurs whemn/ When the current oscillates in the direction of the wire, it
_10 or eal’JivaIentIy where, =0 gl’he p)r/esence of tgﬂ; gin appears that the field intensity in the evanescent probe modes
— 4, | — Y. - . . .
gularity is an artifact originating in thémode) assumption is very small. An appreciable amount of the radiated energy

that the electron confinement is complete in theand z is stored_in components in the regiqqp/q~1 (an_d in the
directions[see Eq.(49)]. If we had started from a quantum propagating modgsTo study the phase conjugation of eva-

wire current density of finitébut smal) extension irx andz ~ Nescent modes it is therefore better to start fropiw)

the singularity would have been replaced bfnarrow) peak = Jo(w)8é, or from Jy(w) =Jo(w)E, because these two probe
of finite height. Not only in guantum wire optics, but also in current densities give rise to significant probe intensities in
optical studies of quantum dots and wells singularities wouldhe evanescent regime. If we look at the curve in Fig. 7
appear if complete electron confinement was assufired representing the field at the surface of the phase conjugator
three dimensions and one dimension, respectjvdly the ~ when the probe is placed a§—d=\/256Al e peaks in
present context the assumption of perfect electron confinédoth these cases at/q~ 50 in the evanescent regime. When
ment works well because we only consider the generatethe current density oscillates along the surfécethe x di-

field outside the self-field region of the wifsee, e.g., Ref. rection there is no singularityand no peakatq;/gq~1, and

43). In an experiment one would always end up integratingthe maximum value of e, 0ccuring atg; /q~50, is three
over some finite interval oy around the singularity, and orders of magnitude larger than the probe intensities of every



57 OPTICAL PHASE CONJUGATION IN A SINGLE-LEVEL ... 14 805

10° g 1038
] N 38 _|]
-;:— 10! - § 10
~ E -40 ]
Z o -~ 10
~ 1 E g
i 1] =g
~ - —_— % -
13/ §10 -= =3 10
O |~— E ol -46
25 107 5 T
2 3 T, 1078 S
Al 108 £ 50
= 107
10 10%2 NN B AR | A
0.1 0.1 1 10 100 1000
q1/9
FIG. 7. The angular Fourier spectrum reaching the surface of the 1041
phase conjugating medium when the probe field is radiated froma __ Jo€y
(quantum wire. The dotted curve$Jo(w)é,] show the Fourier Z: 1042 4
components when the wire current density is polarized along the E "
axis. Similarly, the dashed curvgd,(w)€&,] and the fully drawn w1077 o
curves[ Jo(w)é,] show the Fourier components from a wire source = a4
with its current density oscillating along ttzeaxis and thex axis, = 107 7
respectively. The angular Fourier spectrum is for all three casest=| 3 10%
shown for five different distanceg—d e{\/16, \/32, \/64, \/128, =N =S
\256} of the wire from the phase conjugator. JcS 5_ 10746 S -
. RN >
one of the propagating modes. Abogg/q~50 the ampli- W, 1077 T 2,
tude of theq; components descends rapidly and has lost six o SN S5 S0 W "’ _

orders of magnitude within the next order of magnitude of

qj/d. At larger probe to surface distances the maximum in 01 ! 1? 100 1000

the g;/q spectrum of the probe field at the vacuum/film in- /4

terface is shifted (_jownwards, and the magnitude bgcomes FIG. 8. The convolution of the probe field from a wire source

smallle'r, too. Th'at IS, 'compared to the ranto P reflection  ith the phase conjugation reflection coefficient at the vacuum/film

coefficient, the intensity of each of the Fourier component§perface is shown for different distances between the wire source

available from the probe field begin their own falloff about 4ng the vacuum/fiim interface, namels,—d e {\/16, A/32, N/64,

one to two orders of magnitude before the reflection coeffi:/128, /256 as a function of the normalized probe wavenumber

cient descends, depending on the distance from the probe &9/q. In the top figure the current density of the wire oscillates

the surface of the phase conjugator. Thpolarized probe along thex axis, and in the bottom figure along tiyeaxis.

field starts the descending tendency already where the char-

acter of the Fourier components shifts from being propagatanergy of the phase conjugated signal is concentrated around

ing to evanescenty, becoming imaginary cf. the remarks q;/9=1, which is mainly due to the fact that the concentra-

above. _ __tion of the radiated energy spectrum from the wire lies
Using a quantum wire as the source for the probe fieldgqng that same point. In theto p transition we observe

the angular spectrum of the phase conjugated response, N9fa¢ the evanescent components are still by far dominating

malized to the pump fields and the absolute square of thg,e response at the place of the wire compared to the propa-
amplitude of the wire current density, is given by gating components.

