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Nature of the low-field transition in the mixed state of high-temperature superconductors
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We have numerically studied the statics and dynamics of a model three-dimenSDhalortex lattice at
low magnetic fields. For the statics we use a frustratedk30Omodel on a stacked triangular lattice. We model
the dynamics as a coupled network of overdamped resistively shunted Josephson junctions with Langevin
noise. At low fields, there is a weakly first-order phase transition, at which the vortex lattice melts into a line
liquid. Phase coherence parallel to the field persists until a sharp crossover, conceivably a phase transition, near
T,>T,, which develops at the same temperature aiéinite vortex tangle. The calculated flux flow resis-
tivity in various geometries neaf=T, closely resembles experiment. The local density of field induced
vortices increases sharply nedy, corresponding to the experimentally observed magnetization jump. We
discuss the nature of a possible transition or crossovar é8) which is distinct from flux lattice melting.
[S0163-182698)02322-4

[. INTRODUCTION high fields against proliferation of quenched-in topological
defectst®” possibly through a first-order phase transition

Ever since their discovery, the behavior of highimate- across a horizontgkconstantH) line in theH-T plane. This
rials in a magnetic field has seemed mysteribulnlike the  line then may meet the temperature-driven melting line,
conventional low¥, type-ll materials, highF. supercon- causing it to terminate. Somewhere along this line, the melt-
ductors(HTSC'’s) show a broad region in the magnetic-field/ ing transition may be converted into the universality class of
temperature(H-T) plane where the Abrikosov lattice has the continuous vortex glass transitihcharacterized by di-
apparently melted into kquid state? vergent correlation lengths and times.

Considerable recent evidence now suggests that flux lat- Another unresolved issue regarding the phase diagram is
tice (FL) melting is afirst-order phase transition. On the the possibility of reentrant melting at low fields. Reentrant
experimental side, a local magnetization jump has been me#lux lattice melting is expected because of screening of the
sured by network of Hall microprobé®n Bi,SrCaCu,0s  widely separated vortex lines at low fielél? It has been
and has been associated with the melting transition. The tramecently reported in single-crystal NoSsample?® based on
sition thus observed seems to lie quite near the melting curvigacking of the so-called “peak effect®?? Such reentrance
as determined from low angle neutron diffracflamd SR behavior has been observed only in a limited field range by
experiments. More recently, Schillinget al®” have directly  Ling et al>® On the other hand the melting curve tracked by
observed the latent heat of the transition in ¥8&0,_s  the micro-Hall prob2 seems to monotonically approach the
along a lineT,(H) in the H-T phase diagram which agrees zero-field superconducting transition &t(H=0) even for
well with mechanical and transport measurem&nt8Nu-  fields as low as a few Gauss.
merical evidence for a first-order melting transition has been FL melting can also be probed by transport measurement.
obtained from simulations based on a frustrat¥¥  But since such measurements are nonequilibrium, they offer
model’**2 and from a lowest Landau level model which is only an indirect means of studyirgguilibrium FL melting.
expected to be most accurate at high magnetic fieirst-  In real materials with disorder, the interpretation of transport
order melting has also been observed numerically in a sygneasurement is further complicated by the many competing
tem of unbreakable flux lines described by a Lawrenceenergy scales. In single-crystal Yfau,0O;_ 5, the in-plane
Doniach model? All these simulations are based on a largeresistivity exhibits a discontinuous jump and hysteresis
density of flux line§ ~O(1-10) T]. which have been identified with a first-order melting

An anomalous feature of the local Hall probe measuretransition® Nonetheless, the peak effect in the critical current
ments is that the apparent first-order transition line seems toccurs at slightly lower temperatures than the resistivity
terminate at a critical point above which the latent heajump, leading some workers to postulate that there is a “pre-
vanishes Since on symmetry grounds a first-order “melt- melting” phenomenoft in this material, in addition to melt-
ing” line cannot terminate in a critical poidt, this critical  ing. In Bi,SrCaCu,0g, simultaneous transport and local
point may suggest that the first-order melting line is insteadnagnetization measuremetftshow that the jump in local
intersecting another phase transition line related to the disomagnetizatiorM coincides(at high field$ with a jump in the
der. A related issue is the entropy released per vortex peesistivity p,p, from zero to a finite value, ofin low fields)
layer across the transition line. This entropy increases verthe continuous development of a finitg,. In addition, at
rapidly as the field decreases. Such behavior is difficult tdhigh fields, the jumps ip andM are accompanied by hys-
account for within a model based only on the field inducedteresis. Together, these phenomena strongly suggest first-
vortices. order flux lattice melting at high fields. At low fields, the

In the presence of disorder, the lattice becomes unstable akperiments are more ambiguous.
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FL melting has been widely studied numerically. The pos-to 2, ®o=hc/2e is the flux quantumg; is the phase of the
sibility of two stagemelting was first suggested by Li and order parameter on sitg and the sum runs over nearest-
Teitef>**for a model with _infinzigez 8penetration depiy and  neighbor pairs. We use a stacked triangular grid vz,
later for a system with finite..”"*" The calculations of Li  the direction perpendicular to the triangular network, with
and Teitel are based on the so-called frustra¥&(model  periodic boundary condition®BC’s) in all directions except
with fairly low flux per plaquette of =1/25 (in units of the  \yhere stated otherwise.
flux quantum®,=hc/2e) on a simple cubic lattice. They  Tq allow a wider range of frustrations compatible with the
find that the three-dimensional flux line latti¢ELL) melts boundary conditions, we use a variant of the Landau gdlge.
first into a “line liquid” characterized by disentangled flux Note that there are four bonds per grain: three indpelane
lines, which become entangled at a second, highphase ;4 gne alongz. We label these by their unit vectods
transition. Current-voltagdlV) measurements in the so- =%.91.922, where 912(1/2)§(+(\/§/2)9 and §,=

called “flux transformer” geometr¥?—>2 provide some sup- > . .
port for this picture. Specifically, they suggest that FL melt-_(§/§/2)x+(1/2)y' The phase factorsy;; connecting a
grain located at X,y,z) to its four nearest neighbors are

ing is signaled by the onset of finite in-plane resistance?. 2 - ~
while in an applied current, phase coherence is lost incthe given by O alongk or s 2mf(2x+1/2) _along Y. and
direction only at a distinctly higher temperature. On the otherZWf(Z)_(_ 1/2_) alongy,. There are exceptions to this form
hand, static simulations of dengé=1/6) flux lines on a for grains lying on the boundaries: All grains lying on the
stacked triangular grid favor a single transitidt?Dynami- X~ Lx boundary plane havéy; = =2 -2L,y for bonds in
cal calculation®® on a triangular lattice &t= 1/6 suggest that the X direction. Bonds atx=L, boundary SUGh that

if there are two separate transitions, they arise from pingn0d(i.2)=1 have A =2mf[2x+1/2=2L,(y+1)] in the
either intrinsic to the discrete cubic grid, or put in by hand.Y1 direction. For bonds on thex=0 boundary with
Yet more recent studies based on a London vortex loop'd(,2)=0, Aj=2mf[2x—1/2+2L,(y+1)] for bonds in
model on a simple cubic lattice show that superconducting® Y2 direction. In contrast to the usual Landau gauge
order disappears apparently in two steps, the sequence E hich is compatlblg with frustratlons on_Iy in integer mL_II-
which depends on the lattice anisotraByalthough it is ar- tiples of 1/(2N,)], this generalized gauge is compatible with

gued to be a finite size effect by the same autfors. any f which is an integer multiple of 1/(2,N,) under peri-
In this paper, we attempt to resolve some of these issugdic boundary conditions. _
by considering the frustratedY model over avide range of We have considered networks of size=N,xN,

flux densitiesusing both static and dynamic simulations but XNz- For f=1/24, we have studiedl,=12,24,48 and,
with no quenched disorder. By examining this model on a=Ny=24, and for other values df (1/2592, 1/1648, 1/81,
stacked triangular lattice, we minimize the unphysical peri-@nd 1/6 we have consideredl,=N,=N,=18. In two di-
odic pinning due to the lattice. By working at relatively low Mensions, the vortices lie on the vertices of a honeycomb
densities, we focus on the regime, now being probed expergrid of unit length of (1{/3)ag which is dual to the triangu-
mentally, where th&Y phase fluctuationésortex loops are  lar grid of unit lengthag . Assuming that vortices form per-
as important as those dfeld inducedvortex lines®® our  fect triangular lattice on this grid, and equating the area per
main conclusion is that there are, in fact, signatures of two/ortex to (y3/4)ag/f, we obtain the following necessary
separate transitions at low fields, which are not artifacts ofondition for a triangular vortex lattice to form withogeo-
pinning by the discrete grid. The transition at lower temperametric frustrationof the FL:2f = (n3/3+ n3/4) with integers
ture is unambiguously associated with vortex lattice meltingn,,n,. The values of ¥/ satisfying this condition are then
The second transition may be a sharp crossover rather thare6,8,14,18,24,32,38,42, . ,648, ... . Forf=1/162, two
true phase transition. Nevertheless, it is responsible for sewdistinct pairs [04,n,) =(0,36), and(27,18] satisfy the con-
eral experimental featurgsuch as sharp increases in local dition. f = 1/648 has the lowest possible nominal vortex den-
magnetization and in resistanaghich are often identified as sity of one per 1& 18 system compatible with our chosen
evidence for a first-order melting transition. gauge, and allows either of the pairs;(n,)=(0,72 and
The remainder of this paper is organized as follows. In(54,39. f=1/2592(=1/4x1/2X18x18), represents less
Sec. I, we describe our model and its numerical solutionthan a single vortex line, and the systengaige frustrated
The following sections present our numerical results, which In practice, forf<1/81, there are too few field-induced
are followed by a discussion and then summarized in a corfiux lines to study FL melting. Nonetheless, the dilute regime
cluding section. is still of interest, since in these cases, the flux lines behave
independently and the thermodynamics is dominated by the
II. MODEL zero-field phase degrees of freed?ﬁn.Except for f
=1/2592, we study only gauge-unfrustrated values allowing
only an integer number of vortices in the simulation box.
We study the standard frustrat¥¥ model described by We calculate the thermodynamics using a standard Monte
the Hamiltonian Carlo (MC) algorithm, with up to 16 MC steps at each
temperaturel. To ensure equilibration in the ground state
for all values off, we performed simulated annealing runs
H= _J% cog 0;— 6, = Ajj), @ for the two-dimensional2D) version at eacl with the same
! lateral dimensions. We then form the ground state of the 3D
whereA;; = (27/®,) f{A-dl, A is the vector potential asso- system by stacking the 2D ground states thus found uni-
ciated with a uniform magnetic fielB=BZ applied parallel formly along thez direction. This enables us to find the

A. Hamiltonian and thermodynamics
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ground state configuration of a perfect triangular lattice for (a)
low values of 1/24<f=<1/18 within a reasonable time. Start-
ing from these 3D ground states, we warm up the system ir
steps of AT/J=0.05 or 0.1, allowing at least 45x 10*
Monte Carlo sweeps for each The final configuration for
eachT is then saved to be used as a starting configuration ir
some of the longer calculations as well in the dynamic simu-
lations.

