Lattice contraction in carbon-doped GaAs epilayers

Wei Li* and Markus Pessa

Department of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland

(Received 22 October 1997)

Epitaxial GaAs layers, heavily doped with carbon, have been grown by gas-source molecular-beam epitaxy using an electron-beam-evaporating graphite source for doping. Lattice strain and electrical compensation in these samples have been studied theoretically and experimentally. Most of the carbon acceptors can be activated by post-growth annealing at 490 °C in the N₂ ambient, probably due to the reduction of C-H bonds formed during growth. Annealing at higher temperatures reduces the electrical activity and causes an abrupt change in lattice strain, likely due to the formation of C-C interstitial couples. [S0163-1829(98)04920-0]

Carbon is an attractive alternative to beryllium as a *p*-type dopant for GaAs and related compounds because of its lower diffusion coefficient and possibility of obtaining a higher free-carrier concentration.¹ Very high doping levels in GaAs have, indeed, been achieved.^{2–5} On the other hand, self-compensation effects begin to play an important role at carbon concentrations greater than about 5×10^{19} cm⁻³.⁶ The compensation effects are associated with the generation of donors, mainly due to the formation of interstitial carbon, substitutional carbon in gallium sites, and the precipitation of carbon.^{7,8} If hydrogen is present in the growth ambient, as in the case of gas-source molecular-beam epitaxy, an additional compensation effect appears, namely, hydrogen passivation that is caused by the formation of C-H bonds.⁹

Besides electrical compensation, C doping in excess of 10^{19} cm⁻³ causes lattice contraction. This is because C has a small covalent radius (0.77 Å) compared to As (1.20 Å) or Ga (1.26 Å).¹⁰ Lattice contraction can be determined by a high-precision measurement, such as double-crystal x-ray diffractometry (DCXRD), and be related to carbon concentration in a rather straightforward way.¹¹ The situation is somewhat more complicated if the C-H bonds are present.

In this work we shall study lattice strain and electrical properties of heavily doped GaAs:C grown by gas-source molecular-beam epitaxy (MBE) (for gas-source MBE, see Ref. 12). We first describe the experiments and then discuss the results obtained.

The GaAs:C samples were grown homoepitaxially at 580 °C. The background pressure was 10^{-5} mbar during growth, due to hydrogen from cracked AsH₃. Carbon was evaporated from a graphite rod of an electron-beam-heated source. The C flux was controlled by the filament voltage and emission current. Upon growth, the samples were thermally annealed (RTA) *ex situ* in 100% N₂. The annealing procedure consisted of an initial N₂ purge, a temperature ramp at 50 °C/s to a final temperature, and a 5 min anneal at this temperature.

The carrier density and van der Pauw Hall mobility were measured at room temperature. The DCXRD rocking curves were measured in a nondispersive Bragg geometry to determine the lattice strain and carbon concentration.

Carbon incorporates substitutionally into the arsenic sublattice where it becomes an acceptor (C_{As}^{-}). At high doping levels, greater than 10^{19} cm⁻³, it may also occupy gallium sites (C_{Ga}), acting as a donor. The density of C_{Ga}^+ is, however, four orders of magnitude smaller than the density of C_{As}^- because of a higher formation energy of C_{Ga}^+ .¹³ Carbon may also occupy an interstitial site and reduce lattice strain. Interstitial carbon is unstable. It readily captures a neighboring C_{As}^- acceptor to form a C-C interstitial couple that acts as a donor. The formation of C-C bonds can become a dominant compensation effect in GaAs:C at a very high doping concentration.

One may calculate the lattice mismatch $\Delta a/a_0$ caused by the carbon-related defects. If the calculation is based on Pauling's covalent bonding radii of atoms and Vegard's law,¹⁴ we obtain the amount of lattice contraction due to the presence of C_{As},

$$\Delta a/a_0 = 4(r_{\rm C} - r_{\rm As})N_{\rm C,As}/a_0N_0\sqrt{3}$$

= -7.9478×10⁻¹⁸ N_{C,As} (ppm),

where $r_{\rm C}$ and $r_{\rm As}$ are the covalent radii of C and As, respectively, $N_0 = 2.21 \times 10^{22}$ cm⁻³ is the density of Ga or As atoms in pure GaAs, and $N_{\rm C,As}$ is the concentration of $C_{\rm As}^-$. Similarly, lattice strain caused by the C-C interstitial couple is¹⁵

