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Obtaining Wannier functions of a crystalline insulator within a Hartree-Fock approach:
Applications to LiF and LiCl
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~Received 31 July 1997!

An ab initio Hartree-Fock approach aimed at directly obtaining the localized orthogonal orbitals~Wannier
functions! of a crystalline insulator is described in detail. The method is used to perform all-electron calcula-
tions on the ground states of crystalline lithium fluoride and lithium chloride, without the use of any pseudo-
potentials or model potentials. Quantities such as total-energy, x-ray structure factors, and Compton profiles
obtained using the localized Hartree-Fock orbitals are shown to be in excellent agreement with the correspond-
ing quantities calculated using the conventional Bloch-orbital–based Hartree-Fock approach. Localization
characteristics of these orbitals are also discussed in detail.@S0163-1829~98!03203-2#
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I. INTRODUCTION

Electronic-structure calculations on periodic systems
conventionally done using the so-called Bloch orbital ba
approach, which consists of assuming an itinerant form
the single-electron wave functions. This approach has
merit of incorporating the translational invariance of the s
tem under consideration, as well as its infinite character
an elegant and transparent manner. An alternative appr
to electronic-structure calculations on periodic systems
proposed by Wannier.1 In this approach, instead of describ
ing the electrons in terms of itinerant Bloch orbitals, o
describes them in terms of mutually orthogonal orbitals
calized on individual atoms or bonds constituting the infin
solid. Since then such orbitals have come to be known
Wannier functions. It can be shown that the two approac
of description of an infinite solid are completely equivale
and that the two types of orbitals are related by a unit
transformation.2 Therefore, the two approaches differ only
terms of their practical implementation. However, the d
scription of metallic systems in terms of Wannier functio
frequently runs into problems as it is found that for su
systems the decay of the orbitals away from the individ
atomic sites is of power law type and not of exponen
type. In other words, the Wannier functions for such syste
are not well localized.2 This behavior is to be expected o
intuitive grounds as electrons in metals are indeed quite
localized. On the other hand, for the situations involvi
surfaces, impurity states, semiconductors, and insula
where the atomic character of electrons is of importan
Wannier functions offer a natural description.

Recent years have seen an increased amount of activi
the area of solid-state calculations based on locali
orbitals,3 of which Wannier functions are a subclass. Most
these approaches have been proposed with the aim of d
oping efficient order-N methods for electronic structure ca
culations on solids within the framework of density fun
tional theory. With a different focus, Nunes and Vanderb4

have developed an entirely Wannier-function–based
570163-1829/98/57~3!/1471~13!/$15.00
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proach to electronic-structure calculations on solids in
presence of electric fields, a case for which the eigenstate
the Hamiltonian are no longer Bloch states. However,
believe that there is one potential area of application
Wannier orbitals that remains largely unexplored, namely
the ab initio treatment of electron-correlation effects in so
ids using the conventional quantum-chemical methods.5 It is
intuitively obvious that anab initio treatment of electron
correlations on large systems will converge much faster w
localized orbitals as compared to delocalized orbitals
cause the Coulomb repulsion between two electrons will
cay rapidly with the increasing distance between the e
trons. In the quantum-chemistry community the importan
of localized orbitals in treating the correlation effects in lar
systems was recognized early on and various proced
aimed at obtaining localized orbitals were developed.6 Some
of the localized-orbital approaches were also carried ove
solids chiefly by Kunz and collaborators7 at the Hartree-Fock
level. This approach has been applied to a variety
systems.8 Kunz, Meng, and Vail9 have gone beyond the
Hartree-Fock level and also included the influence of el
tron correlations for solids using many-body perturbati
theory. The scheme of Kunzet al. is based upon nonorthogo
nal orbitals, which, in general, are better localized than th
orthogonal counterparts. However, the subsequent treatm
of electron correlations with nonorthogonal orbitals is gen
ally much more complicated than the one based upon
Wannier functions.

In our group electron correlation effects on solids ha
been studied using the incremental scheme of Stoll,10 which
works with localized orbitals. In such studies the infini
solid is modeled as a large enough cluster and then corr
tion effects are calculated by incrementally correlating
Hartree-Fock reference state of the cluster expressed in te
of localized orbitals.11 However, a possible drawback of th
procedure is that there will always be finite-size effects a
no a priori knowledge is available as to the difference
results when compared with the infinite-solid limit. In ord
to be able to study electron-correlation effects in the infini
1471 © 1998 The American Physical Society
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1472 57SHUKLA, DOLG, FULDE, AND STOLL
solid limit using conventional quantum-chemical a
proaches, one first has to obtain a Hartree-Fock represe
tion of the system in terms of Wannier functions. This task
rather complicated because, in addition to the localizat
requirement, one also imposes the constraint upon the W
nier functions that they obtained by the Hartree-Fock m
mization of the total energy of the infinite solid. In an earli
paper12—henceforth referred to as I—we had outlined p
cisely such a procedure, which obtained the Wannier fu
tions of an infinite insulator within a Hartree-Fock approa
and reported its preliminary applications to the lithium h
dride crystal. In the present paper we describe all theore
and computational details of the approach and report ap
cations to larger systems, namely, lithium fluoride a
lithium chloride. Unlike I, where we only reported results o
the total energy per unit cell of the system, here we also
the Hartree-Fock Wannier functions to compute the x-
structure factors and Compton profiles. Additionally, we a
discuss the localization characteristics of the Wannier fu
tions in detail. All the physical quantities computed with o
procedure are found to be in excellent agreement with th
computed using theCRYSTAL program,13 which employs a
Bloch-orbital–basedab initio Hartree-Fock approach. In
future publication we plan to apply the present formalism
performab initio correlation calculations on an infinite insu
lator.

The rest of this paper is organized as follows. In Sec
we develop the theoretical formalism at the Hartree-Fo
level by minimizing the corresponding energy function
coupled with the requirement of translational symmetry, a
demonstrate that the resulting HF equations correspon
the HF equations for a unit cell of the solid embedded in
field of identical unit cells constituting the rest of the infini
solid. Thus an embedded-cluster picture for the infinite so
emerges rigorously from this derivation. Subsequently a
calizing potential is introduced in the HF equations by me
of projection operators leading to our working equations
the Hartree-Fock Wannier orbitals for an infinite solid. F
nally, these equations are cast in the matrix form usin
linear combination of atomic orbitals approach, which
used in the actual calculations. In Sec. III we present
results of our calculations performed using the aforem
tioned formalism on LiF and LiCl crystals. Finally, in Se
IV we present our conclusions. Various aspects related to
computer implementation of the present approach are
cussed in the Appendix.