From these calculations, we extract a range of thermody:
namic quantities. One of these is the specific h€at
=((H?)—(H)?)/(kgT) at temperaturd. We also calculate
the local vorticity vector fielch,,(p) defined for each Carte-
sian directiona and each poinp of the stacked honeycomb

dual lattice. At each instant during the simulation(p) is FIG. 1. Geometry for the dynamic calculations described in the
determined from text. (&) To probe the shear modulus, current is injected uniformly

into planeX,;, and extracted uniformly fror& . The arrows indi-
cate directions of the Lorentz forces acting on the lines in the two
half volumes(in opposite directions, because of the periodic bound-
> mod ¢~ ¢~ Ay 2m]=2m{n.(p)~f,]. (D ary conditiong. (b) To probe thec-axis resistance, the currents are
P injected and extracted uniformly from the two planes indicated; the

] ] voltage drop between the planes is measured &a)in
Here the summation runs along the bonds belonging to the

plaguette labeleg, « (a triangle in thexy plane, a square in
planes parallel to the axis) and fy==7A;;/(27). From
n,, one can also compute thstructure factor Gs(k)
=(n,(k)ng(—k)), wheren,(k) is the Fourier transform of
the local vorticity vectom,(r). We also calculate the prin-
cipal componentsy,, and vy,, of the helicity modulus

tensor;® in the directions perpendicular and parallel to the ™"\ye therefore adopt a different geometry for injecting and
applied field. To within a constant factoy; represents the extracting current, as shown in Fig. 1. Figuré)lcorre-
phase rigidity or the superfluid density tensor of the system;

its derivation i f libri h q . sponds to injecting current/l; into each grain in theyz
its derivation in terms of equilibrium thermodynamic aver- plane atx=0, and extracting it from each grain &t N, /2
ages has been given elsewhéte.

(with periodic boundary conditions in all three directiprs

this geometry, the Lorentz forces acting on the vortices in the
two halves of the volume are oppositely directed, as indi-
cated by the arrows. Thus, in this geometry, we are effec-

To treat the dynamics, we model each link between grain&Vely probing theshear modulug. of the vortex lattice, on a
as an overdamped resistively shunted Josephson junctidfngth scaleL,/2. Similar geometries have been previously
(RSJ with critical currentl,=2eJ/4, shunt resistanc®,  discussed in the context of possible expgnméﬁfé.ln Fig.
and Langevin white noise to simulate temperature effectsL(t), We show a geometry which is designed to probe the
The effectivelV characteristics are then obtained by numeri-C-@XiS resistivityp. . In this case, we inject a currehtinto
cally integrating the coupled RSJ equations, as describeB2Ch grain on thety plane az=0 and extract it from each
elsewherd® using a time constant typically of Ggland ob- ~ 9rain atz=N,/2. In thls case, there is on average no Lorentz
taining voltages by averaging over an interval o60(t,  [Ofce on the vortex lines.

—200Q,. Since direct solution of these equations would in-
volve inverting and storing alvVxX A\ matrix, where\ is the
total number of grains O(5000), we instead solve them
iteratively incurring a speed penalty of a factor of M A. Thermodynamics

We verified that our solutions converge by comparing them

with those from direct inversion for time steps of 0.01, 0.04, The 3D unfrustratecY model on acubic grid has been
and 0.1 on an 88Xx8 system. extensively studie®® Near the phase transition, the specific

The most obvious approach to the dynamics of this modeheatCy~|T—Tyy| ~* with «a~0 and the correlation length
would be to use free boundary conditions, injecting currené~|T—Txy| ~” with »~0.66-0.67. For a cubic lattice,
into one face of the lattice and extracting it from the oppo-Txy~2.203). In a stacked triangular grid, where each grain
site, with periodic transverse boundary conditiéhBut this  has more nearest neighbors, the transition is shifted to a
has the following disadvantage. Once the flux lattice is dehigher temperature. Numerically, we find in this case that
pinned from its underlying periodic pinning potential, it will Tyy~3.04].
drift along as a wholeunder the influence of the Lorentz =~ The XY phase transition is best characterized by hiee
force provided by the driving current. Since this occurslicity modulus tensoly, s, which measures the phase rigidity
equally in the solid and the liquid state, such a geometry mayf the systen?® In stacked triangular lattice, this tensor is
not distinguish clearly between flux lattice and flux liq@id  diagonal with elements

a

the absence of spatially inhomogeneous pinning centers
This problem may be even more conspicuous in our stacked
triangular geometry, since the critical currdgg for depin-
ning a single vortex pancake from the underlying triangular
grid at zero temperatureT&0) is smaller (4,~0.037)

than in a square gridl g;~0.1).*®

B. Dynamics

Ill. ZERO-FIELD XY MODEL: f=0
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- < 2 sin(@;;)n;; - na> ) 3 FIG. 2. Two illustrative phase configurations, one with net vor-
" ticity piercing the sample parallel to they-plane(left pane), and

Here AZ is a fictitious uniform vector potential in the one with zero net vorticity but containing a bound vortex Igoght

direction, V is the volume,®;;= 6;— 6,— A is the gauge- pane).

invariant phase differencé;; andf, are unit vectors along ) ) . o

theijth bond and in thex direction. nate over the spin waves when their fractional contribution to
It is useful to distinguish two contributions ©;;: one  the helicity modulus is of order unity, that is

due to spin waves, and one due to vortite$he former is
dominant when the si@;~0;;, while the other is nonzero J ) )
when the vort|C|t|esna(p)¢0 Thus we writey,,=y>W kB_T{<Ma>_<Ma> HN~O(1), (7
+vY .., where the two terms on the right hand side are, re-

spectively, the spin wave and vortex contributionsytg, .
The spin-wave degrees should predominate at low tempera-
tures, while the vortex degrees of freedom are the dommants
excitations near the phase transitf6n? The spin-wave
contribution 5V can be estimated within a self-consistent
harmonic approximation with the restiit

—kgT
SW
~Jex ,

where N is total number of grains.
In Fig. 3, we show the calculategd,,, as well as the value
determined from the self-consistent harmonic approxi-
matlon(SCHA) Eq. (4). The other principal components of
y behave similarlyzy,, andy3y’ begin to differ for tempera-
tures as low ag ~0.3Tyy, where vortex loops start to be
excited. The SCHA predicts a discontinuous jump-igy
(4)  from a value of about 0.37 &ftyy to zero. This jump is an
artifact of the approximation, which neglects the periodicity
of the Hamiltonian in the angle variables and the vortex fluc-
he tuations. The inset shows a finite size scaling analysis to
“locate Txy. The helicity modulusy~|T—Tyy|” with v
=(d—2)v. Therefore, the scaled quantity. for an L XL
X L system should cross a single poinflat,. Based on this
j do 6 criterion, our numerical results giveyy=3.041+0.02. We
= f2+6’vda'— f276’vda', (5

whereX* andX~ are the two bounding planes normal to

f,, with normal vectors parallel or antiparallel fg,. We

assume that the singular portion of the phase varigpleas 0.
been selected outM,, is sensitive to existence of unbound

vortex linesperpendicularto i, . This is illustrated in the 2
left panel of Fig. 2 for the case of a single infinite vortex line <~ 0.
piercing the sample normal to the direction. In this case,

the phase integrals on the planEs and X~ give nearly

equal but opposite values. Thugl, has large fluctuations,

leading to a reduction in the value of,, (see below 0.
Closed vortex loops, such as shown in the right panel, give a

zero contribution taM,, . In general, forf =0, the thermal

whereD =4 for a stacked triangular lattice.
To characterize the vortex contribution, we introduce tl
net global vorticity vectoby®

o

T/3J

average(M,)~0. For an applied fieldz, (M,)~0 for a 0.0 < ! I | g |
=x ory. It can be shown thay,, and M, are related by 1.0 1.5 2.0 2.5 3.0
T/J
2
Yaa™ Yau ﬁ‘KMa) (M) (6) FIG. 3. y,, from Monte Carlo with 10 000T/J<2.7) to 50 000

_ _ o _ (T/=2.7) MC sweeps. The line represents a calculation based on
Thus, the vortices make a negative contributioryfg aris-  the harmonic self-consistent approximation. The inset shows the
ing from fluctuations inM. They may be said to predomi- finite size scaling analysis to localgy = 3.04+0.02J.
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FIG. 4. Size distribution oftonnectedvortex segments fof
=0. The insets show typical vortex configurations Téd= 2.7 and FIG. 5. Dissipation (dV/dI=[V(I=0.083)-V(l=0.043)]/
3.1. 0.04 across theXY transition, Txy=3.04]. A uniform current of

I/l per grain is flown througlyz planes. The inset shows=V/I
also observe thaty(T) approaches zero witlh~2/3 for  at1=0.083..
0.02<|Txy—T|/Txy<<0.1 and deviates from this outside the
range.
Equation(6) is equivalent to that derived in Fourier space
by Chen and Teitéf for A —oe:

calculated dissipation can be unambiguously related to the
resistivity. Our results are shown in Fig. 5 for several values
of the bias current densityMore details of the method are
4723 (ny(gXN(— %) described in Sec. VI [_).To calculate the differential resis-
y,49%)=J] 1— y y (8 tance dV/dl we carried out two separate runs Bfi.

VT q? =0.083 and 0.043, to obtain dV/dI=V(0.083)

if we takegq— w/L,. An alternative form based on the vor- —V(0.043)/0.04. Figure 5 shows this result as wellRas

; X ; - =V(0.083)1 in the inset. These bias currents are low
tex l9°P scaling picture hf.is peen pbtamed by Willighis enough to show sharp featuresTaty(f =0) while not sig-
the limit A\ — wherey,, is given in terms of vortex loop

. - : nificantly disrupting that transition. At higher current densi-
diameter distribution. To check the importance of large,. .
. . . ties (not shown, there are numerous current-induced vortex
loops, we show in Fig. 4 our calculated size distribution of

loops. These increasingly round out the sharp jump at
connected vortex loopsearTyy. Two vortex segments are _ ; : :
) - . ; Txy(f=0) shown in the figure, which eventually washes
consideredconnectedf they cross within a single unit cell. d
: : ; away entirely.
Such crossings become very extensiveTgt,, suggesting

; o . . Figure 6 shows the average number of vortex segments
that the energy barrier for vortex line intersections vanishes . .
nearT per plaquette as calculated both by Monte Carlo simulations
XY -

. L (with no driving currentand by coupled RSJ dynami@sith
whlizlgrfc;l;?lx'ly ' tht?]el;nea)s(ig?rtg gggﬁxvcl)or?& ﬁlrlze(asf ;'Qgﬁl a finite bias current Evidently, just at theXYtransition, the
LT XY P 9 system becomes filled with thermally generated vortex seg-
the entire simulation cell. Thu$yy somewhat resembles a

) - ments,one per grain or elemental celBelow Tyy(f=0),
ks)gtr)]g(-jpteo riﬁéagg?cézggsg'?;;egggﬁju%%\{mdgzsoigfsvﬁg:;eéonwhiIe there may exist vortex loops of arbitrary size, the num-
. ' . . .~ ber of the |) falls off exponentially for large clustersf.
nected cluster first forms &)(— 1)-dimensional manifold if ' seP(l) falls xP aty ge clustex

L ) R Fig. 4). By contrast, forT=Tyy, P(I) diminishes algebra-
he sysiem 1s In dimension. Because such infinite SUSIES jcally with 1. This subtle change iP(1) implies that the
' PP S . 9. % IS verage size of the connected vortex tangle remains finite for
consequence of the finite simulation cell, but persists in the|.<.|. but diverges above # We find that there are nu
. . . . . . . _ XY, . =
therquynam[c limit. A similar picture, but with no long merousfinite vortex loops at temperatures as low asTy.b.
range interactions among the vortex segméitfits so-called

polymer limit, has been discussed by AR&@nd by Kul- Moreover, at any given temperature, we find that a large bias
tanovet al%’ ’ current further enhances both their number and their size.