$$\begin{aligned} \Delta a/a_0 &= (d_b - r_{\rm Ga} - r_{\rm As})(c_{11} + 2c_{12})N_{\rm C-C}/2N_0c_{11}(r_{\rm Ga} + r_{\rm As}) \\ &= -1.4956 \times 10^{-18} \ N_{\rm C-C} \ (\rm ppm), \end{aligned}$$

where $d_b = (\sqrt{3}/3)r_{\rm C} + \sqrt{[(r_{\rm C} + r_{\rm Ga})^2 - 2r_{\rm C}^2/3]}$ is the distance of the C-C couple from its nearest neighbors; c_{11} and c_{12} are the stiffness coefficients of GaAs, and $N_{\rm C-C}$ is the concentration of C-C couples. Our calculations show that interstitial carbon has no contribution to the lattice strain.

The hydrogen passivation effect should be taken into account. Hydrogen is incorporated into interstitial sites forming C-H bonds with C_{As}^- . Lattice mismatch generated by the C-H bond is

$$\Delta a/a_0 = -6.9432 \times 10^{-18} N_{\text{H-C}}$$
 (ppm),

where the effective bond radius is taken to be $(r_{\rm C}+r_{\rm H})/2 = 0.545$ Å, and $N_{\rm C-H}$ is the concentration of C-H bonds.

14 627

FIG. 1. Plot of the calculated lattice mismatch as a function of C-related defects. The relationship between hole concentration and lattice mismatch is determined from Hall effect and DCXRD measurements for as-grown (\bullet) and RTA treated (\bigcirc) GaAs:C. Data of Liu *et al.* (Ref. 19) and DeLyon *et al.* (Ref. 7) are included for comparison.

In consideration of a hole in the valence band decreasing the energy of covalent bond,¹⁶ high concentration of holes could also lead to the lattice contraction of GaAs:C, which can be described by

$$\Delta a/a_0 = (D_p/3B)p = -0.4978 \times 10^{-18}p$$
 (ppm),

where p is the hole concentration in the top of the valence band, $D_p = -0.7 \text{ eV}$ is the deformation potential of this maximum,¹⁷ and $B = 7.5 \times 10^6 \text{ N/cm}^2$ is the bulk modulus.¹⁸ When all the factors are taken together, one may write

$$\Delta a/a_0 = -(7.9478N_{C,As} + 6.9432N_{C-H} + 1.4956N_{C-C} + 0.4978 \ p) \times 10^{-18} \ (ppm).$$

The net hole concentration is $p = N_{C,As} - N_{H-C} - N_{C-C}$ and the total carbon concentration $N_{C,tot} = N_{C,As} + N_{H-C} + 2N_{C-C}$.

 $N_{\text{C-H}}$ can be estimated from the postgrowth annealing experiments. When $N_{\text{C-H}}$, $N_{\text{C,As}}$, and $N_{\text{C-C}}$ are known, one can provide the relationships between $\Delta a/a_0$ of GaAs:C, hole concentration, and carbon-related defect concentration, based on Hall and DCXRD measurements.

Figure 1 shows our calculations together with experimental results. It can be seen that at doping levels lower than 1.0×10^{20} cm⁻³ the carrier compensation is mainly due to hydrogen passivation of C acceptors. At a higher doping level C-C interstitial couples could be formed to further reduce the doping efficiency.

Effects of postgrowth annealing on the electrical properties and $\Delta a/a_0$ of GaAs:C are studied in Figs. 2 and 3. The samples studied in Fig. 2 exhibit the Hall hole densities around 7.0×10^{19} cm⁻³, as measured after growth. Relative changes in hole concentration and Hall mobility are determined as functions of postgrowth annealing temperature (T_{anneal}). The figure shows that there is a significant (~10%) improvement in electrical activation when the sample is annealed at 450–530 °C for 5 min. Figure 3 shows that annealing only causes a slight change in strain level when

FIG. 2. Electrical activation and hole mobility for postannealed GaAs:C as functions of annealing temperature. The dotted line is a guide to the eye.

 $T_{\text{anneal}} \leq 530 \text{ °C}$, but yields a more remarkable, abrupt change of about 10% with the opposite sign of strain if $T_{\text{anneal}} > 560 \text{ °C}$. Similar results were also reported in Ref. 20.

