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Optical phase conjugation in a single-level metallic quantum well

Torsten Andersen and Ole Keller
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We present a calculation of the phase conjugated response from a single-level metallic quantum well. The
description builds upon a recently developed local-field theory for degenerate four-wave mixing in mesoscopic
interaction volumes of condensed media. The single-level quantum well represents the simplest possible
configuration of a quantum well phase conjugator. Furthermore, the single-level quantum well is an interesting
object, since the optical response contains no dipole terms. The discussion of the response is based on the use
of linearly polarized light to excite the process. We demonstrate that the phase conjugation process is ex-
tremely efficient in the evanescent regime of the wave-vector spectrum. We also address the problem of
plane-wave excitation of the high wave-number end of the evanescent regime. We end our discussion by
suggesting the use of a broadband source to excite the process. One such broad angular band source is a
quantum wire, and the phase conjugated angular spectrum from a quantum wire is presented and discussed.
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I. INTRODUCTION

Studies of the optical properties of quantum wells~single
and multiple!, surfaces and interfaces have drawn the att
tion of researchers for two decades, and in recent year
particular, investigations of the nonlinear electrodynam
have been in focus. Among the many nonlinear phenom
studies of second-harmonic generation,1–6 sum and differ-
ence frequency generation,4,7 photon drag,8–11 dc electric-
field-induced second-harmonic generation,12,13 the Kerr
effect,14–17 electronic and vibrational surface Rama
scattering,18–20 two-photon photoemission,21–25 and genera-
tion of higher harmonics26,27 have played a prominent role

From a theoretical point of view the description of th
above-mentioned structures belongs to the field of me
scopic electrodynamics. This is so because the interac
length in the direction perpendicular to the plane of the str
tures is much smaller than the electromagnetic wavelen
in the optical regime. Since the refractive index concept u
ally is meaningless for structures of only a few monolay
thickness macroscopic approaches have to be aband
from the outset. Theoretical analyses therefore have to
from the microscopic Maxwell equations combined with t
~single-electron! Schrödinger equation.

In the present paper we give a theoretical and numer
description of a nonlinear phenomenon not hitherto stud
to our knowledge, at such interaction lengths, viz. opti
phase conjugation by degenerate four-wave mixing in
quantum well structure. Optical phase conjugation is a n
linear process involving the mutual interaction of four diffe
ent light waves in a nonlinear medium. If the four wav
have the same frequency the process is named degen
four-wave mixing ~DFWM!. In the context of solid-state
physics one typically starts mixing two counterpropagat
beams~called pumps! and a third beam~called the probe!
usually not collinear with the pumps. The nonlinear respo
of the medium ~crystal! due to momentum conservatio
~phase matching! then generates a fourth beam~the phase
570163-1829/98/57~23!/14793~16!/$15.00
-
in
s
na

o-
on
-

hs
-

s
ed

art

al
d,
l
a
-

rate

g

e

conjugated signal! propagating oppositely to the probe. On
generated the fourth beam interacts dynamically with
pumps and the probe, thus the name four-wave mixing
the context of a field quantized description a weak fou
beam is present from the outset due to fluctuations in
vacuum field. Crudely speaking one may say that the ph
conjugated field forms a real-time holographic image of
probe field, and this of course points to a number of pract
applications of optical phase conjugation. The strength of
degenerate four-wave mixing process depends on the
quency of light in a manner determined by the given nonl
earity of the crystal used. To tailor the frequency respons
a controlled manner it would be nice to use a quantum-w
system because the frequency dependence of the nonline
may be modified and brought to resonance~high efficiency!,
for instance, by changing the thickness of the well or
using a series of~different! quantum wells, as in a multiple
film arrangement.

In a quantum well the~nonlinear! dynamics associated
with electron motions parallel and perpendicular to the pla
of the well is qualitatively different. Thus, in the directio
perpendicular to the plane of the well the electrons may
excited between different subbands, and this can lead to
nounced atomiclike resonance effects. Electron motions
allel to the well plane are associated with intraband tran
tions in a quasicontinuum of states, and for this kind
excitations the Bloch character of the states is importan
the quantum well is sufficiently thin there is only one bou
level ~subband!, and if this is located below the Fermi en
ergy, the electron dynamics is quasi-two-dimensional. In t
work only single-level metallic quantum wells are consi
ered, and for simplicity it is assumed that the electron d
namics parallel to the well plane is free-electron like. In o
der for a metallic quantum well to have only a single bou
level its thickness must not exceed an~a few! atomic mono-
layer~s!. The phase conjugator we deal with in this pap
therefore is essentially two-dimensional, and this in and
itself makes an analysis worthwhile.
14 793 © 1998 The American Physical Society
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The usual steady-state description of DFWM is a mac
scopic description covering the DFWM process in photo
fractive media where the interaction length is long, and
description is limited to cover the far field part of the ele
tromagnetic signal. It is usually based on the assumpti
that the amplitudes of the fields are slowly varying on t
optical wavelength scale@slowly varying envelope~SVE! ap-
proximation#, and thus also constant across the individ
scattering units~atoms, molecules, etc.!. Neglecting the
variation of the field across the nonlinear scatterers me
that the electric dipole~ED! approximation can be employed
For a comprehensive review of the existing descriptions
optical phase conjugation, as well as of the experime
work, the reader is encouraged to consult Refs. 28–32.

In thin films ~quantum wells!, however, it is crucial to
keep the microscopic dynamics perpendicular to the sur
of the phase conjugating mirror when calculating the DFW
response. So far, four-wave mixing in media with tw
dimensional translational invariance has only been studie
the context of phase conjugation of surface plasmons33–35

and of a bulk wave by surface plasmons.36 In these investi-
gations a macroscopic approach was used.

Especially if one wants to use the DFWM technique
create focusing of phase conjugated dipole radiation wit
spatial extent below the classical diffraction limit, where t
hitherto appeared descriptions are based on an assum
that the phase conjugator is ideal37–39 or Kerr like,40 it is
important also to consider the response in the optical n
field region. A Fourier analysis of the field from a radiatin
mesoscopic object in the coordinates of the plane of
phase conjugator shows a large content of plane-wave c
ponents in the near-field regime. Due to the exponenti
decaying nature of optical near fields, the length scale un
which the substantial part of any optical interaction, linear
well as nonlinear, takes place is of the order of a fraction
the optical wavelength. Considering interaction at such
length scale it is necessary to abandon the otherwise us
adopted SVE and ED approximations.

In the present work we shall present the simplest poss
result of using our model for the phase conjugation proce
It is achieved using a single quantum well with only o
bound state below the Fermi energy. The use of suc
single-level quantum well has previously been shown to
feasible to provide a simple description of photon drag
metallic films.8 The consequence of choosing a single-le
quantum well is that the phase conjugated response is lim
to be constructed of pure intraband~intersubband! transi-
tions.

Thus, in Sec. II we present the theoretical framework
the present calculations starting from the wave equation
the phase conjugated field, which is calculated using the
croscopic Maxwell-Lorentz equations. We discuss the o
cal phase conjugation response function of an electron
two-dimensional translational invariant system~e.g., a quan-
tum well!, in the form it takes starting from the Liouville
equation of motion for the density-matrix operator and
minimal coupling Hamiltonian. The nonlinear response fun
tion we derive in the aforementioned manner allows us
calculate the current density induced in the quantum well
the nonlinear mixing of the two pumps and the probe. T
radiation from this nonlinear current density is the pha
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conjugated field. The nonlinear response function devia
from those hitherto established in the sense that it enable
to calculate the spatially rapidly varying microscopic curre
density on an atomic length scale and not only the spati
averaged~macroscopic! current density. This is essential fo
quantum-well systems where the well thickness is in
Ångström range. A general theory for DFWM conductivit
tensors in mesoscopic interaction volumes we developed
discussed in a previous paper,41 where also formal aspects o
the underlying nonlocal nonlinear electrodynamics were
amined. The two-dimensional conservation of momentum
presented and the nonlinear constitutive relation is redu
to its DFWM form. Having established the basic needs
describe the response we set up the self-consistent field e
tion for the phase conjugated field, and limit our study to t
simplest possible configuration, for which the explicit for
of the nonlinear conductivity tensors are presented. The c
sequenses of choosing a probe field with only a single pla
wave Fourier component are analyzed, and the sectio
finished with a discussion of the infinite barrier~IB! model
adopted to describe the quantum well in the numerical wo

With special attention drawn to the optical near field, o
numerical work is started in Sec. III with a quantitative di
cussion of the phase conjugation reflection coefficient from
single-level quantum well, choosing two monolayers of co
per as the metallic quantum well. First, we present the refl
tion coefficient for the phase conjugated light, which i
cludes all components in the Fourier spectrum, propaga
as well as evanescent, and then we address the proble
choosing an appropriate relaxation time in a thin quant
well. To excite the whole Fourier spectrum with one pla
wave at a time can prove difficult, if not impossible. Inste
one might consider the use of a broadband source of
kind or another. To give an impression of how the pha
conjugated field looks when excited with a specific broa
band source we consider the response when a quantum
~two-dimensional point dipole! is placed in front of the phase
conjugator. Finally, in Sec. IV, we conclude.

