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We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-
Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling t&gigrt’ [t (t'),
nearest{next-neares}-neighbor hoppingtJ, on-site Coulomb repulsidnin the uniform case, with the help of
the conformal field theory prediction, we numerically determine a phase bouti{dahit) between the spin-
fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and
long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal
invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size
systems and a value of the central charge are also examined. The critical phenomenological aspect of the
spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase
boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin
gap(i.e., the Cross-Fisher scaling Iaare discussedS0163-182@08)00123-4

[. INTRODUCTION effects caused by the hopping process should be strongly
reflected in their physical quantities.

Ground states and lower-energy excitations of low- As Haseet al. reported in their papérthe temperature
dimensional quantum systems, i.e., a chain, and two- andependence of the uniform magnetic susceptibilify) at
three-leg ladder materials based on Cu-oxide clusters havE>Tgp deviates considerably from the Bonner-Fisher curve,
attracted great interest in both theoretical and experimentale., the theoreticay(T) data for theS= 1 antiferromagnetic
research. In particular, the recently discovered inorgani¢AF) Heisenberg spin chailf.After that, the Heisenberg spin
spin-Peierlg¥SP material CuGeQ has also intensified inter- chain system with the NNN AF exchange couplingg] (
est in the magnetism of one-dimensiofiaD) quantum sys- >0),
tems coupled to lattice distortidnAlthough this material is
thought to possess non-negligible interchain coupling, it has
been confirmed by several experiments that the SP transition HJy:JEI (S-S+1t75-S+2), @
occurs atTgp=14 K and the spin gap is estimated as
A=2.11 meV:~* Further, doped materials CuZnGg@nd  has been used to explain this anomalous behavior: Riera and
CuGeSiQ, can be synthesizetf they enable us to investi- Dobry'® obtainedy=0.36, while Castillaet al*® estimated
gate the impurity effects on the spin-gap systémwhile it v=0.24. In both cases, the NNN exchange coupling is esti-
is so far impossible with the organic SP materials. mated to be quite strong, while it is not precisely determined

From structural investigation’$,it was clarified that the yet. On the other hand, in the case of the inorganic SP ma-
crystal of CuGeQ possesses a primitive orthorhombic cell: terial NaV,Os recently discovered by Isobe and Uéda,
there are two Cu@ octahedra sharing a corner and eachVO ;5 pyramidal clusters share the corners and the magnetic
belongs to a different edge-sharing Gu€hain along thec ions V4*(3d') form a chain along thé axis. The experi-
axis, where Ge plays a role of spacer for these chains. Amental data ony(T) then agree very well with the Bonner-
commonly observed in the edge-sharing Guthain materi-  Fisher curve with)=560 K atT>Tgz=34 K. This indicates
als (e.g., chains in §§Cw,40,1), since the P orbitals of an absence of the NNN exchange coupling and simulta-
oxides cannot be directed towards the nearest-neighboringeously presents a behavior that is in sharp contrast to the
Cu?* ions, a value of the nearest-neightidiN) exchange above-mentioned edge-sharing Cu€hain system.
coupling J is much smaller than those for corner-sharing In this paper, we investigate the properties of the edge-
Cu-oxide materials. Experimentally,was estimated as 183 sharing Cu-oxide SP system such as CuGeMore pre-

K for CuGeOy! while, for example,J=2200 K for cisely, we shall study effects of the NNN electron hopping
SKL,Cu0s.*? In this situation, it is plausible that the electron process on the ground state and lower-energy excitations,
hopping processes between next-nearest-neighb@iN@N)  and then clarify the critical phenomenological aspect of the
Cu?" ions along the Cu-O-O-Cu path become importdnt; SP transition accompanied by the lattice distortions. As pre-
CuGeO; may be thus an example of the 1D interacting elec-viously discussed by several authd?$,the 1D half-filled

tron systems with a NNN hopping integral where frustrationPeierls-Hubbard model may provide a proper framework for

0163-1829/98/523)/146589)/$15.00 57 14 658 © 1998 The American Physical Society



57 QUANTUM PHASE TRANSITIONS OF THE ONE. .. 14 659

investigating the inorganic SP system. In the present casd/U-perturbation expansiéhof Eq. (2) and clarify the spin-
however, we should also take the NNN hopping term intogap formation mechanism. Suppose that the lattice dimeriza-

account and treat the following Hamiltonian: tion u;=(—1)'u and puté=2\u. Then up to the third-order
perturbation expansion, the effective spin Hamiltonian is
H=—t > [1+A(U—um](c) cmetH.C) given by
{I,myo

