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Persistent currents in a Mdbius ladder: A test of interchain coherence
of interacting electrons
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Persistent currents in a Moebius ladder are shown to be very sensitive to the effects of intrachain interactions
on the hopping of electrons between chains. Their periodicity as a function of flux is doubled for strong enough
repulsive interactions because electrons cannot hop coherently between the chains and have to travel along the
full edge of the Moebius ladder, thus encircling the flux twice. The interplay of topology and interactions is
shown to lead to interesting finite-size effects on the odd harmonics of the persistent current.
[S0163-182698)09903-3

The problem of transport in very anisotropic systems has periodic function ofp with period ¢po=27. 1(P) can thus
become one of the central issues in the field of strongly corbe expressed as a Fourier series,
related systems. Roughly speaking, it can be stated as fol- .
lows: Consider an electronic system with transfer integrals ,
much smaller in one direction than in the otfsrls it pos- |(CI))=n§=:l Lpsin(n®). @
sible, and under which conditions, that transport is coherent
in the highly conducting directids) and incoherent in the Magnetization measurements on normal nietaind
other direction at temperatures much smaller than the smalemiconductingf rings typically measure the first few har-
est transfer integrals? This question has recently been raisé@onics of I(®), which are in general nonvanishing for a
in several contexts, the most prominent examples being higtsingle ring. However, in the Moebius geometry, if the per-
TC Superconductors, which are quasi-ZD Systéﬁ]&nd or- pendicular hopplng integral is switched off, electrons will
ganic superconductorg§the Bechgaard salts which are have to go twice around the flux to reach the same site, and
quasi-1D system$? This property is clearly inconsistent the period of the persistent current will be halveddg/2.
with Fermi-liquid theory, and the best candidates to describé\ll the odd harmonics in Eq.1) must then vanish. Now, for
such behavior are models of strongly-correlated electrons.
Renormalization-groupRG) arguments® for quasi-1D sys-
tems of coupled Luttinger liquids indicate that interchain
hopping is arelevant perturbation provided the Luttinger-
liquid exponentx is smaller than 1. However, an alternative
approach drawing an analogy to the problem of coherence ir
a two-level system coupled to a bath indicates ttwterent
interchain motion may be destroyed for much smaller values _
of a.3" Evidence in favor of the latter picture based on the &
analysis of the angular dependence of the magnetoresistam‘ﬁ
of the Bechgaard salffMTSF),PFs has been presentéd.
However, the issue remains controversial, and more direc
evidence of the effect of correlations on the coherence of
motion perpendicular to the chains would be highly desir-
able.

In this paper, we propose a new approach to study the
problem of interchain coherence based on the analysis o
persistent currents in a Moebius ladder threaded by ar 0
Aharanov-Bohm flux fc/e)® (see Fig. 1 inset The persis-
tent current of the system is directly sensitive to the phase F|G. 1. Generic flux dependence of the ground-state energy of a
coherence of the many-body wave function, and is given akoebius ladder. Solid curve; /t=0.2, dashed curve; /t=0. In-
zero temperature bi(®)= —(e/h)JE/ 9P, whereE is the  set: Schematic diagram of a Moebius ladder pierced by a magnetic
ground-state energy. Gauge invarighizeplies thatl (®) is  flux (ic/e)d.

0163-1829/98/58)/14574)/$15.00 57 1457 © 1998 The American Physical Society



1458 MILA, STAFFORD, AND CAPPONI 57

an interacting system with, #0, the period is expected to 5
be ¢ as long as coherent motion between the chains is pos(a)
sible, and to becomeéy/2 when the interactions are strong
enough to prevent any coherent motion between the chains
The vanishing of the odd harmonics I¢fP) in the Moebius <
geometry would thus be a direct signature of the destructior N=18
of interchain coherence. I V=0
Rather than considering all of the odd harmonics (@)
separately, we focus our attention in the following on the 0.0 0.5 1.0 15 20
energy difference