II. THEORY

In order to describe nonlinear optical phenomena in m
soscopic media it is in general necessary to abandon ma
scopic electrodynamics from the outset,42,43 and therefore
take as a starting point the microscopic Maxwell-Loren
equations. In these equations the material response a
space-time point (rW,t) is completely characterized by the m
croscopic current densityJW (rW,t), and the related charge den
sity. In the context of optical phase conjugation it is usua
adequate to treat the electrodynamics in the space-frequ
domain if the involved light signals are not too short. In t
case of DFWM we need only a harmonic analysis at
fundamental frequencyv. By assuming that the electromag
netic field driving the phase conjugated response is of m
erate magnitude, it is sufficient to have a knowledge of
linear, JW 2v

(1) (rW ), and the lowest-order nonlinear,JW 2v
(3) (rW ),

current-density contributions at the fundamental frequen
With this limitation the wave equation for the phase con
gated~PC! electric field,EW PC(rW;v)[EW PC(rW ), takes the form
in a DFWM process
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F 1IS v2

c0
2 1¹2D 2¹W ^ ¹W G•EW PC~rW !

52 im0v„JW 2v
~1! ~rW !1JW 2v

~3! ~rW !…, ~1!

where 1I is the (333) unit tensor.

A. Microscopic constitutive relations

The microscopic current densities appearing in Eq.~1!
may be expressed in terms of the relevant local electric fie
through appropriate constitutive relations. Within a sing
electron random phase approximation approach it is usu
sufficient for a condensed matter system to assume tha
induced particle motion is driven by the prevailing~total!
electromagnetic field. This means that the linear constitu
relation reads

JW 2v
~1! ~rW !5E sJ~rW,rW8!•EW PC~rW8!d3r 8, ~2!

wheresJ (rW,rW8)5sJ (rW,rW8;v) is the linear and nonlocal single
electron conductivity tensor. Thei th element of the first-
order current density is thus given by the volume integra

@sJ•EW PC# i5( js i j EPC,j . In analogy with the equation above
the nonlinear constitutive relation is given by41

JW 2v
~3! ~rW !5E E E JJ ~rW,rW 8,rW 9,rW -!

AEW ~rW -!EW ~rW 9!EW * ~rW8!d3r-d3r 9d3r 8, ~3!

where JJ (rW,rW8,rW 9,rW -)5JJ (rW,rW8,rW 9,rW -;v) is the nonlocal
single-electron conductivity tensor of the third order in t
mixed space-frequency domain. Thei th element of the third-
order current density is obtained upon integration

@JJ AEW EW EW * # i5( jkhJ i jkhEhEkEj* over therW -, rW 9, andrW8

spaces. In Eq.~3!, EW (rW)[EW (rW;v) denotes the local electri
driving field.

The explicit expression for the linear nonlocal conduct
ity tensorsJ (rW,rW8;v) is well known,44 and may be calculated
by various techniques. Starting for instance from the Lio
ville equation of motion for the density-matrix operatorr,
the linear current density is obtained from

JW 2v
~1! ~rW !5Tr$r~0!W2v

~1! %1Tr$r2v
~1! W ~0!%, ~4!

wherer (0) andr2v
(1) are the density-matrix operator in the

mal equilibrium and its first-order perturbation atv, respec-
tively, and W (0) and W2v

(1) are the free part and the releva
vector-potential-dependent part~at v) of the current-density
operator. The quantity Tr$•••% in Eq. ~4! denotes the trace o
$•••%. From the expression found for the linear current de
sity in this manner, the linear nonlocal conductivity tensor
readily extracted. The density-matrix operator approach
convenient also for a determination of the nonlinear part
the induced current density, thus obtaining

JW 2v
~3! ~rW !5 1

2 Tr$r22v
~2! Wv

~1!%1Tr$r0
~2!W2v

~1! %1Tr$r2v
~3! W ~0!%,

~5!
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in a notation wherer0
(2) and r22v

(2) denote the second-orde
dc and second-harmonic (2v) parts of the density-matrix
operator, respectively, andr2v

(3) is the third-order part at the
fundamental frequency. From the explicit expression
JW 2v

(3) (rW) one can find the nonlinear conductivity response t
sor. Details of the density-matrix calculation o
JJ (rW,rW 8,rW 9,rW -;v) as well as the rather comprehensive fo
mula for this quantity can be found in Ref. 41, where also
discussion of the microscopic physics behind this nonlin
response is given.

By inserting Eqs.~2! and ~3! into Eq. ~1!, an integrodif-
ferential equation is obtained for the phase conjugated fi
in which the forced current densityJW 2v

(3) (rW ) can be consid-
ered as a prescribed quantity in the parametric approxima
adopted in the following. Since only a small amount of t
fundamental field, at least for single quantum-well syste
studied here, is converted nonlinearly, the parametric
proximation is justified.

B. Two-dimensional translational invariance

Considering a structure exhibiting two-dimensional tran
lational invariance against displacements parallel to say
x-y plane, a bulklike material response is retained in t
dimensions, and thus through conservation of pseudo
mentum the concept of phase matching has to be fulfilled
the x-y plane.

In the above-mentioned system it is natural to express
various vector and tensor quantities in a mixed Fourier
presentation, where only thez coordinates are kept in rea
space. Each space coordinaterW is then in the mixed Fourier
representation transformed into a pair of (z;qW i), whereqW i is
the wave vector representation corresponding to thex-y rep-
resentation in real space.

Performing a Fourier analysis in thex andy coordinates,
the linear constitutive relation takes the form

JW 2v
~1! ~z;qW i!5E sJ~z,z8;qW i!•EW ~z8;qW i!dz8. ~6!

In the analysis of the nonlinear conductivity tensor in t
mixed Fourier space described above, conservation
pseudomomentum~phase matching! in the direction parallel
to thex-y plane appears directly from the general theory
the form

qW i-1qW i92qW i82qW i50. ~7!

This criterion implies thatif we want the phase conjugate
field to be counterpropagating to the probe field in the tra
lationally invariant plane~as would be the natural choic
when considering phase conjugation at all!, then the two
other ~pump! fields mustalso be counterpropagating in th
plane.

Thus limiting ourselves to the situation where the pum
fields are counterpropagating, and assuming each of the
teracting fields contains only one plane-wave compon
parallel to thex-y plane, the relevant nonlinear constitutiv
relation in the mixed Fourier representation takes the for
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14 796 57TORSTEN ANDERSEN AND OLE KELLER
JW 2v
~3! ~z;qW i!5

1

~2p!4E E E JJ ~z,z8,z9,z-;qW i ,kW i!

AEW ~z-;2kW i!EW ~z9;kW i!EW * ~z8;2qW i!dz-dz9dz8

1 i.t., ~8!

wherekW i is the parallel component of the wave vector as
ciated with the pump fields, andqW i is the parallel componen
of the wave vector associated with the probe and phase
jugated fields. The term ‘‘i.t.’’ denotes the so-called ‘‘inte
changed term,’’ which is obtained from the first term b
interchanging the two pump fields (kW i replaced by2kW i). The
reason that such a term has to be added arises from the
that each of the electric fields basically consists of a sum
all three incoming fields, and that the phase conjugated t
from the product of the three fields thus must include b
permutations of the pump fields.

C. Phase conjugated field

After having sketched the calculation of the nonline
DFWM response we turn our attention to the phase con
gated electric field. In the present case where the main p
of the interaction takes place in very small interaction v
umes, we can expect that the generated phase conjug
field does not affect the dynamics of the pump and pro
fields much, and thus take the parametric approximation

Then from the linear constitutive relation and the wa
equation we obtain the following integral equation for t
phase conjugated field in the two-dimensional phase ma
ing case42

EW PC~z;qW i ,v!5EW PC
B ~z;qW i ,v!2 im0vE E GJ ~z,z9;qW i ,v!

