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Obtaining Wannier functions of a crystalline insulator within a Hartree-Fock approach:
Applications to LiF and LiCl
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An ab initio Hartree-Fock approach aimed at directly obtaining the localized orthogonal orbialsnier
functiong of a crystalline insulator is described in detail. The method is used to perform all-electron calcula-
tions on the ground states of crystalline lithium fluoride and lithium chloride, without the use of any pseudo-
potentials or model potentials. Quantities such as total-energy, x-ray structure factors, and Compton profiles
obtained using the localized Hartree-Fock orbitals are shown to be in excellent agreement with the correspond-
ing quantities calculated using the conventional Bloch-orbital-based Hartree-Fock approach. Localization
characteristics of these orbitals are also discussed in de38il.63-18208)03203-7

[. INTRODUCTION proach to electronic-structure calculations on solids in the
presence of electric fields, a case for which the eigenstates of
Electronic-structure calculations on periodic systems ar¢he Hamiltonian are no longer Bloch states. However, we
conventionally done using the so-called Bloch orbital basedelieve that there is one potential area of application for
approach, which consists of assuming an itinerant form folWannier orbitals that remains largely unexplored, namely, in
the single-electron wave functions. This approach has thée ab initio treatment of electron-correlation effects in sol-
merit of incorporating the translational invariance of the sys-ids using the conventional quantum-chemical mettradss
tem under consideration, as well as its infinite character, inntuitively obvious that anab initio treatment of electron
an elegant and transparent manner. An alternative approaciorrelations on large systems will converge much faster with
to electronic-structure calculations on periodic systems wabocalized orbitals as compared to delocalized orbitals be-
proposed by Wanniérln this approach, instead of describ- cause the Coulomb repulsion between two electrons will de-
ing the electrons in terms of itinerant Bloch orbitals, onecay rapidly with the increasing distance between the elec-
describes them in terms of mutually orthogonal orbitals lo-trons. In the quantum-chemistry community the importance
calized on individual atoms or bonds constituting the infiniteof localized orbitals in treating the correlation effects in large
solid. Since then such orbitals have come to be known asystems was recognized early on and various procedures
Wannier functions. It can be shown that the two approacheaimed at obtaining localized orbitals were develop&hme
of description of an infinite solid are completely equivalentof the localized-orbital approaches were also carried over to
and that the two types of orbitals are related by a unitarysolids chiefly by Kunz and collaboratdrat the Hartree-Fock
transformatiorf. Therefore, the two approaches differ only in level. This approach has been applied to a variety of
terms of their practical implementation. However, the de-system$ Kunz, Meng, and Vail have gone beyond the
scription of metallic systems in terms of Wannier functionsHartree-Fock level and also included the influence of elec-
frequently runs into problems as it is found that for suchtron correlations for solids using many-body perturbation
systems the decay of the orbitals away from the individuatheory. The scheme of Kuret al.is based upon nonorthogo-
atomic sites is of power law type and not of exponentialnal orbitals, which, in general, are better localized than their
type. In other words, the Wannier functions for such system®rthogonal counterparts. However, the subsequent treatment
are not well localized. This behavior is to be expected on of electron correlations with nonorthogonal orbitals is gener-
intuitive grounds as electrons in metals are indeed quite deally much more complicated than the one based upon true
localized. On the other hand, for the situations involvingWannier functions.
surfaces, impurity states, semiconductors, and insulators, In our group electron correlation effects on solids have
where the atomic character of electrons is of importancebeen studied using the incremental scheme of $tallhich
Wannier functions offer a natural description. works with localized orbitals. In such studies the infinite
Recent years have seen an increased amount of activity golid is modeled as a large enough cluster and then correla-
the area of solid-state calculations based on localizetion effects are calculated by incrementally correlating the
orbitals® of which Wannier functions are a subclass. Most of Hartree-Fock reference state of the cluster expressed in terms
these approaches have been proposed with the aim of develf localized orbitals However, a possible drawback of this
oping efficient ordeN methods for electronic structure cal- procedure is that there will always be finite-size effects and
culations on solids within the framework of density func- no a priori knowledge is available as to the difference in
tional theory. With a different focus, Nunes and Vandetbilt results when compared with the infinite-solid limit. In order
have developed an entirely Wannier-function—based apto be able to study electron-correlation effects in the infinite-
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solid limit using conventional quantum-chemical ap- 1 5 Z 1
proaches, one first has to obtain a Hartree-Fock representa- H=— 52 Vi —2 2 Ir—R| +z r—ri|

tion of the system in terms of Wannier functions. This task is ' L

rather complicated because, in addition to the localization VAV

requirement, one also imposes the constraint upon the Wan- +|>J m (1)

nier functions that they obtained by the Hartree-Fock mini-

mization of the total energy of the infinite solid. In an earlier yhere in the equation above denotes the position coordi-
papet”—henceforth referred to as I—we had outlined pre-nates of théth electron whileR, andZ, respectively denote
cisely such a procedure, which obtained the Wannier functhe position and the charge of theh nucleus of the lattice.
tions of an infinite insulator within a Hartree-Fock approachror a given geometry of the solid the last term representing
and reported its preliminary applications to the lithium hy-the nucleus-nucleus interaction will make a constant contri-
dride crystal. In the present paper we describe all theoreticaution to the energy and will not affect the dynamics of the
and computational details of the approach and report applielectrons. To develop the theory further we make the as-
cations to larger systems, namely, lithium fluoride andsumptions that the solid under consideration is a closed-shell
lithium chloride. Unlike I, where we only reported results on System and that a single Slater determinant represents a rea-
the total energy per unit cell of the system, here we also usgonable approximation to its ground state. Moreover, we as-
the Hartree-Fock Wannier functions to compute the x-raysume that the same spatial orbitals represent both the spin
structure factors and Compton profiles. Additionally, we alsoProjections of a given shell, i.e., we confine ourselves to
discuss the localization characteristics of the Wannier functestricted Hartree-FockRHF) theory. With the preceding
tions in detail. All the physical quantities computed with our @8Sumptions, the total energy of the solid can be written as
procedure are found to be in excellent agreement with those
computed using therysSTAL programt® which employs a
Bloch-orbital-basedab initio Hartree-Fock approach. In a
future publication we plan to apply the present formalism to
lpair)fr(?rmab initio correlation calculations on an infinite insu- +; 20 i) =Gilii ) +Enges ?)