_ —1)! . .
S (Glonrt He) +US nn Hyyo=d2 A1+ (~1)'81S St 78 Suzh, ()

[I,m]o
where
K
+=2 (u—up?, 2 ' '
2fm " " J=% 1—2%), 7J=%(t’2— tU) (4
where n|g=c|T,,C,U (0= *). The parametek is an elastic

constant of the 1D lattice and a displacemeritthfCu** ion  (hereafter, we takeas an energy unitNotice that the third-
along thec axis (u;) is coupled to the tight-binding elec- order hopping process along the “triangle” closed loops
trons’ NN hopping term with strength. The summation in  prings about ferromagnetic couplings. Whes 0 (uniform
the second term runs over all NNN-site pditsm], and this  casg, the system is reduced to E€L), where the ground-
term denotes the NNN hopping proceeereafter we call state properties have been closely investigated. Here we
this termt”). Two electrons with opposite spins feel a repul- priefly summarize the results. Haldane transformed the spin
sive Coulomb interactiot)>0 on the same sites. Here, it Hamiltonian to a continuous field model and discussed the
should be noted that the system with a negativealue is phase diagram of the ground stateThen, using the
related to that witht'| through the particle-hole transforma- bosonization techniqui®, Kuboki and Fukuyama expressed
tion [i.e., ¢/, —(—1)'c,,] in the halffiling case. Therefore, Haldane’s effective mod& by the phase Hamiltonian
we restrictt’ to a positive value in the following discussion. (quantum sine-Gordon model

This paper is organized as follows. In Sec. Il, we first

investigate the ground-state phase diagram of the system _ Vg P 2
without lattice distortions: The so-called fluid-dimer transi- Hyy= | dx 2 2K 115+ ZWKU(WI’U)

tion driven by frustration effects is examined in the lakge-

region. Then the phase boundary is precisely determined in f

the 2Dt’-U parameter space. For the Heisenberg spin chain + ] dxDcos 2, ®

system, Eq.1), Okamoto and Nomura obtained the fluid- . . .
dimer transition pointy.~0.2411 by the use of a humerical where'W, is the.phgse varlabl_e of the Spin degrees of free-
method, where the bare coupling of the backward scatterin om arll_? I, _'S 5”5_ canltznlcal dconjugateh mcc;)ment_um.
process becomes zero; the low-energy and the long-distan U().()’ o(Y)]=10(x _y). s @nd v, are the Gaussian
behaviors are then described by the free-boson mod ouphng and the velocity _ofthe spin excitation, respectively.
(Gaussian modgl® As we will show in subsequent sections, ccording to the bosonization procedure, the backward
the spin degrees of freedom of the systems are also describ& attering amf“t“de s approximately given b

by the free boson on the phase boundary. We shall thefi - 28Y/(27maq)*](1—3y), where the parametess and aq
numerically check this conclusion according to the confor-2r€ the lattice constant and a short-distance cutoff, respec-

mal field theory(CFT) predictions by Afflecket al. (i.e., a  tvely. Following Haldane’s argumefit, due to the S(2)

value of the central charge and a multiplet structure of exciSYmmetry of the model in the spin space, the bare coupling

tation spectrum observed in finite-size systefisn Sec. 11, ~ constants K,,D) for the spin-fluid state should be located
we discuss the SP instability of the system defined by EqO" zghe so-called  Berezinskii-Kosterlitz-Thouled8KT)
(2). The so-called Cross-Fisher scaling law is expected in thdn€” eémbedded in the renormalization-group equations for
same way as the bond alternatiSg: 1 AF Heisenberg spin (1€ guantum sine-Gordon modeiThen it is apparent that
chain caséL22We shall examine this prediction numerically thgre ari only two fixed points: one is the muIt|cr|.t|caI fixed
for the systems on the phase boundary; logarithmic corred0int (K ,D*)=(1,0), which governs systems with= y.
tions to the power-law behaviors will be discussed there, anéSPin-fluid region and the other is the strong-coupling fixed
then results will be compared with those for tHe=0 case, ~POINt D*——c for <y (dimer region. The fluid-dimer
i.e., the 1D half-filed Peierls-Hubbard model. Some discusiransition pointy. is thus realized such that the bare ampli-
sions are given in Sec. IV, where the correspondence to thig!/de D vanishes. In other words, at this point, logarithmic
results in the weak-coupling region obtained by Fabrizio isf:orrectlons to phys,lcal qu.antm.es ca.used' by the marginally
discussed?® Some relevance to CuGe@s also referred to in  irrelevantD term in the spin-fluid region disappear, and the
this section. Section V is devoted to the short summary ofySteém may be represented by the free-boson model with