'
a

AE:E(CI)=7T)—E((I)=O)=—% IZ“_“ ) b e oo t =0.1
€ n=o2n+1° (b) * * "
The full flux dependence of the ground-state energy for a % O F-cm b o~ " S
Moebius ring is shown in Fig. 1. From the discussion above, . . . .
it is clear thatAE is in general finite, but must vanish in the o . .
absence of coherent interchain tunneling. However, the ot o
analysis is less trivial than one might expect due to rather 5 ‘ 50
interesting finite-size effects. Let us start with a careful
analysis of the noninteracting case. While spin can have im-
portant consequences on the nature of the ground state of a FIG. 2. A=(—1)""*’N[E(® =)~ E(®=0)] for a noninter-
system of two coupled chains of interacting electrbitsis a_lctlng, quarter-filled systenfa) as a function ot, ; (b) as a func-
not essential for the notion of coherence of Refs. 1 and 7. S¢ion of the number of rungsl.
for simplicity, we consider spinless fermions throughout this
paper. Spinless fermions on a Moebius ladder Wthungs ~ wheren is the number of particles. In the following, is
pierced by a magnetic fluxic/e)® can be described by a restricted to odd values to have a nondegenerate groundstate
one-dimensional periodic Hamiltonian, which makes the analysis slightly simpler, although the re-
sults are essentially equivalent for an even number of par-
ticles, and the factor{1)"~ /2 has been included to insure
that A is always positive in the limit, —0. As for the cur-
. ) i .. vature atd=0, which gives the Drude weight, one has to
with the usual conventiom;, ,y=c;. This Hamiltonian is  mytiply by N for 1D systems to get nonvanishing results in
readily diagonalized by a Fourier transform, and the disperthe thermodynamic limit. A typical example of the behavior
sion reads of A with t, is depicted in Fig. @). It is clear from the
_ dispersion of Eq(2) that bothE(® = 7) andE(®=0), and
€=~ 2tcogka+ ®/N)—t, cogNka) “) henceA, are piecewise linear functions bf . The slope of
with k=p(27/2Na), p integer. The essential ladder struc- A changes each time a pair of particles goes from the anti-
ture of the Moebius ladder is contained in this expressiorbonding band to the bonding band, which we know has to
because coblka)=cospm)=+1if pis even and-1 if pis  occur because the antibonding band is certainly empty for
odd. The system thus consists of bonding and antibondintfirge enougt, . Now these transitions do not occur for the
bands with the usual dispersiong= —2tcoska+d/N) same values df, for ® =7 and®=0. As a result, the slope
+t, . The difference with a standard ladder is that the wavedf A alternates betweenN2and — 2N until the antibonding
vectorsk=p(2/2Na) are restricted to even and odd valuesband is empty, in which case it is of course 0. Between
of p for the bonding and antibonding bands, respectively. changes of slopes) vanishes once, which corresponds to
Let us consider the periodicity of the ground-state energypoints where the periodicity isr, as fort, =0. Since the
of such a system as a function®f If t, is large enough, all particles change bands in pairs, the number of such points is
the fermions are in the bonding band, and the total energgssentially half the number of particlésiore precisely 2
readsE(®) =3 [ —2tcospa/N+P/N)—t, ], where the sum +1 includingt, =0 for 4n+1 particles, and similar formu-
overp is restricted tavenintegers chosen to give the lowest las for other filling$. The same effect shows up in the be-
energy for a giverb. This function is clearly periodic i  havior of A with N: For intermediate values af , A oscil-
with period 2. If t, =0, the bonding and antibonding bands lates as a function of size with extrema each time the
form a single band, and the total energy reddéd) difference in the particle number between the bonding and
= —2tZ ,cospa/N+®/N), where the integerp can now be the antibonding bands increases bysee Fig. 2)]. The
both even and odd, and the periodicity of this functionris ~ Points lie on a piecewise linear curve with a slope alternating
For intermediate values df , the periodicity is 2r except ~between 2, and —2t, . As a consequence, the periodicity
for specific values of, where it is7. The number of such 0f the ground-state energy for a given and for noninter-
points scales with the number of particles in the system. T@cting fermions is not a well-defined quantity in the thermo-

understand this, let us consider the scaled energy differencélynamic limit. . _ o .
Let us now consider the effect of intrachain interactions

A=(—1)""12NAE, (5) on the periodicity of the groundstate energy. To describe
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FIG. 3. A as a function oft, for V=2.5 («=0.36) andvV=5 50 ‘ ‘ ‘
(a=1) for a quarter-filled system with 18 rungs. All energies are in ~o 5 10 15 20
units oft. N

