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Nature of the low-field transition in the mixed state of high-temperature superconductors

Seungoh Ryu* and David Stroud
Department of Physics, Ohio State University, Columbus, Ohio 43210

~Received 23 December 1997!

We have numerically studied the statics and dynamics of a model three-dimensional~3D! vortex lattice at
low magnetic fields. For the statics we use a frustrated 3DXY model on a stacked triangular lattice. We model
the dynamics as a coupled network of overdamped resistively shunted Josephson junctions with Langevin
noise. At low fields, there is a weakly first-order phase transition, at which the vortex lattice melts into a line
liquid. Phase coherence parallel to the field persists until a sharp crossover, conceivably a phase transition, near
Tl .Tm which develops at the same temperature as aninfinite vortex tangle. The calculated flux flow resis-
tivity in various geometries nearT5Tl closely resembles experiment. The local density of field induced
vortices increases sharply nearTl , corresponding to the experimentally observed magnetization jump. We
discuss the nature of a possible transition or crossover atTl ~B! which is distinct from flux lattice melting.
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I. INTRODUCTION

Ever since their discovery, the behavior of high-Tc mate-
rials in a magnetic field has seemed mysterious.1 Unlike the
conventional low-Tc type-II materials, high-Tc supercon-
ductors~HTSC’s! show a broad region in the magnetic-fiel
temperature~H-T! plane where the Abrikosov lattice ha
apparently melted into aliquid state.2

Considerable recent evidence now suggests that flux
tice ~FL! melting is a first-order phase transition. On the
experimental side, a local magnetization jump has been m
sured by network of Hall microprobes3 on Bi2SrCa2Cu2O8
and has been associated with the melting transition. The t
sition thus observed seems to lie quite near the melting cu
as determined from low angle neutron diffraction4 andmSR
experiments.5 More recently, Schillinget al.6,7 have directly
observed the latent heat of the transition in YBa2Cu3O72d
along a lineTm(H) in the H-T phase diagram which agree
well with mechanical and transport measurements.8–10 Nu-
merical evidence for a first-order melting transition has be
obtained from simulations based on a frustratedXY
model,11,12 and from a lowest Landau level model which
expected to be most accurate at high magnetic field.13 First-
order melting has also been observed numerically in a
tem of unbreakable flux lines described by a Lawren
Doniach model.14 All these simulations are based on a lar
density of flux lines@;O(1210) T#.

An anomalous feature of the local Hall probe measu
ments is that the apparent first-order transition line seem
terminate at a critical point above which the latent h
vanishes.3 Since on symmetry grounds a first-order ‘‘me
ing’’ line cannot terminate in a critical point,15 this critical
point may suggest that the first-order melting line is inste
intersecting another phase transition line related to the di
der. A related issue is the entropy released per vortex
layer across the transition line. This entropy increases v
rapidly as the field decreases. Such behavior is difficul
account for within a model based only on the field induc
vortices.

In the presence of disorder, the lattice becomes unstab
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high fields against proliferation of quenched-in topologic
defects,16,17 possibly through a first-order phase transiti
across a horizontal~constantH! line in theH-T plane. This
line then may meet the temperature-driven melting lin
causing it to terminate. Somewhere along this line, the m
ing transition may be converted into the universality class
the continuous vortex glass transition,18 characterized by di-
vergent correlation lengths and times.

Another unresolved issue regarding the phase diagra
the possibility of reentrant melting at low fields. Reentra
flux lattice melting is expected because of screening of
widely separated vortex lines at low fields.2,19 It has been
recently reported in single-crystal NbSe2 sample,20 based on
tracking of the so-called ‘‘peak effect’’21,22 Such reentrance
behavior has been observed only in a limited field range
Ling et al.23 On the other hand the melting curve tracked
the micro-Hall probe3 seems to monotonically approach th
zero-field superconducting transition atTc(H50) even for
fields as low as a few Gauss.