The rest of this paper is organized as follows. In Sec. Il
we develop the theoretical formalism at the Hartree-Fockwhereli) and|j) denote the occupied spatial orbitals as-
level by minimizing the corresponding energy functionaLSUI'nEd to form an orthonormal sef, denotes the kinetic
coupled with the requirement of translational symmetry, ancnergy operatot) denotes the electron-nucleus potential en-
demonstrate that the resulting HF equations correspond @9Y: Enyc denotes the nucleus-nucleus interaction energy,
the HF equations for a unit cell of the solid embedded in thetd(ijlij), etc. represent the two-electron integrals involv-
field of identical unit cells constituting the rest of the infinite NG the electron repulsion. The equation above is completely

solid. Thus an embedded-cluster picture for the infinite solidndependent of the spin degree of freedom, which, in the
emerges rigorously from this derivation. Subsequently a |Ogbsence of spin-orbit coupling, can be summed away leading

calizing potential is introduced in the HF equations by mean%o familiar factors of two in front of different terms. Clearly

of projection operators leading to our working equations for he terms involving(i|U[i),  (ijij), andEq, contain |nf|—.
) . . ; . nite lattice sums and are convergent only when combined
the Hartree-Fock Wannier orbitals for an infinite solid. Fi-

nally, these equations are cast in the matrix form using together. So far the energy expression of EZ).doe_s not
L o ; . N %corporate any assumptions regarding the translational sym-
linear combination of atomic orbitals approach, Which is oy of 4 perfect solid. In keeping with our desire to intro-
used in the actual calculations. In Sec. |Il we present they,ce translational symmetry in the real space, without having
results of our calculations performed using the aforemen;y invoke thek space as is usually done in the Bloch-orbital—
tioned formalism on LiF and LiCl crystals. Finally, in Sec. pased theories, we make the following observation. A crys-
IV we present our conclusions. Various aspects related to thgyline solid, in its ground state, is composed of identical unit
computer implementation of the present approach are digells and the orbitals belonging to a given unit cell are iden-
cussed in the Appendix. tical to the corresponding orbitals belonging to any other unit
cell and are related to one another by a simple translation
operation. Assuming that the number of orbitals in a unit cell

Esond=22i <i|T|i>+2§i: (i|Uli)

Il. THEORY is n. and if we denote therth orbital of a unit cell located
A Hartree-Fock i at the position given by the vectdR; of the lattice by
- hartree-rock equations |a(R;)) then clearly the sef/a(R;));a=1n;j=1N} de-

We consider the case of a perfect solid without the presnotes all the orbitals of the solid. In the previous expression
ence of any impurities or lattice deformations such asN is the total number of unit cells in the solid, which, of
phonons. We also ignore the effects of relativity completelycourse, is infinite. Henceforth, greek labelss, y, ... will
so that the spin-orbit coupling is also excluded. In such a&lways denote the orbitals of a unit cell. The translational
case, in atomic unit¥, the nonrelativistic Hamiltonian of the Symmetry condition expressed in the real space can be stated
system consisting of the kinetic energy of electrons, electronSimply as
nucleus interaction, electron-electron repulsion, and nucleus-
nucleus interaction is given by la(Ri+R)))=T(R)|a(R))), (3)
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where 7(R;) is an operator that represents a translation byorbitals centered in the unit cells in @ufficiently large
vectorR; . Using this, one can rewrite the energy expressiomeighborhood of the reference cell
of Eq. (2) as

Ne Ne T+U+2J_K+k2jvz AI;|7(RK)><7(Rk)| |a>:6a|a>'
E=Nj 23, (a(0)[T|a(0))+2 2 (a(0)|U]a(0)) -

()
nc N where|a) stands forja(0)), an orbital centered in the ref-
+ [2(a(0)B(Rj)|a(0)B(R})) erence unit cel)=X515, K=Z3zKz, andN collectively
a,f=1j=1

denotes the unit cells in the aforementioned neighborhood.
Clearly the choice of\V will be dictated by the system under
—(@(0) B(R))| B(R;) @(0)) ]+ €nye( » (4) consideration—the more delocalized electrons of the system
there are, the large¥ will need to be. In our calculations we
. . have typically chosenV to include up to third nearest-
where |a(0)) denotes an orbital centered in the refere_nceneighbgf uni%/ cells of the reference Fc):eII. In the equation
unit cell e“UC'nVONeS. the interaction energy of the nuciei of above)\';’s are the shift parameters associated with the cor-
the reference cell with those of the rest of the solthy responding orbitals of\. For perfect orthogonality and lo-

=Nén,g, and we haye removgd the subscsplid from_the c?lization, their values should be infinitely high. By setting
energy. The preceding equation also assumes the import he shift parametera®’s to infinity we in effect raise the
Y

fact that the orbitals obtained by translation operation of Eq. . ; : : ) .

(3) are orthogonal to each other. We shall elaborate on thigrb'talfe’ Iocahzec_j in the environment unit ce{_heglo_n/\/) to
point later in this section. An important simplification to be very high energies compared to those _Iocahzed in _the refer-
noted here is that by assuming the translational invariance i nce cell. Thus the |ow_est-epergy solutions of E.O"W'" be

real space as embodied in B®), we have managed to ex- 1€ ONes that are localized in the reference unit cell and are
press the total Hartree-Fock energy of the infinite solid inorthogonal to the orbitals of the environment cells. Of

terms of a finite number of orbitals, namely, the orbitals of aCourse, In practice, it suffices to choose a rather large value

unit cell n,. If we require that the energy of Ed4) be for these parameters, and the issue pertaining to this numeri-

stationary with respect to the first-order variations in the or-Cal choice is dlscusged fu_rther in Sec. l.”' Equat(am will
enerally be solved iteratively as described in the next sec-

bitals, subject to the orthogonality constraint, we are led tcﬁon. If the initial guesses for the orbitals of the unit cell

the Hartree-Fock operator {|a),a=1n.)} are localized, subsequent orthogonalization
by means of projection operators will not destroy that
Hype=T+U+2>, JB—E Kg, (5) property and the final solutions of the problem will be lo-
B B calized orthogonal orbitals. Therefore, projection operators
i along with the shift parameters simply play the role of a
where J and K—the conventional Coulomb and exchange ocalizing potentidi as it is clear that upon convergence their
operators, respectively—are defined as contribution to the Hartree-Fock equation vanishes. The or-
bitals contained in unit cells located farther than thosg/in
i‘ﬁ(R-)> ) should be automatically orthogonal to the reference cell or-
rio J bitals by virtue of the large distance between them. It is clear
that the orthogonalization of the orbitals to each other will
a> IB(R)) ©6) introduce oscillations in these orbitals that are also referred
Ve to as the orthogonalization tails.
Combining the orthogonality of the neighboring orbitals
Any summation over Greek indices,3,v, ... will imply  to the reference cell orbitals with the translation symmetry of
summation over all thae orbitals of a unit cell unless oth- the infinite solid, it is easy to see that the orbitals of any unit
erwise specified. As mentioned earlier, the tetthsJ, and  cell are orthogonal to all the orbitals of the rest of the unit
K involve infinite lattice sums and their practical evaluationcells. Therefore, orbitals thus obtained are essentially Wan-
will be discussed in the next section. The eigenvectors of thaier functions. After solving for the HF equations presented
Hartree-Fock operator of E@5) will be orthogonal to each above one can obtain the electronic part of the energy per
other, of course. However, in general, these solutions wouldinit cell simply by dividing the total energy of E) by N,
not be localized, nor would they be orthogonal to the orbitalsnvhich, unlike the total energy, is a finite quantity.
of any other unit cell. This is because the orbitals centered in In paper | we arrived at exactly the same HF equations as
any other unit cell are obtained from those of the referencabove, although we had followed a more intuitive path uti-
cell using a simple translation operation as defined in(Bq. lizing the so-called “embedded-cluster” philosophy,
which does not impose any orthogonality or localization con-whereby we minimized only that portion of the total energy
straint upon them. Since our aim is to obtain the Wannieiwof Eq. (2) that corresponds to the “cluster-environment” in-
functions of the infinite solid, i.e., all the orbitals of the solid teraction. The fact that the derivations reported in paper I,
must be localized and orthogonal to each other, we will havend here, both lead to the same final equations has to do with
to impose these requirements explicitly upon the eigenspadhe translation invariance, which allows the total energy to
of Eq. (5). This can most simply be accomplished by includ- be expressed in the form of E@l). Therefore, we emphasize
ing in Eqg. (5) the projection operators corresponding to thethat the equations derived above are exact and do not involve

