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Effective Lagrangian for quantum waveguides

E. Šimánek
147 Oliver Road, Santa Barbara, California 93109

~Received 10 September 1997; revised manuscript received 29 December 1997!

Quantum mechanics of a particle living in a two-dimensional channel is studied using Feynman’s path
integration technique. Integrating out the transversal mode, we obtain the effective Lagrangian for motion
along the center curve of the channel. Departure from free-particle dynamics takes place as the particle velocity
increases towards a characteristic value that depends on curvature and width of the channel. Implications for
mesoscopic normal metal rings are considered.@S0163-1829~98!05123-6#
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Motivated by recent advances in microelectronics, Ex
and Šeba1,2 investigated the problem of Schro¨dinger dynam-
ics in curved two-dimensional channels. Subsequently, G
stone and Jaffe3 considered a generalization to thre
dimensional twisting tubes. In Ref. 1, the wave equati
subject to Dirichlet boundary conditions, is rewritten in na
ral curvilinear coordinates given by the intrinsic coordina
s of the reference~guiding! curve and the coordinateu along
the normal to this curve~see Fig. 1!. After a proper rescaling
of the wave function, the Schro¨dinger equation acquires
negative effective potential proportional to the square of
curvature~of the reference curve!. This kind of potential was
found previously by several other authors,4–7 but the possi-
bility of observing the bound states and resonances in qu
tum wires2 led to resurgence of interest in this problem
Moreover, as proposed recently by Bouchaud,8 this
curvature-induced potential may be even responsible fo
Peierls-like transition of a superconducting vortex line to
folded state.

In the present paper, we study the quantum mechanic
a particle confined to the two-dimensional channel us
Feynman’s path integration method.9–11Our goal is to derive
an effective Lagrangian describing the propagation along
reference curve of the channel. Though the transform
Hamiltonian used in this calculation agrees with that of R
1, the effective Lagrangian is found to contain an additio
term that is of fourth order in the velocityds/dt. This term is
due to the presence of the Jacobian@of the transformation
(x,y)→(s,u)# in the kinetic-energy operator. This induces
coupling term in the Lagrangian of the formug(s)(ds/
dt)2 whereg(s) is the curvature. Integrating out the tran
verse degree of freedomu yields an effective Lagrangian
containing not only the curvature-induced attractive poten
but also a quartic term in the particle velocity that is likewi
second order in the curvature. The physical significance
this term is that the effective mass of the quantum part
becomes velocity dependent as soon as the particle ent
curved portion of the waveguide. As a result, the moment
dependence of particle velocity departs from the linear, fr
particle relation. The departure becomes significant when
velocity approaches a characteristic value that depend
the curvature and width of the waveguide. This result m
have applications to mesoscopic normal metal rings, wh
typical values of the characteristic velocity that are below
bulk Fermi velocity are possible.
570163-1829/98/57~23!/14634~4!/$15.00
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We consider a curved planar strip of fixed width. Adop
ing the notation of Ref. 1, the points in the strip are para
etrized by

x5a~s!2ub8~s!,

y5b~s!1ua8~s!, ~1!

where primes indicate derivatives with respect tos. In dis-
tinction from Ref. 1, the reference curveG$a(s),b(s)% is
chosen to run through the center of the strip. Hence,
Dirichlet boundary conditions correspond to infinitely ha
walls located atu56d/2 ~see Fig. 1!. The transformation
~1! implies that the metric tensor for the (s,u) coordinates is
diagonal, with the componentsgss5(11ug)2 and guu51,
where g(s)5@(a9)21(b9)2#1/2 is the curvature. The Jaco
bian of the transformation~1! is J511ug(s).

The effective Lagrangian can be derived by consider
the partition function

Z5E d2x r~x,x!, ~2!

wherer(x8,x) is the density matrix for a free particle in th
coordinate representation9

FIG. 1. A two-dimensional channel of widthd with the refer-
ence curveG(s).
14 634 © 1998 The American Physical Society
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r~x8,x!5^x8ue2bHux&5E
x~0!

x8~\b!
Dcx~t!