the present investigation. conformal invariance. On the other hand, in the dimer region
D <0, the backward scattering process becomes attractive
Il. FLUID-DIMER TRANSITION and the spin excitation acquires a gap described by the same

function as the charge gap in the 1D half-filed Hubbard
model(i.e., an essential singular foyrif

In this subsection, in order to investigate the frustration One might expect that the transition point can be numeri-
effects caused by thet’ term, we perform the cally determined from the spin-gap data. However, because

A. Perturbative treatment in large-U region
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of its essentially singular behavior near the transition point, it
is difficult to judge whether the gap opens or not. Further, the
numerical data may be smeared by the logarithmic correc- .03

tions. In this situation, a good estimator to determine the 2\“’*«{? :k.%
transition point may not be spin-gap data but “a multiplet

structure” of the excitation spectrum of finite-size systems as
discussed in detail by Okamoto and NomUtZhey actually
evaluated a crossing point of the singlet-singlet and the ¢.02 1 L . L 0.03
singlet-triplet excitation gaps for finite-size systems: 0.11
AN, 74(N))= AN, v(N)), equivalently, a point where a U=16 —— A, || U=8
fourfold degenerate first excited level is realized. Here, 0.06

U=32 U=24

0.04

andE,(N,y;S) is annth excited-state energy of tHe-site 0.05 05 053
system in the subspace indexed by the total §pifihen by

extrapolating the data of the finite-size systems, they con- _ ) ) ) )
cluded thaty.= y(e) =0.2411+0.0001. FIG. 1. Singlet-singlet gap{N,t") (circles and singlet-triplet

Turning to our electron system, we can approximatelyd2PAs(N.t’) (triangles for the 16-site system. The data 0-8,
predict the fluid-dimer transition ling,(U) by the use of 16, 24, and 32 cases are presented as examples.
both y. and Eq.(4): It is given as a solution of the equation

5 0.55

becomes zero arourtd=/1/2; this point may be naturally

t/ t/ related to the Majumdar-Ghosh modek., Eq.(1) with y
0.2411=(té2——C 1-2= (8) =3] possessing two kinds of NN-singlet array ground
U U states’

in the larget region. In the next subsection, we numerically ~ Performing an interpolation of the diagonalization data,
treat the lattice-fermion systems and evaluate the fluid-dimewe estimated((N,U) as shown in Table I. Then, for the

phase boundary. N— o extrapolation, three different algorithms, i.e., Shank’s
transform, Wynn’'se algorithm, and the least-square-fitting
B. Fluid-dimer transition line method assuming the N# dependence of.(N,U) were

. . . tried 1°% Results obtained by these different methods are

Now, we summarize the numerical calculation results Orl:ompared and then we can observe the following: Wden
the phase transition ling(U) of the 1D half-filled electron  ~ 15 the consistency among these results holds within 0.2%
systemgthe elastic term in Eq(2) is ignored in the numeri- 500 .racy, while it becomes worse with the decreas of
cal ca!culatlon}s We_ heree.lft.er suppose that the on-site Cou'namely, 1% and 5% aff =8 and 4, respectively. Although it
lomb interactionU is sufficiently large so that the charge may present rough estimation on errors of extrapolated data,
excitations always acquire a gap due to the umklapp proceSge’ giscrepancy is mainly due to a sensitivity of the least-
In this parameter region, the frustration effects caused by th§quare-fitting method to a staggeriddependence of data.
t’ term should bri.ng about the spin gap in accordance withhg 5 consequence, we employ the results of Shank's trans-
the above scenario; we thug expect that the pha;e bour!da{cyrm (Wynn's e algorithm gives almost the same datgihe
can be accurately determined fro,m the crossing pointg,ranolation procedure is summarized in Tabithe data of
t.(N,U) of the singlet-singlefA(N,t") ] and singlet-triplet  ihe six-site system were not uged