FL melting can also be probed by transport measurem
But since such measurements are nonequilibrium, they o
only an indirect means of studyingequilibrium FL melting.
In real materials with disorder, the interpretation of transp
measurement is further complicated by the many compe
energy scales. In single-crystal YBa2Cu3O72d , the in-plane
resistivity exhibits a discontinuous jump and hystere
which have been identified with a first-order meltin
transition.8 Nonetheless, the peak effect in the critical curre
occurs at slightly lower temperatures than the resistiv
jump, leading some workers to postulate that there is a ‘‘p
melting’’ phenomenon21 in this material, in addition to melt-
ing. In Bi2SrCa2Cu2O8, simultaneous transport and loc
magnetization measurements24 show that the jump in loca
magnetizationM coincides~at high fields! with a jump in the
resistivity rab from zero to a finite value, or~in low fields!
the continuous development of a finiterab . In addition, at
high fields, the jumps inr andM are accompanied by hys
teresis. Together, these phenomena strongly suggest
order flux lattice melting at high fields. At low fields, th
experiments are more ambiguous.
14 476 © 1998 The American Physical Society
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57 14 477NATURE OF THE LOW-FIELD TRANSITION IN THE . . .
FL melting has been widely studied numerically. The po
sibility of two stagemelting was first suggested by Li an
Teitel25,26 for a model with infinite penetration depthl, and
later for a system with finitel.27,28 The calculations of Li
and Teitel are based on the so-called frustratedXYmodel
with fairly low flux per plaquette off 51/25 ~in units of the
flux quantumF05hc/2e) on a simple cubic lattice. They
find that the three-dimensional flux line lattice~FLL! melts
first into a ‘‘line liquid’’ characterized by disentangled flu
lines, which become entangled at a second, higher-T phase
transition. Current-voltage~IV! measurements in the so
called ‘‘flux transformer’’ geometry29–32 provide some sup-
port for this picture. Specifically, they suggest that FL me
ing is signaled by the onset of finite in-plane resistan
while in an applied current, phase coherence is lost in thc
direction only at a distinctly higher temperature. On the ot
hand, static simulations of dense~f 51/6! flux lines on a
stacked triangular grid favor a single transition.11,12Dynami-
cal calculations33 on a triangular lattice atf 51/6 suggest tha
if there are two separate transitions, they arise from p
either intrinsic to the discrete cubic grid, or put in by han
Yet more recent studies based on a London vortex l
model on a simple cubic lattice show that superconduc
order disappears apparently in two steps, the sequenc
which depends on the lattice anisotropy,34 although it is ar-
gued to be a finite size effect by the same authors.35

In this paper, we attempt to resolve some of these iss
by considering the frustratedXY model over awide range of
flux densities, using both static and dynamic simulations b
with no quenched disorder. By examining this model on
stacked triangular lattice, we minimize the unphysical pe
odic pinning due to the lattice. By working at relatively lo
densities, we focus on the regime, now being probed exp
mentally, where theXY phase fluctuations~vortex loops! are
as important as those offield inducedvortex lines.36 Our
main conclusion is that there are, in fact, signatures of
separate transitions at low fields, which are not artifacts
pinning by the discrete grid. The transition at lower tempe
ture is unambiguously associated with vortex lattice melti
The second transition may be a sharp crossover rather th
true phase transition. Nevertheless, it is responsible for
eral experimental features~such as sharp increases in loc
magnetization and in resistance! which are often identified as
evidence for a first-order melting transition.

The remainder of this paper is organized as follows.
Sec. II, we describe our model and its numerical soluti
The following sections present our numerical results, wh
are followed by a discussion and then summarized in a c
cluding section.

II. MODEL

A. Hamiltonian and thermodynamics

We study the standard frustratedXY model described by
the Hamiltonian

H52J(̂
i j &

cos~u i2u j2Ai j !, ~1!

whereAi j 5(2p/F0) * i
jA•dl, A is the vector potential asso

ciated with a uniform magnetic fieldB5Bẑ applied parallel
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to ẑ, F05hc/2e is the flux quantum,u i is the phase of the
order parameter on sitei , and the sum runs over neares
neighbor pairs. We use a stacked triangular grid withBiz,
the direction perpendicular to the triangular network, w
periodic boundary conditions~PBC’s! in all directions except
where stated otherwise.

