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We present an analytical expression for the local-field factorG(q) of the homogeneous electron gas which
reproduces recently published quantum Monte Carlo data by Moroni, Ceperley, and Senatore@Phys. Rev. Lett.
75, 689 ~1995!#, reflects the theoretically known asymptotic behaviors for both small- and large-q limits, and
allows us to express the exchange-correlation kernelKxc analytically in both the direct and reciprocal space.
The last property is particularly useful in numerical applications to real solids.@S0163-1829~98!04823-1#

BRIEF REPORTS

Brief Reports are accounts of completed research which, while meeting the usualPhysical Review Bstandards of scientific quality, do
not warrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstrac
same publication schedule as for regular articles is followed, and page proofs are sent to authors.
p-
th
e
l
k

nc
d
-

al
p

ca

o
o

r
ht

n-

la-
The static local-field factorG(q) of the homogeneous
electron gas~HEG! is an important quantity, because it re
resents the extent to which the particle interactions affect
exchange and correlation properties of this idealized syst
The importance ofG(q) in calculating the properties of rea
materials stems from the fact that it can be used as a
input in density-functional calculations.1,2 In fact, approxi-
mations of the unknown exchange-correlation energy fu
tional of real ~inhomogeneous! systems involve the secon
functional derivative ofExc@n#, or exchange-correlation ker
nel,

Kxc~no ;ur2r 8u!5
d2Exc@n#

dn~r !dn~r 8!
U

no

, ~1!

whereno is the HEG density. On the other hand, the loc
field factor and the exchange-correlation kernel are sim
related in Fourier space by3

Kxc
FT~q![E d3r e2 iq•rKxc~r !52vc~q!G~q!, ~2!

wherevc(q)54pe2/q2 is the Coulomb potential.
Various approaches to obtain expressions of the lo

field factor were investigated in the past.4–10 Moroni, Cep-
erly, and Senatore4 obtained, by quantum Monte Carl
~QMC! simulation, the zero-temperature local-field fact
570163-1829/98/57~23!/14569~3!/$15.00
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G(q) of the homogeneous electron gas at densitiesno corre-
sponding tor s52, 5, and 10@no53/(4paB

3r s
3), whereaB is

the Bohr radius#. They also gave an analytical formula fo
G(q) which fits the QMC computed value, and has the rig
asymptotic limits at small and large wave vectors, i.e.,

G~q!;AQ2 for q→0, ~3!

whereQ5q/kF , kF is the Fermi wave vector,

A5
1

4
2

kF
2

4pe2

dmc

dno
, ~4!

mc being the correlation contribution to the chemical pote
tial; and

G~q!;CQ21B for q→`, ~5!

where

C5
p

2e2kF

2d~r sec!

drs
, ~6!

andec is the correlation energy per particle. In our calcu
tions we use the parametrization ofB from Ref. 4,

B~r s!5
~11a1x1a2x3!

~31b1x1b2x3!
, ~7!
14 569 © 1998 The American Physical Society



e
e
y

o

a
ne

th

s
t

ob
d
n
a

he

,

in

l to
ns-
par-
of

ose

at-
of

, its
al

g-
ate-
a

ns

y,

14 570 57BRIEF REPORTS
where x5r s
1/2, a152.15, a250.435, b151.57, and

b250.409, valid forr s in the range 2–10.11

The Q2 behavior of the local-field factor at largeQ has
been overlooked for a long time. It was demonstrated in R
12, and a clear discussion of its origin was presented in R
4: its coefficientC is related to the change in kinetic energ
in going from noninteracting~Kohn-Sham! electrons to in-
teracting~real! electrons.

