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Effective Lagrangian for quantum waveguides
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Quantum mechanics of a particle living in a two-dimensional channel is studied using Feynman'’s path
integration technique. Integrating out the transversal mode, we obtain the effective Lagrangian for motion
along the center curve of the channel. Departure from free-particle dynamics takes place as the particle velocity
increases towards a characteristic value that depends on curvature and width of the channel. Implications for
mesoscopic normal metal rings are considef&0163-18208)05123-¢

Motivated by recent advances in microelectronics, Exner We consider a curved planar strip of fixed width. Adopt-
and $bd? investigated the problem of Schiinger dynam-  ing the notation of Ref. 1, the points in the strip are param-
ics in curved two-dimensional channels. Subsequently, Goldetrized by
stone and Jaffe considered a generalization to three-
dimensional twisting tubes. In Ref. 1, the wave equation,
subject to Dirichlet boundary conditions, is rewritten in natu-
ral curvilinear coordinates given by the intrinsic coordinates
s of the referencéguiding curve and the coordinatealong _ /
the normal to this curvésee Fig. L After a proper rescaling y=b(s)+ua'(s), @
of the wave function, the Schidinger equation acquires a
negative effective potential proportional to the square of thevhere primes indicate derivatives with respecstdn dis-
curvature(of the reference curyeThis kind of potential was tinction from Ref. 1, the reference cundg{a(s),b(s)} is
found previously by several other auth4r$,but the possi- chosen to run through the center of the strip. Hence, the
bility of observing the bound states and resonances in quaririchlet boundary conditions correspond to infinitely hard
tum wire€ led to resurgence of interest in this problem.walls located at=+d/2 (see Fig. 1 The transformation
Moreover, as proposed recently by Bouch8udhis (1) implies that the metric tensor for ths,(1) coordinates is
curvature-induced potential may be even responsible for diagonal, with the componentg=(1+uy)? andg,,=1,
Peierls-like transition of a superconducting vortex line to awhere y(s)=[(a")2+ (b")?]*? is the curvature. The Jaco-
folded state. bian of the transformatiofil) is J=1+uy(s).

In the present paper, we study the quantum mechanics of The effective Lagrangian can be derived by considering
a particle confined to the two-dimensional channel usinghe partition function
Feynman'’s path integration methddt! Our goal is to derive
an effective Lagrangian describing the propagation along the
refer_ence_ curve qf th_e channe_l. Though th_e transformed Z=fd2x p(X,%), )
Hamiltonian used in this calculation agrees with that of Ref.

1, the effective Lagrangian is found to contain an additional

term that is of fourth order in the velocitys/dt. This term is wherep(x’,x) is the density matrix for a free particle in the
due to the prgsence.of Fhe Jacobfah the trans.fo_rmatlon coordinate representatidn

(x,y)—(s,u)] in the kinetic-energy operator. This induces a
coupling term in the Lagrangian of the formy(s)(ds/

dt)? where y(s) is the curvature. Integrating out the trans-

verse degree of freedom yields an effective Lagrangian
containing not only the curvature-induced attractive potential

but also a quartic term in the particle velocity that is likewise B(s)
second order in the curvature. The physical significance of

this term is that the effective mass of the quantum particle
becomes velocity dependent as soon as the particle enters a
curved portion of the waveguide. As a result, the momentum
dependence of particle velocity departs from the linear, free-
particle relation. The departure becomes significant when the
velocity approaches a characteristic value that depends on

the curvature and width of the waveguide. This result may a(s) x

have applications to mesoscopic normal metal rings, where

typical values of the characteristic velocity that are below the FIG. 1. A two-dimensional channel of widith with the refer-
bulk Fermi velocity are possible. ence curve'(s).

x=a(s)—ub’(s),
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where H=—(2%/2m)V?, and [Dx(7) signifies path inte-
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gration with the constraint that all the paths are confined to

the strip.
Let us now consider the change of variables froqyj to
(s,u) in the integral(2). With the use of Eq(3), we obtain

- f d2q J(x(a)]e FH|x(q)), @

whereq is a shorthand for the coordinates, {), andH is
the free-particle Hamilton operator in terms of the coordi-
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In the g representation, it is convenient to eliminate the Jaco-

bian from the volume element in E). This is achieved by
introducing the rescaled wave functiohs

(x(@]a)=3""%q|a), (6)

PORTS 14 635
hB
pa =" cqmem[——f Lla(7).4(n1d7},
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whereL[q,q] is the Lagrangian in imaginary-time formula-
tion. In terms of the ¢,u) variables, we have

L[9,q]=2(1+uy)’mS+imi?+V(s). (11)