[As(N,t") ] excitation gaps of the finite-size systefmg use Figure 2 shows the ground-state phase diagram of the 1D
the same notation for the gaps and the energy levels as in thgubbard model with the NNN transfer integral in the large-
spin-system case replacingwith t). U region. Double circles show the extrapolated data in Table

Up to N=16 sites, systems were diagonalized by the Us§ The proken line exhibits the perturbation resulttaU),
of the Lanczos method in the subspaces indexed b)_/ quantu  the solution of Eq(8). The vertical arrow near the
numbers, i.e., the tot&? ar,1d the total momentum. Figure 1 .o .« qenotes the limiting value (=)= 0.2411 — ex-
sr?ovlvg e_xamples dﬂTandt degendenpeslaiss an.dAISf fo(r) ected from the above-mentioned quantum spin case. We
the 16-site system. The ground state is always singlet. On gy, seq that calculated data asymptotically converge to the
other hand, the first excited state is triplet in the Sp'n'ﬂu'dlimiting value with the increase o) while the spin-fluid
regiont’ <t;(N,U), while it is replaced by a singlet state e4ion becomes large in the intermediate- and the weak-
with momentums (relative to the ground-state value the  ¢oypling regions qualitatively in accordance with the pertur-

dimer ~region. According to the Lieb-Schultz-Matis pation result; this may be recognized as an itinerancy effect
theoreni* for half-integer-spin systems with the translational of electrons.

and the rotational symmetry, the ground state in the dimer
region should be degenerate corresponding to the spontane-
ous broken parity. The first singlet excited state is thus ex-
pected to merge to the ground state in the dimer region as In the spin-fluid region, an effective continuous field
N—o. When U is sufficiently large, we observe that,, model to describe the low-energy excitations of the 1D

C. Numerical evidence of the conformal invariance
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TABLE I. The values oft(N,U) (t. column and the extrapolation procedure. TH&Y andt.® columns show the data obtained by
the iterative application of the Shank transformation.

N U t. .M £, U t, . £/
6 32 0.506 389 09 16 0.524 614 49
8 0.499 538 64 0.508 023 33
10 0.498 009 83 0.495 395 02 0.507 915 19 0.508 037 65
12 0.497 045 08 0.495 553 33 0.495 458 88 0.506 990 85 0.505 980 59 0.504 313 97
14 0.496 459 22 0.495 350 94 0.506 508 16 0.505 498 90
16 0.496 075 96 0.506 181 63
6 28 0.508 312 90 12 0.542 104 48
8 0.500 489 68 0.515 073 38
10 0.499 069 47 0.496 181 03 0.517 191 83 0.516 455 06
12 0.498 117 39 0.496 661 78 0.496 498 69 0.516 062 17 0.515 566 55 0.515 970 85
14 0.497 541 79 0.496 450 74 0.515 717 69 0.514 073 38
16 0.497 164 98 0.515 432 88
6 24 0.511 248 06 8 0.585 187 38
8 0.501 915 34 0.527 89 519
10 0.500 679 26 0.496 824 89 0.539 438 55 0.536 757 52
12 0.499 743 33 0.498 350 23 0.498 111 55 0.535 946 45 0.536 447 35 0.536 264 74
14 0.499 183 51 0.498 115 04 0.536 531 23 0.536 298 18
16 0.498 816 16 0.536 143 77
6 20 0.516 039 27 4 0.716 713 84
8 0.504 176 95 0.524 853 17
10 0.503 290 01 0.528 771 03 0.601 579 21 0.571 281 99
12 0.502 371 09 0.501 098 89 0.500 705 53 0.551 511 49 0.569 084 44 0.566 737 23
14 0.501 837 55 0.500 801 66 0.578 587 78 0.567 871 12
16 0.501 485 39 0.560 850 99

lattice-fermion systems is the free boson with conformal in-where x; (scaling dimension of the lowest excitationis

variance [the so-calledk=1 SW2) Wess-Zumino-Witten

assumed t@.1%% Since the linearity of the data is excellent

model. Affleck, Gepner, Schulz, and Zim&hdiscussed the (see Fig. 3, we can estimate ,(t)) accurately using the
finite-size effects on it and the logarithmic corrections, andeast-square-fitting method for the datxcept for those of
further, Nomura and Okamatbextended the argument to the six- and eight-site systeims
include the anisotropic quantum spin systems. Some numeri- Next we evaluate the central chargeThe ground-state