•sJ~z9,z8;qW i ,v!•EW PC~z8;qW i ,v!dz9dz8,

~9!

whereGJ (z,z9;qW i ,v) is the so-called pseudovacuum prop
gator, and

EW PC
B ~z;qW i ,v!52 im0vE GJ ~z,z8;qW i ,v!•JW 2v

~3! ~z8;qW i ,v!dz8

~10!

is the nonlinear driving field@with JW 2v
(3) (z8;qW i ,v) taken from

Eq. ~8!#. In the quantum-well case, the pseudovacuum pro
gatorGJ (z,z9;qW i ,v) can be written as a sum of three term

GJ ~z,z8;qW i ,v!5DJ ~z2z8;qW i ,v!1 IJ~z1z8;qW i ,v!

1gJ~z2z8;v!, ~11!

where the first two are named after the processes they
scribe. Thus the termDJ (z2z8;qW i ,v) describes the direc
propagation of the electromagnetic field from a source po
at z8 to the observation point atz. It is given by

DJ ~z2z8;qW i ,v!5
eiq'uz2z8u

2iq'

@eW y^ eW y1Q~z2z8!eW i ^ eW i

1Q~z82z!eW r ^ eW r #. ~12!
-
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The indirect term,IJ(z1z8;qW i ,v), describes the propagatio
from the source point of the part of the electromagnetic fi
that is going to the point of observation via the surface of
bulk medium. The expression for the indirect term reads

IJ~z1z8;qW i ,v!5
e2 iq'~z1z8!

2iq'

@r seW y^ eW y1r peW r ^ eW i #.

~13!

Finally, the self-field term characterizes the field generate
the observation point by the current density at the sa
point. The self-field part of the propagator is given by

gJ~z2z8;v!5q22d~z2z8!eW z^ eW z , ~14!

whereq5v/c0 is the vacuum wave number. In the abo
equations,q'5@q22qi

2#1/2, eW i5q21(q',0,2qi), and eW r

5q21(2q',0,2qi), takingqW i5qieW x . The quantitiesr s and
r p are the amplitude reflection coefficients of the vacuu
substrate interface in the absence of the quantum well
general these are functions ofqW i . The appropriate propaga
tors for a single quantum-well system are shown in Fig.

In a mesoscopic film the electric field generated via
direct and indirect processes at a given point is roug
speaking of the order (m0v/q')*JW 2v

(3) dz8, whereas the self-

field has the magnitude (m0v/q2)JW 2v
(3) . Sinceqd!1, where

d is the thickness of the film, we judge the self-field term
dominate the phase conjugated field inside the quantum w
at least for single-level metallic quantum wells that ha
thicknesses on the atomic length scale. In the following
therefore use the so-called self-field approximation to cal
late the phase conjugated field inside the quantum well. W
the propagatorGJ (z,z8;qW i ,v) replaced bygJ(z2z8;v), the
phase conjugated field fulfills the integral equation

FIG. 1. The propagators appearing in the calculation of
phase conjugated field in the system we consider in this paper.
system consists of a three-layer thin-film structure, name
vacuum, film~quantum well, extending from 0 to2d), and sub-
strate~crosshatched!. In the vacuum may be placed different kind
of sources, e.g., a quantum wire with its axis along they direction
~shown as a dot!. In ~a! the propagation of the electromagnetic fie
from a source pointrW8 inside the quantum well to an observatio
point rW outside the quantum well is shown, while in~b! the propa-
gation of the electromagnetic field is illustrated in the case wh
both source and observation point are inside the quantum well.D is
the propagation path described by the direct propagator,I is the
propagation path described by the indirect propagator, andg de-
notes the self-field action propagator. In the center of the figur
shown the Cartesian coordinate system used in our calculation
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EW PC~z;qW i ,v!5EW PC
B ~z;qW i ,v!1

eW z^ eW z

i«0v

•E sJ~z,z8;qW i ,v!•EW PC~z8;qW i ,v!dz8 ~15!

inside the well and the background field is now

EW PC
B ~z;qW i ,v!5

eW z^ eW z

i«0v
•JW 2v

~3! ~z;qW i ,v!. ~16!

In the self-field approach the phase conjugated field has
a component perpendicular to the surface~the z component!
inside the well and only thez component of the nonlinea
current densityJW 2v

(3) drives the process.
Once the phase conjugated field inside the quantum

has been determined in a self-consistent manner from
~15!, it can be determined outside using Eq.~9!. The self-
field does not of course contribute to the exterior field, a
no loop problem is involved. All that needs to be done is
integrate known quantities in thez direction over the well.

D. Nonlinear conductivity tensor

The nonlinear conductivity tensor appearing in Eq.~8!
may in general be written as a sum of seven parts (A–G)
after the physical processes they describe. These have
tensor symmetries shown in Table I. In the present comm
nication we use this conductivity tensor in the form it tak
for media with two-dimensional translational invariance a
was developed by the present authors in a previous wo41

but for quantum wells so thin that only a single bound le
exists. The quantum well may be free standing, or it may
deposited on a substrate that can be described by a refra
index n relative to the vacuum on the other side of the fil
The surface of the film is parallel to thex-y plane in a Car-
tesian coordinate system, and the interface between the
and the substrate is placed atz50 as shown in Fig. 1. We
further limit our study to the case where~i! all scattering
ly

ll
q.

d

the
u-

t
,
l
e
ive
.

lm

takes place in thex-z plane, ~ii ! the interacting fields are
linearly polarized in (p) or perpendicular to (s) the scatter-
ing plane,~iii ! the pump fields in the phase conjugating sy
tem are counterpropagating monochromatic plane wa
with a uniform amplitude along thez axis and propagating in
a direction parallel to thex axis, and~iv! the field is calcu-
lated within the self-field approximation.

From ~i! above we get a mirror plane aty50, leaving
only tensor elements of the conductivity tensors with an e
number (0,2,4) ofy’s in the Cartesian index nonzero. Con
dition ~iii ! implies as a consequence of condition~ii ! that no
tensor elements of the nonlinear conductivity tensor with o
or both of the last two Cartesian indices asx contributes to
the phase conjugated response. Requirement~iv! above im-
plies that the first Cartesian index of a tensor element sho
bez in order to contribute to the phase conjugated respon
The choice of a single level quantum well in itself restric
the transition current density to containx andy components
only. Together with the fact that partsB and E give pure
interband contributions, these choices leave two nonzero
ements of the nonlinear conductivity tensor, namely,

TABLE I. The tensor symmetries of the various parts (A–G) of

the DFWM conductivity.JW1–JW4 are four in general different vector
each obtained by a weighted superposition of single-particle tra

tion current densities, andeWA5AW /A.

DFWM Conductivity Tensor symmetry

JJ A(rW,rW8,rW 9,rW -) 1I^ 1I

JJ B(rW,rW8,rW 9,rW -) 1I^ JW1^ JW2

JJ C(rW,rW8,rW 9,rW -) eWA^ 1I^ eWA

JJ D(rW,rW8,rW 9,rW -) eWA^ JW1^ JW2^ eWA

JJ E(rW,rW8,rW 9,rW -) JW1^ 1I^ JW2

JJ F(rW,rW8,rW 9,rW -) JW1^ JW2^ 1I

JJ G(rW,rW8,rW 9,rW -) JW1^ JW2^ JW3^ JW4
Jzyyz
C ~z,z8,z9,z-;qi2ki!5Jzzzz

C ~z,z8,z9,z-;qi2ki!5
e4

24p2i\v3me
2
C~qi2ki!d~z82z-!d~z2z9!uc~z8!u2uc~z!u2,

~17!

Jzyyz
D ~z,z8,z9,z-;qi ,ki!5

e4

26p2iv3me
3D~qi ,ki!d~z2z-!uc~z9!u2uc~z8!u2uc~z!u2, ~18!

where

C~qi2ki!52E f ~kW i1@qi2ki#eW x!2 f ~kW i!

\~qi2ki!@2kx1qi2ki#/~2me!2 i /t
d2k i , ~19!

D~qi ,ki!52E ky
2

\~qi1ki!@2kx1qi1ki#/~2me!2 i /tS f ~kW i!2 f ~kW i1kieW x!