3expS 2
1

\ E
0

\b m

2
ẋ2dt D ,

~3!

where H52(\2/2m)¹2, and *Dcx(t) signifies path inte-
gration with the constraint that all the paths are confined
the strip.

Let us now consider the change of variables from (x,y) to
(s,u) in the integral~2!. With the use of Eq.~3!, we obtain

Z5E d2q J^x~q!ue2bH̃ux~q!&, ~4!

whereq is a shorthand for the coordinates (s,u), and H̃ is
the free-particle Hamilton operator in terms of the coor
nates (s,u),

H̃52
\2

2m F1

J

]

]s S 1

J

]

]sD1
1

J

]

]u S J
]

]uD G . ~5!

In theq representation, it is convenient to eliminate the Ja
bian from the volume element in Eq.~4!. This is achieved by
introducing the rescaled wave functions10

^x~q!ua&5J21/2^qua&, ~6!

whereua& are the energy eigenstates. Using this relation,
partition function~4! takes the form

Z5E d2q^que2bH̃uq&, ~7!

where the operatorH̄ is given by

H̄5J1/2H̃J21/252
\2

2m F ]

]s
~11ug!22

]

]s
1

]2

]u2G
1V~s,u!. ~8!

V(s,u) is the curvature-induced attractive potential@see Eq.
~3.1b! of Ref. 1#. For small and weakly varyingg(s), we can
approximateV(s,u) by1–3

V~s!52
\2

8m
g2~s!. ~9!

According to Eq. ~7!, the Hamiltonian ~8! guarantees a
proper normalization of the density matrixr~q,q!. This
should be compared with Ref. 1 where the same Hamilton
is obtained by requiring the wave function to be normaliz
on the strip.

We now turn to the evaluation ofr(q8,q) using Feyn-
man’s path integral method. To facilitate the derivations,
replace the first term in square brackets of Eq.~8! by (1
1ug)22]2/]s2. This approximation is justified for weakly
varying curvatures and it is exactly valid for mesosco
rings whereg850. Applying Feynman’s time-slicing proce
dure, we obtain9
o

-

-

e

n
d

e

r~q8,q!5E
q~0!

q8~\b!
Dcq~t!expH 2

1

\ E
0

\b

L@q~t!,q̇~t!#dtJ ,

~10!

whereL@q,q̇# is the Lagrangian in imaginary-time formula
tion. In terms of the (s,u) variables, we have

L@q,q̇#5 1
2 ~11ug!2mṡ21 1

2 mu̇21V~s!. ~11!

Using Eqs.~10! and ~11!, the partition function~7! be-
comes

Z5E
2`

`

dsE
s

s

Ds~t!expH 2
1

\ E
0

\bF1

2
mṡ21VGdtJ

3E
2`

`

duF@s,ṡ,u,u#, ~12!

where

F@s,ṡ,u,u#5E
u

u

Dcu~t!expH 2
1

\ E
0

\b

@ 1
2 mu̇2

1mguṡ21 1
2 mg2ṡ2u2#dtJ . ~13!

The pathsu(t) involved in this path integral are constraine
to the interval (2d/2,d/2) imposed by the Dirichlet bound
ary condition. Defining the effective action for the motio
along the coordinates by

Z5E
2`

`

dsE
s

s

Ds~t!expS 2
1

\
SeffD , ~14!

we obtain with the use of Eq.~12!

Seff5E
0

\b

dt@ 1
2 mṡ21V~s!#2\ ln E

2`

`

du F@s,ṡ,u,u#.

~15!

To simplify the evaluation of the last term in Eq.~15!, we
replace the infinite square-well potential by the harmo
oscillator potential12 mv2u2 ~Gaussian approximation!. We
also discard the last term in the exponent of Eq.~13!, since it
leads to a small enhancement of the mass. Thus, Eq.~13!
reduces to

F0@s,ṡ,u,u#5E
u

u

Du~t!expH 2
1

\ E
0

\b

@ 1
2 mu̇21 1

2 mv2u2

1mg ṡ2u#dtJ . ~16!