‘],8|a>:; <B(Rj)

2

1
ry

Kﬁ|a>:; <ﬁ(Rj)
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any approximation other than the Hartree-Fock approxima- ¢p(r,77)=A{exq— n(r+d”)2]—exp[— n(r—d”)z]},
tion itself. Thus results of all the computations utilizing this

approach should be in complete agreement with the equiva- . . _
lent computations performed using the traditional BIoch-WhereA Is the normalization constant artud,,|—C/ﬁ. In

orbital-based approach as is implemented, e.g., in the prc&he present study the value of 0.1 atomic uri@su) was
gramCRYSTAL.13 employed forC. For approximating thep,, p,, and p,

By inspection of Eq.(7) it is clear that it is of the types of basis functions, the displacement vectigrare cho-

embedded-cluster form in the sense that if one calls the reff€N t© be along the positive 'y, andz directions, respec-
erence unit cell the “central cluster,” it describes the dynam-tiVely: By substituting Eq(8) in Eq. (7) we obtain the HF

ics of the electrons of this central cluster embedded in th&auations in the LCAO matrix form:
field of identical unit cells of its environmer{test of the

infinite solid). > FpeCqa=€a> SpqCaa- (11)
q q
B. Linear combination of atomic orbital implementation The Fock matrix=,, occurring in the equation above is de-
We have performed a computer implementation of thefined as
formalism presented in the previous section within a linear
P P Fpq=(pPl(T+U+23-K)|q)

combination of atomic orbita(LCAO) approach, whereby
we transform the differential equations of E@) into a set of «
linear equations solvable by matrix methods. Atomic units +k NZ 2 NySppSaarCpryCqriyr - (12)
were used throughout the numerical work. We proceed by Y Pl
expanding the orbitals localized in the reference cell as  where the contribution of all the operators appearing in Eq.
(7) has been replaced by the corresponding matrices in the
_ representation of the chosen basis set. Above, unprimed
|a>_§p: R,—g;w\/ Cr.alP(R))). ® functions |p) and |q) represent the basis functions corre-
sponding to the orbitals of the reference unit cell while the
primed functions|p’) and|q’) denote the basis functions
corresponding to the orbitals @f. In particular, the overlap
matrix is given by

whereC has been used to denote the reference Belkep-
resents the location of thgth unit cell (located inC or N)
and |p(Rj)> represents a basis function centered in jttie
unit cell. In order to account for the orthogonalization tails of
the reference cell orbitals, it is necessary to include the basis Spq=(P|a) (13
functions centered inV as well. Clearly, the translational
symmetry of the crystal as expressed in B8).demands that
the orbitals localized in two different unit cells have the
same expansion coefficien, ,, and differ only in the lo-
cation of the centers of the basis functions. The LCAO for- (plla)=2 > <pr(Rk)
malism implemented in most of the quantum-chemistry mo- rs k

lecular programs, as also in tlerySTAL codel® expresses and

the basis functionfp(R;)) of Eq. (8) as linear combinations

and the Coulomb and the exchange matrix elements are de-
fined as

1
- qs(Rk>> Dis (14
12

of Cartesian Gaussian-type basis functig@&TF9 of the
form <D|K|Q>=r§; Ek: pr(Ry) [ s(Rd)Dys, (15
#(r,75,n,R)=(X=R)™(y—Ry)™(z—R)"™ whereD, denotes the elements of the density maixof
; ; 1
X exg] — mp(r — R)?], 9) the orbitals of a unit cell evaluatedas

wheren=(n,,ny,n,). In the previous equationy, denotes
the exponent and the vect®& represents the center of the
basis function. The centers of the basis functiBnare nor-

mally taken to be at the locations of the appropriate atoms of & matrix form of the HF equatiorid1) is a pseudo eigen-
the system. CGTFs with,+n,+n,=0,1,2 ... arecalled, value problem, which can be solved iteratively to obtain the

respectively,s,p,d ... type basis function® The indi- HF orbitals. The energy per unit cell can be computed by
vidual basis functions of the form of E(9) are callecorimi- ~ Mea&ns of & simple matrix-trace operation

tive functions while the linear combinations of them are

called thecontractedfunctions. The formalism is totally in- Beor=TH(2T+2U+2=K)D}+enue, (7
dependent of the type of basis functions, but for the sake oivhere abovel, U, J, K, andD denote the matrices
computational simplicity, we have programmed our ap-of the corresponding operators in the representation of the
proach using Gaussian lobe-type functidhdn this ap-  chosen basis set, amg, was defined after Eq4).

proach one approximates tipeand higher angular momen- In practice one proceeds according to the following algo-
tum CGTFs as linear combinations stype basis functions rithm: (1) Start with some localized initial guess for the or-
displaced by a small amount from the location of the atombitals of the reference cell. For ionic systems considered here
concerned. For example, in the present study a primitivave chose these to be the orbitals of the individual ions cen-
p-type CGTF centered at the origin was approximated as tered on the corresponding atomic sites. For covalent sys-

quzg Cp.aCapa- (16)



57 OBTAINING WANNIER FUNCTIONS OF A ... 1475

tems, it would be reasonable to use suitable bonding combi- 1 o o

nations of atomic orbitalg2) Use these orbitals to construct J(q)= 3f dpr dp,M(py.py.q), (22

the Fock matrix as defined in E¢L2). (3) Diagonalize the (2m)°J === —

Fock matrix to obtain a new set of orbitals of the reference

cell. (4) Compute the energy per unit cell by using E&j7). Integrals contained in the expressions for the x-ray struc-

(5) Go to step(2). Iterate until the energy per unit cell has ture factor and the Compton profi[&gs.(19) and (22), re-
converged. Various mathematical formulas and computaspectively can be performed analytically when the density
tional aspects related to the evaluation of different contribumatrix is represented in terms of Gaussian lobe-type basis
tions to the Fock matrix are discussed in the Appendix.  functions. These analytic expressions are used to evaluate the
quantities of interest in our computer code, once the Hartree-
C. Evaluation of properties Fock density matrix has been determined.