II. THEORY

A. Hartree-Fock equations

We consider the case of a perfect solid without the pr
ence of any impurities or lattice deformations such
phonons. We also ignore the effects of relativity complet
so that the spin-orbit coupling is also excluded. In suc
case, in atomic units,14 the nonrelativistic Hamiltonian of the
system consisting of the kinetic energy of electrons, electr
nucleus interaction, electron-electron repulsion, and nucle
nucleus interaction is given by
ta-
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ur i2r j u

1(
I .J

ZIZJ

uRI2RJu
, ~1!

where in the equation abover i denotes the position coordi
nates of thei th electron whileRI andZI respectively denote
the position and the charge of theI th nucleus of the lattice.
For a given geometry of the solid the last term represen
the nucleus-nucleus interaction will make a constant con
bution to the energy and will not affect the dynamics of t
electrons. To develop the theory further we make the
sumptions that the solid under consideration is a closed-s
system and that a single Slater determinant represents a
sonable approximation to its ground state. Moreover, we
sume that the same spatial orbitals represent both the
projections of a given shell, i.e., we confine ourselves
restricted Hartree-Fock~RHF! theory. With the preceding
assumptions, the total energy of the solid can be written

Esolid52(
i

^ i uTu i &12(
i

^ i uUu i &

1(
i , j

~2^ i j u i j &2^ i j u j i &!1Enuc, ~2!

where u i & and u j & denote the occupied spatial orbitals a
sumed to form an orthonormal set,T denotes the kinetic
energy operator,U denotes the electron-nucleus potential e
ergy, Enuc denotes the nucleus-nucleus interaction ener
and ^ i j u i j &, etc. represent the two-electron integrals invo
ing the electron repulsion. The equation above is comple
independent of the spin degree of freedom, which, in
absence of spin-orbit coupling, can be summed away lead
to familiar factors of two in front of different terms. Clearl
the terms involvinĝ i uUu i &, ^ i j u i j &, andEnuc contain infi-
nite lattice sums and are convergent only when combi
together. So far the energy expression of Eq.~2! does not
incorporate any assumptions regarding the translational s
metry of a perfect solid. In keeping with our desire to intr
duce translational symmetry in the real space, without hav
to invoke thek space as is usually done in the Bloch-orbita
based theories, we make the following observation. A cr
talline solid, in its ground state, is composed of identical u
cells and the orbitals belonging to a given unit cell are ide
tical to the corresponding orbitals belonging to any other u
cell and are related to one another by a simple transla
operation. Assuming that the number of orbitals in a unit c
is nc and if we denote theath orbital of a unit cell located
at the position given by the vectorRj of the lattice by
ua(Rj )& then clearly the set$ua(Rj )&;a51,nc ; j 51,N% de-
notes all the orbitals of the solid. In the previous express
N is the total number of unit cells in the solid, which, o
course, is infinite. Henceforth, greek labelsa,b,g, . . . will
always denote the orbitals of a unit cell. The translatio
symmetry condition expressed in the real space can be s
simply as

ua~Ri1Rj !&5T~Ri !ua~Rj !&, ~3!
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57 1473OBTAINING WANNIER FUNCTIONS OF A . . .
whereT(Ri) is an operator that represents a translation
vectorRi . Using this, one can rewrite the energy express
of Eq. ~2! as

E5NH 2 (
a51

nc

^a~o!uTua~o!&12 (
a51

nc

^a~o!uUua~o!&

1 (
a,b51

nc

(
j 51

N

@2^a~o!b~Rj !ua~o!b~Rj !&

2^a~o!b~Rj !ub~Rj !a~o!&#1enucJ , ~4!

where ua(o)& denotes an orbital centered in the referen
unit cell, enuc involves the interaction energy of the nuclei
the reference cell with those of the rest of the solid (Enuc
5Nenuc), and we have removed the subscriptsolid from the
energy. The preceding equation also assumes the impo
fact that the orbitals obtained by translation operation of
~3! are orthogonal to each other. We shall elaborate on
point later in this section. An important simplification to b
noted here is that by assuming the translational invarianc
real space as embodied in Eq.~3!, we have managed to ex
press the total Hartree-Fock energy of the infinite solid
terms of a finite number of orbitals, namely, the orbitals o
unit cell nc . If we require that the energy of Eq.~4! be
stationary with respect to the first-order variations in the
bitals, subject to the orthogonality constraint, we are led
the Hartree-Fock operator

HHF5T1U12(
b

Jb2(
b

Kb , ~5!

where J and K—the conventional Coulomb and exchan
operators, respectively—are defined as

Jbua&5(
j

K b~Rj !U 1

r 12
Ub~Rj !L ua&

Kbua&5(
j

K b~Rj !U 1

r 12
Ua L ub~Rj !&. ~6!

Any summation over Greek indicesa,b,g, . . . will imply
summation over all thenc orbitals of a unit cell unless oth
erwise specified. As mentioned earlier, the termsU, J, and
K involve infinite lattice sums and their practical evaluati
will be discussed in the next section. The eigenvectors of
Hartree-Fock operator of Eq.~5! will be orthogonal to each
other, of course. However, in general, these solutions wo
not be localized, nor would they be orthogonal to the orbit
of any other unit cell. This is because the orbitals centere
any other unit cell are obtained from those of the refere
cell using a simple translation operation as defined in Eq.~3!,
which does not impose any orthogonality or localization co
straint upon them. Since our aim is to obtain the Wann
functions of the infinite solid, i.e., all the orbitals of the sol
must be localized and orthogonal to each other, we will h
to impose these requirements explicitly upon the eigensp
of Eq. ~5!. This can most simply be accomplished by inclu
ing in Eq. ~5! the projection operators corresponding to t
y
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orbitals centered in the unit cells in a~sufficiently large!
neighborhood of the reference cell

S T1U12J2K1 (
kPN

(
g

lg
k ug(Rk)&^g(Rk)u D ua&5eaua&,

~7!

where ua& stands forua(o)&, an orbital centered in the ref
erence unit cell,J5(bJb , K5(bKb , andN collectively
denotes the unit cells in the aforementioned neighborho
Clearly the choice ofN will be dictated by the system unde
consideration—the more delocalized electrons of the sys
there are, the largerN will need to be. In our calculations we
have typically chosenN to include up to third nearest
neighbor unit cells of the reference cell. In the equati
abovelg

k ’s are the shift parameters associated with the c
responding orbitals ofN. For perfect orthogonality and lo
calization, their values should be infinitely high. By settin
the shift parameterslg

k ’s to infinity we in effect raise the
orbitals localized in the environment unit cells~regionN) to
very high energies compared to those localized in the re
ence cell. Thus the lowest-energy solutions of Eq.~7! will be
the ones that are localized in the reference unit cell and
orthogonal to the orbitals of the environment cells.
course, in practice, it suffices to choose a rather large va
for these parameters, and the issue pertaining to this num
cal choice is discussed further in Sec. III. Equation~7! will
generally be solved iteratively as described in the next s
tion. If the initial guesses for the orbitals of the unit ce
$ua&,a51,nc&% are localized, subsequent orthogonalizati
by means of projection operators will not destroy th
property6 and the final solutions of the problem will be lo
calized orthogonal orbitals. Therefore, projection operat
along with the shift parameters simply play the role of
localizing potential6 as it is clear that upon convergence the
contribution to the Hartree-Fock equation vanishes. The
bitals contained in unit cells located farther than those inN
should be automatically orthogonal to the reference cell
bitals by virtue of the large distance between them. It is cl
that the orthogonalization of the orbitals to each other w
introduce oscillations in these orbitals that are also refer
to as the orthogonalization tails.

