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Quantum phase transitions of the one-dimensional Peierls-Hubbard model
with next-nearest-neighbor hopping integrals

Hiromi Otsuka
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan

~Received 4 February 1998!

We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-
Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling regionU@t, t8 @t (t8),
nearest-~next-nearest-! neighbor hopping;U, on-site Coulomb repulsion#. In the uniform case, with the help of
the conformal field theory prediction, we numerically determine a phase boundarytc8(U/t) between the spin-
fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and
long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal
invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size
systems and a value of the central charge are also examined. The critical phenomenological aspect of the
spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase
boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin
gap ~i.e., the Cross-Fisher scaling law! are discussed.@S0163-1829~98!00123-4#
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I. INTRODUCTION

Ground states and lower-energy excitations of lo
dimensional quantum systems, i.e., a chain, and two-
three-leg ladder materials based on Cu-oxide clusters h
attracted great interest in both theoretical and experime
research. In particular, the recently discovered inorga
spin-Peierls~SP! material CuGeO3 has also intensified inter
est in the magnetism of one-dimensional~1D! quantum sys-
tems coupled to lattice distortion.1 Although this material is
thought to possess non-negligible interchain coupling, it
been confirmed by several experiments that the SP trans
occurs at TSP.14 K and the spin gap is estimated
D.2.11 meV.1–4 Further, doped materials CuZnGeO3 and
CuGeSiO3 can be synthesized;5,6 they enable us to investi
gate the impurity effects on the spin-gap systems7–9 while it
is so far impossible with the organic SP materials.

From structural investigations,10 it was clarified that the
crystal of CuGeO3 possesses a primitive orthorhombic ce
there are two CuO6 octahedra sharing a corner and ea
belongs to a different edge-sharing CuO2 chain along thec
axis, where Ge plays a role of spacer for these chains
commonly observed in the edge-sharing CuO2 chain materi-
als ~e.g., chains in Sr14Cu24O41), since the 2p orbitals of
oxides cannot be directed towards the nearest-neighbo
Cu21 ions, a value of the nearest-neighbor~NN! exchange
coupling J is much smaller than those for corner-shari
Cu-oxide materials. Experimentally,J was estimated as 18
K for CuGeO3,11 while, for example, J.2200 K for
Sr2CuO3.

12 In this situation, it is plausible that the electro
hopping processes between next-nearest-neighboring~NNN!
Cu21 ions along the Cu-O-O-Cu path become importan13

CuGeO3 may be thus an example of the 1D interacting el
tron systems with a NNN hopping integral where frustrati
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effects caused by the hopping process should be stro
reflected in their physical quantities.

As Haseet al. reported in their paper,1 the temperature
dependence of the uniform magnetic susceptibilityx(T) at
T.TSP deviates considerably from the Bonner-Fisher cur
i.e., the theoreticalx(T) data for theS5 1

2 antiferromagnetic
~AF! Heisenberg spin chain.14 After that, the Heisenberg spin
chain system with the NNN AF exchange couplings (gJ
.0),

HJg5J(
l

~Sl•Sl 111gSl•Sl 12!, ~1!

has been used to explain this anomalous behavior: Riera
Dobry15 obtainedg.0.36, while Castillaet al.16 estimated
g.0.24. In both cases, the NNN exchange coupling is e
mated to be quite strong, while it is not precisely determin
yet. On the other hand, in the case of the inorganic SP
terial NaV2O5 recently discovered by Isobe and Ueda17

VO 5 pyramidal clusters share the corners and the magn
ions V41~3d1) form a chain along theb axis. The experi-
mental data onx(T) then agree very well with the Bonner
Fisher curve withJ.560 K atT.TSP.34 K. This indicates
an absence of the NNN exchange coupling and simu
neously presents a behavior that is in sharp contrast to
above-mentioned edge-sharing CuO2 chain system.