In this section we describe the evaluation of the x-ray
structure factors and Compton profiles from the Hartree- [ll. CALCULATIONS AND RESULTS
Fock Wannier functions obtained from the formalism of the ) _ ,
previous section. Both these properties can be obtained from !N this section we present the results of the calculations

: : ; ; 19
the first-order density matrix of the system defined for the_performed on crystalline LiF an.d LICI. Prencipeal: S.tUd'.
present case as ied these compounds, along with several other alkali halides,

using theCcRYSTAL program™ CRYSTAL, as mentioned ear-
lier, is a Bloch-orbital-baseab initio Hartree-Fock program
p(rr)=22 2 ¢.(r—R)E(1'—R), (18  set up within an LCAO scheme, utilizing CGTF's as basis
b functions. In their study, Prencipet al. employed a very
where ¢,(r—R;)=(r|a(R;)) is the ath HF orbital of the large basis set and, therefore, their results are believed to be
unit cell located at positioRt; . The factor of two above is a very close to the Hartree-Fock limit. In the present work our

consequence of spin summation. intention is not to repeat the extensive calculations of
Prencipe et al,'® but rather to demonstrate that at the
1. X-ray structure factors Hartree-Fock level one can obtain the same physical insights

By measuring the x-ray structure factors experimentallyy a@pplying the Wannier-function—based approach as one
one can obtain useful information on the charge density ofvould by utilizing the Bloch-orbital-based approach. More-
the constituent electrons. Theoretically, the x-ray structur@Ver, because of the use of lobe functions as basis functions,
factor S(k) can be obtained by taking the Fourier transformWe run into problems related to numerical instability when

of the diagonal part of the first-order density matrix very diffuse p-type (and beyond basis functions are em-
ployed. In the future we intend to incorporate true CGTF'’s as

i basis functions in our program, which should make the code

S(k):f p(r,r)explik-r)dr. (19 numerically much more stable. Therefore, we have per-
formed these calculations with modest sized basis sets. We

2. Compton profile reserve the use of large basis sets for future calculations,

when we intend to go beyond the Hartree-Fock level to uti-

By means of Compton-scattering—based experiments, ong e these Wannier functions to do correlated calculations.
can extract the information on the momentum distribution OfThe reason we have chosen to compare our results to those

the electrons of the solid. In the present study we COMputgpaineq using thervsTAL program is because not only is
the Compton profile in the impulse approximation as develpysta. based upon an LCAO formalism employing

oped by Eisenberger and PIat_zn*?ﬁrUnder the impulse ap- 5 ssjan-type basis functions similar to our case, but also it
proximation the Compton profile for the momentum transferiS a well-tested program and widely believed to be the state

q is defined a¥ of the art in crystalline Hartree-Fock calculaticdiis.
2 All the calculations to be presented below assume the
f 5(w—k——E)M(p)dp, (20) observed face centered cuhifcc) structure for the com-
2m m pounds. The reference unit céllwas taken to be the primi-

(2m)°
. . tive cell containing an anion at th@®,0,0 position and the
wherek and w are, respectively, the changes in momentum 9 he,0,0 p

dthe f fthe i . due t t cation at (0,/2), wherea is the lattice constant. The cal-
and the frequency of thé incoming x grray due to scatler- 14455 were performed with different values of the lattice
ing, p is the Compton electron momentump=k- p/k is the

= ; : : L constants to be indicated later. The basis sets used for
projection ofp in the direction ofk, the § function imposes

h : MI(D) = q he ol lithium, fluorine, and chlorine are shown in Tables I, II, and
the energy conservation aMi(p) = p(p,p) denotes the elec- ; “asnectively. For lithium we adopted the basis set of

tron momentum distribution obtained from the diagonal partyj asiet al. used in their lithium hydride studf, while for
of the full Fourier transform of the first-order density matrix fluorine and chlorine, basis sets originally published by

J(a)=

Huzinaga and collaboratdfswere used. The values of the
p(p,p’)=f exdi(p-r=p'-r")]p(r,r")drdr’. (21) level-shift parametersk';’s of Eg. (12) should be high
enough to guarantee sufficient orthogonality while still al-
By choosing thez axis of the coordinate system definipg lowing for numerical stability. Thus this choice leaves suffi-
along the direction ok, one can perform the, integral in  cient room for experimentation. We found the values in the
Eq. (20) to yield range~1.0X 10°~1.0x10* a.u. suitable for our work. We
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TABLE I. Exponents and contraction coefficients used in the  TABLE Ill. Exponents and contraction coefficients used in the

basis set for lithiumRef. 21). basis set for chloring¢Ref. 22.
Shell type Exponent Contraction coefficient Shell type Exponent Contraction coefficient
1s 700.0 0.001421 1s 30008.27 0.001471
220.0 0.003973 4495.692 0.011324
70.0 0.016390 1021.396 0.056401
20.0 0.089954 287.6894 0.200188
5.0 0.315646 92.26777 0.443036
15 0.494595 31.76476 0.402714
2s 0.5 1.0 2s 7.16468 1.0
2p 0.6 1.0 3s 2.78327 1.0
4s 0.60063 1.0
5s 0.22246 1.0
verified by explicit calculations that our results had indeedyp 157.7332 0.025920
converged with respect to the values of the shift parameters. 36.27829 0.164799
In the course of the evaluation of integrals needed to con- 10.84 0.460043
struct the Fock matrix, all the integrals whose magnitudes 3.49773 0.499410
were smaller than 10107 a.u. were discarded both in our 3p 0.77581 1.0

calculations as well as in the crystal calculations.
The comparison of our ground-state energies per unit ce
with those obtained using the identical basis sets by the