cal calculation data on the quantum spin systems were alsenergy of the system with the periodic boundary condition is
presented there. In this subsection, we shall check the cogjven by
formal invariance of the interacting lattice fermions: The
multiplet structure of the finite-size systems is explored and
the value of the central charge is estimated. In general, when
we work with the data of the finite-size systertia the
present casé\=16 may be the maximum size accessible by
make these. checks dificul. However, s we shall sooff &M M. Figure 4 shows the W dependence dEo/N at
show, it is possible for the systems on the phase boundarhe se}m.plmg pomts. The Ieast-square-flttlng lines srow
where the logarithmic correction due to the term is =1 within 4% mdepgndently of the points. As a result, we
absent® can conclude that.smce th_é(L}) dependence is only re-
First, three sampling points, i.e,(26)=0.4972,t.(18) flected in the yeloqty of excitation, the systems on the pha§e
20'501’7’ andt’(10)=0.5249 ,were picked up ;‘r(c:)m the boundary are identical to the free-boson model, and thus, its

phase boundary drawn by the spline fitting interpolation ofCrltlcallty Is described by the=1 CFT.

N . Finally, we investigate multiplet structures of finite-size
thg calcglatled dat,édotteq line in Fig. 2 The velocgy of systems on the phase boundary. The lower-energy excitation
spin excitatiorv ,(t;(U)) is then extracted from the size de-

d f th 0 ing the relati levels are measured with taking the ground-state energy as
pendence of the excitation gap using the relation zero and normalized by the velocity?&e’

70 ,(t¢)
— C

EO(Nat(’;yo):eoN_ 6N y

(10

whereg, is the ground-state energy density in the thermody-

2770 ,(t0)

N1~ a[AN ) +3A(N )], ©)

Zwv(r(t(,:)
xz[En(N,tg;s>—Eo(N,tg;o>]/T. (11)



14 662 HIROMI OTSUKA 57
1()
N g ol Eo/N
o 9 0270 Xe THNo TN o . )
_ ol _
S t(U)
Ut el e NUMERICAL

- i PERTURB. peeo o

20 o
L o) i 02|

4 Dimer(gaptul) o U=26, ¢=0.99(7)

- s U=18, ¢=1.00(0)
B ‘e s U=10, ¢=1.0(33)
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B 0 0.002 0.004 0.006 0.008
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. i FIG. 4. The system size dependence of the ground-state energy
FIG. 2. Grgund-state phase d'agfam of the 1D half-fll_led HUb'density at the sampling points. The value of the central chazie (
bard model with the NNN transfer integral. The double circles de-io octimated from the gradient of least-square-fitting lifastted

note the extrapolated data of the transition point and the broken "”ﬁnes) The parenthesized digits in the figure include errors
is the perturbatively estimated phase boundary. The arrow near the '
x biaxis shows the value for the frustrated Heisenberg spin chain

system[t;(e)=+/0.2411.

Ill. SPIN-PEIERLS TRANSITION
A. Cross-Fisher scaling law

So far, we have investigated the uniform case and dis-
pussed the frustration effects on the spin-fluid state. Now, we
shall discuss another gap formation mechanism embedded in
Eqg. (2), i.e., the SP instability. In the lardd-region, we can
start with the effective Hamiltonian Ed3) with assuming

Results are then summarized in Fig. 5. Wiheis small, the
numerical data considerably deviate from the CFT predictio
(dotted lines in the figupe This may be mainly due to the
O(1/N3) corrections from the irrelevant operators that are

dropped when we take the continuous limit of the IattlCethe lattice dimerization. Then its bosonized form is well

model. On the other hand, with the increaseNjfwe can known; i.e., a nonlinear tertwe call this theB term) emerg-

find that the supermultiplet structure becomes prominent |n|-ng from the bond alternation,

dependently of the sampling points and the data clearly re-

produce the high degeneracy of the CFT prediction.
Hu=f dx Bcos?¥ (12
- (As+3Ag)/4 R N=12 N=16
03 | r s -
i o U=26, v;=0.179(4)
: U=18, V0=0.255(6) o x R ? ........... B F Q ........... )
. & U=10, v4=0.43(43) : goe
. & 8 N a A ] [2)
02 : 2+ L s L "
i s Lo U=26
N R g o 18
& 10
B PS 1} F L
0.1 a7 L O
: .o - . o Beerseresen £ Besorareren & Beoreressns 9
o o O
r '_O.,.O"'
B OF o ] F o
0O
| I ] 1 | 1 L ]
0 0.2 0.4 J"C/N 0.6 01 éS ; . . . . .