In this paper, we investigate the properties of the ed
sharing Cu-oxide SP system such as CuGeO3. More pre-
cisely, we shall study effects of the NNN electron hoppi
process on the ground state and lower-energy excitati
and then clarify the critical phenomenological aspect of
SP transition accompanied by the lattice distortions. As p
viously discussed by several authors,9,18 the 1D half-filled
Peierls-Hubbard model may provide a proper framework
14 658 © 1998 The American Physical Society
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57 14 659QUANTUM PHASE TRANSITIONS OF THE ONE- . . .
investigating the inorganic SP system. In the present c
however, we should also take the NNN hopping term in
account and treat the following Hamiltonian:

H52t (
^ l ,m&s

@11l~ul2um!#~cls
† cms1H.c.!

2t8 (
[ l ,m]s

~cls
† cms1H.c.!1U(

l
nl 1nl 2

1
k

2 (
^ l ,m&

~ul2um!2, ~2!

wherenls5cls
† cls (s56). The parameterk is an elastic

constant of the 1D lattice and a displacement ofl th Cu21 ion
along thec axis (ul) is coupled to the tight-binding elec
trons’ NN hopping term with strengthl. The summation in
the second term runs over all NNN-site pairs@ l ,m#, and this
term denotes the NNN hopping process~hereafter we call
this termt8). Two electrons with opposite spins feel a repu
sive Coulomb interactionU.0 on the same sites. Here,
should be noted that the system with a negativet8 value is
related to that withut8u through the particle-hole transforma
tion @i.e., cls

† →(21)lcls# in the half-filling case. Therefore
we restrictt8 to a positive value in the following discussion

This paper is organized as follows. In Sec. II, we fi
investigate the ground-state phase diagram of the sys
without lattice distortions: The so-called fluid-dimer tran
tion driven by frustration effects is examined in the largeU
region. Then the phase boundary is precisely determine
the 2D t8-U parameter space. For the Heisenberg spin ch
system, Eq.~1!, Okamoto and Nomura obtained the flui
dimer transition pointgc.0.2411 by the use of a numerica
method, where the bare coupling of the backward scatte
process becomes zero; the low-energy and the long-dist
behaviors are then described by the free-boson mo
~Gaussian model!.19 As we will show in subsequent section
the spin degrees of freedom of the systems are also desc
by the free boson on the phase boundary. We shall t
numerically check this conclusion according to the conf
mal field theory~CFT! predictions by Afflecket al. ~i.e., a
value of the central charge and a multiplet structure of ex
tation spectrum observed in finite-size systems!.20 In Sec. III,
we discuss the SP instability of the system defined by
~2!. The so-called Cross-Fisher scaling law is expected in
same way as the bond alternatingS5 1

2 AF Heisenberg spin
chain case.21,22We shall examine this prediction numerical
for the systems on the phase boundary; logarithmic cor
tions to the power-law behaviors will be discussed there,
then results will be compared with those for thet850 case,
i.e., the 1D half-filled Peierls-Hubbard model. Some disc
sions are given in Sec. IV, where the correspondence to
results in the weak-coupling region obtained by Fabrizio
discussed.23 Some relevance to CuGeO3 is also referred to in
this section. Section V is devoted to the short summary
the present investigation.

II. FLUID-DIMER TRANSITION

A. Perturbative treatment in large-U region

In this subsection, in order to investigate the frustrat
effects caused by thet8 term, we perform the
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1/U-perturbation expansion24 of Eq. ~2! and clarify the spin-
gap formation mechanism. Suppose that the lattice dimer
tion ul5(21)lu and putd52lu. Then up to the third-order
perturbation expansion, the effective spin Hamiltonian
given by

HJgd5J(
l

$@11~21! ld#Sl•Sl 111gSl•Sl 12%, ~3!

where

J5
4

US 122
t8

U D , gJ5
4

US t822
t8

U D ~4!

~hereafter, we taket as an energy unit!. Notice that the third-
order hopping process along the ‘‘triangle’’ closed loo
brings about ferromagnetic couplings. Whenu50 ~uniform
case!, the system is reduced to Eq.~1!, where the ground-
state properties have been closely investigated. Here
briefly summarize the results. Haldane transformed the s
Hamiltonian to a continuous field model and discussed
phase diagram of the ground state.25 Then, using the
bosonization technique,26 Kuboki and Fukuyama expresse
Haldane’s effective model27 by the phase Hamiltonian
~quantum sine-Gordon model!:

HJg5E dx
vs

2 S 2pKsPs
21

1

2pKs
~]xCs!2D

1E dx Dcos 2Cs , ~5!