Combining the orthogonality of the neighboring orbita
to the reference cell orbitals with the translation symmetry
the infinite solid, it is easy to see that the orbitals of any u
cell are orthogonal to all the orbitals of the rest of the u
cells. Therefore, orbitals thus obtained are essentially W
nier functions. After solving for the HF equations present
above one can obtain the electronic part of the energy
unit cell simply by dividing the total energy of Eq.~4! by N,
which, unlike the total energy, is a finite quantity.

In paper I we arrived at exactly the same HF equations
above, although we had followed a more intuitive path u
lizing the so-called ‘‘embedded-cluster’’ philosoph
whereby we minimized only that portion of the total ener
of Eq. ~2! that corresponds to the ‘‘cluster-environment’’ in
teraction. The fact that the derivations reported in pape
and here, both lead to the same final equations has to do
the translation invariance, which allows the total energy
be expressed in the form of Eq.~4!. Therefore, we emphasiz
that the equations derived above are exact and do not inv
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any approximation other than the Hartree-Fock approxim
tion itself. Thus results of all the computations utilizing th
approach should be in complete agreement with the equ
lent computations performed using the traditional Bloc
orbital–based approach as is implemented, e.g., in the
gramCRYSTAL.13

By inspection of Eq.~7! it is clear that it is of the
embedded-cluster form in the sense that if one calls the
erence unit cell the ‘‘central cluster,’’ it describes the dyna
ics of the electrons of this central cluster embedded in
field of identical unit cells of its environment~rest of the
infinite solid!.

B. Linear combination of atomic orbital implementation

We have performed a computer implementation of
formalism presented in the previous section within a lin
combination of atomic orbital~LCAO! approach, whereby
we transform the differential equations of Eq.~7! into a set of
linear equations solvable by matrix methods. Atomic un
were used throughout the numerical work. We proceed
expanding the orbitals localized in the reference cell as

ua&5(
p

(
Rj PC1N

Cp,aup~Rj !&, ~8!

whereC has been used to denote the reference cell,Rj rep-
resents the location of thej th unit cell ~located inC or N)
and up(Rj )& represents a basis function centered in thej th
unit cell. In order to account for the orthogonalization tails
the reference cell orbitals, it is necessary to include the b
functions centered inN as well. Clearly, the translationa
symmetry of the crystal as expressed in Eq.~3! demands that
the orbitals localized in two different unit cells have th
same expansion coefficientsCp,a , and differ only in the lo-
cation of the centers of the basis functions. The LCAO f
malism implemented in most of the quantum-chemistry m
lecular programs, as also in theCRYSTAL code,13 expresses
the basis functionsup(Rj )& of Eq. ~8! as linear combinations
of Cartesian Gaussian-type basis functions~CGTFs! of the
form

f~r ,hp ,n,R!5~x2Rx!
nx~y2Ry!ny~z2Rz!

nz

3exp@2hp~r2R!2#, ~9!

wheren5(nx ,ny ,nz). In the previous equation,hp denotes
the exponent and the vectorR represents the center of th
basis function. The centers of the basis functionsR are nor-
mally taken to be at the locations of the appropriate atom
the system. CGTFs withnx1ny1nz50,1,2, . . . arecalled,
respectively,s,p,d . . . type basis functions.15 The indi-
vidual basis functions of the form of Eq.~9! are calledprimi-
tive functions while the linear combinations of them a
called thecontractedfunctions. The formalism is totally in-
dependent of the type of basis functions, but for the sake
computational simplicity, we have programmed our a
proach using Gaussian lobe-type functions.16 In this ap-
proach one approximates thep and higher angular momen
tum CGTFs as linear combinations ofs-type basis functions
displaced by a small amount from the location of the at
concerned. For example, in the present study a primi
p-type CGTF centered at the origin was approximated a
-
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e

fp~r ,h!5A$exp@2h~r1dh!2#2exp@2h~r2dh!2#%,
~10!

whereA is the normalization constant andudhu5C/Ah. In
the present study the value of 0.1 atomic units~a.u.! was
employed forC. For approximating thepx , py , and pz
types of basis functions, the displacement vectorsdh are cho-
sen to be along the positivex, y, andz directions, respec-
tively. By substituting Eq.~8! in Eq. ~7! we obtain the HF
equations in the LCAO matrix form:

(
q

FpqCq,a5ea(
q

SpqCq,a . ~11!

The Fock matrixFpq occurring in the equation above is de
fined as

Fpq5^pu~T1U12J2K !uq&

1 (
kPN

(
g

(
p8,q8

lg
kSpp8Sqq8Cp8,gCq8,g , ~12!

where the contribution of all the operators appearing in E
~7! has been replaced by the corresponding matrices in
representation of the chosen basis set. Above, unprim
functions up& and uq& represent the basis functions corr
sponding to the orbitals of the reference unit cell while t
primed functionsup8& and uq8& denote the basis function
corresponding to the orbitals ofN. In particular, the overlap
matrix is given by

Spq5^puq& ~13!

and the Coulomb and the exchange matrix elements are
fined as

^puJuq&5(
r ,s

(
k

K pr~Rk!U 1

r 12
Uqs~Rk!L Drs ~14!

and

^puKuq&5(
r ,s

(
k

K pr~Rk!U 1

r 12
Us~Rk!qL Drs , ~15!

whereDrs denotes the elements of the density matrixD of
the orbitals of a unit cell evaluated as17

Dpq5(
a

Cp,aCq,a . ~16!

The matrix form of the HF equations~11! is a pseudo eigen
value problem, which can be solved iteratively to obtain t
HF orbitals. The energy per unit cell can be computed
means of a simple matrix-trace operation

Ecell5Tr$~2T12U12J2K !D%1enuc, ~17!

where aboveT, U, J, K, and D denote the matrices
of the corresponding operators in the representation of
chosen basis set, andenuc was defined after Eq.~4!.

In practice one proceeds according to the following alg
rithm: ~1! Start with some localized initial guess for the o
bitals of the reference cell. For ionic systems considered h
we chose these to be the orbitals of the individual ions c
tered on the corresponding atomic sites. For covalent s
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tems, it would be reasonable to use suitable bonding com
nations of atomic orbitals.~2! Use these orbitals to constru
the Fock matrix as defined in Eq.~12!. ~3! Diagonalize the
Fock matrix to obtain a new set of orbitals of the referen
cell. ~4! Compute the energy per unit cell by using Eq.~17!.
~5! Go to step~2!. Iterate until the energy per unit cell ha
converged. Various mathematical formulas and compu
tional aspects related to the evaluation of different contri
tions to the Fock matrix are discussed in the Appendix.