Using Egs.(10) and (11), the partition function(7) be-
comes
d

= J': dsj: Ds(r)exp[ —% fohﬁ[% ms+V|d

x| aurissuul, 12
where
F[s,s,u,u]= fuchu(r)exp[ - % foﬁﬁ[%m'u2
+myus+ %myzézuz]dr] . (13)

where|a) are the energy eigenstates. Using this relation, therhe pathsu(7) involved in this path integral are constrained

partition function(4) takes the form

2= | ca(ale o), @
where the operatd; is given by
_ - 274 a9
gyt _ | 2 2~ L7
H=J"HJ om (l+U’y) &s+au2
+V(s,u). (8)

V(s,u) is the curvature-induced attractive potenfisee Eq.
(3.1b of Ref. 1]. For small and weakly varying(s), we can
approximateV(s,u) by~

ﬁZ

— A2

V(s)=—g5 v (s) €)
According to Eg.(7), the Hamiltonian(8) guarantees a
proper normalization of the density matrig(q,q). This
should be compared with Ref. 1 where the same Hamiltonial

is obtained by requiring the wave function to be normalized

on the strip.
We now turn to the evaluation q§(q’,q) using Feyn-

man’s path integral method. To facilitate the derivations, we

replace the first term in square brackets of Eg). by (1
+uy) 29%/9s®. This approximation is justified for weakly
varying curvatures and it is exactly valid for mesoscopic
rings wherey’ =0. Applying Feynman'’s time-slicing proce-
dure, we obtaih

to the interval (-d/2,d/2) imposed by the Dirichlet bound-
ary condition. Defining the effective action for the motion
along the coordinate by

© S 1
Z= fﬁw dsLDs(r)ex;{—%Seﬁ), (14
we obtain with the use of Eq12)
np . o .
Seff=J drim$+V(s)]-% In f du F[s,s,u,ul.
O —
(15

To simplify the evaluation of the last term in E(L5), we
replace the infinite square-well potential by the harmonic
oscillator potentialzmw?u? (Gaussian approximatipgnWe
also discard the last term in the exponent of @@), since it
leads to a small enhancement of the mass. Thus,(E).
reduces to

n

hB
[zmu2+ imw?u

FO[S.'S,U,U]=fUDu(T)exp{ z

+ my'szu]df}. (16

This is the path integral for a harmonic oscillator driven by
the forceK (7) =mys?(7). With the use of Ref. 9, we obtain
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ﬁx du Fy[s,s,u,u] 2 SN Bol2) exr{‘lmwh fo er:m dr'e K(n)K(7")|. (17

Introducing this result into Eq15), the effective Lagrangian whereuv,. is a characteristic velocity of the quantum wave-

for the motion alongs becomes in the limiT — 0, guide
. i ho w 304
LeflS,S]=3smS(7)+ — + V(s =~
eff[ ] 2 (T) 2 (s) UC(S) y m_dz_y (23)
my?s?(7) We see from Eq(22) that the effective mass of a quantum

ﬁw dr'e ™ 7Is(r). particle propagating along the reference curve is an increas-
ing function of the velocity squared. It should be noted, how-

(18 ever, that the rate of the increasey?/is limited since the
We note that the second term is the ground-state energy @urvaturey(s) must be less thand/ This condition implies,
the transverse motiofsee Refs. 13 To match the proper- in conjunction with Eq.(23), that v(s)=30k/md. In the
ties of the waveguide, the frequenayis chosen so that the limiting case y=1/d, we obtainv,=3x10" cm/s for an
ground-state expectation value of for the infinite square electron waveguide of widtd=100 A.
well matches that for the harmonic oscillator. This amounts The velocity dependence of the effective mass has inter-
to taking w~30k/md?. esting consequences for the dynamics. Defining the general-

If the function s?(7') changes slowly(in the neighbor- ized momentunp=dL/dv, we obtain with the use of Eq.
hood of 7) in comparison with the exponential function, the (22)
7' integral in Eq.(18) can be evaluated by replacing the 3
latter function by thes function. A criterion for the validity vlvet2(vlve)=plpe, (24)
of this appro'xim'ation ca[w be. established by noting_ thgt th"?/vherepc:mvc. The dispersion law(p) obtained from this
largest contribution tg(s’,s) is due to the paths satisfying equation shows substantial deviation from the case of a free
the classical equation of motion. The velocity change, imyarticle. Specifically, the velocity remains below the p/m
parted_tcl) the particle by the foracBv/ds over the time inter-  |ing for all values ofp. For instance, taking=p,, yields
val 20~ " is, using Eq.(9), given by v~0.6v;. As p increases well abovp, the linear term in