\ki@2kx1ki#/~2me!2 i /t2v
1

f ~kW i1@ki1qi#eW x!2 f ~kW i1kieW x!

\qi@2kx1qi12ki#/~2me!2 i /t1v

1
f ~kW i!2 f ~kW i1qieW x!

\qi@2kx1qi#/~2me!2 i /t1v
1

f ~kW i1@ki1qi#eW x!2 f ~kW i1qieW x!

\ki@2kx1ki12qi#/~2me!2 i /t2v Dd2k i . ~20!
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The number 2 appearing in front of the integrals above r
resents the summation over the degenerate spin energie

The free-particle character of the electron motion in
plane of the quantum well enables us to write the solution
the light-unperturbed Schro¨dinger equation in the form
C(rW)5(2p)21c(z)exp(ikW i•rW ), wherekW i5(kx ,ky,0) is the
wave vector of the electron in consideration andc(z), ap-
pearing in Eqs.~17! and ~18!, is thez-dependent part of the
wave function, common to all electrons. Thex-y-dependent
parts of the wave functions, (2p)21exp(ikW i•rW ), are orthonor-
malized in the Dirac sense, i.e., (2p)22*exp@i(kW i2kW i8)
•rW #d2r5d(kW i2kW i8), and thez-dependent part fulfills the sepa
rate normalization condition* uc(z)u2dz51. In Eqs. ~19!
and~20! the response of all electrons is taken into account
integrating over all possiblekW i wave vectors. The eigenen
ergyE(kW i) belonging to the stateC(rW ) is obtained by adding
to the common bound-state energy«, the kinetic energy in
the parallel motion. Thus

E~kW i!5«1
\2

2me
k i

2 . ~21!

The quantity f (kW i)5@11exp$(E(kW i)2m)/(kBT)%#21 de-
notes the Fermi-Dirac distribution function for this eige
state,m being the chemical potential of the electron syste
kB the Boltzmann constant, andT the absolute temperature

E. Probe with single Fourier component

In the following we calculate the phase conjugated fi
generated by a probe field that consists of only one pla
wave component of wave vectorqW 5(qi,0,q'). A probe field
of the formEW (z;qW i)5EW eiq'z is hence inserted in Eq.~8!.

Then, when using linearly polarized light, three differe
combinations of polarization gives a nonlinear current d
sity, namely,~i! the one in which all participating fields arep
polarized (ppp), and ~ii ! the two combinations where th
pump fields are differently polarized and the probe field is
polarized (sps and pss). In all cases, the phase conjugat
response isp polarized, and thus characterized in terms
the polarization states of the probe and phase conjug
fields, case~i! may be classified as ap to p transition, and
cases~ii ! as s to p transitions. A schematic illustration o
these interaction configurations is shown in Fig. 2. Defin
the z-independent quantity

J2v,z
~3! ~qW i![

J2v,z
~3! ~z;qW i!

uc~z!u2
, ~22!

the above conditions yields for thep to p transition

J2v,z
~3! ~qW i!5

e4

28p6i\v3me
2 @C~qi2ki!1C~qi1ki!#

3Ez
~1!Ez

~2!Ez* E uc~z8!u2e2 iq'
* z8dz8 ~23!

and for thes to p transitions
-
.
e
to

y

,

e-

t
-

f
ed

g

J2v,z
~3! ~qW i!5

e4

28p6i\v3me
2FC~qi1ki!1

\

4me
D~qW i ,2kW i!G

3Ey
~1!Ez

~2!Ey* E uc~z8!u2e2 iq'
* z8dz8, ~24!

J2v,z
~3! ~qW i!5

e4

28p6i\v3me
2FC~qi2ki!1

\

4me
D~qi ,ki!G

3Ez
~1!Ey

~2!Ey* E uc~z8!u2e2 iq'
* z8dz8. ~25!

In the above three equations, the superscript (1) refers to
pump field propagating along thex axis in the positive di-
rection (kW i5kieW x), and the superscript (2) refers to the oth
pump field. Thes to p transitions are symmetric in the sen
that if the probe wave vectorqW i is replaced by2qW i in Eq.
~24!, then the result of Eq.~25! is obtained, and vice versa
The p to p transition is symmetric to itself in this sense.

For a single-level quantum well, thezz component of the
linear conductivity tensor is given by44

szz~z,z8;qW i!5
ie2N

me~v1 i /t!
uc~z!u2d~z2z8!, ~26!

where

N5
2

~2p!2E f ~kW i!d
2k i . ~27!

In order to take into account the coupling to the surroundin
we have introduced a phenomenological relaxation timet in
the diamagnetic expression forszz @Eq. ~26!#.44 A factor of 2
in this equation again stems from the spin summation,
the quantityN uc(z)u2 is the conduction electron density
The phase conjugated field inside the quantum well hasz
component,EPC,z(z;qW i), only, and by combining Eqs.~15!,
~16!, and~26! it appears that this is given by

FIG. 2. Schematic illustration showing three of the possible fi
polarization combinations that may give rise to a phase conjug
response in a single level quantum well, viz.~a! the purely
p-polarized configuration, and~b!–~c! the mixed polarization con-
figurations where the pump fields are differently polarized while
probe iss polarized. The two mixed polarization states are clos
related, since replacingqW i with 2qW i in one of them yields the other
In both the~a! and ~b!–~c! cases, the phase conjugated respons
p polarized. The schemes are shown in the Cartesian coordi
system given in Fig. 1, such that the small arrows in the pla
representp-polarized states and the circles represents-polarized
states. The large arrows show the direction of~one Fourier compo-
nent of! the wave vectors of the pump fields~1 and 2! and the probe
field ~p!.
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EPC,z~z;qW i!5
ime~v1 i /t!

e2N uc~z!u22e0mev~v1 i /t!
J2v,z

~3! ~z;qW i!.

~28!

Using now Eq.~9!, the z components of the phase conj
gated field outside the quantum well can be calculated,
the result is

EPC,z~z;qW i!5J2v,z
~3! ~qW i!e

2 iq'z
qi

2me~v1 i /t!

2q'

3E ~eiq'z81r pe2 iq'z8!uc~z8!u2

e2N uc~z8!u22e0mev~v1 i /t!
dz8,

~29!

where the relevant expression forJ2v,z
(3) (qW i) is taken from

Eq. ~23!, ~24!, or ~25!. Given thez component of the phas
conjugated field, thex component may be found from

EPC,x~z;qW i!5
q'

qi
EPC,z~z;qW i!, ~30!

which follows from the expression for the electromagne
propagator, or equivalently from the demand that the ph
conjugated field must be transverse in vacuum.

The integral in Eq.~29! is different from zero only in the
region of the quantum well@from approximatelyz852d to
approximatelyz850 in the chosen coordinate system, t
exact domain depending on the extent of the electronic w
functionc(z8)#. Since the width (;d) of a single-level me-
tallic quantum well is in the Ångstro¨m range, andq' is typi-
cally in the micrometer range for optical signals such t
q'd!1, it is a good approximation to put exp(6iq'z8)51 in
Eq. ~29!. For electromagnetic frequencies so high thatq'

;d21, the present theory would in any case be too simple
rely on @the Bloch function character of the wave functio
along the surface and excitation to the continuum~photo-
emission, etc.! should be incorporated at least#. With the
above-mentioned approximation, Eq.~29! is reduced to

EPC,z~z;qW i!5J2v,z
~3! ~qW i!e

2 iq'z
~11r p!qi

2

2e0vq'

3E uc~z8!u2

guc~z8!u221
dz8, ~31!

whereg5e2N/@e0mev(v1 i /t)#. Using the approximation
exp(iq'z8)51 and the normalization condition onc(z8), Eqs.
~23!–~25! are reduced to

J2v,z
~3! ~qW i!5

e4

28p6i\v3me
2 @C~qi2ki!1C~qi1ki!#

3Ez
~1!Ez

~2!Ez* , ~32!

J2v,z
~3! ~qW i!5

e4

28p6i\v3me
2FC~qi1ki!1

\

4me
D~qW i ,2kW i!G

3Ey
~1!Ez

~2!Ey* , ~33!

and
d

se

e

t

o

J2v,z
~3! ~qW i!5

e4

28p6i\v3me
2FC~qi2ki!1

\

4me
D~qi ,ki!G

3Ez
~1!Ey

~2!Ey* , ~34!

respectively.
Thus the phase conjugated field from a single-level qu

tum well is described in the mixed Fourier space by Eq.~31!
with insertion of Eq.~32!, ~33!, or ~34!, the expressions forC
@Eq. ~19!# andD @Eq. ~20!# carrying the information on the
two-dimensional electron dynamics.