CRYSTAL progrant® is illustrated in Tables IV and V for perimental valuéd of 3.99 and 5.07 A for LiF and LiCl
different values of lattice constants. The biggest disagreerspectively. Although core orbitals were also obtained from
ment between the two types of calculations is 0.7 millihar-fhe same set of calculations, we have not plotted them here
tree. A possible source of this disagreement is our use of lobggcguse they are trivially localized. Thecharacter of the
functions to approximate the-type CGTF's. However, \annier functions is evident from the antisymmetric nature
since the tylglcal accuracy ofRYSTAL calculation is also 1 of the plots under reflection. The additional nodes introduced
millihartree, we consider this disagreement to be insignifi- in the orbitals due to their orthogonalization to orbitals cen-
cant. Such excellent agreement between the total energigsieq on the atoms of regiok’ are also evident. The local-
obtained using two different approaches gives us confidenGgeq nature of these orbitals is obvious from the fact that the
as to thg essential correctness of our approach. From th&pitals decay rapidly as one moves away from the atom
results it is also obvious that the basis set used in these calpger consideration. The orthogonality of the orbitals of the

culations is inadequate to predict the lattice constant and thgsterence cell to those of the neighborhdoegion V) was
bulk modulus correctly. To be able to do so accurately, ON&yways better than 1:010°°.

will have to employ a much larger basis set such as the one
. 19 . .
used by Prencipet al-” Since Hartree-Fock lattice constants g aniities were also evaluated at experimental lattice con-

generally are much larger than the experimental value, Wgants mentioned above. The x-ray structure factors obtained
reserve the large-scale Hartree-Fock calculations for futurgy our method are compared to values calculated with the
studies in which we will also go beyond the Hartree-FockcrysraL program, and experimental data, in Tables VI and
level to include the influence of electron correlations. VIl for LiF and LiCl, respectively. For the case of LiF we
Valence Wannier functions for LiF and LICl are plotted irectly compare the theoretical values with the experimental

along different crystal directions in Figs. 1, 2, 3, and 4. Lat-qat5 of Merisalo and InkineH, extrapolated to zero tempera-
tice constants for these calculations were assigned their exg e by Euwemat al25 For LiCl it was not possible for us to

) o . extrapolate the experimental data of Inkinen arnidan?®
TABLE Il. Exponents and contraction coefficients used in the

basis set for fluorinéRef. 22.

ﬁp 0.21506 1.0

Now we discuss the data for x-ray structure factors. These

TABLE IV. Comparison between between total energies ob-
tained using our approach and those obtained usivgTAL (Ref.

Shell type Exponent Contraction coefficient 13 ¢ |ithium fluoride for different values of lattice constants. The

1s 2931.321 0.005350 N region included up to third-nearest-neighbor unit cells. Lattice
441.9897 0.039730 constants are in units of A, and energies are in atomic units.
100.7312 0.177257 .
28.14426 0.457105 Lattice constant _ Total energy

This work CRYSTAL

2s 8.7256 1.0

3s 1.40145 1.0 3.8 —106.8985 —106.8980

4s 0.41673 1.0 3.9 —106.8939 —106.8935

2p 10.56917 0.126452 3.99 —106.8877 —106.8873
2.19471 0.478100 4.1 —106.8780 —106.8774

3p 0.47911 1.0 4.2 —106.8677 —106.8670
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TABLE V. Comparison between between total energies ob- 1 ' T ' T ' ' T
tained using our approach and those obtained usigTAL (Ref.
13) for lithium chloride for different values of lattice constants. The
N region included up to third-nearest-neighbor unit cells. Lattice
constants are in units of A, and energies are in atomic units.

Lattice constant Total energy

This work CRYSTAL &
4.9 —466.5062 —466.5065
5.0 —466.5078 —466.5082
5.07 —466.5080 —466.5085
5.2 —466.5065 —466.5071
5.3 —466.5041 —466.5047 g " s s : . : p s . s

X (a.u)

FIG. 2. LiF: 2p,-type valence Wannier function centered on F
measured atT=78 K, to the corresponding zero- (ocated at origin plotted along ther=x(1,1,0) direction. Nodes
temperature values. Therefore, to compare our LiCl calculanear the ¢-a/2,+a/2,0) positions are due to its orthogonalization
tions to the experiment, we correct our theoretical values foto 2p orbitals of F located there. All distances are in atomic units.
thermal motion using the Debye-Waller factors B8f;

=0.93 A? and Bo=0.41 A% measured also by Inkinen directions according to the formulal)= % (6J;00+ 12110
and Javinen?® The Debye-Waller corrections were applied +83,,,) valid for an fcc latticé?® While experimental data
to the individual form factors of Li and CI' ions. From  for directional Compton profiles exist in the case of Effo
both the tables it is obvious that our results are in almostuch measurements have been performed for LiCl, to the
exact agreement with those oRYSTAL. This implies that best of our knowledge. For LiF there is close agreement
our Wannier function HF-approach—based description of theetween our results and the ones calculated using the
charge density of systems considered here is identical to @rystaL program. For LiCl our results disagree with the
Bloch-orbital-based HF description as formulated incrysTaL results somewhat for small values of momentum
CRYSTAL."® For the case of LiF the agreement between outransfer, although relatively speaking the disagreement is
results and the experiment is also quite good, maximum erquite small—the maximum deviation being0.3% for q
rors being~5%. For the case of LiCl, our corrected values =0.0 and the[100] direction. The possible source of the
of x-ray structure factors deviate from the experimental valdisagreement may be that to get the values of Compton pro-
ues at most by approximately 3%. Perhaps by using a larg€iles for all the desired values of momentum transfer, we had
basis set one can obtain even better agreement with expetb use the option oERYSTAL (Ref. 13 where the Compton
ments. profiles are obtained by using the real-space density matrix
Finally we turn to the discussion of Compton profiles. rather than its more accurakespace counterpart. However,
Directional and isotropic Compton profiles, computed usingas is clear from the tables, even for those worst cases, there is
our approach and therYSTAL program, are compared to the no significant difference between the averaged out isotropic
|sotrop|c Compton profiles measured by Paakkari andcompton profiles obtained in our computations and those

Hanolen’” in Tables VIIl and IX. We obtain the isotropic obtained fromcRYSTAL. At the larger values of momentum
Compton profiles from our directional profiles by performing

a directional average of the profiles along the three crystal 06

1 T T T

0.8

086

04

(I)sz(’)

02

0k

q)sz(l')

02|

04 |

06 |

08 |

0
x(au)

-1

E “ B 2 T e 2 8 4 5 FIG. 3. LiCl: 3p,-type valence Wannier function centered on
CI™ (located at origin plotted along ther=x(0,0,1) direction.
FIG. 1. LiF: 2p,-type valence Wannier function centered on F Nodes near the origin are due to its orthogonalization to the
(located at origin plotted along the=x(0,0,1) direction. Nodes CI~ 2p orbitals centered there while those near the (0d)2)
near the (0,0; a/2) positions are due to its orthogonalization to the positions are due to its orthogonalization to thé Lis orbital lo-
Li* 1s orbital located there. All distances are in atomic units. cated there. All distances are in atomic units.
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TABLE VII. Calculated and experimental values of x-ray struc-
ture factors for LiCl in electrons per unit cell. The second and third
columns report the theoretical values obtained by the specified
method, without including the Debye-Waller corrections. The
fourth column reports the theoretical values after including the
Debye-Waller factors oB;=0.93 A? and B;=0.41 A? corre-
sponding to a temperaturE=78 K (Ref. 26. The last column
reports experimental values of x-ray structure factors measured at
T=78 K (Ref. 26. The reciprocal-lattice vectors are defined with
respect to the conventional cubic unit cell and not the primitive cell.
They are labeled by integels k, andl.