Iprobe(_d;q\\) _ |PC(Z;q\\)
|J0(w)|2 |<l)|(2)|30(w)|2,

Rpd(Z;4)) (54 IV. CONCLUSIONS

It is evident from our analysis that the phase conjugated
response depends strongly gn at least for a quantum-well
) o . phase conjugator. The nonlinear coupling is strongest in the
sity, IPmbe(_d’qH)/|‘]°(“’)|2' In_ Fig. 8, the angu]ar Spectrum o, anescent part of the spectrum above the point up to which
at the_ vacuum/quantum-well mterfacze%—d) given by Eq. the probe field is propagating in the substrajg/@=n). As
(54) is shown for the cases whergy(w)=Jo(w)€& and 3 consequence, if one wants to observe the phase conjugation
Jo(w)=Jo(w)€,. In both cases data are presented for theof a broad Fourier spectrum of evanescent modes, both ob-
wire placed at different distances from the vacuum/film in-servation and excitation near the surface of the phase conju-
terface. By comparison with the raw reflection data in Fig. 3gator is required. The quantum wire offers one possibility of
it appears that the high end of the reflectgdspectrum is  exciting the higher Fourier components, and the phase con-
strongly damped. For the to p transition we see that the jugated response in this case contains a broad range of eva-

and is obtained numerically by multiplying the energy reflec-
tion coefficient,Rp(z;q), with the normalized probe inten-
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nescent components. Because of this the use of a quantum

wire source field might be a good candidate for investigating
the problem of focusing light beyond the Abbe-Rayléfjt

diffraction limit.
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APPENDIX: ANALYTICAL EXPRESSIONS each diagram is the integration path used.

FOR C, D, AND

In this appendix we discuss how analytic solutions for the 1 (o2 r(rsino)P
integrals over k; appearing in the quantitiesC(q, Fp(a,b,s)= 0o Jo b—astar cos&dedr’ (AS)
=k, D(ay.kp, and /' may be obtained in the low- . )
temperature limit. Every integral appearing in these quantivherepe{0,2, dropping the now superfluous index an

_ - b—as
kPFa(R)+s8) = =
]_—pﬁ:f SInlA diyd,, (A1) 7=——, r=ay, (AB)
kll [axxxt by] which turn Eq.(A5) into
wherek and 8 are nonnegati:/e integerp, is an even non- 7:01( )= gjlfzw u dodu. (A7)
negative integer, ans=s(q k) is a function of the pump alJoJo nmtucosé

and probe wave vectors. In EGAL) the nominator is a real 5 -

guantity and the denominator is a complex quantity. )= a_J'lfzw u3sirte dedu (A8)
In the low-temperature limit the distribution function is 21~ 0 n+u coséd '

zero outside the Fermi sphe@nd equal to one insiglend it .

is therefore advantageous to shift by —s, and thereafter Next, to carry out the angular integrals, we set

perform a one-to-one mapping of tixey plane into polar

—Alf
coordinates I(-¢ plang. Using x,=r cos6 and k,=r sin § t=e (A9)
the integral in Eq(A1l) is turned into so that these integrals become
a (2w r(r sin )P JZW 1 1 é 1
B— - dh=— -
o fo fo B dedr. (A2) o m+u cos¢90“9 iu (t—t+)(t—t,)dt’
kl;[l [ax(r cosf—s)+by] (A10)
o ; _12y2
The quantitya= JkZ— (w/d)? is the radius of the(two- f 2r_sin'é d":I—f# I Cul i
dimensional Fermi circle. In the quantitC(q—k)), 2B o mtucosé 4u J (=t )(t—to)
=1 in the above equation angd=0, and in the quantity (Al1)

D(qj.kp), B=p=2. In the quantityV, p=a,=0 and \here the poles at. in thet plane are located at
b,=1, and the integral can therefore be solved immediately,

with the result 7 7\2
t,=——= —| -1, (A12)
4 a (m (,1’2 u u
N= (277)2]0 fo rddr= om (A3) and the integration runs along the unit circle. Since we have

t,t_=1, one of these poles is inside the unit circle while the
The complexity of the problem can be reduced, since it i0ther is outside. Using the unit circles shown in Fig. 9 as the
possible to express the function wi=2 in terms of two  integration paths, we find by a residue calculation
functions with=1, namely,

2 1 o
3 81Ty (1,01.5) ~8pFy (a2,b;.9) Jo n+u cos9” n—u?’ (A13)
Fi(ag,a,bq,by,8)= .
P albz_azbl n2
(A4) J‘Z‘rr SinFo _277 B —
o ntu Cosada_ Gzl VP—u?.  (Al4)

As a consequence of EA4), the integrals appearing in
C andD can now in general be written in terms of functions By insertion of these results into Eq&7) and (A8) and
of the type carrying out the elementary radial integrations one obtains
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2
Fg(a,b,s)= g;[b— as—(b—as)’—a%a?],
(A15)
Fi(a,b,s) :%{[(b— as)®— a?a?]¥?—(b—as)®

(A16)

Finally, the quantitie<C(q +k)) and D(q;,kj) can be ex-
pressed as

+3a”a?(b—as)}.

C(qy=k)) =2[F¢(ar,by,qy£K) — Fg(a;,by,0)],
(A17)

and
D(qy k) =2[FF(az,a3,b2,03,0) — F;(az,85,0,,b3,k)
+F7(z,84,b2,04, K+ q)
— F{(ay,84,02,0,,k) + F£(ay,a4,b7,05,0)
— Ff(ap,a4,b,,bs,q))
+722(az,asvbzybeyk\ﬁqw

14 807
— F£(82,83,02,06,q))], (A18)
where
a;=h(q—kj)/me, (A19)
a,="h(q+k)/me, (A20)
ag="hk|/mg, (A21)
as=hq)/me, (A22)
by=7%(a— k% (2me) —i/ 7, (A23)
by=7(qy+kp%(2me) —i/ 7, (A24)
ba=7ikf/(2me) i/ 7~ w, (A25)
bs=70(qy+2K))/(2me) —i/ T+ w, (A26)
bs=%qf/(2me) —i/ 7+, (A27)
be="nky(kj+2q)/(2me) =i/ 7— w. (A28)
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