FIG. 3. The system size dependence of the averaged excitation FIG. 5. Examples of system size dependence of the lower-
gap at the sampling points. The velocity of the spin excitatiop) (  energy excitation levelsnormalized. Triangles, squares, and
is extracted from the least-square-fitting lin@®otted lineg. The  circles denote the data §t(10), t.(18), andt.(26), respectively.
parenthesized digits in the figure include errors. Dotted lines show the CFT prediction.
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(Beu), is appended to Eq5). As mentioned above, since i -
the D term is marginally irrelevant in the spin-liquid region, ln[N‘uAA(M u)]
the couplings are renormalized t&K,D)—(1,0). On the L
other hand, th& term becomes relevant and leads to a criti- (o,v)=(2/3,2/3) DO
cal phenomenécritical pointu,=0), where the power-law 2~ °
behaviors of two physical quantities, i.e., the ground-state + N=10 o o
energy gain due to the lattice dimerizatiqoer sit¢ G(u) i ° 12 N
«u?~® and the singlet-triplet excitation gapg(u)<u” are 2 %‘6‘ +t oo
the main concerns: According to Cross and Fisher, these  '[ ey
critical exponents are given as L U=10 o o*;
+AD AT+ ATO D+ A0 N
2 2 + O
(a,v)= §v§)a 13 ’ +A4:1c§ram+Ac:a+AA:D+A¢:o+A¢::3+AED+ADO+A
- +A

respectively(Cross-Fisher scaling 1&) and further, they +A§g@+m+@+m+m+@
satisfy the hyperscaling relation of exponedis=2—« (d -1
=1+1). However, in general, it is naturally expected that e _'4 : _'2 : (') ' '
the power-law behaviors acquire logarithmic corrections in ln[NuV]
the course of the renormalization of the marginally irrelevant

operator® In fact, in the previous paper, we have numeri-
cally studied thet’=0 case assuming the uniform charge
distribution (i.e., the absence of a “charge soliton® The

results show that the Cross-Fisher scaling law acquires t

logarithmi tions, e.g. 2lnd. In th _ _
ogarithmic corrections, e.g.As(u)u”7linul. In- the | fixed N (Ref. 39 andA(x,u)~u”, A(N,0)~ 1N, the ex-

present caset(#0), however, as we have seen in Sec. I, _ )
the main effect of the’ term in the larged region is to  PONeNtsuq and the asymptotic behaviors & are expected
as follows: ug=(2—a)/v,

introduce the frustration; the bare coupling of tbeterm
decreases with the increasetdf and finally, it vanishes at

FIG. 6. Finite-size scaling plot of the singlet-triplet excitation
gap at the sampling points. The Cross-Fisher exponents are used for

h%lots of IN[N“3A(N,u)] vs In (Nu).

2lv
t’=t./(U). Therefore, we expect that since logarithmic cor- fG(x)—>{X for x—0 17)
rections may be absent from the SP transition of the systems x2=@lv - for x—o,
on the fluid-dimer transition line, the critical behavior is _
clearly visible even for working with small-size systems. anduy=1,
B. Numerical results fA(X)_}(Const for x—0 (18
for x—oo.

In this subsection, we summarize the numerical data on
the lattice-dimerization effecfa,=(—1)'u]. The diagonal- In general,o and v are fitting parameters to be determined
ization calculations were performed for the systems on thérom the scaling plots. However, if we employ the Cross-
above-mentioned sampling points. Systems of up to 16 siteSisher exponents and these asymptotic behaviors, no adjust-
were treated and the following parameter values were useable parameter exists in the finite-size scaling analysis.
for the evaluation of critical exponenta:=1 andu=e* Figures 6 and 7 show the plots of the spin gap and the