A simple argument suggests that the dissipation below
Txv(f=0) may be exponentially activated. The effective en-
ergy for a vortex loop of radiug oriented normal to a

We have also calculated the dissipation n€gy(f=0), uniform  driving current density j is U(r)
using the periodic current injection geometry of Fig. 1. In ~2ar min[In(r),In(\)]—cmr?j, where\ is the penetration
this case, since there are no field-induced vortex lines, thdepth. Thus, there is a barrier to loop expansion with a criti-

B. Dissipation near Ty
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FIG. 6. Average number of vortex segments in equilibrium  FIG. 7. Normalized Bragg intensitppen circlesandy,, (filled
(Monte Carlg and with various bias current densitig8SJ dynam-  circleg for f=1/6. The solid line is guide for the eyes. The insets
ics). The equilibrium density very closely follows an activated form show the real space density correlatiom,(r,z)n,(0,0)) for the
with U=16J for T<Tyy. local z vorticity taken over 40 000 MC sweeps.

cal radiusr~In j and heightUna—(n 7. For sufi 88 e e B oy e laeral
ciently smallj, only those vortex loops of size>r. wil fluctuations of field-induced vortex lines in the liquid phase.

expand and contribute to dissipation. From our simulations.,l_hiS can be seen in Fig. 8, where we show two typical vortex
for T<Txy, P(1) decays exponentially. Therefore, the Sm"jlllcom‘igurations, one slightly below and the other above the

dissipation involving the expansion of thermally nucleated : . : .
. : melting transition. Clearly, the transverse line fluctuations
vortex rings should have an activated temperature depen- : . .
PR : quickly dominate the thermodynamics abdvg. The strong
dence forT<Tyy, resulting in highly nonlineatV charac- [ - =
teristics first-order transition af =1/6 can be then understood by the

close connection between the lateral line fluctuations and
incipient vortex loops. We conclude, with an accuracy of
dT/J=0.025, that in the dense limit of=1/6, supercon-
ducting coherence is destroyed in all directions as soon as

the lattice melts.
This is the largest value we studied which allows a trian-

gular vortex lattice commensurate with the underlying trian-

IV. DENSE LIMIT: f=1/6

gular grid. This value yields a strong first-order |[~y% (~ & FT <], TN
transition’**2with an entropy of melting\ S of about 0.85 i W2 )] ~ Lk ‘ i“
per vortex pancake. . yiﬁl%xi‘» Luf” : Nissboson St
In the present MC simulation, the lattice was gradually | | 23 472 (&~ Copesesn ol
warmed up from a perfect triangular lattice in temperature | |, " 2 Aot a ST Q0 LT
steps ofd T=0.1J, with 50 000 MC sweeps for each The \sid SRS 7 ;
insets show the in-plane density-density correlation ||~ * A ? J A : 4 :éﬁ;}
{ny(r, ,z)n,(0,0)) for T/J=1.175 and 1.3, slightly below SO AT N A AR Y

and slightly above the melting temperature. At the melting
temperaturel ,,, our MC histogram for the internal energy
distribution agrees with that of Ref. 11. We have also calcu-
lated bothy,(T) and the Bragg intensitys,(G;) at the
smallest reciprocal lattice vect@; for the triangular vortex
lattice. The results are shown in Fig. 7. To withéiT/J
~0.025, both quantities vanish close t&=T,,(1/6)
~1.175), the melting temperature as determined from the
double peaks in the energy histograhithe apparent melt-
ing T~1.2], slightly higher than inferred from the energy
histogram, seems to be due to a superheating effect.

The occurrence of only a single phase transitionf at FIG. 8. Typical flux line configurations at for two temperatures
=1/6 (Refs. 11,33 is not surprising: At this field, there is (T/J=1.1 and 1.3) spanning the melting temperaturef atl/6,
one vortex pancake for every three grains, and hence, onlylotted for an 1& 18x 18 grid. The upper panels are top views.
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FIG. 9. Specific heat per grain for various frustrations. For Lg
=1/6, C, at T=1.2 shows a clear divergent behavior, apart from

other dilute cases. FIG. 10. Dependence of peak height ©f on the magnetic

V. DILUTE LIMIT lengthLg. The line is a guide for the eyes.

By dilute limit, we mean the regime where the numberp o,q maximum in specific heat. At the temperatdivsich
density of thermally excited vortex line segmentsequals e denoteT ,(f)] wherey, (f) vanishes, we observe that the

or exceed the density of field-induced vortex line segmentséwerage number of thermally generated vortex segnyesrts
To make this more quantitative, we first consider a perfeChain normal to the direction closely follows the law
line lattice atT =0 with a givenf. The number of unit vortex n)c(y(T/)No_ng.e:o.l_ All this behavior is discussed in more

line segmentsper grain will be 1/(3f), or 1/(15) per detail below
plaquetteg(since there are five plaquettes per gyairhus, for '
f=1/6, there are 0.4 vortex segments per plaquette. In Fig.
6, we show the density, of thermally excitedvortex seg- VI. f=1/24
ments aff =0, including all three directions. Note that at the
XY transition,n.=0.15. Thusf=1/6 is clearly in the dense
regime, whilef <1/18 is roughly in the dilute regime. In the dilute regime, such &s<1/24, there are numerous
Figure 9 shows the specific he@t, per grain, as calcu- phase degrees of freedom per field-induced vortex pancake.
lated from energy fluctuations for several valued §1/162  Thus, a double transition, if there is one, might be more
(4 flux lines, 1/81, 1/24, 1/18, and 1/6108 lineg] in both
the dilute and dense regimes. At low all the C\’s ap- o T T T T T T T ]
proachkg/2 per grain, as expected from the Dulong-Petit B T, (Lg= )=3.04 J 1
law. The overall behavior of the peaks@y up tof=1/24 is 2r 18 - 18 - 18
remarkably similar to that seen in YB2,0;_5°8 For f £ =1/18,1/24,1/81, i
=0, it is known thatC,, has a weak divergence:[t| ~* with 8 1/162,1/648,1/2592
a~0.0 (Ref. 49], as expected for the 3IXY model. At ¢
finite f, this peak is rounded as seen experimenf&iR7.As -~
discussed below, these broad peak<Cip generally occur 2
well abovethe melting transition in this field range. Note that o
our results for the densef €1/6) case differ qualitatively g ©-1
from all those at lowef. The sharp peak fok=1/6 is actu- T 6
ally a s-function singularity, consistent with the finite heat of 4
fusion of a first-order transition known to occur at this
density*!
Figure 10 shows that the height of the peak fex1/18 0.01
roughly follows a logarithmic dependence on the magnetic
lengthLg defined ad_g=1/\/f, the average vortex spacing. Z 3 ise T3 i 56
Furthermore, as we show in Fig. 11, the position of the peak
at a finitef shifts from Tyy(f=0) by an amountsT(Lg) L
which closely follows the law~Lg*?. As we will show in
more detail forf =1/24 below the phase rigidity along the  FIG. 11. Shift of peak irC, from thef=0 position (I'Sy) vs the
applied field, as measured by,, vanishes for alf near the  magnetic lengti_g. The line (~Lg%?) is a guide for the eyes.

A. Statics: Melting and vy,,
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1.0 | | ‘ ‘ | 1ax10° equilibrium value. For temperaturds,<T<T,, the system
[T T tends very slowly towards an apparerilyite limiting value.
We have also checked the size dependence up 0224
X 48, verifying that the 2% 24X 24 behavior represents the
asymptotic limit. Li and Teitel have carried out similar
checks up to 200 layers in the cubic mo&éfeNonetheless,
v,,has some size dependence to a degree strongly dependent
on anisotropy of the system.
If the ratioJ,/J,, is increased to 4.0vhereJ, andJ,, are
the couplings perpendicular and parallel to the triangular
plane, the separationT,—T)/Jy, between the melting
transition and the upper possible transition actually grows for
a given size. For these values, the smali@sBragg peak
vanishes afl ,~2.9,,, while y,, vanishes afl ,~4.0],, .
On the other hand, for weakly coupled layers wiyJ,,
0.0 =0.1, the two transitions merge to within less thanJQ,1
08 10 12 14 16 18 20 22 24 as in theisotropicdensef = 1/6 case. In this weakly coupled
caseT;,~ 0.6,y .
T/7J These observations suggest that phase coherence at finite
FIG. 12. Normalized Bragg intensitppen circles; 5% 10° Mc | in @ disorder-free system may possibly be destroyed in two
sweeps and y,, (filled circles: 5x 10°—10° MC sweeps; crosses: Steps. First, coherence transverse to the average field direc-
5x 10" MC sweeps for f=1/24. The solid lines are guides for the tion is lost through melting of the lattice. But longitudinal
eyes. The inset shows the dependenc@ygp on the accumulation coherence perSiStS until it is destroyed, along with linelike
time, as discussed in the text. correlations of the individual vortex segments, at a slightly

) N ) higher temperatur& . This is most apparent for thsotro-
plausible here than dt=1/6, one transition being the melt- pic system only wherf<1/18.

ing of the field induced flux lattice, the other connected to
the XY degrees of freedori.

To check this possibility, we have studiée 1/24 (a field
which allows for a commensurate triangular flux lattice of 48  There are several ways to look at general phase correla-
lines) on a stacked triangular grid of 224x 24 grains. We tion function (®(p,z)©(0,0)) where © is the gauge-
first did an extensive simulated annealing run on a singldnvariant local phasé of the superconducting order param-
layer, verifying that the vortices freeze into a perfect trian-eter. To probe the longitudinal phase coherence, we only
gular lattice. We then stacked 24 such layers to form a threeconsider  ¢(0;2)= (1/A) [ d*p(expi[@(p,2) —O(p,0)1}),
dimensional ground state. Next, the lattice was graduallyvhereA is the sample area—that is, the correlation function
warmed up in intervals ofi T/J=0.1 or 0.05, typically with  in the Z direction. Glazman and Koshelev have pointed out
50 000 MC steps for each temperature. For sevEbse to that phononlike fluctuations in the vortex lattice lead to a
a transition, we ran up to $MC steps to ensure equilibra- power law decay o€(0;z) (Ref. 93 (not explicitly shown in
tion. The resulting Bragg intensi§(G;) and helicity modu-  Fig. 13. We observe that this holds true far<T. For
lus componenty,(T) are plotted in Fig. 12[The transverse higher temperatures, this dependence changes to an exponen-
componentsy,(T) and y,,(T) fluctuate around zero for tial decayc(0z)>exp(-Zéy). The correlation length
most T>0, as expected for a very weakly pinned vortex
lattice which is free to slide in thab plane] | T2 In(T/To)

: Tg 27?

0.4

0.2-

B. Vortex analysis of possible transition atT ,

-1

The results do indeed suggest the possibilityvad phase Sz~
transitions. The first—the melting of the vortex lattice—
occurs neaif =1.5J=T,,, where the Bragg intensity drops where T, is the temperature scale such that
sharply. At higher temperatures, there is a broad dip in th¢[®(0,2) —©(0,z+1)]?)~1. This behavior is shown for
normalized Bragg intensity which reaches a plateau af/T,=1.1 in Fig. 13 for systems of several thicknesses. To
around T/J~2.1. The possible upper transition, ne@ir ensure equilibration, we ran 86 000 MC sweeps before accu-
=2.00=T,, is the point wherey,(T) vanishes. Essentially mulating data over the following 30 000 MC sweeps. To
the same behavior, but with an even wider temperature sepaheck the effect of boundary conditions, we used both open
ration, has previously been observed on a cubic grid by Lboundary(OBC) and periodic boundary condition®BC)
and Teitel® along ; periodic boundary condition was used in thg

We have carried out several checks to see if the separatigsiane for both cases. In all cases, we observe a robust expo-
of these two transitions is an artifact due to a finite-size efnential dependence over a limited range dz< ¢, , where
fect. First, as shown in the inset, we monitored the dependeviation sets in atiz~ &,~12 for T/T,,= 1.1, for example.
dence ofy,, on accumulation timer up to 18 MC steps. In this temperature range, we do not find significant depen-
More precisely, we definéA),= (1/7) [oA(t)dt and use dence of €, 2) on either system size or boundary condi-
this in calculating the averages which defipg, in Eq. (3).  tions. For a given temperature aboVg,, we can use this
The (y,T)), thus defined generally evolves approximatelyrobust temperature regime to extract the phase correlation
logarithmically in = (Ref. 60 until it reaches its apparent length &g, from our numerical simulation.
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24X 24X 24 grid. Melting occurs around,,,/J=1.55 while linelike
correlations (white spot at the centprvanish aroundT/J=2.0
~T,/J. 50 000 MC steps for each temperature.