So far, the description of the phase conjugated respo
has been independent of the actual wave functions in
active medium, and thus independent of the form of
quantum-well potential. In order to prepare our theory fo
numerical study we now introduce a model potential in o
quantum-well system, namely, the infinite barrier potentia

F. Infinite barrier model

To achieve a qualitative impression of the phase conju
tion from a single-level metallic quantum well it is sufficien
to carry out numerical calculations on the basis of the sim
IB model. In this model the one-dimensional potentialV(z)
is taken to be zero in the interval2d<z<0 ~inside the
quantum well! and infinite elsewhere. The stationary-sta
wave function now is given byc(z)5A2/dsin(pz/d) inside
the well andc(z)50 outside, and the associated energy
«5(p\)2/(2med

2). In the IB model the number of boun
states is of course infinite, and to use this model in the c
text of a single-level calculation, one must be sure that o
one of the bound states~the ground state! has an energy
below the Fermi energy, and that the optical frequency is
low that interlevel excitations are negligible.

For a metallic quantum well one may even at room te
perature approximate the Fermi-Dirac distribution functi
appearing in the expressions forC, D, andN in Eqs. ~19!,
~20!, and~27! by its value at zero temperature, i.e.,

lim
T→0

f ~kW i!5QH EF2
\2

2me
F S p

d D 2

1k i
2G J , ~35!

whereQ is the Heaviside step function andEF is the Fermi
energy of the system. In the low-temperature limit it is po
sible to find analytical solutions to the integrals overkW i ap-
pearing in Eqs.~19! and~20!. This is adequately achieved b
performing a coordinate transformation into cylindrical coo
dinates, since each Heaviside step function gives nonz
values in thekx-ky space only inside a circle with radius
say, a. The explicit calculations are tedious but trivial t
carry out, and since the final expressions forC andD are
rather long we do not present them here. For the intere
reader some steps in the calculations are reproduced in
Appendix.

The Fermi energy is calculated from the global char
neutrality condition,42 which for a single-level quantum wel
takes the form

N5ZN1d, ~36!



nd

le
f
t
-

d

lec-
el
no-

ce

14 800 57TORSTEN ANDERSEN AND OLE KELLER
whereN1 is the number of positive ions per unit volume a
Z is the valence of these ions. SinceN5me(EF2«)/(p\2),
cf. the calculation in the Appendix, one gets

EF5
p\2

me
FZN1d1

p

2d2G . ~37!

In order that just the ground state~energy«) has an energy
less than the Fermi energy, the film thickness must be
than a certain maximum valuedmax. When the thickness o
the well becomes so large that the Fermi energy equals
energy«25(2p\)2/(2med

2) of the first excited state a sec
ond bound state of energy less thanEF will appear. From the
condition EF(dmax)5«2(dmax), dmax can be calculated, an
one gets by means of Eq.~37!

dmax5A3 3p/~2ZN1!, ~38!
f

e

ss

he

i.e., a result that depends on the number of conduction e
trons in the film. The minimum thickness is in the IB mod
zero, but in reality the smallest thickness is a single mo
layer.

Inserting the IB model into the integral over the sour
region appearing in Eq.~31! we get

E uc~z8!u2

guc~z8!u221
dz85E

2d

0
2 sin2S pz8

d D
2g sin2S pz8

d D2d

dz8,

~39!

which by substitution ofu5pz8/d, addition and subtraction
of d in the nominator of the integral, and use of 2g sin2u
2d52g @A12d/(2g)2cosu#@A12d/(2g)1cosu# gives
d

pgFp2
d

4g

1

A12d/~2g!
E

0

2p du

A12d/~2g!1cosu
G5

d

gF12
1

A2g/d21
G'

d

g
. ~40!
p
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The solution to the integral in Eq.~40! is obtained by use o
Eq. ~A13!, and since 2ugu/d@1 the last approximation fol-
lows @for metals,ugu lies typically between 1 and 100 in th
optical region~e.g., for copperugu'85 in the present study!
and d is in the Ångstro¨m range#. Using this result and the
expression for the Fermi energy given in Eq.~37!, we obtain
by insertion into Eq.~31! the result

EPC,z~z;qW i!5
qi

2me~v1 i /t!~11r p!

2q'e2ZN1

J2v,z
~3! ~qW i!e

2 iq'z.

~41!

By insertion of the relevant expressions forJ2v,z
(3) (qW i) we

finally obtain the following results for thez component of
the phase conjugated field outside the quantum well:

EPC,z~z;qW i!5
e2~v1 i /t!~11r p!

29p6\v3ZN1me

qi
2

iq'

@C~qi2ki!

1C~qi1ki!#Ez
~1!Ez

~2!Ez* e2 iq'z, ~42!

for the purelyp-polarized configuration, and

EPC,z~z;qW i!5
e2~v1 i /t!~11r p!

29p6\v3ZN1me

qi
2

iq'
FC~qi1ki!

1
\

4me
D~qi ,2ki!GEy

~1!Ez
~2!Ey* e2 iq'z,

~43!

EPC,z~z;qW i!5
e2~v1 i /t!~11r p!

29p6\v3ZN1me

qi
2

iq'
FC~qi2ki!

1
\

4me
D~qi ,ki!GEz

~1!Ey
~2!Ey* e2 iq'z ~44!
for the configurations with mixed polarization of the pum
fields. Thex component of the phase conjugated field is o
tained using Eq.~30!.

III. NUMERICAL RESULTS

The theoretical description presented in the previous s
tion resulted in expressions for the phase conjugated fi
from a single-level quantum well. Thus for the numeric
work, the phase conjugated field is given completely by E
~42!–~44! and ~30! with the insertion of the expressions fo
the electron dynamics parallel to the surface plane, given
Eqs.~A17!–~A18! in the Appendix. In the following we will
present the phase conjugation reflection coefficient, s
ceeded by a discussion of a possible excitation scheme
might be adequate for studies of phase conjugation of opt
near fields.45

A. Phase conjugation reflection coefficient

To estimate the amount of light we get back through
phase conjugated channel, we define the phase conjug
~energy! reflection coefficient as

RPC~z;qW i!5
I PC~z;qW i!

I ~1!I ~2!I probe~2d;qW i!
, ~45!

in which I (1), I (2), I probe, and I PC are the intensities of the
two pump beams, the probe, and the phase conjugated fi
respectively. Each of the intensities are given by

I 5
e0c0

2

EW •EW *

~2p!4
, ~46!

where the factor of (2p)24 originates from the manner in
which we have introduced the Fourier amplitudes of t
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fields. If the probe field is evanescent the intensity of
phase conjugated field,I PC(z;qW i), will depend on the dis-
tance from the surface, and consequently the reflection c
ficient is z dependent in such a case.

For the remaining part of this work we choose a cop
quantum well withN158.4731028 m23 and Z51 ~data
taken from Ref. 46!. Then from Eq.~38!, the maximal thick-
ness becomesdmax53.82 Å, which is more than two mono
layers and less than three. Thus we have two obvious cho
for the thickness of the quantum well, namely, a sin
monolayer or two monolayers. We choose two monolay
corresponding to a thickness ofd53.6 Å. The Cu quantum
well can adequately be deposited on a glass substrate
which we use a refractive indexn of 1.51. With this sub-
strate, a reasonable description of the linear vaccum/subs
amplitude reflection coefficientr p is obtained by use of the
classical Fresnel formula

r p5
n2q'2~n2q22qi

2!1/2

n2q'1~n2q22qi
2!1/2

, ~47!

q5v/c0 being the vacuum wave number, as before. Th
having the pump fields parallel to thex axis gives a pump
wave numberki51.51q. The wavelengthl of the light is
chosen to bel51061 nm.