FIG. 4. A as a function of the number of run@é for different
values ofV and two values of, : (a) t, =0.1; (b) t, =0.4. All
energies are in units df

systems with large values of the Luttinger-liquid exponent
we consider an interaction term of the form

oV v sign betweerN=10 andN=14 in the noninteracting case
Hint=2 VN, 1+ ?nini+2+ SMiMiss ). (6) [see Fig. (lb)]_. For the sizes we can rea_czh,already does
i not change sign fov/t=2, and the curve is very flat for/t
as small as 3¢=0.46). Itis in fact possible that even in that
For a quarter-filled system, the exponenof this model has  caseA goes to 0 with damped oscillations. Obtaining nu-
already been calculated with standard technidtiemd it  merical results on larger systems by other methods, e.g., den-
reaches the value 1 fov/t=5. Using the Lanczos tech- sity matrix renormalization group, would be very useful to
nique, we have calculated the dependenc&lofnt, for  check this point. Let us note that oscillations would also be
different values ofv/t and different sizes up to 36 sitebl (  present for a regular ladder. However, the periodicity re-
=18). Typical results are shown in Fig. 3. The effects ofmains equal tap, even ift, is switched off. So the Moebius
intrachain repulsion are rather dramatic. The first oscillatiorgeometry is essential to observe the effects of interactions.
quickly becomes the dominant one, and the first valug of To make contact with current theories of the effect of
where A vanishes increases significantly: The curve is al-interactions on interchain hopping, let us first note that the
ready strongly affected fov/t=2.5 (Fig. 3) with respect to  present results strongly suggest that the system has lost any
the noninteracting cad€ig. 2(a)]. But more importantly, the memory of the splitting between bonding and antibonding
oscillations disappear altogether féft=5, i.e.,=1. This  bands wherw=1. This is reminiscent of the RG result that
critical value turns out to be independent of the size. The, is an irrelevant perturbation whem>1, but we wish to
origin of the oscillations being that particles go from the emphasize that this is much stronger: RG arguments are lim-
antibonding band to the bonding band, this means that thesged to infinitesimal values df, , while our results show that
concepts have lost their meaning wheris big enough. In  large values oft, are still unable to produce a difference
other words,t, is no longer able to produce two separatebetween bonding and antibonding statea i 1. In fact, we
bands in the low-energy spectrum of the system. believe that the results of Fig. 3 are the first direct numerical
Our discussion of the dependencefobn N for interact-  evidence of a strong effect of interactions on hopping be-
ing systems is limited by the maximum size we can handlaween chains because they exhibit a qualitative change with-
with Lanczos, namely, 36 sitedNE18) at quarter-filling.  out having to go to the thermodynamic limit. In addition, our
Fort, =0.1, we are limited to the first linear section of Fig. results concerning the dependencefofon N show very
2(b) where the slope is equal tot 2 in the noninteracting dramatic effects for relatively small interactions, i.e., for
case. The slope is considerably reduced by interactions arginall values ofx where RG arguments just indicate that
changes sigetweenv/t=5 andV/t=6, which means that is a relevant perturbation. These conclusions agree qualita-
A decreaseswith N [see Fig. 4a)]. Given the absence of tively with those of Refs. 1 and 7, and they are consistent
oscillations inA as a function ot, for these values of the with previous numerical studies of the spectral functibits.
interaction, it is natural to assume thatdoes not change It is important to contrast the oscillations Af described
sign as a function o either. This leads us to the conclusion above with the oscillations of the sign of the persistent cur-
that A goes to 0 in the thermodynamic limit wher=1.1%  rent with the parity of,* which have already been factored
Significant effects are already present fex<1, however. outin Eq.(5); the oscillations ofA in the Moebius geometry
Let us consider for instance =0.4, for whichA changes occur as a function of, even for fixedn. Likewise, the
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interaction-induced suppression &f predicted here for the theoretical quantitA that we have studied is related directly
Moebius geometry should be contrasted to that predicted ito the measurable Fourier componérfsof the magnetiza-
purely 1D systems with spit?, since these effects occur for tion of the system. The absence of oscillationsAofas a
finite interaction strengtlV, while the spin-induced suppres- function oft, for strong enough interactions is, we believe,
sion occurs only in the limit of infinite on-site repulsion. The the best evidence of an interaction-induced destruction of
effect of intrachain interactions described here is also to bghterchain coherence obtained so far with numerical simula-
contrasted to that of interchain interactions, which werejons, Further work along these lines, either numerically by
found to increase the odd harmonics of the persistengyqying larger systems, or experimentally by measuring per-

16
curlrent. lusi h h hat i . b sistent currents in appropriate mesoscopic devices, should be
n conclusion, we have shown that interactions betweenry promising area for future research.

electrons have dramatic effects on their ability to hop coher-
ently from one chain to the other by studying the flux depen- We acknowledge useful discussions with D. Poilblanc.
dence of the ground-state energy—or, equivalently, of th&Ve thank IDRIS(Orsay for allocation of CPU time on the
persistent currents—in a Moebius ladder. Importantly, theC94 and C98 CRAY supercomputers.
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