FIG. 13. Phase correlation functiar{0;z) for various system
sizes and boundary conditions.

The result is shown in Fig. 14. For all>T,,, and for
separations less tharg,(T), we observe thatc(0,2)
~exd —Z&g). £, gradually decreases with increasing tem-tion of phase coherence aloagbut gives information about
perature approximately asT ¢ T,) %, becoming equal to the deformation of vortex lines from the straight configura-
the unit layer spacing nedf/J=3.0~Tyy(0) as shown in tion.
the inset. We also observ@ot shown in the figutethat In the large-distance tail af(0;z), wherez>L /2, ¢(0,2)
fdpc(p,z) has far milder dependence anThe exponential does depend on the boundary conditions and system size,
decay inc(0,2) is accounted for by random walklike excur- having an upturn for the periodic boundary condition as ex-
sions of the vortex lines and the presence of dislocation opected. Moreover,o(T) rapidly falls asT decreases toward
disclination loops in this temperature regime. Note that spinTxy from above, leaving a large intervg)(T) <dz<L,/2 in
wave excitations in the vortex lattice usually lead to an algewhich the behavior deviates from simple exponential decay
braic decay ofc(0,z). Note that given astatic deformed and is independent of the boundary condition used. We also
vortex line configuration, we may still find a coordinate observe that the deviations have relatively poorer statistics,
transformation{x,y,z} —{x’,y’,z} into a curved space in Which suggests that they are due to slow kinetics. It is likely
which the vortex line is straight. In that coordinate system/[o originate from vortex entanglement and cutting/
we will have a long-range phase coherence along the straighéconnection, which develop on length scales larger gan
line in the 2 direction. Therefore, the apparent exponentialEach of these rare and slow vortex crossings produces a dras-

decay ofc(0,2) is not an equivocal indicator for the destruc- tic and long-lasting impact on the local phase correlations.
The rarity of these events is due to the sizable barrier for

10 . : vortex cutting and to the subdiffusive nature of vortex lines
I § E— motion. Because of this rarity, a rapid thermal cycling across
' 1 this sluggish region may lead to hysteresis.

o 10F R We now look more closely into the vortex configurations
T_m : K&@\% 1 nearT, for f=1/24. Figure 15 shows the density-density

&=+
&

I | correlation function n,,(r, ,L,/2)=(n,(r, ,L,/2)n,(0,0))

T ENNE describing the&z component of local vorticity at separations

| equal to half the total thickneds, (=24). The most promi-

m nent feature im,, is the disappearance of triangular corre-

% 1 lations in thexy plane at melting T,,~1.53). This behavior

{4+ 46000 : 5000 is consistent with the disappearance of the Bragg spots in

{ O 56000 : 10000 O Fig. 12. Note, however, that the central spot, corresponding

X 86000 = 30000 x to the self-correlation between the two ends of the same line,

1.5 2.0 2.5 3.0 3.5 persists well above melting until it vanishes ndad=2.0,

close toT,. This is consistent with the fact that linelike

correlations are maintained over at least 12 layers up to
FIG. 14. Longitudinal phase correlation lenggly, determined T/J=2.0 as we already noted in Fig. 14.

from fitting ¢(0;z) to the forma exy —z/Xiy] for z< & (T) as dis- In a sample of truly macroscopic thickness, the lines in

cussed in the text. the liquid phase should carry out random-walk-like excur-

F?Oz
+HXi
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sions, leading to loss of top-to-bottom vortex density corre- small field
lations over a finite correlation length denot&gd(T), which 1oops :leduced cluster
ines

may be of the same order of magnitudeggsdefined above.
A finite £,,(T) means that the underlying lines dtexible
not that they break up into 2D vortices. This breakup be-
comes relevant only fof >T,. The objects which break
apart into 2D objects above the melting transition are not the
lines themselves, but thepological defects of the lattice T
such as disclinations, which tend to appeamedl-aligned
line defects nearT,,.}*®! Topological defects look well
aligned only whenr;(z) —r;(z+1)|/ag<1, wherer;(z) is
the position of the segment of vortex limen the zth layer.
Note that the relevant minimum length scale for alignment of
defect lines is the mean vortex spaciag. The destruction .
of thelattice orderalong the field, which may be detected by T < T < )
vanishing Bragg peak in neutron diffraction, is related to
proliferation and unbinding of these defects. On the other
hand, the destruction of phase coherence alBngs we
discuss in more detail later, is related to the presence o
fluctuations in the transverse vorticity. As the vortex density
decreases, it is nat priori obvious if the energy scales for
these different types of defects should remain the same.
Thus th_e line-liquid regime, if it is really a distinct ther- FIG. 16. Vortex configurations for temperaturBsn the range
modynamic phase, may possibly be described as a neutrgl <1<, The left column shows the portion of vortex fluctua-
gas of topological defectslisclinations of both signswithin  {jons which form bound loops. The center column shows mainly
the triangular lattice in each plane, which are correlated ovejhose field-induced vortex lines which are not entangled, while the
a finite length in the direction. Above melting, one expects right column shows the largest cluster of entangled li@asdefined
unbound disclinations to proliferate. Hence, the long-rangen the texj.
structural correlations of the vortex lattice are lost in all di-
rections upon melting. However, thhase rigidity as mea-
sured byvy,,, may persist even above melting, but scaled
down by the factor of,4/L,, the fraction of the volume of . Y .
the sample into which the applied twist penetrates. Presun{lr€ and_more connec_teq _cluste(se., vortex tanglesto
ably, this continuous suppression, unless pre-empted by appear. Fmglly, at,, an|nf|n|t_e tangle, connected by cross-
first order transition(for high densities persists until the Ng vortex lines, forms. At this temperature, the connected
condition L,/&,9— is met via proliferation of “unbound tangle of vortices form al¥ — 1)-dimensional mar_nf_old of a
vortex loops” (vortex lines extending an infinite distance in tortuous shape, transverse By and cut the original
the transverse directionAt this point, the phase coherence = 3)-dimensional coherenXY system into halves.
even between neighboring p|anes normaBtwill be lost. Figure 17 shows an instantaneous vortex cluster size dis-
In Fig. 16, we show snapshots of vortex configurations atribution for various temperatures &t=1/24. To generate
Tm, T,, and a temperature betwedn, and T,. In this  this distribution, we define therojected transverse lengtsf
regime, by using a bond-searching algorithm, we have ideneach vortex loogor tangle by /,,=§|2xn,| for each iso-
tified three distinct classes of vortex lines. The first consistdated cluster composed of unit vortex segmemts and ac-
of small vortex loops which close on themselves withoutcumulate a histograr®(,,). [We consider only the size
crossing either of the two opposite bounding surfaces. Thdistribution projected onto they plane because the field
second class contains all isolated lines beginning at the botrduced lines(which are infinite alongz) could mask the
tom xy plane and ending at the top one. Most of the disenloops with large extent in the direction. We also believe
tangled field-induced vortex lines fall into this group. Fi- that these fluctuations are more relevant to the vanishing of
nally, there occur “vortex tangles.” These are lines ¥zz.]
connected at a given time to one another by the crossing of In the first panel of Fig. 17, we plaP(~,,) for several
two vortex segments in the same unit cell. Such tangles aré<T,,. Each plot has a sharp maximum cutoff and a pro-
formed either by collision of two flux lines or by interactions nounced peak, which is due to the finite average lateral fluc-
of such lines with the vortex loop excitations. This tangle istuations of the field-induced vortex lines. FORL,<T<T,
not static: the collisions which produce it are more and moregsecond pangl the weight of distribution is shifted towards
frequent with increasing temperature and its overall shaptarger/,,, because lines in the liquid phase undergo larger
will evolve with more rapidity asl’ increases. transverse fluctuations. Closed vortex loops also begin to ap-
The three columns of the figure represent the fraction opear in this region. A3 increases, the distribution is cut off
the vortices belonging to each class at a given instant. Oat progressively larger values, as more and more lines join
melting (T/J=1.5), the fluctuating lines in our finite sample the connected clusters. Finally, far>T,, all curves are
still remain largely disentangled and separated from eackharacterized by the appearance of “infinite” clusters, with
other. AsT—T,, the density of loop excitations increases no obvious length cutoff. The distribution appears to fall off

(left column), while the field-induced linegcentral columpn
have stronger lateral fluctuations. Both of these effects cause
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FIG. 17. The distribution of transverse vortex lengtg, pro-
jected onto they plane/’,, for three sets of temperatures in tfa
lattice, (b) line liquid, and(c) tangled vortex web states.

algebraically in this regime, i.e.P(/,y)~/ /" with u
~1.0<2, suggesting/y,)—> for T>T,.

In Fig. 18, we show the maximum valu€,, occurring
over 10 000 MC sweeps for each temperature. The size
normalized by the linear system dimension in theplane
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FIG. 18. Maximum projected lateral vortex length,, given in
terms of the lateral box dimensidr48), and normalized per layer
in a 24X 24x 24 grid with f=1/24.

(48), and also by the number ofy planes(24). Although

/'xy grows monotonically folT>T,,, it seems to jump dis-
continuously from~1 to ~2 betweenT/J=2.0 and 2.1
(nearT, for samples of this si2e Qualitatively similar be-
havior occurs for the isotropid =0 XY transition near
Txy(f=0) (cf. Fig. 4.

C. Entanglement, winding number, and other exotica

We now suggest a possible extension of the vortex loop
picture of the zero-fielXY transition to the hypothetical ,
transition or crossover fof<1/24. Such loop excitations
have received far less attention in 3D syst&hisan their 2D
counterparts, possibly because they require more energy to
excite and therefore matter only very close to the mean field
transition. But in highf, materials, the short correlation
lengths, high anisotropy, and hidgh- broadens the vortex-
loop-dominated regim&®3before amplitude fluctuations set
in.

In a cubic sample with periodic boundary conditions, all
vortex lines naturally close on themselves to form loops.
These loops are of two topological types: those which can
continuously shrink to a poin¢“trivial class”) and those
which cannot(“nontrivial” ). The latter are said to have a
nonzero “winding number,” i.e., number of infinite lines in
a given direction. In the 2D periodic case, the loops lies on
the surface of a torus. In this case, there are two distinct
subclasses of nontrivial loops: one which winds around its
circumference, and another which runs transverse to it. In the
infinite 2D geometry, these correspond to lines infinite in
either thex or the § direction. On the 3D hypertorus, there
are infinite lines in any ofhreedirections.

These notions play critical role in the description of dis-
sipation via vortex motion, i.e., phase slffsFor current
flowing in a given direction, the dissipation may occur either
through the expansion of loops, or through motion of an
infinite line. In either case, the dissipation arises from fluc-
Riations in the winding number of vortex lines perpendicular
to the currenfc.f. Egs.(6) and(7)]. Note that when a finite
field is applied along thé& direction, the hypertorus already
contains many “windings” along that direction even without
an applied current.