The phase conjugation reflection coefficient at t
vacuum/film interface,RPC(2d;qW i) is plotted in Fig. 3 as a
function of the parallel component (qi) of the wave vector
for both thep to p transition and the twos to p transitions.
The reason that the two curves for thes to p transitions
appear the same in the high end of theqi /q spectrum is that
for ki!qi we have C(qi2ki).C(qi1ki) and D(qi ,ki)
.D(qi ,2ki). The ‘‘bubble’’ appearing on thespsandpss
curves from aroundqi /q;100 toqi /q;kF /q is due to the
two-dimensional electron dynamics hidden inD(qi ,ki). To

FIG. 3. The phase conjugation reflection coefficient at
vacuum/film interface,RPC(2d;qW i), is plotted for (ppp) thep to p
transition @corresponding to Fig. 2~a!#, (sps) one of thes to p
transitions@corresponding to Fig. 2~b!#, and (pss) the others to p
transition@corresponding to Fig. 2~c!#, as a function of the normal
ized component of the probe wave vector along the interface,qi /q.
The normalized Fermi wave number is indicated by the vert
line.
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be a little more specific, the left of the two peaks stems fr
the second term, while the peak to the right in the bub
stems from the third term.

To illustrate the similarity between the two possibles to p
transitions, we can take Eq.~43! to describe the phase con
jugated field, which for positive values ofqi /q gives the
result in Fig. 3 (sps). Using the others to p transition, given
by Eq. ~44!, we get instead the result in Fig. 3 (pss) for
positive values ofqi /q. The symmetry between the two con
figurations is obtained by looking at the negative values
qi /q, since Eq.~43! plotted for negative values ofqi /q gives
the (pss) curve in Fig. 3. Similarly, by starting with Eq
~44!, the resulting curve for negative values ofqi /q gives the
(sps) result in Fig. 3.

The choice of an adequate relaxation timet is a difficult
problem and it appears from Fig. 4 that the value of t
relaxation time has a great impact on the phase conjuga
reflection coefficient. We have plotted the reflection coe
cent for three values of the relaxation time, namely,~i! 30 fs
and ~ii ! 200 fs, which are typical values one would find fo
bulk copper46 at ~i! room temperature and~ii ! at 77 K, and
~iii ! 3 fs. The value in case~iii ! is obtained by a conjecture
based on the difference between measured data for a
quantum well47 and the bulk value for lead at room temper
ture. The difference between the relaxation time measure
Jalochowski, Stro˙żak, and Zdyb47 is for two monolayers ap-
proximately one order of magnitude. Based on the result
Jalochowski, Strozak, and Zdyb47 we have for the data pre
sented in this work chosen the value of the relaxation time
be 3 fs. As it can be seen from Fig. 4, the bubble in the cu
corresponding to thespsconfiguration appears earlier in th

e

l

FIG. 4. The phase conjugation reflection coefficient at the s
face of the phase conjugator is plotted for different valuest
P$200,30,3% femtoseconds! of the relaxation time. The main figure
shows the result for thespsconfiguration, while the inset shows th
ppp result.
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qi /q spectrum for higher values oft. For theppp configu-
ration the lower end of the spectrum is damped whent be-
comes smaller.

We have in Fig. 5 plotted the phase conjugation reflect
coefficient for thep to p transition and one of thes to p
transitions, respectively, for different distances from the s
face of the phase conjugator. Due to our particular interes
the phase conjugation of the evanescent modes in the Fo
spectrum the chosen distances are fractions of the vac
wavelength. In Fig. 6 we have plotted the part of the Fou
spectrum for all three configurations that is judged to be
most easily accessible to single-mode excitation in exp
mental investigations.

It appears from Fig. 5 (ppp) that the phase conjugatio
reflection coefficient is independent of the distance from
metal film in the region whereqi /q<1. This is so because
the probe field, and hence also the phase conjugated field
of propagating character (q'5@q22qi

2#1/2 is real!. In the
region whereqi /q.1, both the probe field and the pha
conjugated field are evanescent (q'5 i @qi

22q2#1/2 is a purely
imaginary quantity!, and in consequence the reflection co
ficient decreases rapidly with the distance from the ph

FIG. 5. Theqi /q dependence of the phase conjugation refl
tion coefficient,RPC(z;qW i), is plotted at different distancesuz1du
P$l, l/2, l/4, l/8, l/16, l/32, l/64, l/128, l/256% from the
vacuum/film interface. The upper figure shows the results for thp
to p transition. The lower figure shows the results for thes to p
transition that corresponds to Fig. 2~b!.
n
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conjugator. Already a single wavelength away from the s
face of the phase conjugator the evanescent modes o
phase conjugated field have essentially vanished and
propagating modes are detectable. Although the evanes
Fourier components of the phase conjugated field are pre
only less than an optical wavelength from the surface, t

-

FIG. 6. The phase conjugation reflection coefficient,RPC(z;qW i),
is plotted at different distancesuz1duP$l, l/2, l/4, l/8, l/16,l/32,
l/64, l/128,l/256% from the vacuum/film interface as a function o
the normalized probe wave numberqi /q. Results are shown for the
three polarization combinationsppp, sps, and pss in the range
where we expect single mode excitation to be experimentally
sible.
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does notimply that the nonlinear mixing of the electroma
netic waves is less effective in the regime of the evanes
modes. It is in fact the opposite, as may be seen, for insta
from Fig. 3. The maximum coupling for thep to p transition
is obtained forqi /q.500, and in comparison withRPC at
qi /q.1, the maximum inRPC is nine orders of magnitude
larger, and, respectively, seven and eight orders of ma
tude larger for the twos to p transitions, which have thei
maxima at aroundqi /q.700. As we observe from Fig. 5, a
the distance from the film increases the maximum value
creases and is shifted downwards in theqi /q spectrum. But
only when the distance from the phase conjugator beco
larger than;l/10 (ppp) respectively ;l/60 (sps), the
phase conjugated signal is largest atqi /q'1.

The absolute value of the reflection coefficients may se
very small, but utilizing a high-power Nd:YAG laser with
say an energy of 100 mJ per pulse available for each of
three incoming fields, a pulse~assumed square for simplic
ity! duration of 4 ns, and an interaction area of 25 mm2, the
intensity of each of these fields will be of the order
1TW/m2, and the phase conjugated intensity lies betwe
100 pW/m2 and 1 W/m2 in the full range ofqi /q for which
the reflection coefficient has been plotted in Fig. 5 (ppp),
and between 1mW/m2 and 1 kW/m2 in relation to the data
in Fig. 5 (sps).

In many theoretical studies of the properties of phase c
jugated fields it is assumed that the phase conjugato
ideal.37–39By this is meant that the phase conjugation refl
tion coefficient is independent of the angle of incidense
the ~propagating! probe field~and maybe also of the state o
polarization!. In the present case, the ideal phase conjug
assumption is certainly not good. Prior to the observat
that evanescent fields could be phase conjugated45 it was
often assumed in theory48 that RPC50 in the regionqi /
q.1, and in later studies38,39 it has been assumed that al
the phase conjugation of evanescent waves is ideal, i.e.
dependent ofqi /q(*1). When it comes to the phase conj
gation from quantum-well systems our analysis indicates
use of an energy reflection coefficient independent ofqi /q in
general is bad. Only at specific distances the ideal ph
conjugator assumption might be justified, see e.g., the res
representingRPC at uz1du5l/8 in Fig. 6 (ppp). The kink in
the reflection coefficient~which is most pronounced close t
the metal/vacuum interface! found at qi /q5n(51.51) ap-
pears when the probe field changes from being propaga
to being evanescent inside the substrate.

Above we have discussed the nonlinear reflection coe
cient for thep to p configuration. It appears from Figs. 5 an
6 that the quantitative picture is the same for thes to p cases,
though the reflection coefficient for thes to p transitions
roughly speaking are five orders of magnitude larger in
experimentally most adequate evanescent region of the
rier spectrum (1<qi /q&2.5) for single mode excitation.

The IB model only offers a crude description of the ele
tronic properties of a quantum well. Among other things,
electron density profile at the ion/vacuum edge is poorly
counted for in this model, which gives too sharp a profile a
underestimates the spill-out of the wave function. Altoget
one should be careful to put too much reality into the
model when treating local-field variations~related to, say,qi
or q') on the atomic length scale. Also the neclect of t
nt
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Bloch character of the wave functions accounting for t
dynamics in the plane of the well is doubtful in investig
tions of the local field among the atoms of the quantum w
The crucial quantity in the above-mentioned context is
Fermi wave numberkF5(2meEF)1/2/\, and in relation to
Fig. 5, only results forqi /q ratios less than approximately

kF

q
5lAZN1d

2p
1

1

4d2, ~48!

appears reliable. Insertion of the appropriate values for
monolayers of copper:ZN158.4731028 m23, d53.6 Å,
and the wavelengthl51061 nm giveskF52.763103q. The
data presented in Fig. 5 should therefore be well within t
limit of our model.