04 | 4

Uncorrected

Debye-Waller corrected

08 . . . . . hkl This work CRYSTAL This work Experimental
-6 -4 -2 0 2 4 6

new 111 1128  11.28 11.18 10.91
FIG. 4. LiCl: 3p,-type valence Wannier function centered on 200 13.96 13.96 13.70 13.77
Cl™ (located at origin plotted along ther=x(1,1,0) direction. 220 11.46 11.46 11.04 11.03
Nodes near the origin are due to its orthogonalization to the311 7.55 7.55 7.30 7.44
Cl~ 2p orbitals ceqtgred there, While_ the two node_s egch near theoo 10920 10.20 9.64 9.76
(xal2,xal2,0) p05|t_|ons are due to its orthogona_tllzatlon to bgth 400 9.43 9.44 8.76 8.95
;rlgnfi?caggit?e 3 orbitals of CI' located there. All distances are in 331 6.61 6.62 6.23 6.04
' 420 8.87 8.88 8.09 8.15
transfer, our results are virtually identical to tlo®YSTAL 422 843 8.43 7.55 7.60
results. The close agreement witRRYSTAL clearly implies 211~ 6.15 6.16 5.64 5.61
that our Wannier-function—based description of the momen333 ~ 6.15 6.16 5.64 5.61
tum distribution of the electrons in the solid is identical to 440 7.73 7.74 6.69 6.70
the one based upon Bloch orbitals. 531 581 5.81 5.17 5.30
Considering the fact that we have used a rather mode$i00  7.44 7.44 6.32 6.53
basis set, it is quite surprising that the values of isotropic#42  7.43 7.44 6.32 6.53
Compton profiles obtained by us are in close agreement with20  7.16 7.17 5.99 5.95

the corresponding experimental val#ésAn inspection of
Tables VIII and IX reveals that the calculated values always

agree with the experimental ones to within 6%. Howeverot able to describe the observed anisotropies in the direc-

ours as well as therySTAL calculations presented here are tional Compton profile€ for LiF, which is also the reason
that we have not compared the theoretical anisotropies to the

TABLE VI. Calculated and experimental values of x-ray struc- experimental ones. For small values of momentum transfer
ture factors for LiF in electrons per unit cell. The experimentalthe calculated values are even in qualitative disagreement
structure factors are taken from Ref. 24. The Debye-Waller correcwith the experimental results, although for large momentum
tions were removedRef. 25. The reciprocal-lattice vectors are transfer the qualitative agreement is restored. This result is
defined with respect to the conventional cubic unit cell and not thenot surprising, however, because, as Berggeeal. have

primitive cell. They are labeled by integels k, andl.

argued® in their detailed study, the proper description of the
Compton anisotropy mandates a good description of the

hkl Experimental This work CRYSTAL long-range tails of the crystal orbitals. To be able to do so
111 4.84 5.04 5.04 w@th the_ Gaussian-type of basis functi(_)ns used hgre, one
200 774 778 778 vylll—ur]llke the present study—have to include basis func-
220 571 568 5 68 tions with quite diffuse exponents.

311 2.37 2.32 2.32

222 4.61 4.52 4.52 IV. CONCLUSIONS

400 3.99 3.84 3.84 In conclusion, arab initio Hartree-Fock approach for an
331 1.65 1.60 1.60 infinite insulating crystal that yields orbitals in a localized
420 3.46 3.35 3.35 representation has been discussed in detail. It was applied to
422 3.07 2.99 2.99 computing the total energies per unit cell, x-ray structure
511 1.38 1.34 1.33 factors, and directional Compton profiles of two halides of
333 1.38 1.33 1.33 lithium, LiF and LiCIl. The close agreement between the re-
440 2.58 2.52 2.52 sults obtained using the present approach, and the ones ob-
531 1.28 1.22 1.22 tained using the conventional Bloch-orbital-based HF ap-
600 2.41 2.36 2.35 proach, demonstrates that the two approaches are entirely
442 2.41 2.35 2.35 equivalent. The advantage of our approach is that by consid-
620 2.24 2.22 2.22 ering local perturbations to the Hartree-Fock reference state

by conventional quantum-chemical methods, one can go be-
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TABLE VIII. Theoretical HF directional Compton profiles for LiF of this work+,) compared to those
of cRYSTAL (Jcr). The directionally averaged Compton profiles of both the approagiieg X and(Jcg))
are also compared to the experimental isotropic Compton profllgg (Ref. 27. The Compton profiles and
momentum transfeq are in atomic units. The column headindskl] refer to the direction of momentum
transfer in the crystal. All the profiles are normalized to 5.865 electrons in the ingr@k7 a.u.

[100] [110] [117] Average

q ‘]TW ‘JCR JTW ‘]CR ‘]TW ‘JCR <‘]TW> <‘JCR> ‘Jexpt

0.0 3.759 3.762 3.762 3.760 3.777 3.774 3.766 3.764 3.832
0.1 3.741 3.743 3.749 3.746 3.762 3.759 3.751 3.749 3.814
0.2 3.689 3.691 3.707 3.705 3.718 3.715 3.706 3.705 3.765
0.3 3.609 3.609 3.638 3.636 3.644 3.641 3.633 3.632 3.684
0.4 3.504 3.504 3.541 3.540 3.542 3.540 3.532 3.531 3.574
0.5 3.382 3.382 3.416 3.415 3.413 3.411 3.407 3.406 3.434
0.6 3.245 3.245 3.266 3.266 3.258 3.257 3.259 3.258 3.271
0.7 3.095 3.094 3.094 3.093 3.081 3.081 3.090 3.090 3.089
0.8 2.929 2.928 2.901 2.901 2.886 2.887 2.903 2.903 2.886
0.9 2.745 2.745 2.692 2.692 2.677 2.678 2.700 2.700 2.662
1.0 2.541 2.541 2.472 2.473 2.458 2.460 2.484 2.485 2.426
1.2 2.078 2.077 2.022 2.025 2.020 2.022 2.035 2.036 1.948
14 1.608 1.606 1.606 1.607 1.616 1.618 1.610 1.610 1.530
1.6 1.224 1.224 1.261 1.260 1.275 1.276 1.257 1.257 1.202
1.8 0.957 0.956 0.994 0.995 1.003 1.003 0.988 0.988 0.955
2.0 0.772 0.771 0.797 0.797 0.795 0.795 0.790 0.791 0.778
3.0 0.339 0.338 0.324 0.325 0.329 0.329 0.329 0.329 0.336
3.5 0.236 0.236 0.244 0.244 0.241 0.240 0.241 0.241 0.243
4.0 0.179 0.179 0.181 0.181 0.182 0.182 0.181 0.181 0.188
5.0 0.112 0.113 0.113 0.113 0.112 0.112 0.113 0.113 0.115
6.0 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.077
7.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051