whereCs is the phase variable of the spin degrees of fr
dom and Ps is its canonical conjugate momentum
@Cs(x),Ps(y)#5id(x2y). Ks and vs are the Gaussian
coupling and the velocity of the spin excitation, respective
According to the bosonization procedure, the backw
scattering amplitude is approximately given byD
.@2aJ/(2pa0)2#(123g), where the parametersa and a0
are the lattice constant and a short-distance cutoff, res
tively. Following Haldane’s argument,25 due to the SU~2!
symmetry of the model in the spin space, the bare coup
constants (Ks ,D) for the spin-fluid state should be locate
on the so-called Berezinskii-Kosterlitz-Thouless~BKT!
line28 embedded in the renormalization-group equations
the quantum sine-Gordon model.29 Then it is apparent tha
there are only two fixed points: one is the multicritical fixe
point (Ks* ,D* )5(1,0), which governs systems withg<gc

~spin-fluid region! and the other is the strong-coupling fixe
point D*→2` for gc,g ~dimer region!. The fluid-dimer
transition pointgc is thus realized such that the bare amp
tude D vanishes. In other words, at this point, logarithm
corrections to physical quantities caused by the margin
irrelevantD term in the spin-fluid region disappear, and t
system may be represented by the free-boson model
conformal invariance. On the other hand, in the dimer reg
D,0, the backward scattering process becomes attrac
and the spin excitation acquires a gap described by the s
function as the charge gap in the 1D half-filled Hubba
model ~i.e., an essential singular form!.30

One might expect that the transition point can be num
cally determined from the spin-gap data. However, beca
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of its essentially singular behavior near the transition poin
is difficult to judge whether the gap opens or not. Further,
numerical data may be smeared by the logarithmic cor
tions. In this situation, a good estimator to determine
transition point may not be spin-gap data but ‘‘a multip
structure’’ of the excitation spectrum of finite-size systems
discussed in detail by Okamoto and Nomura.19 They actually
evaluated a crossing point of the singlet-singlet and
singlet-triplet excitation gaps for finite-size system
Dss„N,gc(N)…5Dst„N,gc(N)…, equivalently, a point where a
fourfold degenerate first excited level is realized. Here,

Dss~N,g![E1~N,g;0!2E0~N,g;0!, ~6!

Dst~N,g![E0~N,g;1!2E0~N,g;0!, ~7!

and En(N,g;S) is an nth excited-state energy of theN-site
system in the subspace indexed by the total spinS. Then by
extrapolating the data of the finite-size systems, they c
cluded thatgc[gc(`)50.241160.0001.

Turning to our electron system, we can approximat
predict the fluid-dimer transition linetc8(U) by the use of
both gc and Eq.~4!: It is given as a solution of the equatio

0.24115S tc8
22

tc8

U D Y S 122
tc8

U D ~8!

in the large-U region. In the next subsection, we numerica
treat the lattice-fermion systems and evaluate the fluid-di
phase boundary.

B. Fluid-dimer transition line

Now, we summarize the numerical calculation results
the phase transition linetc8(U) of the 1D half-filled electron
systems@the elastic term in Eq.~2! is ignored in the numeri-
cal calculations#. We hereafter suppose that the on-site Co
lomb interactionU is sufficiently large so that the charg
excitations always acquire a gap due to the umklapp proc
In this parameter region, the frustration effects caused by
t8 term should bring about the spin gap in accordance w
the above scenario; we thus expect that the phase boun
can be accurately determined from the crossing po
tc8(N,U) of the singlet-singlet@Dss(N,t8)# and singlet-triplet
@Dst(N,t8)# excitation gaps of the finite-size systems~we use
the same notation for the gaps and the energy levels as in
spin-system case replacingg with t8).