(p=1,2,...,11) (in unit of t). Suppose thaEy(N,u;S) is  energy gain per site witha|v)=(2,2), respectively(the
the ground-state energy of tiesite system in the subspace data of N=10, 12, 14, and 16 cases were Usékhe curves
of the total spinS. Then, the energy gain per site and thein Fig. 7 have been shifted appropriately along yhexis for

singlet-triplet gap are defined by clarity. We can see from these figures that in spite of work-
- o o ing with small-size systems the scaled data collapse on uni-
NG(N,u)=E(N,0;0) — E(N,u;0), (14 versal functions within good accuracy and their asymptotic
behaviors agree with expected ones in both figures. Further,
K(N,U)EEO(N,U;l)—EO(N,U;O), (15) these scaling properties do not depend upon the sampling

points as we have expected. Therefore, the present numerical
respectively(physical quantities with the bar denote the datadata analysis seems to indicate that the SP transition of the
on the phase boundary systems on the phase boundary is in accord with the Cross-
First, according to the finite-size scaling hypothesis, theFisher scaling law.
numerical data are analyzed with assuming the one- Here, it should be noted that Chited al*! studied theS
parameter scaling form = 1 Heisenberg spin chain, E¢B), at y= v, by the use of the
density-matrix renormalization-groupDMRG) method?*?
Q(N,u)~N"#efo(N/§)~N"#ef5(Nu”),  (16)  They obtained critical exponentsa(r)=(0.749,0.667),

- which indicate violation of the hyperscaling relation of ex-
whereQ=G or A. ¢ is the correlation lengtlinverse of the  ponents in the SP transition. On the other hand, Okamoto
spin gap and fq is an universal scaling function. From the and Nakamur® recently reexamined the same problem us-
limiting behaviors, i.e..G(%,u)~u?"¢, G(N,u)~u? with ing the exact diagonalization method; the spin gap and the
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FIG. 7. Finite-size scaling plot of the energy gain per site at the FIG. 8. Theug dependence of the local linearity functi®, ¢

sampling points. The Cross-Fisher exponents are used for plots #fith »=3. The solid, the dotted, and the broken lines show the

In [N“SG(N,u)] vs In (NU"). The curves have been shifted along the "€Sults obtained fronN=(12,14,16), (10,12,14), and (8,10,12)
y axis for clarity (0, —6, and— 12 for U=10, 18, and 26, respec- sites systems’ data, respectively. The inset shows the results at

tively). =10.

energy gain data were analyzed according to the finite-sizelausible that sincg.z=1.95 is enough close to 2, the de-
scaling hypothesis. In particular, the possibility of a logarith-viation does not have to indicate the existence of the loga-

mic correction to the energy gain, rithmic correction but other artificial effects in the present
. data analysige.g., a parameter range to be examined or un-
G 8%In &, (19 expected features of the cost functioAs a result, we could

not detect the existence of the logarithmic correction claimed
was discussed in detail there. As a result, they concluded th@i the quantum spin system case; more intensive investiga-

the SP transition ay= y. is described by the Cross-Fisher tions should be conducted to draw a definitive conclusion by
scaling law except for the existence of the logarithmic cor-the use of other numerical approaches.

rection to the energy gain, i.e., by E@.9) with a= 3.

In order to investigate this possibility in our case, we
employ a cost functio®, ¢ (local linearity function to mea-
sure the universal fitting of scaling plots as explained In our investigation at half-filling, we have assumed that
below* Suppose thatx,y;) [i=1,...n, (x;<xX;.;)] are the system is in the insulating phase due to the relevant um-
a scaled variable and a scaled physical quantity, respectiveklapp process in the lardd- region (i.e., in the single-
[x;=In (NU*) andy;=In (N“SG) in our data analysjs Then ~ component Tomonaga-Luttinger liquid stat®©n the other

IV. DISCUSSIONS

the quantity hand, recently, Fabrizio explored the ground-state phase dia-
gram of the 1D Hubbard model with thé term?® Since
n-1 yi—(yi) 2 their approach is based on both the bosonization starting
S.r= .E ( ! 1 ' ) (200  from the noninteracting fermion system and the perturbative
= I

renormalization-group calculations, the predictions may hold

gives a local linearity of a function and may serve to measurd? the weak-coupling region, and thus it is complimentary to

the reliability of the universality of scaling plots, where our investigation. In the half—filling case, _significant effects
(Y =[(Xi11—X)Yi—1— (Xi—1=X)Yis1]/(Xis1—X;_1) and of thet 'term are observed ih’'>0.5 region, whe're four
2 w2 VY _ 2 Fermi points exist, and thus the two-band effective model
A7 =1 L0 r2=X) (-1 =) 1 (X 11— Xi 1) We  can describe the low-energy excitation properties. In this
fixed v=3% and calculatedS, r as a function ofug; the N . . 9y prop :
obtained results are summarized in Fig. 8. The impIicationsS'tuat'on’. the sqallng dimension of the umklapp process be-
of the observed behaviors are rather subtle and there may frgmes higher since four electrons at the Fermi points com-