Returning to the curve in Fig. 5 (ppp), which represents
the reflection coefficient closest to the surface of the ph
conjugator (uz1du5l/256) one finds approximately a rela
tion of the form RPC5b(qi /q)a with a.5 in the lower
wave-number end of the evanescent region. The falloff
RPC with qi /q after the maximum~located atqi /q;50) is
much stronger than the increase towards the maximum.
the distance from the phase conjugator is increased the v
of a gradually decreases. In Fig. 5~b! we observe a similar
behavior, but this time the value ofa in the approximate
relation in the low end of the evanescent part of the Fou
spectrum is smaller, namely,a.1.5.

The energy reflection coefficient calculated at t
vacuum/quantum-well interface,RPC(2d;qW i), characterizes
the effectiveness with which a given (qi) plane-wave probe
field ~propagating or evanescent! may be phase conjugated
and the results presented in Fig. 3 indicate that this effect
ness~nonlinear coupling! is particularly large for~part of
the! evanescent modes. The maximum in the effectivity
reached for a value ofqi /q as large as;500–700. The
strong coupling in part of the evanescent region does
necessarily reflect itself in any easy manner experimenta
First of all, one must realize that the strong-coupling effe
may only be observed close to the quantum well, i.e.,
distancesz&l. Secondly, one must be able to produce e
nescent probe fields with relatively large values ofqi /q.
This is in and of itself by no means simple outside the ran
where the standard Otto49,50 ~or possibly Kretschmann!51,52

techniques can be adopted. Roughly speaking, this range
incides with the ones shown in Fig. 6. To create probe fie
with larger qi /q values other kinds of experimental tec
niques must be used, and in the following we shall consi
a particular example and in a qualitative manner discuss
resulting Fourier spectrum of the phase conjugated field.

B. Phase conjugated response using a wire source

In near-field optics evanescent fields with relatively lar
values ofqi /q are produced by various methods, all aimin
at compressing the source field to subwavelength spatial
tension~see, e.g., Refs. 53 and 54!. From a theoretical point
of view the radiation from a subwavelength source may
some cases be modeled by the radiation from an~electric!
point-dipole source, or an assembly of such sources. It
straightforward matter to decompose an electric point-dip
field into its relevant evanescent and propagating modes,
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thereby estimate the intensity of the phase conjugated fie
each of theqi components. However, in order to determi
the characteristics of the phase conjugated light focus ge
ated by the quantum well one would have to calculate
four-wave mixing also for probe fields with wave vectors n
confined to thex-z plane, and to do this our theory must fir
be generalized to nonplanar phase conjugation.

Within the framework of the present theory, it is possib
however, to study the spatial confinement~focusing! of the
phase conjugated field generated by a quantum wire
equately placed above the surface of the quantum well,55 and
let us, therefore, as an example consider the case wher
source of the probe field is a~quantum! wire. We imagine
that the axis of the wire is placed parallel to they axis and
cuts thex-z-plane in the point (0,2z0), cf. Fig. 1. Under the
assumption that the spatial electron confinement in the w
is perfect~complete! and the wire current density is the sam
all along the wire at a given time, the harmonic source c
rent density is given by

JW~rW;v!5JW0~v!d~x!d~z1z0!, ~49!

where JW0(v) is its possibly frequency dependent vector
amplitude. The spatial distribution of the field from th
source is55
ca
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EW ~x,z;v!5
1

~2p!2E
2`

`

EW ~z;qW i ,v!eiqW i•xWd~qi ,y!d2qi ,

~50!

where

EW ~z;qW i ,v!52
eiq'~z1z0!

2e0vq'
F q'

2 0 2qiq'

0 q2 0

2qiq' 0 qi
2

G •JW0~v!,

~51!

where as beforeqi
21q'

2 5q2. At the phase conjugating
mirror, the Fourier components of the wire probe a
EW (2d;qW i ,v).

To illustrate the angular spectral distribution of the fie
from this kind of wire source at the phase conjugator,
look more closely at the cases where the current densit
polarized~i! along thex axis and~ii ! along they axis. Thus,
in case~i! we useJW0(v)5J0(v)eW x , and by normalizing the
electric fields to the amplitude of the current density, t
corresponding normalized differential intensity@DI probe

[ 1
2 e0c0EW (2d;qW i,v)•EW * (2d,qW i,v)(2p)24# ,
DI probe~2d;qW i!

uJ0~v!u2
5

1

27p4e0c0
$Q„12~qi /q!…1Q„~qi /q!21…@2~qi /q!221#exp@22~z02d!qA~qi /q!221#% ~52!

is shown in Fig. 7 for different values of the distancez02d from the wire to the vacuum/film interface. In case~ii !, JW0(v)
5J0(v)eWy , and the associated normalized intensity, which is given by

DI probe~2d;qW i!

uJ0~v!u2
5

1

27p4e0c0
H Q„12~qi /q!…

12~qi /q!2
1

Q„~qi /q!21…

~qi /q!221
exp@22~z02d!qA~qi /q!221#J , ~53!
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is also presented in Fig. 7, for the same distances as in
~i!. The third curve in Fig. 7 represents the case wh
JW0(v)5J0(v)eW z , and is shown for reference.

Looking at the curve in Fig. 7 corresponding toJW0(v)
5J0(v)eW y @and the curve corresponding toJW0(v)
5J0(v)eW z#, we notice that a singularity occurs whenqi /q
51, or equivalently whereq'50. The presence of this sin
gularity is an artifact originating in the~model! assumption
that the electron confinement is complete in thex and z
directions@see Eq.~49!#. If we had started from a quantum
wire current density of finite~but small! extension inx andz
the singularity would have been replaced by a~narrow! peak
of finite height. Not only in quantum wire optics, but also
optical studies of quantum dots and wells singularities wo
appear if complete electron confinement was assumed~in
three dimensions and one dimension, respectively!. In the
present context the assumption of perfect electron confi
ment works well because we only consider the genera
field outside the self-field region of the wire~see, e.g., Ref.
43!. In an experiment one would always end up integrat
over some finite interval ofqi around the singularity, and
se
e

d

e-
d

g

this integral can in all cases be proven finite. At each d
tance of the wire from the phase conjugator the two cur
J0eW x andJ0eW z in Fig. 7 becomes identical when (qi /q)2@1,
since from Eq. ~51! we may derive the relationEz5
2(qi /q')Ex , and sinceqi /q'.1 when (qi /q)2@1.

When the current oscillates in the direction of the wire
appears that the field intensity in the evanescent probe m
is very small. An appreciable amount of the radiated ene
is stored in components in the regionqi /q;1 ~and in the
propagating modes!. To study the phase conjugation of ev
nescent modes it is therefore better to start fromJW0(v)
5J0(v)eW x or fromJW0(v)5J0(v)eW z because these two prob
current densities give rise to significant probe intensities
the evanescent regime. If we look at the curve in Fig
representing the field at the surface of the phase conjug
when the probe is placed atz02d5l/256,DI probe peaks in
both these cases atqi /q;50 in the evanescent regime. Whe
the current density oscillates along the surface~in the x di-
rection! there is no singularity~and no peak! at qi /q;1, and
the maximum value ofI probe, occuring atqi /q;50, is three
orders of magnitude larger than the probe intensities of ev
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one of the propagating modes. Aboveqi /q'50 the ampli-
tude of theqi components descends rapidly and has lost
orders of magnitude within the next order of magnitude
qi /q. At larger probe to surface distances the maximum
the qi /q spectrum of the probe field at the vacuum/film i
terface is shifted downwards, and the magnitude beco
smaller, too. That is, compared to the rawp to p reflection
coefficient, the intensity of each of the Fourier compone
available from the probe field begin their own falloff abo
one to two orders of magnitude before the reflection coe
cient descends, depending on the distance from the prob
the surface of the phase conjugator. Thes-polarized probe
field starts the descending tendency already where the c
acter of the Fourier components shifts from being propag
ing to evanescent (q' becoming imaginary!, cf. the remarks
above.

Using a quantum wire as the source for the probe fie
the angular spectrum of the phase conjugated response,
malized to the pump fields and the absolute square of
amplitude of the wire current density, is given by

RPC~z;qW i!
I probe~2d;qW i!

uJ0~v!u2
5

I PC~z;qW i!