Up to N516 sites, systems were diagonalized by the
of the Lanczos method in the subspaces indexed by quan
numbers, i.e., the totalSz and the total momentum. Figure
shows examples ofU and t8 dependences ofDss andDst for
the 16-site system. The ground state is always singlet. On
other hand, the first excited state is triplet in the spin-flu
region t8,tc8(N,U), while it is replaced by a singlet stat
with momentump ~relative to the ground-state value! in the
dimer region. According to the Lieb-Schultz-Matt
theorem31 for half-integer-spin systems with the translation
and the rotational symmetry, the ground state in the dim
region should be degenerate corresponding to the spon
ous broken parity. The first singlet excited state is thus
pected to merge to the ground state in the dimer region
N→`. When U is sufficiently large, we observe thatDss
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becomes zero aroundt8.A1/2; this point may be naturally
related to the Majumdar-Ghosh model@i.e., Eq. ~1! with g
5 1

2# possessing two kinds of NN-singlet array grou
states.32

Performing an interpolation of the diagonalization da
we estimatedtc8(N,U) as shown in Table I. Then, for th
N→` extrapolation, three different algorithms, i.e., Shank
transform, Wynn’se algorithm, and the least-square-fittin
method assuming the 1/N2 dependence oftc8(N,U) were
tried.19,33 Results obtained by these different methods
compared, and then we can observe the following: WhenU
>12, the consistency among these results holds within 0
accuracy, while it becomes worse with the decrease ofU,
namely, 1% and 5% atU58 and 4, respectively. Although i
may present rough estimation on errors of extrapolated d
the discrepancy is mainly due to a sensitivity of the lea
square-fitting method to a staggeredN dependence of data
As a consequence, we employ the results of Shank’s tra
form ~Wynn’s e algorithm gives almost the same data!. The
extrapolation procedure is summarized in Table I~the data of
the six-site system were not used!.

Figure 2 shows the ground-state phase diagram of the
Hubbard model with the NNN transfer integral in the larg
U region. Double circles show the extrapolated data in Ta
I. The broken line exhibits the perturbation result ontc8(U),
i.e., the solution of Eq.~8!. The vertical arrow near thex
biaxis denotes the limiting value —tc8(`).A0.2411 — ex-
pected from the above-mentioned quantum spin case.
can see that calculated data asymptotically converge to
limiting value with the increase ofU while the spin-fluid
region becomes large in the intermediate- and the we
coupling regions qualitatively in accordance with the pert
bation result; this may be recognized as an itinerancy ef
of electrons.

C. Numerical evidence of the conformal invariance

In the spin-fluid region, an effective continuous fie
model to describe the low-energy excitations of the

FIG. 1. Singlet-singlet gapDss(N,t8) ~circles! and singlet-triplet
gapDst(N,t8) ~triangles! for the 16-site system. The data ofU58,
16, 24, and 32 cases are presented as examples.
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TABLE I. The values oftc8(N,U) (tc8 column! and the extrapolation procedure. Thetc8
(1) and tc8

(2) columns show the data obtained b
the iterative application of the Shank transformation.

N U tc8 tc8
(1) tc8

(2) U tc8 tc8
(1) tc8

(2)

6 32 0.506 389 09 16 0.524 614 49
8 0.499 538 64 0.508 023 33

10 0.498 009 83 0.495 395 02 0.507 915 19 0.508 037 65
12 0.497 045 08 0.495 553 33 0.495 458 88 0.506 990 85 0.505 980 59 0.504 313
14 0.496 459 22 0.495 350 94 0.506 508 16 0.505 498 90
16 0.496 075 96 0.506 181 63

6 28 0.508 312 90 12 0.542 104 48
8 0.500 489 68 0.515 073 38

10 0.499 069 47 0.496 181 03 0.517 191 83 0.516 455 06
12 0.498 117 39 0.496 661 78 0.496 498 69 0.516 062 17 0.515 566 55 0.515 970
14 0.497 541 79 0.496 450 74 0.515 717 69 0.514 073 38
16 0.497 164 98 0.515 432 88

6 24 0.511 248 06 8 0.585 187 38
8 0.501 915 34 0.527 89 519

10 0.500 679 26 0.496 824 89 0.539 438 55 0.536 757 52
12 0.499 743 33 0.498 350 23 0.498 111 55 0.535 946 45 0.536 447 35 0.536 264
14 0.499 183 51 0.498 115 04 0.536 531 23 0.536 298 18
16 0.498 816 16 0.536 143 77