C. Evaluation of properties

In this section we describe the evaluation of the x-r
structure factors and Compton profiles from the Hartr
Fock Wannier functions obtained from the formalism of t
previous section. Both these properties can be obtained f
the first-order density matrix of the system defined for
present case as

r~r ,r 8!52(
i

(
a

fa~r2Ri !fa* ~r 82Ri !, ~18!

where fa(r2Ri)5^r ua(Ri)& is the ath HF orbital of the
unit cell located at positionRi . The factor of two above is a
consequence of spin summation.

1. X-ray structure factors

By measuring the x-ray structure factors experimenta
one can obtain useful information on the charge density
the constituent electrons. Theoretically, the x-ray struct
factor S(k) can be obtained by taking the Fourier transfo
of the diagonal part of the first-order density matrix

S~k!5E r~r ,r !exp~ ik•r !dr . ~19!

2. Compton profile

By means of Compton-scattering–based experiments,
can extract the information on the momentum distribution
the electrons of the solid. In the present study we comp
the Compton profile in the impulse approximation as dev
oped by Eisenberger and Platzman.18 Under the impulse ap
proximation the Compton profile for the momentum trans
q is defined as18

J~q!5
1

~2p!3E dS v2
k2

2m
2

q

mD M ~p!dp, ~20!

wherek andv are, respectively, the changes in moment
and the frequency of the incoming x org ray due to scatter-
ing, p is the Compton electron momentum,q5k•p/k is the
projection ofp in the direction ofk, thed function imposes
the energy conservation andM (p)5r(p,p) denotes the elec
tron momentum distribution obtained from the diagonal p
of the full Fourier transform of the first-order density matr

r~p,p8!5E exp@ i ~p•r2p8•r 8!#r~r ,r 8!drdr 8. ~21!

By choosing thez axis of the coordinate system definingp
along the direction ofk, one can perform thepz integral in
Eq. ~20! to yield
i-

e
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J~q!5
1

~2p!3E2`

`

dpxE
2`

`

dpyM ~px ,py ,q!, ~22!

Integrals contained in the expressions for the x-ray str
ture factor and the Compton profile@Eqs.~19! and ~22!, re-
spectively# can be performed analytically when the dens
matrix is represented in terms of Gaussian lobe-type b
functions. These analytic expressions are used to evaluat
quantities of interest in our computer code, once the Hartr
Fock density matrix has been determined.

III. CALCULATIONS AND RESULTS

In this section we present the results of the calculatio
performed on crystalline LiF and LiCl. Prencipeet al.19 stud-
ied these compounds, along with several other alkali halid
using theCRYSTAL program.13 CRYSTAL, as mentioned ear
lier, is a Bloch-orbital–basedab initio Hartree-Fock program
set up within an LCAO scheme, utilizing CGTF’s as bas
functions. In their study, Prencipeet al. employed a very
large basis set and, therefore, their results are believed t
very close to the Hartree-Fock limit. In the present work o
intention is not to repeat the extensive calculations
Prencipe et al.,19 but rather to demonstrate that at th
Hartree-Fock level one can obtain the same physical insig
by applying the Wannier-function–based approach as
would by utilizing the Bloch-orbital–based approach. Mor
over, because of the use of lobe functions as basis functi
we run into problems related to numerical instability wh
very diffuse p-type ~and beyond! basis functions are em
ployed. In the future we intend to incorporate true CGTF’s
basis functions in our program, which should make the co
numerically much more stable. Therefore, we have p
formed these calculations with modest sized basis sets.
reserve the use of large basis sets for future calculatio
when we intend to go beyond the Hartree-Fock level to u
lize these Wannier functions to do correlated calculatio
The reason we have chosen to compare our results to t
obtained using theCRYSTAL program is because not only i
CRYSTAL based upon an LCAO formalism employin
Gaussian-type basis functions similar to our case, but als
is a well-tested program and widely believed to be the s
of the art in crystalline Hartree-Fock calculations.20

All the calculations to be presented below assume
observed face centered cubic~fcc! structure for the com-
pounds. The reference unit cellC was taken to be the primi
tive cell containing an anion at the~0,0,0! position and the
cation at (0,0,a/2), wherea is the lattice constant. The ca
culations were performed with different values of the latti
constants to be indicated later. The basis sets used
lithium, fluorine, and chlorine are shown in Tables I, II, an
III, respectively. For lithium we adopted the basis set
Dovesiet al. used in their lithium hydride study,21 while for
fluorine and chlorine, basis sets originally published
Huzinaga and collaborators22 were used. The values of th
level-shift parameterslg

k ’s of Eq. ~12! should be high
enough to guarantee sufficient orthogonality while still
lowing for numerical stability. Thus this choice leaves suf
cient room for experimentation. We found the values in t
range'1.03103– 1.03104 a.u. suitable for our work. We
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verified by explicit calculations that our results had inde
converged with respect to the values of the shift paramet
In the course of the evaluation of integrals needed to c
struct the Fock matrix, all the integrals whose magnitud
were smaller than 1.031027 a.u. were discarded both in ou
calculations as well as in the crystal calculations.

The comparison of our ground-state energies per unit
with those obtained using the identical basis sets by
CRYSTAL program13 is illustrated in Tables IV and V for
different values of lattice constants. The biggest disagr
ment between the two types of calculations is 0.7 millih
tree. A possible source of this disagreement is our use of
functions to approximate thep-type CGTF’s. However,
since the typical accuracy of aCRYSTAL calculation is also 1
millihartree,13 we consider this disagreement to be insign
cant. Such excellent agreement between the total ene
obtained using two different approaches gives us confide
as to the essential correctness of our approach. From
results it is also obvious that the basis set used in these
culations is inadequate to predict the lattice constant and
bulk modulus correctly. To be able to do so accurately, o
will have to employ a much larger basis set such as the
used by Prencipeet al.19 Since Hartree-Fock lattice constan
generally are much larger than the experimental value,
reserve the large-scale Hartree-Fock calculations for fu
studies in which we will also go beyond the Hartree-Fo
level to include the influence of electron correlations.

Valence Wannier functions for LiF and LiCl are plotte
along different crystal directions in Figs. 1, 2, 3, and 4. L
tice constants for these calculations were assigned their

TABLE I. Exponents and contraction coefficients used in t
basis set for lithium~Ref. 21!.