L , . Mmensurately participate in the scattering process. As a con-
two possibilities: We find that the optimized valup% are sequence, the umklapp process is not always relevant; the

always smaller than &he Cross-Fisher casendependently  charge excitation, in turn, possibly becomes gapless below a
of the sampling point while a staggered size dependence igertain critical valueU,. This possibility was numerically
visible atU=10. This tendency seems to coincide with thejnyestigated by Kurokiet al*> with employing the DMRG
frustrated Heisenberg spin system case as mentioned aboygethod. Consequently they estimateld(t’ =0.8)=3, al-

and thus the deviation from5= 2 might be attributed to the  though the determination of the critical value as an end point
logarithmic correction, Eq19). On the other hand, it is also of the massless phase may be difficult.
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According to the prediction by Fabrizio, at half-filling, the V. SUMMARY
magnetic insulating(Ml) and the dimer insulatingDlI)

phases are realized whéhis large. On the other hand, the In this paper, we have investigated the ground state and

i s . the lower-energy excitations of the one-dimensional half-
superconductingSC) region is expected in the small-re- g0 pejerls-Hubbard model with the next-nearest-neighbor
gion, where the chargespin gap is closedopen. In fact,  honning integral. First the transition between the spin-fluid
the Mi and the DI phases are identical with the spin-liquidang the dimer states that is driven by the frustration effect
and the dimer states in the present investigation, but the Sfatroduced by the next-nearest-neighbor hopping process
region is apparently beyond the scope of our discussionyas discussed in the uniform case; the phase boundary
Therefore, to complete the phase diagram in thet2J  t/(uU/t) was numerically determined using the level crossing
parameter space, we should also examine the charge excitgrethod based on the conformal field theory prediction. Fur-
tions in the weak-coupling regidie.g.,t’ dependence df) ther, for the systems on the phase boundary, we checked the
and clarify the transition properties between expected phasesonformal invariance by exploring the multiplet structure of
We have treated the 1D fermion system and clarified itghe low-energy excitation spectrum and estimating the value
basic properties, i.e., ground-state phase diagrams and tloé the central charge.
criticality of the SP transition. However, it is known for the ~ Next, we discussed the critical phenomenological aspect
real inorganic compound CuGe@hat interchain coupling is  of the spin-Peierls transition accompanied by the lattice
quite strondi.e.,J,, (exchange coupling constant along the ~dimerization. The numerical_ data for the systems on the
axis) ~0.13].% Inagaki and Fukuyanff discussed the phase Phase boundary seem to indicate the power-law behaviors of
boundary between the Meand the SP states by taking the the energy gain and the spin gap in accordance with the
interchain coupling into accounwithin the scope of the prediction by Cross and Fisher. More detailed analysis em-
mean-field approximationand quite recently Zanet al. ex- ploying the cost function to measure the universal fitting of

tended the argument to include the frustrattéifhe results the finite-size scaling plots, however, exhibits a small dis-

indicate that the frustration, relatively speaking, favors thetrepancy between the optimized value and the predicted one

SP state over the N one: therefore that the SP state is©" the energy gain exponent. One of the possibilities might
observed in CuGe@ despit’e the non-negligible interchain be that the deviation is due to the contribution from the loga-

coupling might be due to the strong frustration effect origi—”r;[hn;'C ctortrec(j:u'(_)'n.as %Ia|med n t?‘e.recentt mvelf,lugaut?]n Ion
nating from Cu-O-O-Cu electron hopping process. On thé € frustrated Heisenberg spin chain system. Nevertneless,

other hand, if the system is in the dimer phase in Fig. 2 therj,his subject is still controversial in the case of our lattice-

are no critical phenomena when the lattice dimerization i ermion system.
taking place, and hence the model can not describe the SP

systent! These conditions naturally put CuGgMear the

fluid-dimer phase boundary. However, for a quantitative dis- The author is grateful to Y. Okabe, T. Nishino, and K.

cussion on the values of model parameters, more detaile@kamoto for helpful discussions. The main computations
numerical and analytical investigations including the dy-were carried out on FACOM VPP550 at the Supercomputer
namical and the finite-temperature properties of the preser@enter, Institute for Solid State Physics, University of

lattice-fermion system should be conductéd®*® Tokyo.
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