This is the path integral for a harmonic oscillator driven
the forceK(t)5mg ṡ2(t). With the use of Ref. 9, we obtain
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E
2`

`

du F0@s,ṡ,u,u#5
1

2 sinh~\bv/2!
expF 1

4mv\ E
0

\b

dtE
2`

`

dt8e2vut2t8uK~t!K~t8!G . ~17!
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Introducing this result into Eq.~15!, the effective Lagrangian
for the motion alongs becomes in the limitT→0,

Leff@s,ṡ#. 1
2 mṡ2~t!1

\v

2
1V~s!

2
mg2ṡ2~t!

4v E
2`

`

dt8e2vut2t8uṡ2~t8!.

~18!

We note that the second term is the ground-state energ
the transverse motion~see Refs. 1–3!. To match the proper-
ties of the waveguide, the frequencyv is chosen so that the
ground-state expectation value ofu2 for the infinite square
well matches that for the harmonic oscillator. This amou
to takingv'30\/md2.

If the function ṡ2(t8) changes slowly~in the neighbor-
hood oft! in comparison with the exponential function, th
t8 integral in Eq. ~18! can be evaluated by replacing th
latter function by thed function. A criterion for the validity
of this approximation can be established by noting that
largest contribution tor(s8,s) is due to the paths satisfyin
the classical equation of motion. The velocity change,
parted to the particle by the forcedV/ds over the time inter-
val 2v21 is, using Eq.~9!, given by

D ṡ5
\2

2m2v
g

dg

ds
'

\d2

60m
g

dg

ds
. ~19!

Letting ṡ5v, the above criterion amounts to requiring th
Dv2/v2!1. Using Eq.~19!, this implies a condition for the
particle velocity

v@
\d2

30m
g

dg

ds
5vmin . ~20!

Let us apply this condition to a periodically modulated wav
guide with amplituded and wavelength 2p/Q ~see Ref. 8!.
The curvatureg(s)5dQ2 cos(Qs) must be smaller than 1/d.
Thus, Eq.~20! implies

vmin5
\d2d2Q5

30m
<S Q

30kF
D vF . ~21!

Since the Fermi wave vector is of order 108 cm21, vmin can
be much smaller than the Fermi velocity for a sufficien
long modulation wavelengthl52p/Q. For instance, taking
l51025 cm, Eq.~21! yields vmin /vF<231024. In the case
of a mesoscopic ring, we havedg/ds50 and the evaluation
of Eq. ~18! with use of thed function is exact.

Assuming that the condition~20! is satisfied, the effective
Lagrangian ~18!, rewritten in terms of the velocityv
5ds/dt ~where t52 i t is the real-time variable!, takes the
form

Leff.
1

2
mS 11

v2

vc
2D v22V~s!1

\v

2
, ~22!
of

s

e

-

t

-

wherevc is a characteristic velocity of the quantum wav
guide

vc~s!5
v

g
'

30\

md2g
. ~23!

We see from Eq.~22! that the effective mass of a quantu
particle propagating along the reference curve is an incre
ing function of the velocity squared. It should be noted, ho
ever, that the rate of the increase, 1/vc

2, is limited since the
curvatureg(s) must be less than 1/d. This condition implies,
in conjunction with Eq.~23!, that vc(s)*30\/md. In the
limiting case g51/d, we obtain vc>33107 cm/s for an
electron waveguide of widthd5100 Å.