In the absence of pinning, dissipation in the plane normal
to 2 is governed by fluctuations of the winding number in the
z direction. This dissipation should not depend directly on
whether or not the “windings,” that is, the vortex lines, form
a lattice, but may depend on thdensityand mobility of
windings.

Dissipation parallel to the field directiofc-axis resis-
tance depends mainly on winding number fluctuations trans-
verse toz. Clearly, the average winding in this direction
vanishes, unless the field-induced lines themselves, while
winding alongz as required, also wind along another direc-
tion such as wires around a solenoid. For this to occur, the
lines would have to break a chiral symmetry, spontaneously
generating a global surface current with a net magnetization
normal toz—an effect which should be prohibited energeti-
cally in the ground state.

It may occur, however, if there exist entangled field in-
duced vortex lines which collide with each other to switch
connectionga process we may call “cutting and reconnec-
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Alternatively, we may view the upper transition in the
context of a bond percolation transition. The field induced
lines provide a kind of backbone network. With increasing
T, vortex lines undergo more and more transverse collisions.
At T=T,, these collisions induce the entire ensemble of
field-induced vortex lines to form an infinite connectdd (
—1)-dimensional structure transverse to the applied field,
causing large fluctuations in the transverse winding number

(a)
[thick gray line in panelc)], thereby wiping out any super-
conducting path connecting the top and the bottom layers
normal to the field.
Let the mean-square transverse displacement
(b) ( of field-induced vortices per layer be denoted?

=(|ri(2) —ri(z—1)|?). Then/./d is defined as the number

of layers alongz over which a line wanders transversely by
the average intervortex distance. We write this condition as
/3[/.1d]?)=a3, where we introduce an unspecified “wan-
dering” exponent{. In the limit of dilute (independent

(c) / \/ lines, we exp_ecg’~ 1/2, corresponding to a random walk of
each vortex line segment. Long-range intervortex repulsion

o ) is known to renormalize the unit step sizé; from
FIG. 19. Effect of switching connections among entangled ﬂUXC(T)(T/JZ)O'5 down to a smaller value with a similar form
lines in a torus geometrya) and in an infinite plane with open with an unspecified dependence encoded d:(]-l—)<1.65,66
boundary conditions. For the case of only two liflbs note that it It is not clear how? is affected by intervortex repulsion, but

Is necessary to make a long excursion spanning the whole plane {9,y the interactions with other fluctuating lines are
change the global winding number. The latter may be easily in-

. . : equivalent to the line of interest being in a random environ-

duced in a dense environment through collective occurrence of lo- . - - -
. ment. For a flexible line in a 3D random environmeiit,

cal reconnectionsc). 67.68 . . .

~0.6.°""°°ForD=2, in the actual system of interacting fluc-

_ _ o _ ~ tuating lines, no exact result is available fgralthough sev-

tion”). In Fig. 19, we show two field induced lines residing eral numerical results and conjectures suggesd.2— 0.6 .5°

on the surface of a torudeft pane) going through such a  We can use these crude estimates to make a guess at the

cutting and reconnectiofpanels(a),(b)]. The right column  field dependence of ,, interpreted as a bond percolation

of the figure shows an alternative view of the same procesgansition. Along a given field-induced vortex line, the prob-

in an infinite space with open boundary conditions. Initially, ability per unit length that a transverse connection is made to

both vortex lines wind only along the axis. After the cut-  a neighboring vortex line at any position along thexis is

ting and a special reconnection process in which one strang=d// .= (/+/ag)**. Since/7%(T/J,)°° andagxB~ %,

circles around the torus before meeting its other end, a nehe percolation threshold is reached roughly when

transvers-e Wlndlng number haS been Creat-ed. This “glot-)a.nc(T)zTB/JZ>[pC]2§' Wherepc is an appropriate perco|ation

process is, however, energetically expensive because it iRhreshold. This condition defineslawer boundsfor a pos-

volves a spatially extended excursifanel(b)] and should  sible transition aB,(T) which approximately follows
occur very rarely, even in the melt.

If we introduce an “entanglement lengthy’.., defined as 2¢
. " : [Pc]™* Jo(T)
the average distance alorigrequired for any two vortex o 9
lines to wind around each other, we expggtto be infinite c¢m? T

for T<T,,, but to become finite in the liquid phase. Because

of the finite line tension and repulsive interactions betweerfFor a dense lattice or large anisotrofiye., smallJ,), this
vortex line segments, such entanglement events along thmndition is probably satisfied immediately upon melting, as
flux lines are costly in energy and hence rare, in the liquidat f =1/6. For dilute systems, however, the second transition
near melting. Deeper into the liquid phase, as the repulsivées not automatically triggered by melting and may occur only
interaction between vortex lines is overcome by entropiadeep into the liquid phase, at a temperature where the en-
forces of attractiony’; should become much shorter, leading tanglement barrier is sufficiently weak to allow an infinite
to a much denser entanglement pattern. The now numerow®rtex tangle to form. Whether this percolation transition is a
local transverse fluctuations, and local cutting and reconnedrue phase transition or only a sharp crossover remains to be
tion eventd(i.e., collisiong generate fluctuations in the “glo- determined.

bal” transverse winding number and caugg=0. On sym- This same picture suggests how correlated pins such as
metry grounds, the average transverse vorticifiey and  columnar damage traclsmay increasd , . Such columnar
(ny) have to be zero at all temperatures. But possiblydisorder will encourage the vortex lines to stay straight along
(Iny/?+[ny|?) acquires a finite value foF>T,, suggesting the defect track, reducing the effective unit step by a

that this quantity could be used as another “order paramfactor cy,<c. As a result, the wandering exponefyf may
eter” for the hypothetical phase transition Bt T, (with a  also change from its thermal valge ConsequentlyT - will
nonzero value ahigher temperatures be enhanced by an overall factor af/¢,)%(1/pc)?¢ ).



14 488 SEUNGOH RYU AND DAVID STROUD 57

In summary, the upper transition is characterized by thdastorizaet al. have used a nonuniform distribution of pin-
following set of equivalent criteri&®?® Disappearance of fi- ning strength to probe the shear modulus diretlgjving
nite transverse diamagnetism, disappearance of phase rigidirect information about the lattice stability. Zeldet al?
ity along the field direction, appearance of an infinti@ns-  have used local Hall probes in SirCagCu,Qg to monitor the
verse vortex cluster, large fluctuations in the global |ocal field density. They found a very sharp jump, again
transverse winding number or the net vorticity, and onset interpreted as a signature of a first-order melting transition.
of finite c-axis phase-slip resistance in the limit of vanishingMore recently?* Fuchset al. performed simultaneous mea-
bias current in the direction, which is equivalent to saying surements of the resistance and local magnetization, con-
no superconducting path exists over macroscopic distancesirming that that the jump in local magnetic density coincides
with a sharp increase in resistan@f@ut not necessarily a
discontinuousjump). The heat of meltingper vortex per
D. Dissipation for f=1/24 layer inferred from this local magnetization jump, however,
While Bitter decoration serves as a detailed probe of spashows rather peculiar features: it vanishes continuously as
tial vortex configuration§-"*7?it yields ambiguous informa-  the field is increased, while steeply increasing as the field is
tion about freezing, and is restricted to very low flux densi-lowered toward zero. _ _
ties. Cubittet al. obtained evidence of a melting transition in ~ These results raise several outstanding questions. How
Bi,SrCaCu,0g from low angle neutron diffractiof Similar ~ ¢&n the seemingly first-order transition line terminate appar-
results were obtained by &SR technique, which probes the €ntly at a point in theH-T plane? Does the melting line
local magnetic field distributiohNMR (Ref. 73 and atomic ~ monotonically approachl((H=0) or follow a reentrant
beanf* techniques have also been used to study both thEelting curve? Another important issue is the longitudinal
static properties and the melting of the vortex lattice. MorePhase ~coherence probed byg-axis resistivity vs T
recently, Schillinget al. employed a differential thermom- measurement¥;®*“which show a striking series of broad
etry to search for the latent heat of melting in ¥,Ba,0,_5  Peaks in BjSrCaCu,0g single crystals. The nonlocal con-
and to obtain a melting cunf?’ ductivity associated with this phase coherence can be probed
Far more information has been accumulated from transtn the so-called flux transformer geometry. The experimental
port measurements, but this is much less easily interpreted fiata of Keeneet al*! suggests that phase coherence over a
terms of vortex lattice melting. The interpretation is compli- finite correlation length alon@ persists above the melting
cated by disorder, as well as by the fact that the measurdtansition of the vortex lattice in some region of the T
ments are nonequilibrium and usually involve nonuniformpPhase diagram.
current distributions. Safat al® measured a sharp jump in A simple and natural model for probing the dynamics of
resistivity in the mixed state of YBEU;0,_ 5. The resistiv-  the mixed state is a network of resistively shunted Josephson
ity also showed a hysteretic behavior upon thermal cyclingjunctions with Langevin noise. In this section, we present
suggestive of a first-order transition. The transition line thussome results of simulations using this model, and to connect
obtained seems to coincide with “melting curves” obtainedthese to the analogous stak results. Our calculations are
by torque measuremeritgnd more recently, by differential carried out as follows. At any given temperature, the final
specific heat measuremefit&&wok et al. have carefully —Shapshots from the MC simulations are used as the initial
demonstrated the effect of twin boundary pinning on thedynamical phase configurations. We use an integration time
melting transition in a series of transport measurement§tep At=0.1t,. After the current is switched on, 1000
which track the so-called “peak effect” associated with vor- —5000At is allowed for the system to reach a steady state,
tex lattice softening! They find that the peak effect sets in at following which the voltage is averaged over the next 6000
a few degrees below the melting curve determined from a- 12 000 steps ofAt.
sharp kink in resistivity. This sharp resistivity kink, as ob-  Figure 20 shows the “bulk in-plane resistance” &t

served by both Safaet al® and Kwoket al,” tends to be- =1/24. The measurement geometry is as shown in Ra; 1
come less pronounced both at very higs<10 T) or low thus, these calculations probe the shear rigidity of the lattice
flux densities B<1T)."® in contrast to the usual transport experiment in which ran-

An ideal, but impractical, transport measurement to deterdom pins play an essential and complicating role. Through
mine the melting curve would consist of applying an infini- the rest of this paper, we will call these calculated quantities
tesimal current to induce a net Lorentz force on the latticeRap and R¢, even though they differ from the resistivity
which is held in place by a balancing pinning force. As soonmeasured in most transport experiments. At the highest bias
as the lattice melts, individual lines would begin to drift, current of 2.88; per grain(equivalent to 1.4 per bond, we
inducing “flux flow” resistance. Most real materials, how- have a smooth curve without any noticeable changes either at
ever, are complicated by disorder, and even the static propFm Or atT,. For lower values of driving current, sharper
erties of the lattice with disorder are incompletely features emerge. There is a slope discontinuity ngar
understood”"®In the presence of disorder, varying the field = 1.5 for both1/1,=0.83 and 0.083, but the most dramatic
density produces changes in both the effective pinninghange occurs nedr,=2.0J. The entangled line liquid for
strength and the effective flux lattice anisotropy. Dependingl,<T<T, seems to have a sizable viscosity. This viscosity
on relative strengths of all these competing effects, manympedes the motion of the flux lines in the liquid, the two
complications may arise in probing thermodynamic proper-halves of which are driven past each other by opposing Lor-
ties using transport experimerfts®3 entz forces. As a result, the lines move slowly, and dissipa-

A number of recent transport measurements have, nondion (defined as a “resistanceR,,) is small. The steady
theless, produced rich information about flux lattice melting.increase ofR,, with temperature in this region is due to
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3.0 ——rrent ymptotically asT— T, coinciding with the vanishing,,.