Shell type Exponent Contraction coefficient

1s 700.0 0.001421
220.0 0.003973
70.0 0.016390
20.0 0.089954
5.0 0.315646
1.5 0.494595

2s 0.5 1.0
2p 0.6 1.0

TABLE II. Exponents and contraction coefficients used in t
basis set for fluorine~Ref. 22!.

Shell type Exponent Contraction coefficient

1s 2931.321 0.005350
441.9897 0.039730
100.7312 0.177257
28.14426 0.457105

2s 8.7256 1.0
3s 1.40145 1.0
4s 0.41673 1.0
2p 10.56917 0.126452

2.19471 0.478100
3p 0.47911 1.0
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perimental values23 of 3.99 and 5.07 Å for LiF and LiCl,
respectively. Although core orbitals were also obtained fr
the same set of calculations, we have not plotted them h
because they are trivially localized. Thep character of the
Wannier functions is evident from the antisymmetric natu
of the plots under reflection. The additional nodes introduc
in the orbitals due to their orthogonalization to orbitals ce
tered on the atoms of regionN are also evident. The local
ized nature of these orbitals is obvious from the fact that
orbitals decay rapidly as one moves away from the at
under consideration. The orthogonality of the orbitals of t
reference cell to those of the neighborhood~regionN) was
always better than 1.031025.

Now we discuss the data for x-ray structure factors. Th
quantities were also evaluated at experimental lattice c
stants mentioned above. The x-ray structure factors obta
by our method are compared to values calculated with
CRYSTAL program, and experimental data, in Tables VI a
VII for LiF and LiCl, respectively. For the case of LiF w
directly compare the theoretical values with the experimen
data of Merisalo and Inkinen,24 extrapolated to zero tempera
ture by Euwemaet al.25 For LiCl it was not possible for us to
extrapolate the experimental data of Inkinen and Ja¨rvinen,26

TABLE III. Exponents and contraction coefficients used in t
basis set for chlorine~Ref. 22!.

Shell type Exponent Contraction coefficient

1s 30008.27 0.001471
4495.692 0.011324
1021.396 0.056401
287.6894 0.200188
92.26777 0.443036
31.76476 0.402714

2s 7.16468 1.0
3s 2.78327 1.0
4s 0.60063 1.0
5s 0.22246 1.0
2p 157.7332 0.025920

36.27829 0.164799
10.84 0.460043

3.49773 0.499410
3p 0.77581 1.0
4p 0.21506 1.0

TABLE IV. Comparison between between total energies o
tained using our approach and those obtained usingCRYSTAL ~Ref.
13! for lithium fluoride for different values of lattice constants. Th
N region included up to third-nearest-neighbor unit cells. Latt
constants are in units of Å, and energies are in atomic units.

Lattice constant Total energy
This work CRYSTAL

3.8 2106.8985 2106.8980
3.9 2106.8939 2106.8935
3.99 2106.8877 2106.8873
4.1 2106.8780 2106.8774
4.2 2106.8677 2106.8670
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measured at T578 K, to the corresponding zero
temperature values. Therefore, to compare our LiCl calc
tions to the experiment, we correct our theoretical values
thermal motion using the Debye-Waller factors ofBLi
50.93 Å2 and BCl50.41 Å2, measured also by Inkine
and Ja¨rvinen.26 The Debye-Waller corrections were applie
to the individual form factors of Li1 and Cl2 ions. From
both the tables it is obvious that our results are in alm
exact agreement with those ofCRYSTAL. This implies that
our Wannier function HF-approach–based description of
charge density of systems considered here is identical
Bloch-orbital–based HF description as formulated
CRYSTAL.13 For the case of LiF the agreement between
results and the experiment is also quite good, maximum
rors being'5%. For the case of LiCl, our corrected valu
of x-ray structure factors deviate from the experimental v
ues at most by approximately 3%. Perhaps by using a la
basis set one can obtain even better agreement with ex
ments.

Finally we turn to the discussion of Compton profile
Directional and isotropic Compton profiles, computed us
our approach and theCRYSTAL program, are compared to th
isotropic Compton profiles measured by Paakkari a
Hanolen,27 in Tables VIII and IX. We obtain the isotropic
Compton profiles from our directional profiles by performin
a directional average of the profiles along the three cry

FIG. 1. LiF: 2pz-type valence Wannier function centered on F2

~located at origin! plotted along ther5x(0,0,1) direction. Nodes
near the (0,0,6a/2) positions are due to its orthogonalization to t
Li1 1s orbital located there. All distances are in atomic units.

TABLE V. Comparison between between total energies
tained using our approach and those obtained usingCRYSTAL ~Ref.
13! for lithium chloride for different values of lattice constants. Th
N region included up to third-nearest-neighbor unit cells. Latt
constants are in units of Å, and energies are in atomic units.

Lattice constant Total energy
This work CRYSTAL

4.9 2466.5062 2466.5065
5.0 2466.5078 2466.5082
5.07 2466.5080 2466.5085
5.2 2466.5065 2466.5071
5.3 2466.5041 2466.5047
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directions according to the formulâJ&5 1
26 (6J100112J110

18J111) valid for an fcc lattice.28 While experimental data
for directional Compton profiles exist in the case of LiF,28 no
such measurements have been performed for LiCl, to
best of our knowledge. For LiF there is close agreem
between our results and the ones calculated using
CRYSTAL program. For LiCl our results disagree with th
CRYSTAL results somewhat for small values of momentu
transfer, although relatively speaking the disagreemen
quite small—the maximum deviation being'0.3% for q
50.0 and the@100# direction. The possible source of th
disagreement may be that to get the values of Compton
files for all the desired values of momentum transfer, we h
to use the option ofCRYSTAL ~Ref. 13! where the Compton
profiles are obtained by using the real-space density ma
rather than its more accuratek-space counterpart. Howeve
as is clear from the tables, even for those worst cases, the
no significant difference between the averaged out isotro
Compton profiles obtained in our computations and th
obtained fromCRYSTAL. At the larger values of momentum

FIG. 2. LiF: 2px-type valence Wannier function centered on F2

~located at origin! plotted along ther5x(1,1,0) direction. Nodes
near the (6a/2,6a/2,0) positions are due to its orthogonalizatio
to 2p orbitals of F2 located there. All distances are in atomic uni

FIG. 3. LiCl: 3pz-type valence Wannier function centered o
Cl2 ~located at origin! plotted along ther5x(0,0,1) direction.
Nodes near the origin are due to its orthogonalization to
Cl2 2p orbitals centered there while those near the (0,0,6a/2)
positions are due to its orthogonalization to the Li1 1s orbital lo-
cated there. All distances are in atomic units.

-
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transfer, our results are virtually identical to theCRYSTAL

results. The close agreement withCRYSTAL clearly implies
that our Wannier-function–based description of the mom
tum distribution of the electrons in the solid is identical
the one based upon Bloch orbitals.