yond the mean-field level and study the influence of electrorthe infinite number of nuclei in the solid. When treated indi-
correlations on an infinite solid in an entiredy initio man-  vidually, this term is divergent. However, when combined
ner. Presently projects along this direction are in progress iwith the Coulombic part of the electron repulsion to be dis-
our group, and in a future publication we plan to study thecussed in the next section, convergence is achieved because
influence of electron correlations on the ground state of @he divergences inherent in both sums cancel each other ow-
solid. ing to the opposite signs. This fact is a consequence of the
charge neutrality of the unit cell and is used in the Ewald-
ACKNOWLEDGMENTS summation techniqd® to make the individual contributions
also convergent by subtracting from the corresponding po-
One of us(A.S,) gratefully acknowledges useful discus- tential a shadow potential emerging from a fictitious homo-
sions with Professor Roberto Dovesi, and his help regardingeneous charge distribution of opposite sign. In addition, in

the use of thecRYSTAL program. the Ewald method, one splits the lattice potential into a short-
range part whose contribution is rapidly convergentrin
APPENDIX: INTEGRAL EVALUATION space and a long-range part, which converges fdstsipace.

hi . di h lculati £ vari Therefore, in the Ewald-summation technique one replaces
In this section we discuss the calculation of various termge glectron-nucleus interaction potential due to a lattice

in the Fock matrix. Since the kinetic-energy matrix elememscomposed of nuclei of chargg, by the effective potentia
Tpq=(P|T|a) and the overlap-matrix elemeng,,=(p|q)

have simple mathematical expressions and are essentially un- ‘ \/XI Rl
changed from molecular calculations, we will not discuss — yEwr)=—_7z! > erfVAlr —Ril)

them in detail. However, we will consider the evaluation of R; Ir—Ry|
the rest of the contributions to the Fock matrix at some
length. 47 o exp(—KZAN+iK;-r) 71
+ - - 31 1
W K£0 Ki2 o N

1. Nuclear attraction integrals (A1)
The electron-nucleus attraction term of the Fock matrix

contains the infinite lattice sums involving the attractive in-whereR; represents the positions of the nuclei on the lattice,
teraction acting on the electrons of the reference cell due t&; are the vectors of the reciprocal lattieejs the volume of
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TABLE IX. Theoretical HF directional Compton profiles for LiCl of this worl+{,) compared to those
of cRYSTAL (Jcr). The directionally averaged Compton profiles of both the approacideg X and(Jcg))
are also compared to the experimental isotropic Compton profilgs)((Ref. 27. The Compton profiles and

momentum transfeq are in atomic units. The colum
transfer in the crystal. All the profiles are normalize

n headindsk!] refer to the direction of momentum
d to 9.365 electrons in the ingrv@l-7 a.u.

[100] [110] [117] average

q ‘]TW ‘JCR JTW ‘]CR ‘]TW ‘JCR <‘]TW> <JCR> ‘Jexpt

0.0 6.190 6.209 6.207 6.198 6.217 6.204 6.206 6.202 6.282
0.1 6.152 6.169 6.173 6.166 6.181 6.169 6.171 6.168 6.228
0.2 6.041 6.051 6.066 6.065 6.073 6.064 6.062 6.062 6.100
0.3 5.861 5.864 5.881 5.883 5.892 5.887 5.879 5.880 5.896
0.4 5.613 5.607 5.617 5.619 5.634 5.633 5.622 5.620 5.613
0.5 5.297 5.286 5.289 5.286 5.302 5.305 5.295 5.292 5.262
0.6 4.919 4.910 4.903 4.900 4.903 4.908 4.907 4.904 4.857
0.7 4.488 4.486 4.472 4.473 4.452 4.457 4.469 4471 4.416
0.8 4.023 4.028 4.007 4.014 3.972 3.978 4.000 4.006 3.958
0.9 3.544 3.552 3.528 3.539 3.493 3.500 3.521 3.530 3.512
1.0 3.081 3.086 3.065 3.075 3.046 3.053 3.063 3.071 3.100
1.2 2.309 2.308 2.304 2.305 2.326 2.328 2.312 2.313 2.403
1.4 1.817 1.817 1.827 1.825 1.850 1.848 1.832 1.830 1.897
1.6 1.534 1.532 1.549 1.545 1.548 1.546 1.545 1.542 1.570
1.8 1.350 1.347 1.361 1.358 1.349 1.347 1.355 1.352 1.374
2.0 1.213 1.212 1.210 1.211 1.206 1.204 1.210 1.209 1.227
3.0 0.778 0.777 0.775 0.777 0.776 0.776 0.776 0.776 0.770
35 0.630 0.629 0.632 0.630 0.631 0.631 0.631 0.630 0.608
4.0 0.512 0.512 0.510 0.511 0.511 0.511 0.511 0.511 0.487
5.0 0.334 0.333 0.333 0.334 0.334 0.334 0.334 0.334 0.322
6.0 0.224 0.224 0.224 0.225 0.224 0.225 0.224 0.224 0.213
7.0 0.158 0.158 0.157 0.158 0.157 0.158 0.157 0.158 0.151

the unit cell,\ is a convergence parameter to be discussed A exp(—KiZ/4e+iKi-r) 77( 1 1)
later and erfc represents the complement of the error func- _ ) — | ——= ;
w KZo Ki2 w\ e «a

tion. Matrix elements of the Ewald potential of E&1) with
respect to primitives-type basis functions were derived by
Stol*! to be

USH(Ry.Ry) =(P(Ry)|UMa(Ry))=UpcSpq.  (A2)

Abovep andq label the primitive basis function®;, andR,,

(A5)

where the parametertakes over the role of the convergence
parametein of Eq. (Al). The remaining quantities are the
the same as those in EGAL). It is clear that the function

represent the positions of the unit cells in which they are/V(«.r) involves lattice sums both in the direct space and in

located, andS, represents the overlap matrix element be-
tween the two primitives given by

23/2( )3/4

M7
P —exd — Apg(Tp+ Rp—Tq—Rg)%1.