B 0.083 Our numerical results thus suggest that the dramatic increase

55 ® 0.83 | in R; results from theT , transition rather than melting. The

o 2.83 O increase inR, is thus correlated with massive vortex line
O cutting, as suggested earlf8%° and with an increase in the

— density of transverse vortex segmeits,,|), the frequency

of vortex line crossings, and fluctuations in the transverse net

vorticity 5/\/@. This distinction betweeil, and T, may be

most important for BiSrCgCu,Og at low fields, and in dis-

ordered dense systeriswhere the temperatures may be

] most separated.

The current dependence of boRy, and R. suggests
some conclusions relevant to experiment. First, the “melting
24-24-24 line,” as detected via a voltage criterion at constant current
f=1/24 in a bulk resistance measurement, should be sensitive to the

0.0 | | | driving current, even at a very low bias. Existence of pinning

o 1 2 3 4 force is essential in getting distinct transport behaviors for
T/J the lattice and the liquid. On the other hand, the transition at
T,, whether monitored by the vanishing Rf in the limit of

FIG. 20. Calculated bulk in-plane resistancevdor f=1/24.  small current or by a jump iR, between twdinite values,
Currents of 0.083 2.83 ;. per grain were injected uniformly into a should be relatively insensitive to applied current density,
yz plane. since the main mechanism of dissipatigmesence of trans-

] ) ) verse vorticity in this case is switched off beloW, and sets
screening by vortex loops which gradually lowers the viscos;, aboveT, irrespective of whether we have pins or not.
ity. For T>T,, this viscosity vanishes, leading to a steep|ngeed, just such an observation has been made by Keener
increase irR,;, This increase &t , is enhanced by additional &t 5132 i describing their curves fof,,(H) (melting and
(and probably dominaptissipation produced as the system To(H) (“decoupling transition’, as obtained by flux-
goes through aiXY-like transition or crossover. The large i ansformer measurements on,BiCaCu,0y single crys-
viscosity for T,,<T<T, is also consistent with the slow tals. It is plausible that theil5(H) at very low fields B
(Int) equilibration seen in the Monte Carlo measurement of_ 1 O corresponds td@ , in our model. True melting line
Y2z for Tp<T<T,.%® We believe that the change Rap  is presumably the limiting value of the current-dependent
near T, shares the same mechanism as that seen negr (4 3y asJ—0. It is not experimentally verified whether
Txy(f=0) shown in Fig. 5. o such a limiting value coincides withip or not.

Figure 21 shows the ¢ axis resistivity” R; atf=1/24, as Let us briefly comment on the experimental possibility of
calculated using the geometry of Figbl Fpr comparison,  gistinguishing betweefT,, and T,. If we imagine a hypo-
we also show the calculateg,,. As the driving current is  heticalisotropic high-temperature superconductor, the cou-
reducedR; seems to approach a curve which vanishes aspjing constantJ in our model calculation is related to the

parameters of the superconductor via d¢3a/16m°\2(0)

1.0 K X(1—[T/Tel* (assuming the two-fluid model Taking

i T.o=92 K, d=10 A, and A(0)=1000 A, we find T,
~89.7 K andT,~90.3 K[Eqg. (11)]. Thus the two transi-

)
I
O
He

VAR VA C tions are remarkably close even for the isotropic case. In real
v.--¥ . materials such as YB&u;O;_s and BbSrCaCu,Og, the
0 4, ° separation between the two will be further reduced by an
. 1 — anisotropy factor, although pinning disorder may tend to
Py e o+ separate them. Therefore, in many cases, it will be nearly
-~ :i O,L impossible to separate the two transitions experimentally.
(i=0.083) 3 -
(1=0.23) VII. LOCAL MAGNETIZATION JUMP AND HEAT
0. (i20.43) OF MELTING
(1=0.83) A striking result of the BjSrCgCu,Og micro-Hall probe
,0-1 measurements is the sharp jump in local magnetizdtion
0. 35 4.0 tex density across the phase transitidrt “high” fields

(~200 G), the jump occurs at nearly constaintand even

for lower fields, still withinéT~3 mK. The heat of melting
FIG. 21. Calculatect-axis resistancéarbitrary unit3 vs T for ~ Per vortex per layerT ,AS= — (T,AB/4m)(dH,/dT), as

f=1/24. A current of 0.088 per grain is injected uniformly into a Obtained from the Clausius-Clapeyron relation, increases

plane. The inset shows the same results, but with temperature regionotonically from 0 atB~400 G to about 0k at B

caled to model a hypothetic@otropic high-T, superconductor as ~55 G, beyond which the slopdH,,/dTincreases very

in the previous figure. sharply(see Fig. 6 of Ref. B
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Similar jumps also seem to occur in Y0, 5, as  coherence at aingle transition. By contrast, at low fields,
suggested by recent calorimefricand magnetization phase rigidity is lost in a two-step process. Most of the en-
measurement®?’ In this case, the estimated latent heat oftropy release £ S=0.5g per vortex per layéroccurs near
melting yieldsA'S (per vortex per layer~0.4kg for 1<B T~T,>T,,, whether or not this is a true phase transition.
<8 (T). The data(see Fig. 1 of Ref. psuggest that the jump Note that a hysteresis in the resistivity may be observed near
AM atT=85K (B~3.7 T) for YBa,CuzO,_sis spread over T, due to finite vortex-cutting barriers beloly . This is not
a field rangesB~0.1 T, or, for a given field, over a tem- necessarily an evidence for a first-order melting transition at
perature rangesT~0.1 K. This jump decreases rather very low fields.
abruptly for flux densitie®=<1 T. The estimated entropy of The melting line in the dilute limit may be quite difficult
melting (~0.4kg per vortex pancakeis quite close to that to detect experimentally. Conceivably it may be tracked by
numerically obtained by Hetzedt al** (~0.3%g per pan- the peak effect, by high-resolutidv measurements, or by
cake, and also to the values obtained in model calculationglirect measurement of the shear moddftef course, direct
based on the lowest Landau level and Londonobservation of a vanishing neutron diffraction pattern as in

approximation$?® Ref. 4 would be ideal, but this technique is of limited appli-
As the field decreases, the jump M occurs over a cability in this density range.
broader temperature ranggee Fig. 3 of Ref. B The resis- To shed further light on this problem, we have carried out

tance jumps measured by Kwadt al,’® attributed to the calculationswith mixed boundary conditionFhat is, we al-
melting transition, also become broader with decreasindow local density fluctuations in the netcomponent of vor-
field. By contrast, the height of the resistivity kink seemsticity by using free boundary conditions in theandy di-
quite uniform over a wide range of fields. These last tworections, while retaining periodic boundary conditions along
observations are consistent, however, if we interpret théhez axis. Of course, surface effect are now stronger, possi-
jump in resistance as a signal that,—0. In view of all  bly reducing the melting temperature. Another point is that
these facts, it is plausible that, at least at relatively high fieldour uniform-frustration model assumes thatc. There-
which corresponds téJ,, /J,>1/18, the experimental jumps fore, we should proceed with some caution in relating our
observed in local magnetization and resistdfide shows numerical results to experimental data.
the combined effects of two distinct processes, occurring To study the system with these mixed boundary condi-
within AT<10 mK. As a corollary, the very low-field mea- tions, we again did a simulated annealing run for a single
surements fJy,/J,<1/18) actually may not track the melt- layer of the triangular grid to find the lowest-energy configu-
ing transition itself, but various manifestations of the pre-ration. By stacking the resulting state layer by layer, we form
dominant XY fluctuations (vortex loop$ which are most the ground state lattice, which, because of incommensurabil-
conspicuous near, . ity and the free boundaries, now consists of an imperfect
Observation of theeentrantmelting curve has not been triangular lattice with some defects. This lattice melts at
reported in any highF. materials. In NbSg the melting line  T/J<1.4 for the nominal density of =1/24 on a 2& 26
detected by the peak effect was reported to be nonmonotonis 12 grid. This is slightly below the valu€;,/J~1.5 found
in field,?° consistent with the reentrant melting curve pro-for the fixed density system of 24 layers with periodic
posed for the more anisotropic high- superconductors.  boundary conditions. For a nominal densityfef 1/6, melt-
But if one interprets the magnetization jump in ing occurs neaif/J<1.15 with these mixed boundary con-
Bi,SrCaCu,0g as evidence for melting, then the melting ditions.
curve for BLSrCaCu,Og apparently approachég,, mono- One might think of defining the “magnetizationM, as
tonically at field as low as~1 G. This behavior is surprising the average net vortex density= [ n,(r)dr/A, wheren,(r)
since, at these fields, the vortex separation far exceeds tlig the local vortex density and is the total area. However,
magnetic screening length. Furthermore, in ¥Ba&0O,_s, M, defined in this way suffers from spurious boundary ef-
the peak effect at 0.351.5 T is observed to lie below the fects, arising from the depletion of vortices near the bound-
resistivity kink$! (about 0.8 K below at 0.5)T These mea- aries in the lattice pha$d.Upon freezing, the lattice devel-
surements suggest that, at least for low flux densities, tran®ps arigid free surface of irregular shape, expelling some of
port measurements may actually not be probing flux latticéhe vortices from the rectangular bounding box. The result-
melting. ing change in densitygn/n is an artifact of the open bound-
We propose that low-field melting is indeed reentrant.ary conditions, and we find that it vanishes for large samples
Most low-field experiments which probe magnetizatidfi, as 1A/A, confirming that it originates from a surface effect.
thermal propertie8,and transport coefficierftd*31"® actu- Instead, we definél, by a criterion involving thdocal
ally track T, which is progressively more separated fromVoronoi cell area 4;, i.e., the area of the generalized
T and approachegyy(0) as the field is reduced. We have Wigner-Seitz cell for vortex (the shaded area shown in Fig.
already shown that dramatic changesRig, andR; occur at  22). Before applying the procedure, we first eliminate the
T,. Moreover, the broad peaks @\, are centered af, and  thermally induced vortex loops, which are present in addition
they, too, approacfyy(0) asB decreases. Our estimated to the field-induced vortices fof=0.5XT,. To do this, we
upper bound for the total entropy release in the temperaturpair each antivortex with the nearest vortex in each plane,
rangeT,,<T<T,, as estimated from th& dependence of identifying the resulting pairs as bound dipoles to be ex-
the internal energy, qualitatively resembles that of Zeldowcluded from the coungsee left panel of Fig. 23 Since most
et al. (Fig. 6 of Ref. 3 in that it steeply increases dsde-  such dipole pairs have linear dimensions much smaller than
creases. At higher fields, the observ@sid also calculatéd  1/,/(n), this criterion is justified. We then perform a De-
A S~0.3—0.5g is consistent with the destruction of phase launay triangulation on the field-induced vortices to deter-
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FIG. 24. EntropyS (upper pangland normalized vortex density

_ ] (lower pane) for f=1/24 and 1/6 in 24 24X 12 and 48 48x 12
FIG. 22. Example of the local Voronoi cell occupied by a vor- systems with open boundary conditions. The error bars denote the
tex. rms deviations from layer to layer.