6 20 0.516 039 27 4 0.716 713 84
8 0.504 176 95 0.524 853 17

10 0.503 290 01 0.528 771 03 0.601 579 21 0.571 281 99
12 0.502 371 09 0.501 098 89 0.500 705 53 0.551 511 49 0.569 084 44 0.566 737
14 0.501 837 55 0.500 801 66 0.578 587 78 0.567 871 12
16 0.501 485 39 0.560 850 99
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lattice-fermion systems is the free boson with conformal
variance @the so-calledk51 SU~2! Wess-Zumino-Witten
model#. Affleck, Gepner, Schulz, and Ziman20 discussed the
finite-size effects on it and the logarithmic corrections, a
further, Nomura and Okamoto34 extended the argument t
include the anisotropic quantum spin systems. Some num
cal calculation data on the quantum spin systems were
presented there. In this subsection, we shall check the
formal invariance of the interacting lattice fermions: T
multiplet structure of the finite-size systems is explored a
the value of the central charge is estimated. In general, w
we work with the data of the finite-size systems~in the
present case,N.16 may be the maximum size accessible
the diagonalization method!, the logarithmic corrections
make these checks difficult. However, as we shall so
show, it is possible for the systems on the phase bound
where the logarithmic correction due to theD term is
absent.35

First, three sampling points, i.e.,tc8(26)50.4972,tc8(18)
50.5017, andtc8(10)50.5249 were picked up from th
phase boundary drawn by the spline fitting interpolation
the calculated data~dotted line in Fig. 2!. The velocity of
spin excitationvs„tc8(U)… is then extracted from the size de
pendence of the excitation gap using the relation

2pvs~ tc8!

N
x1. 1

4 @Dss~N,tc8!13Dst~N,tc8!#, ~9!
-

d

ri-
so
n-

d
en

n
ry

f

where x1 ~scaling dimension of the lowest excitations! is
assumed to1

2.
19,36 Since the linearity of the data is excelle

~see Fig. 3!, we can estimatevs(tc8) accurately using the
least-square-fitting method for the data~except for those of
the six- and eight-site systems!.

Next we evaluate the central chargec: The ground-state
energy of the system with the periodic boundary condition
given by

E0~N,tc8 ;0!.e0N2
pvs~ tc8!

6N
c, ~10!

wheree0 is the ground-state energy density in the thermo
namic limit. Figure 4 shows the 1/N2 dependence ofE0 /N at
the sampling points. The least-square-fitting lines showc
.1 within 4% independently of the points. As a result, w
can conclude that since thetc8(U) dependence is only re
flected in the velocity of excitation, the systems on the ph
boundary are identical to the free-boson model, and thus
criticality is described by thec51 CFT.

Finally, we investigate multiplet structures of finite-siz
systems on the phase boundary. The lower-energy excita
levels are measured with taking the ground-state energ
zero and normalized by the velocity as20,37

x[@En~N,tc8 ;S!2E0~N,tc8 ;0!#Y 2pvs~ tc8!

N
. ~11!
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Results are then summarized in Fig. 5. WhenN is small, the
numerical data considerably deviate from the CFT predict
~dotted lines in the figure!. This may be mainly due to the
O(1/N3) corrections from the irrelevant operators that a
dropped when we take the continuous limit of the latt
model. On the other hand, with the increase ofN, we can
find that the supermultiplet structure becomes prominent
dependently of the sampling points and the data clearly
produce the high degeneracy of the CFT prediction.

FIG. 2. Ground-state phase diagram of the 1D half-filled Hu
bard model with the NNN transfer integral. The double circles
note the extrapolated data of the transition point and the broken
is the perturbatively estimated phase boundary. The arrow nea
x biaxis shows the value for the frustrated Heisenberg spin ch
system@ tc8(`).A0.2411#.

FIG. 3. The system size dependence of the averaged excit
gap at the sampling points. The velocity of the spin excitation (vs)
is extracted from the least-square-fitting lines~dotted lines!. The
parenthesized digits in the figure include errors.
n

-
e-

III. SPIN-PEIERLS TRANSITION

A. Cross-Fisher scaling law

So far, we have investigated the uniform case and d
cussed the frustration effects on the spin-fluid state. Now,
shall discuss another gap formation mechanism embedde
Eq. ~2!, i.e., the SP instability. In the large-U region, we can
start with the effective Hamiltonian Eq.~3! with assuming
the lattice dimerization. Then its bosonized form is w
known; i.e., a nonlinear term~we call this theB term! emerg-
ing from the bond alternation,

Hu5E dx BcosCs ~12!