In this paper we fit the values ofG(q) computed in Ref. 4
in such a way to obtain a simple analytical expression
both Kxc

FT(q) and Kxc(r ), where Kxc(r ) is the exchange-
correlation kernel in real space. Our formula forG(q) is
based on Lorentzian and Gaussian functions, and reads

G~q!5CQ21
BQ2

g1Q2
1aQ4e2bQ2

, ~8!

where g5B/(A2C) and the two parametersa and b are
fitted in order to minimize the differences with the numeric
results of Ref. 4. In particular, the best results are obtai
by taking

a5
1.5

r s
1/4

A

Bg
, ~9!

b5
1.2

Bg
. ~10!

Note that the Lorentzian contribution in Eq.~8! is a simple
Hubbard-like term. This term alone already yields aqualita-
tive agreement with the numerical data of Ref. 4. Adding
Gaussian term allows us to reproducequantitativelythe nu-
merical evaluation of Ref. 4. In panels~a!, ~b!, and~c! of Fig.
1, G(q) given by Eq.~8! is compared with the QMC result
of Ref. 4 for the unpolarized electron gas. The agreemen
satisfactory, and is globally of the same quality as that
tained with the interpolation formula originally propose
in Ref. 4. In panel~d! of Fig. 1, we extend the compariso
to QMC data for the fully spin-polarized electron gas

FIG. 1. Panels~a!, ~b!, and ~c!: local-field factor G(Q),
(Q5q/kF) as computed according to Eq.~8!, in comparison with
the QMC data for the unpolarized HEG of Ref. 4. Panel~d!: Eq. ~8!
compared with QMC data for the fully spin-polarized HEG~Ref.
13!.
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r s5100.13 Despite the fact that this value is well beyond t
range considered in Ref. 4 for the parametrization ofB @Eq.
~7!#, and that in Eq.~8! we neglect spin-polarization effects
the agreement is still fairly good.

Using Eq.~2!, and after Fourier transforming, we obta
the expression of the exchange-correlation kernelKxc(r ) in
real space:

Kxc~r !52
4pe2C

kF
2

d3~r !1
akF

4p2b
S p

b D 3/2FkF
2r 2

2b
23Ge2kF

2 r 2/4b

2B
e2AgkFr

r
. ~11!

In Fig. 2, we compare this form ofKxc ~without the first
term, which contains a three-dimensionald function! with
the ~numerical! Fourier transform of the kernel derived from
the Utsumi and Ichimaru parametrization ofG(q).5 Besides
the very desirable property of allowing passage from rea
reciprocal space, and vice versa, without numerical tra
forms, the present form has another advantage, which is
ticularly useful in calculations for real solids: the absence
long-range oscillations, at variance with the case of th
G(q) which contain a logarithmic singularity forq52kF , as
the Ichimaru-Utsumi one~see Fig. 2!. This singularity is a
peculiar property of the homogenous electron gas, origin
ing from its spherical Fermi surface and from the absence
a gap between filled and empty states. Even in the HEG
existence is not certain, and it is likely not present in re
materials.14 Hence it is better, given the present level of i
norance about the exchange-correlation kernel of real m
rials and the computational difficulties arising from such
singularity, to use expressions ofG(q) which do not contain
it, and consequently do not yield the long-range oscillatio
of Kxc(r ).

FIG. 2. The exchange-correlation kernelKxc of the homoge-
neous electron gas as parametrized in the present work~full line!,
compared with theKxc of Ref. 5 ~dotted line!, in a.u., plotted in
reciprocal and direct space~upper and lower panel, respectivel
with Q5q/kF andR5rkF).
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In conclusion, we have presented a parametrization
published QMC results for the local field factorG(q) of the
homogeneous electron gas. Our analytical form fits the
merical data with the same accuracy as the form origin
proposed in Ref. 4, has the right limiting behaviors for lar
and smallq, and has the additional advantage of being a
o
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lytically Fourier transformable, a property which great
simplifies its use in density-functional calculations for re
materials.

We are grateful to Saverio Moroni and Gaetano Sena
for providing us with their unpublished QMC data forr s
5100, and for a critical reading of the manuscript.
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