Considering the fact that we have used a rather mo
basis set, it is quite surprising that the values of isotro
Compton profiles obtained by us are in close agreement
the corresponding experimental values.27 An inspection of
Tables VIII and IX reveals that the calculated values alwa
agree with the experimental ones to within 6%. Howev
ours as well as theCRYSTAL calculations presented here a

FIG. 4. LiCl: 3px-type valence Wannier function centered o
Cl2 ~located at origin! plotted along ther5x(1,1,0) direction.
Nodes near the origin are due to its orthogonalization to
Cl2 2p orbitals centered there, while the two nodes each near
(6a/2,6a/2,0) positions are due to its orthogonalization to bo
the 3s and the 3p orbitals of Cl2 located there. All distances are i
atomic units.

TABLE VI. Calculated and experimental values of x-ray stru
ture factors for LiF in electrons per unit cell. The experimen
structure factors are taken from Ref. 24. The Debye-Waller cor
tions were removed~Ref. 25!. The reciprocal-lattice vectors ar
defined with respect to the conventional cubic unit cell and not
primitive cell. They are labeled by integersh, k, and l .

hkl Experimental This work CRYSTAL

111 4.84 5.04 5.04
200 7.74 7.78 7.78
220 5.71 5.68 5.68
311 2.37 2.32 2.32
222 4.61 4.52 4.52
400 3.99 3.84 3.84
331 1.65 1.60 1.60
420 3.46 3.35 3.35
422 3.07 2.99 2.99
511 1.38 1.34 1.33
333 1.38 1.33 1.33
440 2.58 2.52 2.52
531 1.28 1.22 1.22
600 2.41 2.36 2.35
442 2.41 2.35 2.35
620 2.24 2.22 2.22
-

st
c
th

s
,not able to describe the observed anisotropies in the di
tional Compton profiles28 for LiF, which is also the reason
that we have not compared the theoretical anisotropies to
experimental ones. For small values of momentum tran
the calculated values are even in qualitative disagreem
with the experimental results, although for large moment
transfer the qualitative agreement is restored. This resu
not surprising, however, because, as Berggrenet al. have
argued28 in their detailed study, the proper description of t
Compton anisotropy mandates a good description of
long-range tails of the crystal orbitals. To be able to do
with the Gaussian-type of basis functions used here,
will—unlike the present study—have to include basis fun
tions with quite diffuse exponents.

IV. CONCLUSIONS

In conclusion, anab initio Hartree-Fock approach for a
infinite insulating crystal that yields orbitals in a localize
representation has been discussed in detail. It was applie
computing the total energies per unit cell, x-ray structu
factors, and directional Compton profiles of two halides
lithium, LiF and LiCl. The close agreement between the
sults obtained using the present approach, and the ones
tained using the conventional Bloch-orbital–based HF
proach, demonstrates that the two approaches are ent
equivalent. The advantage of our approach is that by con
ering local perturbations to the Hartree-Fock reference s
by conventional quantum-chemical methods, one can go

e
e

l
c-

e

TABLE VII. Calculated and experimental values of x-ray stru
ture factors for LiCl in electrons per unit cell. The second and th
columns report the theoretical values obtained by the spec
method, without including the Debye-Waller corrections. T
fourth column reports the theoretical values after including
Debye-Waller factors ofBLi50.93 Å2 and BCl50.41 Å2 corre-
sponding to a temperatureT578 K ~Ref. 26!. The last column
reports experimental values of x-ray structure factors measure
T578 K ~Ref. 26!. The reciprocal-lattice vectors are defined wi
respect to the conventional cubic unit cell and not the primitive c
They are labeled by integersh, k, and l .

Uncorrected Debye-Waller corrected
hkl This work CRYSTAL This work Experimental

111 11.28 11.28 11.18 10.91
200 13.96 13.96 13.70 13.77
220 11.46 11.46 11.04 11.03
311 7.55 7.55 7.30 7.44
222 10.20 10.20 9.64 9.76
400 9.43 9.44 8.76 8.95
331 6.61 6.62 6.23 6.24
420 8.87 8.88 8.09 8.15
422 8.43 8.43 7.55 7.60
511 6.15 6.16 5.64 5.61
333 6.15 6.16 5.64 5.61
440 7.73 7.74 6.69 6.70
531 5.81 5.81 5.17 5.30
600 7.44 7.44 6.32 6.53
442 7.43 7.44 6.32 6.53
620 7.16 7.17 5.99 5.95
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TABLE VIII. Theoretical HF directional Compton profiles for LiF of this work (JTW) compared to those
of CRYSTAL (JCR). The directionally averaged Compton profiles of both the approaches (^JTW& and ^JCR&)
are also compared to the experimental isotropic Compton profiles (Jexp) ~Ref. 27!. The Compton profiles and
momentum transferq are in atomic units. The column headings@hkl# refer to the direction of momentum
transfer in the crystal. All the profiles are normalized to 5.865 electrons in the intervalq5027 a.u.

@100# @110# @111# Average
q JTW JCR JTW JCR JTW JCR ^JTW& ^JCR& Jexpt

0.0 3.759 3.762 3.762 3.760 3.777 3.774 3.766 3.764 3.83
0.1 3.741 3.743 3.749 3.746 3.762 3.759 3.751 3.749 3.81
0.2 3.689 3.691 3.707 3.705 3.718 3.715 3.706 3.705 3.76
0.3 3.609 3.609 3.638 3.636 3.644 3.641 3.633 3.632 3.68
0.4 3.504 3.504 3.541 3.540 3.542 3.540 3.532 3.531 3.57
0.5 3.382 3.382 3.416 3.415 3.413 3.411 3.407 3.406 3.43
0.6 3.245 3.245 3.266 3.266 3.258 3.257 3.259 3.258 3.27
0.7 3.095 3.094 3.094 3.093 3.081 3.081 3.090 3.090 3.08
0.8 2.929 2.928 2.901 2.901 2.886 2.887 2.903 2.903 2.88
0.9 2.745 2.745 2.692 2.692 2.677 2.678 2.700 2.700 2.66
1.0 2.541 2.541 2.472 2.473 2.458 2.460 2.484 2.485 2.42
1.2 2.078 2.077 2.022 2.025 2.020 2.022 2.035 2.036 1.94
1.4 1.608 1.606 1.606 1.607 1.616 1.618 1.610 1.610 1.53
1.6 1.224 1.224 1.261 1.260 1.275 1.276 1.257 1.257 1.20
1.8 0.957 0.956 0.994 0.995 1.003 1.003 0.988 0.988 0.95
2.0 0.772 0.771 0.797 0.797 0.795 0.795 0.790 0.791 0.77
3.0 0.339 0.338 0.324 0.325 0.329 0.329 0.329 0.329 0.33
3.5 0.236 0.236 0.244 0.244 0.241 0.240 0.241 0.241 0.24
4.0 0.179 0.179 0.181 0.181 0.182 0.182 0.181 0.181 0.18
5.0 0.112 0.113 0.113 0.113 0.112 0.112 0.113 0.113 0.11
6.0 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.07
7.0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.05
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ce,
yond the mean-field level and study the influence of elect
correlations on an infinite solid in an entirelyab initio man-
ner. Presently projects along this direction are in progres
our group, and in a future publication we plan to study t
influence of electron correlations on the ground state o
solid.
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APPENDIX: INTEGRAL EVALUATION

In this section we discuss the calculation of various ter
in the Fock matrix. Since the kinetic-energy matrix eleme
Tpq5^puTuq& and the overlap-matrix elementsSpq5^puq&
have simple mathematical expressions and are essentiall
changed from molecular calculations, we will not discu
them in detail. However, we will consider the evaluation
the rest of the contributions to the Fock matrix at so
length.