-
-
e

he
in

on

FIG. 4. The system size dependence of the ground-state en
density at the sampling points. The value of the central chargec)
is estimated from the gradient of least-square-fitting lines~dotted
lines!. The parenthesized digits in the figure include errors.

FIG. 5. Examples of system size dependence of the low
energy excitation levels~normalized!. Triangles, squares, an
circles denote the data attc8(10), tc8(18), andtc8(26), respectively.
Dotted lines show the CFT prediction.
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(B}u), is appended to Eq.~5!. As mentioned above, sinc
the D term is marginally irrelevant in the spin-liquid region
the couplings are renormalized to (K,D)→(1,0). On the
other hand, theB term becomes relevant and leads to a cr
cal phenomena~critical point uc50), where the power-law
behaviors of two physical quantities, i.e., the ground-st
energy gain due to the lattice dimerization~per site! G(u)
}u22a and the singlet-triplet excitation gapDst(u)}un are
the main concerns: According to Cross and Fisher, th
critical exponents are given as

~a,n!5S 2

3
,
2

3D , ~13!

respectively~Cross-Fisher scaling law21! and further, they
satisfy the hyperscaling relation of exponentsdn522a ~d
5111). However, in general, it is naturally expected th
the power-law behaviors acquire logarithmic corrections
the course of the renormalization of the marginally irrelev
operator.38 In fact, in the previous paper, we have nume
cally studied thet850 case assuming the uniform char
distribution ~i.e., the absence of a ‘‘charge soliton’’!.18 The
results show that the Cross-Fisher scaling law acquires
logarithmic corrections, e.g.,Dst(u)}u2/3/u ln uu. In the
present case (t8Þ0), however, as we have seen in Sec.
the main effect of thet8 term in the large-U region is to
introduce the frustration; the bare coupling of theD term
decreases with the increase oft8, and finally, it vanishes a
t85tc8(U). Therefore, we expect that since logarithmic co
rections may be absent from the SP transition of the syst
on the fluid-dimer transition line, the critical behavior
clearly visible even for working with small-size systems.

B. Numerical results

In this subsection, we summarize the numerical data
the lattice-dimerization effects@ul5(21)lu#. The diagonal-
ization calculations were performed for the systems on
above-mentioned sampling points. Systems of up to 16 s
were treated and the following parameter values were u
for the evaluation of critical exponents:l51 and u5e2r

(r51,2, . . .,11) ~in unit of t). Suppose thatĒ0(N,u;S) is
the ground-state energy of theN-site system in the subspac
of the total spinS. Then, the energy gain per site and t
singlet-triplet gap are defined by

NḠ~N,u![Ē0~N,0;0!2Ē0~N,u;0!, ~14!

D̄~N,u![Ē0~N,u;1!2Ē0~N,u;0!, ~15!

respectively~physical quantities with the bar denote the da
on the phase boundary!.

First, according to the finite-size scaling hypothesis,
numerical data are analyzed with assuming the o
parameter scaling form

Q~N,u!;N2mQf Q~N/j!;N2mQf Q~Nun!, ~16!

whereQ5Ḡ or D̄. j is the correlation length~inverse of the
spin gap! and f Q is an universal scaling function. From th
limiting behaviors, i.e.,Ḡ(`,u);u22a, Ḡ(N,u);u2 with
-
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fixed N ~Ref. 39! and D̄(`,u);un, D̄(N,0);1/N,40 the ex-
ponentsmQ and the asymptotic behaviors off Q are expected
as follows:mḠ5(22a)/n,

f Ḡ~x!→H x2/n for x→0

x~22a!/n for x→`,
~17!

andmD̄51,

f D̄~x!→H const for x→0

x for x→`.
~18!

In general,a andn are fitting parameters to be determine
from the scaling plots. However, if we employ the Cros
Fisher exponents and these asymptotic behaviors, no ad
able parameter exists in the finite-size scaling analysis.