)3/2

(77p+ 7q

Spq
(A3)

The vectorsr, andr, above specify the centers of the two
basis functions relative to the origin of the unit cej}, and
7q represent the exponents of the two Gaussiahg,

= o719/ (1p+ 71g), and

lqu:_ZW(Cpqyrp,q)a (A4)

with Coa=pT g, Tpg=1mp(rptRp)+ 74(rg
+Rg)}Cpq , and
erfo Je|r —R;|) —erfo(\/a|r —Ry|)
W(a!r):; I|r_R| l
I

the reciprocal space. Although the final value of the function
will be independent of the choice of the convergence param-
eter €, both these sums can be made to converge optimally
by making a judicious choice of it. Large valueselead to
faster convergence in the real space but to a slower one in the
reciprocal space and with smaller valuesedhe situation is
just the opposite. Therefore, for optimal performance, the
choice of € is made dependent on the value ®f In the
present work we make the choice so thatit w/w?> €
=mlw?®and if a<w/w?®,  e=a. In the former case the
sum is both in the real and the reciprocal space while in the
latter case the sum is entirely in the reciprocal space. Al-
though we have written an efficient computer code to evalu-
ate the functionW(«,r), it remains the most computer inten-
sive part of our program.

The computational effort involved in the computation of
these integrals can be reduced by utilizing the translational
symmetry. One can verify that as a consequence of transla-
tion symmetry
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UE‘AV(Rp ,Rq)=UE‘éV(tpq,0)= Uﬁ;“(tpq), (AB) As in the case of electron-nucleus attraction, one can uti-
lize the translational symmetry for the present case to reduce
wherety,,=R,— R, is also a vector of the direct lattice, the computational effort significantly. The corresponding re-
represents the reference unit cell, and the last term is a contations in the present case are
pact notation for the second term. Since the number of
uniquet,, vectors is much smaller than the number of pairs

(Rp:Rg), the use of Eq(A6) reduces the computational ef- f]'pq;rS(Rp,Rq R, ,RS):'qu;rS(tpq,o,trS,o)

fort considerably. To further reduce the computational effort _

we also use the interchange symmetry = Jpqrs(tpgrtrs), (A10)
Ugév(tpq) - UE\FI)V( ~tpg)- (A7)

where as beforeo represents the reference unit cell,

Additional savings are achieved if one realizes that matrix=Rp—Rgq, ts=Rr—Rs, and the last term in EGA10) is
elementsugév(tpq) become smaller the larger the distance@ COmMpact notation for the second term. Since the number of
|t,(l between the interacting charge distributions becomeg@i's (g trs) is much smaller than the number of quartets
As is clear from Eq(A2), a good estimate of the magnitude (Rp:Rq,Rr,Rs), use of Eq.(A10) results in considerable

of an integral is the overlap elemeﬁgq.zg Therefore, we Savings of computer time and memory. In addition, we also
compute only those integrals whose overlap elemspfsre use the four interchange relations of the form of Bj7) to

larger than some thresholg. In the present calculations we further reduce the number of nonredundant integrals. Addi-
choset . =1.0x 107 tionally, these integrals also satisfy the interchange relation
n=1. .

2. Electronic Coulomb integrals ~ ~
i _g . J pq,rs(tpq vtrs) =J rs,pq(trs vtpq)- (All)
To calculate the Coulomb contribution to the Fock matrix,

one needs to evaluate the two-electron integrals with infinite ] )
lattice sum To keep the programming simple, however, at present we do

not utilize this symmetry. In the future, we do intend to
Jpgrs(Rp Rq Ry ,Rs) incorporate this symmetry in the code. _
Similar to the case of electron-nucleus integrals, here also
1 R)S(R.+R we use the magnitude of the prodi&},S;s to estimate the
r_lz A(Rq)S(Rs*+Ri) /. size of the integral to be computed and proceed with its
calculation only if it is greater than a threshdld taken to
(A8)  pe 1.0<1077 in this study.

wherep, q, r, ands represent the primitive basis functions
andR,, Ry, R;, andRg represent the unit cells in which
they are centered. This integral, treated on its own, is diver-
gent, as discussed in the previous section. However, using In order to compute the exchange contribution to the Fock
the Ewald-summation technique, one can make this serigdatrix, one has to compute the following two-electron inte-
conditionally convergent with the implicit assumption that its grals involving infinite lattice sum

divergence will cancel the corresponding divergence of the

electron nucleus interaction. Since the details of the Ewald-

=Ek <p(Rp>r<Rr+Rk>

3. Electronic exchange integrals

summation technique for the Coulomb part of electron repul- Kpgrs(Rp Rq:Rr:Re)

sion are essentially identical to the case of electron-nucleus

interaction, we will just state the final resuifts :; <p(Rp)S(Rs+ Ry) o r(R,+ Rk)q(Rq)>:
qu;rs( Rp aRq rRr ’ Rs) = SpquSW( BPsq !r;J’,z ! (A9) (A12)

where

where the notation is identical to the previous two cases. By
(stq)_l=(7lp+ nq)_1+(7lr+ 7e) * using the translational symmetry arguments one can show
even for the exchange case that
and

Kpgrs(RpiRq Rr /Rs) =Kpgirs(tpg:0,trs,0)
=Kpgrs(tpgitrs), (A13)

rs _ _
rp’q—r,‘s rp,q-

All the notations used in the equations above were defined

in the previous section. The expressiﬁgq;,s used in Eq.

(A9), as againsi s of Eq.(A8), is meant to remind us that where the last term in EGA13) above is a compact notation
the matrix elements stated in E@\9) are those of the two- for the second term. As in the previous two cases, the use of
electron Ewald potential and not those of the ordinary Coutranslational symmetry results in considerable savings of
lomb potential. computer time and storage. Explicitly



1482 SHUKLA, DOLG, FULDE, AND STOLL 57
1 specified threshold,. The computer code for evaluating
qu;rs(tpqvtrs):Zk P(tyg)S(Ry) [ r(ts+Ryoq(o) ). these integrals is a modified version of the program written

(AL4) originally by Ahlrichs?® The value of the thresholt}, used

in these calculations was A0~ /. The exchange integrals
Although Eq.(A14) contains an infinite sum over lattice vec- also satisfy interchange symmetries similar to those of Egs.
tors Ry, the contributions of each of the terms decrease$A7) and(A11), which are not used in the present version of
rapidly with the increasing distancéiss+ Ry —t,q| and|Ry| the code for ease of programming. In the future, however, we
between the interacting charge distributions. A good estimatglan to use them as well.
of the contribution of the individual terms is provided by the  As described above, to minimize the need of computer
product of overlap matrix elements between the interactingime and storage, we have made extensive use of transla-
charge distributions namel)spr=<p(tpq)|r(trs+ Ry)) and tional symmetry. However, the integral evaluation can be
quz(q(o)|s(Rk)).2g Therefore, in the computer implemen- further optimized considerably by making use of point-group
tation, we arrange the vectoR so that the corresponding symmetry as is done in therySTAL program®® Implemen-
overlaps are in descending order and the loop involving théation of point-group symmetry, as well as the use of
sum overRy in Eq. (Al4) is terminated once the individual CGTO's instead of lobe-type functions, is planned for future
overlap matrix elements or their product are less than @mprovements of the present code.
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