I ~1!I ~2!uJ0~v!u2
, ~54!

and is obtained numerically by multiplying the energy refle
tion coefficient,RPC(z;qW i), with the normalized probe inten
sity, I probe(2d;qW i)/uJ0(v)u2. In Fig. 8, the angular spectrum
at the vacuum/quantum-well interface (z52d) given by Eq.
~54! is shown for the cases whereJW0(v)5J0(v)eW x and
JW0(v)5J0(v)eW y . In both cases data are presented for
wire placed at different distances from the vacuum/film
terface. By comparison with the raw reflection data in Fig
it appears that the high end of the reflectedqi spectrum is
strongly damped. For thes to p transition we see that th

FIG. 7. The angular Fourier spectrum reaching the surface of
phase conjugating medium when the probe field is radiated fro
~quantum! wire. The dotted curves@J0(v)eW y# show the Fourier
components when the wire current density is polarized along thy
axis. Similarly, the dashed curves@J0(v)eW z# and the fully drawn
curves@J0(v)eW x# show the Fourier components from a wire sour
with its current density oscillating along thez axis and thex axis,
respectively. The angular Fourier spectrum is for all three ca
shown for five different distancesz02dP$l/16, l/32, l/64, l/128,
l/256% of the wire from the phase conjugator.
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energy of the phase conjugated signal is concentrated aro
qi /q51, which is mainly due to the fact that the concentr
tion of the radiated energy spectrum from the wire li
around that same point. In thep to p transition we observe
that the evanescent components are still by far domina
the response at the place of the wire compared to the pr
gating components.

IV. CONCLUSIONS

It is evident from our analysis that the phase conjuga
response depends strongly onqi , at least for a quantum-wel
phase conjugator. The nonlinear coupling is strongest in
evanescent part of the spectrum above the point up to w
the probe field is propagating in the substrate (qi /q5n). As
a consequence, if one wants to observe the phase conjug
of a broad Fourier spectrum of evanescent modes, both
servation and excitation near the surface of the phase co
gator is required. The quantum wire offers one possibility
exciting the higher Fourier components, and the phase c
jugated response in this case contains a broad range of

e
a

s

FIG. 8. The convolution of the probe field from a wire sour
with the phase conjugation reflection coefficient at the vacuum/fi
interface is shown for different distances between the wire sou
and the vacuum/film interface, namely,z02dP$l/16, l/32, l/64,
l/128, l/256% as a function of the normalized probe wavenumb
qi /q. In the top figure the current density of the wire oscillat
along thex axis, and in the bottom figure along they axis.
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nescent components. Because of this the use of a qua
wire source field might be a good candidate for investigat
the problem of focusing light beyond the Abbe-Rayleigh56,57

diffraction limit.
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APPENDIX: ANALYTICAL EXPRESSIONS
FOR C, D, AND N

In this appendix we discuss how analytic solutions for
integrals over kW i appearing in the quantitiesC(qi
2ki), D(qi ,ki), and N may be obtained in the low
temperature limit. Every integral appearing in these qua
ties can be expressed in the form

Fp
b5E E ky

pf n~kW i1seW x!

)
k51

b

@akkx1bk#

dkxdky , ~A1!

wherek and b are nonnegative integers,p is an even non-
negative integer, ands[s(qW i ,kW i) is a function of the pump
and probe wave vectors. In Eq.~A1! the nominator is a rea
quantity and the denominator is a complex quantity.

In the low-temperature limit the distribution function
zero outside the Fermi sphere~and equal to one inside! and it
is therefore advantageous to shiftkx by 2s, and thereafter
perform a one-to-one mapping of thex-y plane into polar
coordinates (r -u plane!. Using kx5r cosu andky5r sinu
the integral in Eq.~A1! is turned into

Fp
b5E

0

aE
0

2p r ~r sin u!p

)
k51

b

@ak~r cosu2s!1bk#

dudr. ~A2!

The quantitya5AkF
22(p/d)2 is the radius of the~two-

dimensional! Fermi circle. In the quantityC(qi2ki), b
51 in the above equation andp50, and in the quantity
D(qi ,ki), b5p52. In the quantityN, p5ak50 and
bk51, and the integral can therefore be solved immediat
with the result

N5
4

~2p!2E
0

aE
0

p

rdudr5
a2

2p
. ~A3!

The complexity of the problem can be reduced, since i
possible to express the function withb52 in terms of two
functions withb51, namely,

Fp
2~a1 ,a2 ,b1 ,b2 ,s!5

a1Fp
1~a1 ,b1 ,s!2a2Fp

1~a2 ,b2 ,s!

a1b22a2b1
.

~A4!

As a consequence of Eq.~A4!, the integrals appearing in
C andD can now in general be written in terms of functio
of the type
um
g

e

e

i-

y,

s

Fp
1~a,b,s!5E

0

aE
0

2p r ~r sin u!p

b2as1ar cosu
dudr, ~A5!

where pP$0,2%, dropping the now superfluous index ona
andb. To solve Eq.~A5!, let us make the substitutions

h[
b2as

aa
, r[au, ~A6!

which turn Eq.~A5! into

F0
1~h!5

a

aE0

1E
0

2p u

h1u cosu
dudu, ~A7!

F2
1~h!5

a3

a E
0

1E
0

2p u3sin2u

h1u cosu
dudu. ~A8!

Next, to carry out the angular integrals, we set

t5eiu ~A9!

so that these integrals become

E
0

2p 1

h1u cosu
du5

1

iu R 1

~ t2t1!~ t2t2!
dt,

~A10!

E
0

2p sin2u

h1u cosu
du5

i

4u R ~12t2!2

t2~ t2t1!~ t2t2!
dt,

~A11!

where the poles att6 in the t plane are located at

t652
h

u
6AS h

u D 2

21, ~A12!

and the integration runs along the unit circle. Since we h
t1t251, one of these poles is inside the unit circle while t
other is outside. Using the unit circles shown in Fig. 9 as
integration paths, we find by a residue calculation

E
0

2p 1

h1u cosu
du5

2p

Ah22u2
, ~A13!

E
0

2p sin2u

h1u cosu
du5

2p

u2 @h2Ah22u2#. ~A14!

By insertion of these results into Eqs.~A7! and ~A8! and
carrying out the elementary radial integrations one obtain

FIG. 9. The poles in the complext plane in the angular integra
of Eq. ~A10! are of order 1 att6 , as shown to the left. For the
angular integral in Eq.~A11! the poles are of order 1 att6 and of
order 2 att50 as shown to the right. The closed contour shown
each diagram is the integration path used.
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F0
1~a,b,s!5

2p

a2 @b2as2A~b2as!22a2a2#,

~A15!

F2
1~a,b,s!5

2p

3a4 $@~b2as!22a2a2#3/22~b2as!3

1 3
2 a2a2~b2as!%. ~A16!

Finally, the quantitiesC(qi6ki) andD(qi ,ki) can be ex-
pressed as

C~qi6ki!52@F0
1~a1 ,b1 ,qi6ki!2F0

1~a1 ,b1,0!#,
~A17!

and

D~qi ,ki!52@F2
2~a2 ,a3 ,b2 ,b3,0!2F2

2~a2 ,a3 ,b2 ,b3 ,ki!

1F2
2~a2 ,a4 ,b2 ,b4 ,ki1qi!

2F2
2~a2 ,a4 ,b2 ,b4 ,ki!1F 2

2~a2 ,a4 ,b2 ,b5,0!

2F2
2~a2 ,a4 ,b2 ,b5 ,qi!

1F2
2~a2 ,a3 ,b2 ,b6 ,ki1qi!
ur

a

e-

c

2F2
2~a2 ,a3 ,b2 ,b6 ,qi!#, ~A18!

where

a15\~qi2ki!/me , ~A19!

a25\~qi1ki!/me , ~A20!

a35\ki /me , ~A21!

a45\qi /me , ~A22!

b15\~qi2ki!
2/~2me!2 i /t, ~A23!

b25\~qi1ki!
2/~2me!2 i /t, ~A24!

b35\ki
2/~2me!2 i /t2v, ~A25!

b45\qi~qi12ki!/~2me!2 i /t1v, ~A26!

b55\qi
2/~2me!2 i /t1v, ~A27!

b65\ki~ki12qi!/~2me!2 i /t2v. ~A28!
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