Figures 6 and 7 show the plots of the spin gap and

energy gain per site with (a,n)5( 2
3 , 2

3 ), respectively~the
data ofN510, 12, 14, and 16 cases were used!. The curves
in Fig. 7 have been shifted appropriately along they axis for
clarity. We can see from these figures that in spite of wo
ing with small-size systems the scaled data collapse on
versal functions within good accuracy and their asympto
behaviors agree with expected ones in both figures. Furt
these scaling properties do not depend upon the samp
points as we have expected. Therefore, the present nume
data analysis seems to indicate that the SP transition of
systems on the phase boundary is in accord with the Cr
Fisher scaling law.

Here, it should be noted that Chitraet al.41 studied theS
5 1

2 Heisenberg spin chain, Eq.~3!, atg5gc by the use of the
density-matrix renormalization-group~DMRG! method:42

They obtained critical exponents (a,n).(0.749,0.667),
which indicate violation of the hyperscaling relation of e
ponents in the SP transition. On the other hand, Okam
and Nakamura43 recently reexamined the same problem u
ing the exact diagonalization method; the spin gap and

FIG. 6. Finite-size scaling plot of the singlet-triplet excitatio
gap at the sampling points. The Cross-Fisher exponents are use

plots of ln@NmD̄D̄(N,u)# vs ln (Nun).
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energy gain data were analyzed according to the finite-
scaling hypothesis. In particular, the possibility of a logari
mic correction to the energy gain,

Ḡ}dau ln du, ~19!

was discussed in detail there. As a result, they concluded
the SP transition atg5gc is described by the Cross-Fish
scaling law except for the existence of the logarithmic c
rection to the energy gain, i.e., by Eq.~19! with a5 4

3.
In order to investigate this possibility in our case, w

employ a cost functionSLLF ~local linearity function! to mea-
sure the universal fitting of scaling plots as explain
below.44 Suppose that (xi ,yi) @ i 51, . . .n, (xi,xi 11)# are
a scaled variable and a scaled physical quantity, respecti

@xi5 ln (Nun) and yi5 ln (NmḠḠ) in our data analysis#. Then
the quantity

SLLF5 (
i 52

n21 S yi2^yi&
di

D 2

~20!

gives a local linearity of a function and may serve to meas
the reliability of the universality of scaling plots, wher
^yi&5@(xi 112xi)yi 212(xi 212xi)yi 11#/(xi 112xi 21) and
di

2511@(xi 112xi)
21(xi 212xi)

2#/(xi 112xi 21)2. We
fixed n5 2

3 and calculatedSLLF as a function ofmḠ ; the
obtained results are summarized in Fig. 8. The implicati
of the observed behaviors are rather subtle and there ma
two possibilities: We find that the optimized valuesmḠ

* are
always smaller than 2~the Cross-Fisher case! independently
of the sampling point while a staggered size dependenc
visible atU510. This tendency seems to coincide with t
frustrated Heisenberg spin system case as mentioned ab
and thus the deviation frommḠ

* 52 might be attributed to the
logarithmic correction, Eq.~19!. On the other hand, it is als

FIG. 7. Finite-size scaling plot of the energy gain per site at
sampling points. The Cross-Fisher exponents are used for plo

ln @NmḠḠ(N,u)# vs ln (Nun). The curves have been shifted along t
y axis for clarity ~0, 26, and212 for U510, 18, and 26, respec
tively!.
e
-

at

-

ly

e

s
be

is

ve,

plausible that sincemḠ
* .1.95 is enough close to 2, the de

viation does not have to indicate the existence of the lo
rithmic correction but other artificial effects in the prese
data analysis~e.g., a parameter range to be examined or
expected features of the cost function!. As a result, we could
not detect the existence of the logarithmic correction claim
in the quantum spin system case; more intensive invest
tions should be conducted to draw a definitive conclusion
the use of other numerical approaches.