We relate the observed improvement in electrical activity to a postgrowth annealing effect that is thought to remove hydrogen passivated carbon acceptors, the C-H bonds. The optimal annealing temperature is $T_{\rm anneal} \sim 490$ °C. Higher temperatures are not desired because they cause carrier compensation, likely due to the formation of C-C interstitial couples that result in a decrease in the lattice contraction with an increase in mobility. According to the calculations, the relative change of 7.4% in strain observed for $T_{\rm anneal} > 560$ °C corresponds to an increase of 2.3×10^{18} cm⁻³ in the density of C-C couples.

In summary, heavily doped GaAs:C layers have been grown by gas-source molecular-beam epitaxy using an electron-beam-evaporating graphite source for doping. Lattice mismatch, due to C at arsenic sites, C-H bonds, C-C interstitial couples, and free charge, has been calculated

FIG. 3. Relative change in strain for post-annealed GaAs:C as a function of annealing temperature. The dotted line is a guide to the eye.

and compared with that experimentally obtained by x-ray diffraction. The largest mismatch is caused by C_{As} . The C-H bonds are believed to passivate carbon acceptors and cause carrier compensation in as-grown samples. They can be removed to a large extent by postgrowth annealing at 490 °C resulting in an increase of several percent in hole concentra-

*Electronic address: wli@semi.ee.tut.fi

- ¹T. H. Chiu, J. E. Cunningham, J. A. Ditzenberger, W. Y. Jan, and S. N. G. Chu, J. Cryst. Growth **111**, 274 (1991).
- ²L. W. Yang, P. D. Wright, V. Eu, Z. H. Lu, and A. Majerfeld, J. Appl. Phys. **72**, 2063 (1992).
- ³R. Pena-Sierra, A. Escobasa, and V. M. Sanchez-R., Appl. Phys. Lett. **62**, 2359 (1993).
- ⁴J. Shirakashi, T. Yamada, M. Qi, S. Nozaki, K. Takahashi, and E. Tokumitsu, Jpn. J. Appl. Phys. **30**, L1609 (1991).
- ⁵T. H. Chiu, J. E. Cunningham, J. A. Ditzenberger, and W. Y. Jan, Appl. Phys. Lett. **57**, 171 (1990).
- ⁶K. Watanabe and H. Yamazaki, Appl. Phys. Lett. 59, 434 (1991).
- ⁷T. J. DeLyon, J. M. Woodall, M. S. Goorsky, and P. D. Kirchner, Appl. Phys. Lett. **56**, 1040 (1990).
- ⁸G. E. Höfler and K. C. Hsieh, Appl. Phys. Lett. 61, 327 (1992).
- ⁹R. Iga, H. Sugiura, T. Yamada, and K. Wada, Appl. Phys. Lett. 55, 451 (1989).
- ¹⁰C. Giannini, A. Fischer, C. Lang, K. Ploog, and L. Tapfer, Appl. Phys. Lett. **61**, 183 (1992).

tion. Annealing at higher temperatures decreases the hole concentration, likely due to an increase in C-C interstitial couples.

This work was supported, in part, by the Academy of Finland within the EPI-2 Research Programme.

- ¹¹P. Enquist, J. Appl. Phys. **71**, 704 (1992).
- ¹² M. Pessa, K. Tappura, and A. Ovtchinnikov, Thin Solid Films 99, 265 (1995).
- ¹³B. H. Cheong and K. J. Chang, Phys. Rev. B **49**, 17 436 (1994).
- ¹⁴L. Pauling, *The Nature of the Chemical Bond and the Structure of Molecules and Crystals*, 3rd ed. (Cornell University Press, Ithaca, NY, 1960), Chap. 7.
- ¹⁵N. F. Chen, Y. T. Wang, H. J. He, and L. Y. Lin, Phys. Rev. B 54, 8516 (1996).
- ¹⁶T. Figielski, Phys. Status Solidi 1, 306 (1961).
- ¹⁷D. D. Nolte, W. Walukiewicz, and E. E. Haller, Phys. Rev. Lett. 59, 501 (1987).
- ¹⁸M. Leszczynski, S. Podlasin, and T. Suski, J. Appl. Crystallogr. 26, 1 (1993).
- ¹⁹Q. Liu, A. Brennemann, H. Hardtdegen, A. Lindner, W. Prost, and F.-J. Tegude, J. Appl. Phys. **79**, 710 (1996).
- ²⁰W. E. Hoke, P. J. Lemonias, D. G. Weir, H. T. Hendriks, and G. S. Jackson, J. Appl. Phys. **69**, 511 (1991).