1. Nuclear attraction integrals

The electron-nucleus attraction term of the Fock ma
contains the infinite lattice sums involving the attractive
teraction acting on the electrons of the reference cell du
n

in
e
a

g

s
s

n-
s
f
e

x
-
to

the infinite number of nuclei in the solid. When treated ind
vidually, this term is divergent. However, when combin
with the Coulombic part of the electron repulsion to be d
cussed in the next section, convergence is achieved bec
the divergences inherent in both sums cancel each other
ing to the opposite signs. This fact is a consequence of
charge neutrality of the unit cell and is used in the Ewa
summation technique30 to make the individual contributions
also convergent by subtracting from the corresponding
tential a shadow potential emerging from a fictitious hom
geneous charge distribution of opposite sign. In addition
the Ewald method, one splits the lattice potential into a sh
range part whose contribution is rapidly convergent inr
space and a long-range part, which converges fast ink space.
Therefore, in the Ewald-summation technique one repla
the electron-nucleus interaction potential due to a latt
composed of nuclei of chargeZ, by the effective potential30

UEw~r !52ZH (
Ri

erfc~Alur2Ri u!
ur2Ri u

1
4p

v (
K i5” 0

exp~2K i
2/4l1 iK i•r !

K i
2

2
p

v

1

lJ ,

~A1!

whereRi represents the positions of the nuclei on the latti
K i are the vectors of the reciprocal lattice,v is the volume of
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TABLE IX. Theoretical HF directional Compton profiles for LiCl of this work (JTW) compared to those
of CRYSTAL (JCR). The directionally averaged Compton profiles of both the approaches (^JTW& and ^JCR&)
are also compared to the experimental isotropic Compton profiles (Jexpt) ~Ref. 27!. The Compton profiles and
momentum transferq are in atomic units. The column headings@hkl# refer to the direction of momentum
transfer in the crystal. All the profiles are normalized to 9.365 electrons in the intervalq5027 a.u.

@100# @110# @111# average
q JTW JCR JTW JCR JTW JCR ^JTW& ^JCR& Jexpt

0.0 6.190 6.209 6.207 6.198 6.217 6.204 6.206 6.202 6.28
0.1 6.152 6.169 6.173 6.166 6.181 6.169 6.171 6.168 6.22
0.2 6.041 6.051 6.066 6.065 6.073 6.064 6.062 6.062 6.10
0.3 5.861 5.864 5.881 5.883 5.892 5.887 5.879 5.880 5.89
0.4 5.613 5.607 5.617 5.619 5.634 5.633 5.622 5.620 5.61
0.5 5.297 5.286 5.289 5.286 5.302 5.305 5.295 5.292 5.26
0.6 4.919 4.910 4.903 4.900 4.903 4.908 4.907 4.904 4.85
0.7 4.488 4.486 4.472 4.473 4.452 4.457 4.469 4.471 4.41
0.8 4.023 4.028 4.007 4.014 3.972 3.978 4.000 4.006 3.95
0.9 3.544 3.552 3.528 3.539 3.493 3.500 3.521 3.530 3.51
1.0 3.081 3.086 3.065 3.075 3.046 3.053 3.063 3.071 3.10
1.2 2.309 2.308 2.304 2.305 2.326 2.328 2.312 2.313 2.40
1.4 1.817 1.817 1.827 1.825 1.850 1.848 1.832 1.830 1.89
1.6 1.534 1.532 1.549 1.545 1.548 1.546 1.545 1.542 1.57
1.8 1.350 1.347 1.361 1.358 1.349 1.347 1.355 1.352 1.37
2.0 1.213 1.212 1.210 1.211 1.206 1.204 1.210 1.209 1.22
3.0 0.778 0.777 0.775 0.777 0.776 0.776 0.776 0.776 0.77
3.5 0.630 0.629 0.632 0.630 0.631 0.631 0.631 0.630 0.60
4.0 0.512 0.512 0.510 0.511 0.511 0.511 0.511 0.511 0.48
5.0 0.334 0.333 0.333 0.334 0.334 0.334 0.334 0.334 0.32
6.0 0.224 0.224 0.224 0.225 0.224 0.225 0.224 0.224 0.21
7.0 0.158 0.158 0.157 0.158 0.157 0.158 0.157 0.158 0.15
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the unit cell,l is a convergence parameter to be discus
later and erfc represents the complement of the error fu
tion. Matrix elements of the Ewald potential of Eq.~A1! with
respect to primitives-type basis functions were derived b
Stoll31 to be

Upq
Ew~Rp ,Rq!5^p~Rp!uUEwuq~Rq!&5ÛpqSpq . ~A2!

Abovep andq label the primitive basis functions,Rp andRq
represent the positions of the unit cells in which they
located, andSpq represents the overlap matrix element b
tween the two primitives given by

Spq5
23/2~hphq!3/4

~hp1hq!3/2
exp@2Apq~r p1Rp2rq2Rq!2#.

~A3!

The vectorsr p and rq above specify the centers of the tw
basis functions relative to the origin of the unit cell,hp and
hq represent the exponents of the two Gaussians,Apq
5hphq /(hp1hq), and

Ûpq52ZW~Cpq ,r p,q!, ~A4!

with Cpq5hp1hq , r p,q5$hp(r p1Rp)1hq(rq

1Rq)%Cpq
21 , and

W~a,r !5(
Ri

erfc~Aeur2Ri u!2erfc~Aaur2Ri u!
ur2Ri u
d
c-

e
-

1
4p

v (
K i5” 0

exp~2K i
2/4e1 iK i•r !

K i
2

2
p

vS 1

e
2

1

a D ,

~A5!

where the parametere takes over the role of the convergen
parameterl of Eq. ~A1!. The remaining quantities are th
the same as those in Eq.~A1!. It is clear that the function
W(a,r ) involves lattice sums both in the direct space and
the reciprocal space. Although the final value of the funct
will be independent of the choice of the convergence para
eter e, both these sums can be made to converge optim
by making a judicious choice of it. Large values ofe lead to
faster convergence in the real space but to a slower one in
reciprocal space and with smaller values ofe the situation is
just the opposite. Therefore, for optimal performance,
choice of e is made dependent on the value ofa. In the
present work we make the choice so that ifa.p/v2/3, e
5p/v2/3 and if a<p/v2/3, e5a. In the former case the
sum is both in the real and the reciprocal space while in
latter case the sum is entirely in the reciprocal space.
though we have written an efficient computer code to eva
ate the functionW(a,r ), it remains the most computer inten
sive part of our program.