The velocity dependence of the effective mass has in
esting consequences for the dynamics. Defining the gene
ized momentump5]Leff /]v, we obtain with the use of Eq
~22!

v/vc12~v/vc!
35p/pc , ~24!

wherepc5mvc . The dispersion lawv(p) obtained from this
equation shows substantial deviation from the case of a
particle. Specifically, the velocity remains below thev5p/m
line for all values ofp. For instance, takingp5pc , yields
v'0.6vc . As p increases well abovepc the linear term in
Eq. ~24! plays a lesser role and the dispersion law cros
over tov/vc5(p/2pc)

1/3. It should be pointed out, howeve
that these conclusions are only valid within the Gauss
approximation that was adopted in the evaluation of the p
integral~13!. This imposes a limit on the magnitude ofv for
which Eq. ~22! holds. We can see how this limit arises b
calculating the correction to the ground-state energy by
dinary perturbation theory starting from Eq.~8!.

Expanding the kinetic-energy operator in this equation
first order ing, the perturbing Hamiltonian is

H̄15~\2ug/m!
]2

]s2 . ~25!

The second-order energy correction obtained withH̄1 con-
necting the ground statec1 to the next excited statec2 is

DE~2!52
p4

2m3vc
2 . ~26!

The same result is obtained by calculating the energy cor
tion from the effective Lagrangian~18! using the method of
the transition amplitude11 with the assumption that the mo
mentump is a constant of motion. In the Gaussian appro
mation, there is no energy correction of higher order th
second. This can be verified explicitly from the formula f
the fourth-order correction

DE~4!5
z^1uH̄1u2& z2z^2uH̄1u3& z2

~E12E2!2~E12E3!
2

z^1uH̄1u2& z4

~E12E2!3 . ~27!
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Assuming that the ketsu1&, u2&, and u3& are the lowest eigen
states of a harmonic oscillator, the two terms on the rig
hand side of Eq.~27! exactly cancel. This is to be expecte
since the perturbationH̄1 is linear in the displacementu so
that we are dealing with the case of a forced harmonic os
lator that is solved exactly by the second-order perturba
theory.11

For the infinite square well, the fourth-order correction
the energy is, however, nonzero. Its magnitude provides
with a criterion of validity of the Gaussian result~22!. With
the eigenstates for the well, Eq.~27! yields

DE~4!'
2.2p8

d2g2m7vc
6 . ~28!

From Eqs.~26! and ~28! it follows that the magnitudes o
DE(2) and DE(4) are equal whenp/pc'0.7(dg)1/2. This
means that the Gaussian approximation, leading to Eq.~22!,
is valid only for momenta p!pc . For real electron
waveguides, the potential well is never infinite being det
mined by the work function of the sample. Thus, the rest
tion on the momenta for a finite well is probably less sev
as the fourth-order energy correction is smaller than that
the infinite well.

According to Büttiker, Imry, and Landauer,12 a normal
metal ring threaded by a magnetic flux should carry a per
m

t-

il-
n

us

-
-
e
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s-

tent current. The magnitude of this current is of ord
evF /L, whereL is the circumference of the ring, as it i
mostly contributed by the electrons in the highest occup
levels nearEF . In this region the electron energy spectrum
expected to be modified by the quartic term in Eq.~22!. In
view of Eq. ~23!, as soon asvc drops below the bulk Ferm
velocity the persistent current develops a dependence u
the widthd of the ring. Since disorder tends to compete w
the curvature-induced transverse excitations, the wi
should not exceed the mean free path of the ring.

In summary, we find that quantum dynamics in a curv
channel is influenced by excitations of the transverse mo
Integrating out these modes, we obtain an effective Lagra
ian for the motion along the reference curve of the chann
Within the Gaussian approximation, this Lagrangian conta
a term that is quartic in particle velocity. Consequently, t
linear dependence of the velocity upon the particle mom
tum is modified as the momentum approaches a critical va
that is a function of the curvature and width of the wav
guide. For Dirichlet boundary conditions, the departure fro
the Gassian approximation is discussed using perturba
theory for the ground-state energy. Similar conclusions
be drawn for three-dimensional twisting tubes with the D
richlet boundary condition since the coupling to transve
coordinates is also present in their Hamiltonian.3
y
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