mine topological neighbors for each vortex. From the bond Y : .
configuration thus determined, we obtain its dual, which is Nol/no~1""% Comparing the result for two different

the desired Voronoi diagram. A local vortex density at azzmepleegrfﬁ;XLg .fo.rn;:elcg;h’( Vﬁi:gn:in\ge;'f!ﬁgeth;:;gﬁt
point R may then be defined as Serv geisi p , Indep

of any surface influence. Note that we have about the same
number of flux lines[~®O(200)] for both f=1/6 and f
n(R):Z S(Re Al A;, (100  =1/24 for our chosen sample sizes of>224x 12 and 48
: X 48x12. While the jump occurs &, for f=1/6, we do
where S(Re A;)) =1 if the pointR lies in the Voronoi cell Not observe a similar feature near melting,& 1.33) at f
associated with vortek and zero otherwise. Next, the local =1/24. Therefore, the cause of the jump in the local vortex

magnetizationM,, which we interpret as thbulk average density should be sought in the nature of transitio af
density(n) is calculated from rather than in the mechanism for flux lattice melting. Note

that these jumps resemble those in Fig. 5 of Ref. 3 in the
1 “anomalous low-field regime” (XB<55 G) in the fol-
(n)= E A (11) lowing sense: the fractional change in vortex density de-
fisc creases, and the jump becomes sharper, as the field increases.
i.e., as the average of the inverse Voronoi area for vorticeProbably, the line densityn,) increases with increasin
lying within a measurement argasuitably distant from the for T,,<T<T, because the repulsive intervortex interaction
sample boundary. is screened by polarizable vortex loops. The 2D analog of
In Fig. 24, we show the relative average vortex densitythis effect is the screening of the repulsion between field-
(filed circles along2, (n,)/n,, normalized to the nominal induced vortices by thermally excited vortex-antivortex
density per layer af=1/6 andf=1/24. Forf=1/6, (n,) pairs?°
shows a sharp jump &, to a value about 7% larger than Does the jump in flux density occur exactly at the melting
no. For f=1/24, there is a similar change of about 15% transition, or is it more closely connected to the other “tran-
which is less Sharp than dt=1/6 and is centered a, . sition” at T,, i.e., to a transition between two liquids with
From these two data points, we observe than)(T,) different compressibilities? This question may actually be
rather academic, sinCE,, and T, may practically merge in
real, anisotropic materials at high fields. Equat{®ngives a
rough criterion for T, in isotropic systems: ¥,
=(c?BT/J,)Y>p,.. For anisotropic systems such as
Bi,SrCaCu,0Og and YBaCusO;_ 5, a given value off cor-
responds to a field which is reduced, relative to the isotropic
system, by a factor ol,/J,, . Therefore, the merging of ,
| andT,,, which in isotropic systems occurs aroufid 1/18,
'”}‘Z)VA\‘E%Y should in anisotropic materials occur around
R AKER =(1/18)3,/3,y, This anisotropy factod,/J,, could be as
. small as®(0.0001) in BySrCgCu,Os.

ISR B
vz"s%'h"@

FIG. 23. Example of the vortex configuration in &g plane at
z=6 in a 48-48-12 system with=1/24 atT,. The black dots are VIIl. DISCUSSION
field-induced vortices, gray dots connected by lines are bound di-
poles identified. The right panel shows the Delaunay triangulation Analogy to XY transitions of slabs of finite thicknelss
applied to the field induced vortices only. the previous sections, we made following observations from
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. 1 35010 . L have reported that both the melting cufig(H) and a point
- | they label the “superconducting-normal”S{N) transition
as monitored by tracking the maximum @y, as a function
of H both follow the equatiofiT — T.(0)| ~ Lz *?, consistent
@ with our numerical results and the scaling analysis discussed
o above(to within logarithmic corrections Welp et al®” have
reported a detailed study dfM as a function ofT andH.
O The data presented in Fig. 2 of their paper show that
AM/B~B~ 2 for 1.8<B=<5.6 T, once again in agreement
eyt Sy M with both our numerical results and the scaling data. From
| L these data, we conclude that our numerical observations,
1 based on a frustrated 3RY model, are generally consistent
Ly Ly with recent experimental observations.
Most interpretations of these experimental results focused
FIG. 25. Dependence of “broad” peak maximum in specific on only one true phase transition in the low-field regime,
heat and their shift in temperature on the magnetic lehgtkeken  namely, a first-order liquid-solid transition. This view point
from Schilling et al. (Ref. 7). is consistent with our numerical results only if we assume
thatT,—T,, (whereT, is defined as the temperature where
numerical simulations(i) y,, vanishes all ,# T, for isotro-  ,,_ vanishes will go to zero in the thermodynamic limit. In
pic system withf>1/18 andT ,(B) appears to terminate at the following, we will briefly review a multicritical scaling
Tyy for B—0; (ii) asB changes, it tracks the broad peak in approach which assumes a single melting transition which
Cy which behaves happens to be in the vicinity of the zero-fiekly critical
ma point. Our data are not sufficient to determine without ambi-
Cy¥(B)~—In(Lp), (12 guity whether or not this assumption is correct. Therefore,
and we follow it by giving an alternative discussion based on the
hypothesis that there are actually two separate phase transi-
IT,— Tuy|~Lg %3, (13)  tion lines: T,(H) for flux lattice melting andT,(H) for
complete destruction of any superconducting gatiase co-
herencgin all directions.
Friesen and Muzikdt describe theS-N transition at a
finite B in the vicinity of thef=0 XY critical point. Their
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whereLg=f"Y2~B~ Y2 (iii) T,, and notT,,, appears to
coincide with the principal change in local vortex density
which follows

AM/B~B~ 12 (14) scaling hypothesis takes the form
(there is a corresponding change in bulk resistafgsand f(B,T)~|t|> %o (B|t|2") (15
R. over the same temperature rajdéev) T, andT,,, seem to . ] o
merge at a sufficiently high field. for the singular portion of the free energy density in ¥

We now summarize some recent experimental observeefitical region. Herew and v are the standard critical expo-
tions which appear to be consistent with these numericahents describing the specific heat and correlation length of
results. Schillinget al” have reported high resolution calori- the f=0 critical point,t=T—Ty(0), and¢.. are appropri-
metric evidence for a first-order transition in Ygar0,_;,  ate scaling functionsB is put in by hand based on the as-
which they interpret as a melting transition. They observe gumption that it is the only relevant length scale. It is plau-
very sharps-function-like peak lying on the left shoulder of Sible, but does not have rigorous justification. Sinee 0
the broad peak in specific heat in the range of 8.95T,  andv~2/3 for thed=3 XY model, this expression can be
which roughly corresponds to 1/81f <1/6 in our isotropic ~ rewritten as
sample. Thes function appears to vanish for densities lower

than about 0.5 T. This remarkable experiment thus estab- fs(B,T)~[t|2n|t| 4. (B[t|~*3). (16)
lishes the existence of a first-order melting transition line,
which empirically follows|T,—T(0)|~Lg % over 0.75 The singular part ofc,~ — ¢*f¢/9t?> can now be shown

—9 T. These data are consistent with our numerical resultto satisfy the relatiorifor T<Tyy)

on the following points:(i) a first-order melting transition

exists, and becomes weaker as the flux density is lowered; Cy(B,T)~C(x)In t, (17)
(ii) the melting transition is located on the left shoulder of a

broader peak irCy; and iii) the height of this broad peak Where x=Bl|t is the appropriate scaling variable and
and its position generally follow the behavior described inC(X) is another scaling function. From this we firid that
Egs. (12), (13), and (14). As further evidence of the corre- the quantityCy/Int| has a maximum at some fixed value of
spondence, we show in Fig. 25, the data extracted from Figs and (i) at that fixed value ofx, the maximum value

|—4/3

1 of Ref. 7 for fields as high as 6 T. At higher fields 7 T), o'@~Inlt|. Both (i) and (i) are in agreement with our nu-
the points deviate from the observed power law behaviomerical data. Similarly, the magnetization is given by
shown in the figure. M(B,T)~(df/9B)+. It is readily shown to satisfy

Other experimental data which agree well with our nu-
merical results are those of Roulit al®® These workers M~M(x)(Bl’2In|x|—In B), (18
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where M is another scaling function. A reasonable interpre-it is possible that the phase variables may maintain long-
tation of the “jump” AM in magnetization is the difference range coherence. At low fieldfargeLg), this tortuous slab
in M between two fixed valueg; and x, of the scaling contains manyXY phase degrees of freedom which, being
variable. Then, if the term involving B can be neglected, confined within the wallsdo not feelthe presence of free
we haveAM/B~B~2in agreement with our numerical re- vortices, and therefore could conceivably undergo a phase
sults. transition in the universality class of a zero-fiedd model
This same scaling picture can be used to interpret the heat a “film” of thickness ~Lg, i.e., a quasi-3DXY transi-
of fusion at the first-order melting transition @t,(B). As-  tion. This crosses over to a bukY transition asB—0.
suming thatT,(B) happens to be in th&Y critical region, There are two possible objections to this picture. First, our
we write the free energy densities below and abbyéB) as  numerical results only hint at, and certainly do not prove,
—t2In|t/f(BJt|~*3) and —t2Inft|f(B|t|~*3), wheref, andf,  two separate phase transitions. Second, the “film” men-
are two different scaling forms for the free energy densitytioned above is a dynamical rather than an equilibrium film,
above and below the melting transition. At the melting point,in the sense that its boundaries are not fixed. It is not clear
these free energy densities must be equal. Then a little algéhat such a dynamical object could have ¥ phase tran-
bra shows that the jumps in the entropy densityS= sition. The boundarie@.e., cut sheets of the deformed vortex
—(9f1dT)g takes the formAs= —t2n[t[f.(x)—f.(x,)],  lines are, of course, moving subdiffusivéfy’? as long as
wherex,,=B|t,| #?is the value of the scaling parameter at &,,/d>O(10). This condition, as we confirmed numerically
the melting point. Using3~ |t|*? along the melting curve, in Sec. VI B, holds true in the rande,<T<T, and makes

we find that along the melting curve the above picture more plausible. It also greatly enhances the
chance if we consider pins in real material, since even a
As~B3%3n B. (19)  single vortex line then becomes collectively pinned into a

glassy state.

Thus the melting transition should have an entropy jump We now discuss a 3IXY-like transition for the infinite
which gets smaller as the field is reduced. slab of thicknes4 5. Such a slab belongs to tl@&, class in

If T,(B) represents a true phase transition as we desribeBarber’s classification of finite size systefffsFrom this
using the idea of vortex tangles, how can it be understood itdentification, we can derive many characteristics of the
terms of the phase coherence? One possibility ie of  phase transition. First, consider a thermodynamic quantity
critical pointsfor a continuous phase transition similar to the for an infinite system in 3D, which varies aB.(T)
XY transition in a semi-infinite slab. This view provides a ~C.t™*, wheret=(T—T.)/T. with T, the transition tem-
natural explanation why the scaling theory with the scalingperature for an infinite system anpdan appropriate critical
variableB¢&? should be successful. Mathematically, one canexponent. For a slab of thicknets, a general finite size
attach a “phantom” cut line to the core of each vortex seg-scaling ansatz dictates that
ment across which phase slips by 2These are benign since
continuity and single valuedness of the ph&3eat every
point is ensured. However, their shape and motion can be
monitored most conveniently to keep track of the spatial and .
temporal disturbance of the phase coherence which have inasLg—o,t—0 with 6=1/v. The exponent is determined
portant consequences such as phase slip dissipation in supes requiring bulk behavior in the limit gz— ce; this condition
conductors. For an isolated vortex segment placed at origigives w=p/v. The transition temperature for a finif is
with positive vorticity alongz, the cut line may lie straight shifted,
along the positivex axis. A negative vortex will then have
the cut-line on the negativieaxis. Once we choose a cut-line _ 1 -\
for a particular vortex by fixing the reference phase angle, it [Te=Te(Le) [/ Te~Lg ™, @y
provides the reference for all other vortices. Note that these . .
cut lines can only terminate either at the sample boundary (;End the shift exponertt is generally equal to 1/ as has