The computational effort involved in the computation
these integrals can be reduced by utilizing the translatio
symmetry. One can verify that as a consequence of tran
tion symmetry
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Upq
Ew~Rp ,Rq!5Upq

Ew~ tpq ,o!5Upq
Ew~ tpq!, ~A6!

where tpq5Rp2Rq is also a vector of the direct lattice,o
represents the reference unit cell, and the last term is a c
pact notation for the second term. Since the number
uniquetpq vectors is much smaller than the number of pa
(Rp ,Rq), the use of Eq.~A6! reduces the computational e
fort considerably. To further reduce the computational eff
we also use the interchange symmetry

Upq
Ew~ tpq!5Uqp

Ew~2tpq!. ~A7!

Additional savings are achieved if one realizes that ma
elementsUpq

Ew(tpq) become smaller the larger the distan
utpqu between the interacting charge distributions becom
As is clear from Eq.~A2!, a good estimate of the magnitud
of an integral is the overlap elementSpq .29 Therefore, we
compute only those integrals whose overlap elementsSpq are
larger than some thresholdtn . In the present calculations w
chosetn51.031027.

2. Electronic Coulomb integrals

To calculate the Coulomb contribution to the Fock matr
one needs to evaluate the two-electron integrals with infi
lattice sum

Jpq;rs~Rp ,Rq ,Rr ,Rs!

5(
k

K p~Rp!r ~Rr1Rk!U 1

r 12
Uq~Rq!s~Rs1Rk!L ,

~A8!

wherep, q, r , ands represent the primitive basis function
andRp , Rq , Rr , andRs represent the unit cells in whic
they are centered. This integral, treated on its own, is div
gent, as discussed in the previous section. However, u
the Ewald-summation technique, one can make this se
conditionally convergent with the implicit assumption that
divergence will cancel the corresponding divergence of
electron nucleus interaction. Since the details of the Ewa
summation technique for the Coulomb part of electron rep
sion are essentially identical to the case of electron-nuc
interaction, we will just state the final results31

J̃ pq;rs~Rp ,Rq ,Rr ,Rs!5SpqSrsW~Brs
pq ,r p,q

r ,s !, ~A9!

where

~Brs
pq!215~hp1hq!211~h r1hs!

21

and

r p,q
r ,s 5r r ,s2r p,q .

All the notations used in the equations above were defi
in the previous section. The expressionJ̃ pq;rs used in Eq.
~A9!, as againstJpq;rs of Eq. ~A8!, is meant to remind us tha
the matrix elements stated in Eq.~A9! are those of the two-
electron Ewald potential and not those of the ordinary C
lomb potential.
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As in the case of electron-nucleus attraction, one can
lize the translational symmetry for the present case to red
the computational effort significantly. The corresponding
lations in the present case are

J̃ pq;rs~Rp ,Rq ,Rr ,Rs!5 J̃ pq;rs~ tpq ,o,trs ,o!

5 J̃ pq;rs~ tpq ,trs!, ~A10!

where as beforeo represents the reference unit cell,tpq
5Rp2Rq , trs5Rr2Rs , and the last term in Eq.~A10! is
a compact notation for the second term. Since the numbe
pairs (tpq ,trs) is much smaller than the number of quarte
(Rp ,Rq ,Rr ,Rs), use of Eq.~A10! results in considerable
savings of computer time and memory. In addition, we a
use the four interchange relations of the form of Eq.~A7! to
further reduce the number of nonredundant integrals. Ad
tionally, these integrals also satisfy the interchange relat

J̃ pq,rs~ tpq ,trs!5 J̃ rs,pq~ trs ,tpq!. ~A11!

To keep the programming simple, however, at present we
not utilize this symmetry. In the future, we do intend
incorporate this symmetry in the code.

Similar to the case of electron-nucleus integrals, here a
we use the magnitude of the productSpqSrs to estimate the
size of the integral to be computed and proceed with
calculation only if it is greater than a thresholdtc , taken to
be 1.031027 in this study.

3. Electronic exchange integrals

In order to compute the exchange contribution to the Fo
matrix, one has to compute the following two-electron in
grals involving infinite lattice sum

Kpq;rs~Rp ,Rq ,Rr ,Rs!

5(
k

K p~Rp!s~Rs1Rk!U 1

r 12
Ur ~Rr1Rk!q~Rq!L ,

~A12!

where the notation is identical to the previous two cases.
using the translational symmetry arguments one can s
even for the exchange case that

Kpq;rs~Rp ,Rq ,Rr ,Rs!5Kpq;rs~ tpq ,o,trs ,o!

5Kpq;rs~ tpq ,trs!, ~A13!

where the last term in Eq.~A13! above is a compact notatio
for the second term. As in the previous two cases, the us
translational symmetry results in considerable savings
computer time and storage. Explicitly
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Kpq;rs~ tpq ,trs!5(
k

K p~ tpq!s~Rk!U 1

r 12
Ur ~ trs1Rk!q~o!L .

~A14!

Although Eq.~A14! contains an infinite sum over lattice ve
tors Rk , the contributions of each of the terms decrea
rapidly with the increasing distancesutrs1Rk2tpqu and uRku
between the interacting charge distributions. A good estim
of the contribution of the individual terms is provided by t
product of overlap matrix elements between the interac
charge distributions namely,Spr5^p(tpq)ur (trs1Rk)& and
Sqs5^q(o)us(Rk)&.

29 Therefore, in the computer impleme
tation, we arrange the vectorsRk so that the correspondin
overlaps are in descending order and the loop involving
sum overRk in Eq. ~A14! is terminated once the individua
overlap matrix elements or their product are less tha
n

’

i

.

e

-
es

ate
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ng

-

he

a

specified thresholdte . The computer code for evaluatin
these integrals is a modified version of the program writt
originally by Ahlrichs.29 The value of the thresholdte used
in these calculations was 1.031027. The exchange integrals
also satisfy interchange symmetries similar to those of E
~A7! and~A11!, which are not used in the present version
the code for ease of programming. In the future, however,
plan to use them as well.

As described above, to minimize the need of compu
time and storage, we have made extensive use of tran
tional symmetry. However, the integral evaluation can
further optimized considerably by making use of point-gro
symmetry as is done in theCRYSTAL program.13 Implemen-
tation of point-group symmetry, as well as the use
CGTO’s instead of lobe-type functions, is planned for futu
improvements of the present code.
-
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