52 dy #d?® dy Eq. (24) plays a lesser role and the di_spersion law crosses
5?0 Y ds~6om ? ds’ (190  over tov/ve=(p/2p.)*>. It should be pointed out, however,

that these conclusions are only valid within the Gaussian

Letting s=v, the above criterion amounts to requiring that approximation that was adopted in the evaluation of the path
Av?/v?<1. Using Eq.(19), this implies a condition for the integral(13). This imposes a limit on the magnitude wfor

—

As=

particle velocity which Eg.(22) holds. We can see how this limit arises by
) calculating the correction to the ground-state energy by or-
o> ﬂ y d_7:U ' (20 dinary perturbation theory starting from E@®).
30m " ds ™M™ Expanding the kinetic-energy operator in this equation to

Let us apply this condition to a periodically modulated Wave-fIrSt order iny, the perturbing Hamiltonian is

guide with amplitudes and wavelength 2/Q (see Ref. 8 o 52
The curvaturey(s) = 6Q? cosQs) must be smaller thand/ H,=(A%uy/m) —. (25
Thus, Eq.(20) implies s
702 52Q5 o) The second-order energy correction obtained vdthcon-
Umin= " 30m s(30k )UF. (21 necting the ground statg, to the next excited statg, is
F

4

Since the Fermi wave vector is of order®1@m™?, v, can AED—_ _P
be much smaller than the Fermi velocity for a sufficiently 2m3v§'

long modulation wavelength=27/Q. For instance, taking ] ) ]
A=10"% cm, Eq.(21) yields v i, /op<2X10"%. In the case The same result is obtained by calculating the energy correc-

of a mesoscopic ring, we haeky/ds=0 and the evaluation tion from the effective Lagrangiafl8) using the method of
of Eqg. (18) with use of thes function is exact. the transition amplitude with the assumption that the mo-

Assuming that the conditio(0) is satisfied, the effective MENUMP is a constant of motion. In the Gaussian approxi-
Lagrangian (18), rewritten in terms of the velocity mation, the.re is no energy correction of higher order than
second. This can be verified explicitly from the formula for

(26)

=ds/dt (wheret=—ir is the real-time variable takes the ‘
form the fourth-order correction
1 v? ho KalH1[2)PI2IH 3P K1[H4[2)[*
Leg=5 m| 1+ —|v2=V(S)+ —, 22 AEW= — 2
o= M L+ z[v V)T 7 @2 (E-E)%E,-Ey)  (E-Ep° @7
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Assuming that the ketd), |2), and|3) are the lowest eigen- tent current. The magnitude of this current is of order
states of a harmonic oscillator, the two terms on the rightev /L, wherelL is the circumference of the ring, as it is
hand side of Eq(27) exactly cancel. This is to be expected mostly contributed by the electrons in the highest occupied
since the perturbatiohl, is linear in the displacement so  levels neaEg . In this region the electron energy spectrum is
that we are dealing with the case of a forced harmonic oscilexpected to be modified by the quartic term in E2p). In
lator that is solved exactly by the second-order perturbationiew of Eq.(23), as soon as . drops below the bulk Fermi
theory™ velocity the persistent current develops a dependence upon
For the infinite square well, the fourth-order correction tothe widthd of the ring. Since disorder tends to compete with
the energy is, however, nonzero. Its magnitude provides Uge cyrvature-induced transverse excitations, the width
with a criterion of validity of the Gagssmn resyi2). With should not exceed the mean free path of the ring.
the eigenstates for the well, EQ7) yields In summary, we find that quantum dynamics in a curved
208 channel is influenced by excitations of the transverse modes.
AEW~ 5§ (28 Integrating out these modes, we obtain an effective Lagrang-
ian for the motion along the reference curve of the channel.
From Egs.(26) and (28) it follows that the magnitudes of Within the Gaussian approximation, this Lagrangian contains
AE® and AE™ are equal wherp/p,~0.7(dy)*2 This a term that is quartic in particle velocity. Consequently, the
means that the Gaussian approximation, leading to(&2},  linear dependence of the velocity upon the particle momen-
is valid only for momentap<p.. For real electron tum is modified as the momentum approaches a critical value
waveguides, the potential well is never infinite being deterthat is a function of the curvature and width of the wave-
mined by the work function of the sample. Thus, the restric-guide. For Dirichlet boundary conditions, the departure from
tion on the momenta for a finite well is probably less severghe Gassian approximation is discussed using perturbation
as the fourth-order energy correction is smaller than that fotheory for the ground-state energy. Similar conclusions can
the infinite well. be drawn for three-dimensional twisting tubes with the Di-
According to Biitiker, Imry, and Landaue¥> a normal richlet boundary condition since the coupling to transverse
metal ring threaded by a magnetic flux should carry a persiseoordinates is also present in their Hamiltontan.
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