IV. DISCUSSIONS

In our investigation at half-filling, we have assumed th
the system is in the insulating phase due to the relevant
klapp process in the large-U region ~i.e., in the single-
component Tomonaga-Luttinger liquid state!. On the other
hand, recently, Fabrizio explored the ground-state phase
gram of the 1D Hubbard model with thet8 term.23 Since
their approach is based on both the bosonization star
from the noninteracting fermion system and the perturba
renormalization-group calculations, the predictions may h
in the weak-coupling region, and thus it is complimentary
our investigation. In the half-filling case, significant effec
of the t8 term are observed int8.0.5 region, where four
Fermi points exist, and thus the two-band effective mo
can describe the low-energy excitation properties. In t
situation, the scaling dimension of the umklapp process
comes higher since four electrons at the Fermi points co
mensurately participate in the scattering process. As a c
sequence, the umklapp process is not always relevant;
charge excitation, in turn, possibly becomes gapless belo
certain critical valueUc . This possibility was numerically
investigated by Kurokiet al.45 with employing the DMRG
method. Consequently they estimatedUc(t850.8).3, al-
though the determination of the critical value as an end po
of the massless phase may be difficult.

e
of

FIG. 8. ThemḠ dependence of the local linearity functionSLLF

with n5
2
3. The solid, the dotted, and the broken lines show

results obtained fromN5(12,14,16), (10,12,14), and (8,10,12
sites systems’ data, respectively. The inset shows the resul
U510.
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According to the prediction by Fabrizio, at half-filling, th
magnetic insulating~MI ! and the dimer insulating~DI!
phases are realized whenU is large. On the other hand, th
superconducting~SC! region is expected in the small-U re-
gion, where the charge~spin! gap is closed~open!. In fact,
the MI and the DI phases are identical with the spin-liqu
and the dimer states in the present investigation, but the
region is apparently beyond the scope of our discuss
Therefore, to complete the phase diagram in the 2Dt8-U
parameter space, we should also examine the charge ex
tions in the weak-coupling region~e.g.,t8 dependence ofUc)
and clarify the transition properties between expected pha

We have treated the 1D fermion system and clarified
basic properties, i.e., ground-state phase diagrams and
criticality of the SP transition. However, it is known for th
real inorganic compound CuGeO3 that interchain coupling is
quite strong@i.e.,Jb ~exchange coupling constant along theb
axis! ;0.1J#.3 Inagaki and Fukuyama46 discussed the phas
boundary between the Ne´el and the SP states by taking th
interchain coupling into account~within the scope of the
mean-field approximation!, and quite recently Zanget al.ex-
tended the argument to include the frustration.47 The results
indicate that the frustration, relatively speaking, favors
SP state over the Ne´el one; therefore that the SP state
observed in CuGeO3 despite the non-negligible intercha
coupling might be due to the strong frustration effect ori
nating from Cu-O-O-Cu electron hopping process. On
other hand, if the system is in the dimer phase in Fig. 2, th
are no critical phenomena when the lattice dimerization
taking place, and hence the model can not describe the
system.4 These conditions naturally put CuGeO3 near the
fluid-dimer phase boundary. However, for a quantitative d
cussion on the values of model parameters, more deta
numerical and analytical investigations including the d
namical and the finite-temperature properties of the pre
lattice-fermion system should be conducted.15,16,48
C
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ita-

es.
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re
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-
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-
nt

V. SUMMARY

In this paper, we have investigated the ground state
the lower-energy excitations of the one-dimensional ha
filled Peierls-Hubbard model with the next-nearest-neigh
hopping integral. First the transition between the spin-flu
and the dimer states that is driven by the frustration eff
introduced by the next-nearest-neighbor hopping proc
was discussed in the uniform case; the phase boun
tc8(U/t) was numerically determined using the level cross
method based on the conformal field theory prediction. F
ther, for the systems on the phase boundary, we checked
conformal invariance by exploring the multiplet structure
the low-energy excitation spectrum and estimating the va
of the central charge.

Next, we discussed the critical phenomenological asp
of the spin-Peierls transition accompanied by the latt
dimerization. The numerical data for the systems on
phase boundary seem to indicate the power-law behavior
the energy gain and the spin gap in accordance with
prediction by Cross and Fisher. More detailed analysis e
ploying the cost function to measure the universal fitting
the finite-size scaling plots, however, exhibits a small d
crepancy between the optimized value and the predicted
on the energy gain exponent. One of the possibilities mi
be that the deviation is due to the contribution from the log
rithmic correction as claimed in the recent investigation
the frustrated Heisenberg spin chain system. Neverthe
this subject is still controversial in the case of our lattic
fermion system.
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