PL(T)~LgQ(Lgt) (20

at the core of vortices of opposite charges. When there al e_c:[:-n ttrj][sci:(ussedbfo;thg supirﬂwdl JgaF"S't'O“ in bike Of.
several interacting vortices, these cut lines are no longe hite thickness by Ambegaokaat al.™ For our purposes, It

straight, and their tortuosity reflects the phase disturbancé§ sufficien?ly accurate to take~2/3, which ther) agrees
induced by deformation of the vortex configuration awayvery well with our pumencal resu.[Eq._(13)]. Equ§t|or?(20)_
from perfect lattice. If the vortex lines were straight, we will needs to be modified for a quantity with a logarithmic diver-

observe that the cut lines associated with each segment #FNCe: it becomes..(T)~C.Int ast—0, one modifies the
line up as we move along a vortex line. Therefore, a cut linensat?’ so that we have Py (T)—Py (To)~Q(Lgt)
associated with each vortex line will form a semi-infinite cut — Q(L 3t,), where T, is some noncritical temperature. For
sheet, separated from other sheets by rouglly B~"% As {0 at a fixedLg, we obtain for such a variable

the vortex lines become tortuous in the liquid phase above
T, the cut sheets will become wrinkled and our system will
look like a three-dimensional maze walled by these sheets.
Both in the vortex solid and line-liquid phases, this maze will
allow a arbitrarily curved path connecting both sidegkher  where we have assumed th@(z)=O(1) for z—0. This
alongz or X axes of the sample, and the average width of prediction is in good agreement with the calculated maxi-
the path free of the walls will b&(Lg). We conjecture that mum height of specific heat pegkq. (12)], which for the

F’LB[TC(I—B)]N_Cooi9 InLg, (22



14 494 SEUNGOH RYU AND DAVID STROUD 57

3D XY model, has.a weak divergence widr_ho. Similar_ Yzz(qX=7T/\/W)
results have been discussed for the superfluid transition in He
Il of finite thickness by Ambegaokast al%® . [1_ 4J
As the field increases, one may eventually reach the limit VI2© NI 2Tw
Lg/éxy(T)<1, at which the transition af (Lg) will cross
over to a 2DKT universality class and we expect the merg- X{ny(ge=mINJIN(q+x=—7IN))|, (23

ing of the two transitionsT ,=T,,. In our model, we believe

this happens for a value dfbetween 1/6 and 1/8. wheren,(q,= m/N,) is the Fourier component of the vortic-

ity vector field lying along they direction. Position ofT , is

governed by the condition that the vortex fluctuations make
IX. OTHER RECENT SIMULATIONS the factor in the bracket vanish. Let us assume that there is a
Ofcharacteristic number of layefs; for which the true ther-

some of the more recent studies based on similar models. wgodynamic trfnsmon '*S realized &y . For a sizeN,
briefly discuss them in comparison with our main results angmaller t'h.anNZ', Nz=N; + oN(N,=0), linearization of
interpretations. To avoid confusion, we use our own conven'Ehe condition gives
tions for the flux density given in terms of the frustratibn T *
defined earlier and introduce the anisotropy faclof TAN)~T7+9(T7) N, 24
=J,,/J,. For an isotropic systemI'=1 while for  with g(T)=F2a[(ny(w/Nx)ny(—w/Nx))/T]/(?T. What is
YBa,Cu0y.; it is ~O(10) and for BjSr,CaCyOg, it is  the temperature dependence (@fn,)? Near T, where
>(©(100). We also use the same notatibp for the tem-  thermally activated vortex loopseginto appear, it is domi-
perature wherey,, drops to zero. Some researchers opted td1ated by the vortex loop fugacity factor and is steeply in-
useT,. creasing function ofl following an Sshaped curve. How-
Nguyen and Sudhid have extended their earlier work on €Ver, near the foot ofy,,, where ourT, is located, it is
the anisotropic London loop mod¥Their numerical results numerically observed that. it has .reached the plateau gnd the
in both the vortex structure factor ang, for T=1 with f  €mperature dependence is dominated by tiefactor. It is
=1/32 follow a pattern qualitatively similar to our main re- also consu;tgnt_Wlth thg _mterp_retatlon @f in terms of
sults forI'=1, f=1/24 (see Fig. 6 of Ref. 35 as well as XY-type unbinding transition. Sinog(T,)<0 and N,<0
those of Li and Teite?>?® By looking at the dependence of ' this region, we then reach the conclusion tai(N,)
T,(N,) on the thickness of the system<6l,<96, and lin- linearly increases away from; with ¢|N; —N,| asN, de-
early extrapolating the finite size effect, they conclude thatreases from the asymptotithermodynamig limit. Note
T2=T,, in the thermodynamic limit l,—). Their argu- that we do not assumg; =T, in reaching this conclusion.
ment is based on the following observatiorid) T, de- If one shlould foIIow_ Nguyen and Sudb_md extra_polate the
creases with an approximately linear dependence on increa@Pservation of the linear dependence in the limited range of
ing N,, T,(N,+6N,)~T,(N,)—céN, with a positive the system size and conclude .th'Eit(B)=Tm(B), it also '
numberc and (2) In the thermodynamic limit, below the follows that we have a p_aradoxwal consequence of preqllct-
melting transition T~T,), the energy scale for the inter- ing Tyxy— 0 for the zero field, based on the similar bahavior

layer phase fluctuatio* ~ £2J, diverges due to long-range numerically observed fog,, for f=0.

) A ; Following the convention of Koshelev, we employ the
lattice order. Therefore, the linear progression cannot con- X . 2 . .
. . scaled field variable & I'f which characterizes the thermo-
tinue belowT,,. From these, they conclude thBt— T, in

the th q i limit dynamics of the mixed state as longhas>o. As we pointed
€ tnermodynamic imit. - _ out earlie®® f=1/6 with'?>=1 (h=1/6) represents a situa-
We agree with the validity of the second assumption o

. MNion where the interlayer decoupling sets in right at the melt-
general grounds. However, this does not exclude the p055|b|ﬁg transition. From our numerical results with varying

existence of an intermediate phase in which the interlayef,om 1/6 to 0, we believe that there is a universal crossover
fluctuation may be suppressed due to the quasi-long-rangg,ye of scaled density between 1/6 and 1/18 which sepa-
phase correlations in a line liquid “phase.” With this possi- ates dow-field regime from thehigh-fieldregime for which
bility open, Tr, is only a lower bound for th& . It should T =T =T (B). Koshele¥’ made a numerical observation
also be noted thay,, does not show a significant depen- that suggest§ ,—T,,. However, it is again made foF?
dence on size in the region where €.8,,<1, in tempera- =J4y/J,=36f=1/36, i.e.,h=1, equivalent to an extremely
turesT,,<T<1.8T,,. Itis only at higher temperatures, near dense limit. Recent calculations by Hu and TacHikiased
wherey,,—0, that the linear dependence of the shifflin ~ on f=1/25I'>=10 in a larger system size of 5®%0x 40
on N, is observable. In other words, the size dependence dlls into the same category with=10/25>1/6. For this
v,, IS not trivial as temperature varies and one should notlense limit, they observe thaj, drops sharply to zero at the
expect the same size dependence be uniformly applied ovemelting transition, as we had observed earlier for the
the whole temperature ran@e,<T<Tyy. =1/6 case in the stacked triangubdly model®®

Furthermore, the linear dependence of shiffjnon N, in The technical difficulty of simulating the very low field
the region wherey,,~0 is anticipated on more general limit (h<<1/18) with large number of field-induced vortex
grounds. In the London limity,, measured in the simulation lines remains largely unsurmounted. To minimize the artifi-
under periodic boundary conditions is cial grid pinning effect, one is required to choose a fairly

Before the completion of this work, we became aware
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small value off (<1/32 for the square grid<1/16 for the also showed that upon melting the local vortex density in-
triangular grid. However, choice of a large anisotropy factor creases due to the screening effect of thermally generated
to mimic HTSC then tends to push the model into the high-vortex loops. More significantly, however, we observed that,
field regime as pointed out earlier. To access the truly lowin the absence of disorder, destruction of phase coherence in
field regime B<1 T for YBaCuO;_ 5, <200 G for a superconductor may proceed by two separate transitions at
Bi,SrCaCu,Og), we had to employ an isotropic model for a low magnetic fields: a quasi-long-range phase coherence par-
practical value off<1/18. Summarizing this section, we allel to the field disappears at a temperatiligehigher than
make educated guess on the thermodynamics of extremell,, at which the lattice periodicity disappears and true long-
low-field limit, where the field-induced vortex degrees of range phase coherence is lost. In this low-field regime, the
freedom are no longer viabfé.Here, the transition aT , lattice first melts into a liquid of lines with a finite entangle-
takes over the first order melting transition as &l tran-  ment length along the applied field. These lines eventually
sition which possibly belongs to the universality class ofdisappear through increasing entanglement, and through their
zero-field transition of XY filmith thicknessag. The phase interaction with thermally induced vortex and antivortex
for T,<T<T, may still be considered superconducting in loops. While the melting transition is best characterized by
the sense that a superconducting path, however narrow, mélge disappearance of Bragg peaks for the vortex lines and a
exist across a macroscopic distance alBpgvhich defines a  &function peak in the specific heat, there is a narrow region
tiny, but finite critical current. This may be enhanced byaboveT,, where we observe dramatic changes in dissipation
collective pinning of the single lines, but resistance measuretensor which coincide with jump in the local vortex density
with a large driving will show a nonlinear IV characteristics and disappearance of the longitudinal phase rigidity,
and hysteresis as current has to distribute itself among the 0. Instead of being a gradual crossover, we propose that a
superconducting paths and normal channels. possible transition afl ,# T, sets in at low densities. It
The field-induced lines in the low-field limit, if we take tracks the broad peak in specific heaBascreases, obeying
the world-line analogy, are equivalent to extremely massivehe behavior of 3D zero-fielX Ysystem confined to a semi-
bosons and eventually drop out of the thermodynamics. Theinfinite slab of finite thicknesd.g~B~ 2 It can alterna-
become localized charges which tend to polarize the undetively described in terms of appearence of connected vortex
lying vacuum and induce dielectric breakdowras theXY  tangle which effectively leads to decoupling of neighboring
medium become more and more polarizableTasicreases layers. Within this picture, origins of several puzzling and
towardT> . It is somewhat similar to anetal-insulatortran-  conflicting anomalies recently obtained on,&iCaCu,Og
sition in a narrow band-gap semiconductor in which localand YBaCuO;_ s may be understood.
field gradient(due to the field-induced vorticeand shrink-
ing band gagasT—T,) conspire to a massive generation of
screening dipole pairgvortex loop$ leading to a metallic ACKNOWLEDGMENTS
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®For a hypothetical isotropic superconductor with- é~100 A,
LyXLyXL,~0.1x0.1x10"* cn®, we have aboutVy,~10'
“grains” of the XY model. For a given fielB (in G), the
number of pancake vortex degrees of freedom A@D
~10 5B/(10 8¢g)~O(10%) xB. This number will begin to
match that ofXY degrees of freedom B~10 T. Note that if
the lattice melts into a line liquid with an infinite correlation
length alongz, the relevant degrees of freedom rightTgt will
be N3P~ 1072B/$,~10°B. For the speculative picture &f,
as theXY transition of a thick film, a crossover from the “finite
slab” to the 2DXY regime should occur wheaig~ O(¢). This
is met whenB~10 T. For this hypothetical sample, one may
predict that foB>10 T, theS-N transition is dominated by the
vortex degrees of freedom and a separate transitioh ats
pre-empted by the first-order melting transition, since the lattice
melts into a 2D-slab regime directly. On the other handBas
decreases below 10 T toward zero, the melting transition should
follow a finite size scaling behavior as the vortex “line” degrees
of freedom falls below that of thermodynamic limit, while the
XY degrees of freedom takes charge and drive the transition at
T, of the thick, but tortuouXY slab of finite thickness-ag .