To allow a wider range of frustrations compatible with th
boundary conditions, we use a variant of the Landau gaug37

Note that there are four bonds per grain: three in thexy plane
and one alongẑ. We label these by their unit vectorsâ
5 x̂,ŷ1,ŷ2,ẑ, where ŷ15(1/2)x̂1(A3/2)ŷ and ŷ25

2(A3/2)x̂1(1/2)ŷ. The phase factorsAi j connecting a
grain located at (x,y,z) to its four nearest neighbors ar
given by 0 alongx̂ or ẑ, 2p f (2x11/2) along ŷ1, and
2p f (2x21/2) alongŷ2. There are exceptions to this form
for grains lying on the boundaries: All grains lying on th
x5Lx boundary plane haveAi j 522p•2Lxy for bonds in
the x direction. Bonds atx5Lx boundary such tha
mod(j ,2)51 have Ai j 52p f @2x11/222Lx(y11)# in the
y1 direction. For bonds on thex50 boundary with
mod(j ,2)50, Ai j 52p f @2x21/212Lx(y11)# for bonds in
the y2 direction. In contrast to the usual Landau gau
@which is compatible with frustrations only in integer mu
tiples of 1/(2Nx)], this generalized gauge is compatible wi
any f which is an integer multiple of 1/(2NxNy) under peri-
odic boundary conditions.

We have considered networks of sizesN5Nx3Ny
3Nz . For f 51/24, we have studiedNz512,24,48 andNx
5Ny524, and for other values off ~1/2592, 1/1648, 1/81,
and 1/6! we have consideredNx5Ny5Nz518. In two di-
mensions, the vortices lie on the vertices of a honeyco
grid of unit length of (1/A3)aB which is dual to the triangu-
lar grid of unit lengthaB . Assuming that vortices form per
fect triangular lattice on this grid, and equating the area
vortex to (A3/4)aB

2/ f , we obtain the following necessar
condition for a triangular vortex lattice to form withoutgeo-
metric frustrationof the FL:2/f 5(n1

2/31n2
2/4) with integers

n1 ,n2. The values of 1/f satisfying this condition are then
2,6,8,14,18,24,32,38,42,. . . ,648, . . . . For f 51/162, two
distinct pairs [(n1 ,n2)5~0,36!, and~27,18!# satisfy the con-
dition. f 51/648 has the lowest possible nominal vortex de
sity of one per 18318 system compatible with our chose
gauge, and allows either of the pairs (n1 ,n2)5~0,72! and
~54,36!. f 51/2592(51/431/2318318), represents les
than a single vortex line, and the system isgauge frustrated.

In practice, for f <1/81, there are too few field-induce
flux lines to study FL melting. Nonetheless, the dilute regim
is still of interest, since in these cases, the flux lines beh
independently and the thermodynamics is dominated by
zero-field phase degrees of freedom.36 Except for f
51/2592, we study only gauge-unfrustrated values allow
only an integer number of vortices in the simulation box.

We calculate the thermodynamics using a standard Mo
Carlo ~MC! algorithm, with up to 106 MC steps at each
temperatureT. To ensure equilibration in the ground sta
for all values of f , we performed simulated annealing run
for the two-dimensional~2D! version at eachf with the same
lateral dimensions. We then form the ground state of the
system by stacking the 2D ground states thus found u
formly along thez direction. This enables us to find th
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14 478 57SEUNGOH RYU AND DAVID STROUD
ground state configuration of a perfect triangular lattice
low values of 1/24< f <1/18 within a reasonable time. Star
ing from these 3D ground states, we warm up the system
steps ofnT/J50.05 or 0.1, allowing at least 4253104

Monte Carlo sweeps for eachT. The final configuration for
eachT is then saved to be used as a starting configuratio
some of the longer calculations as well in the dynamic sim
lations.

From these calculations, we extract a range of thermo
namic quantities. One of these is the specific heatCV
5(^H2&2^H&2)/(kBT) at temperatureT. We also calculate
the local vorticity vector fieldna(p) defined for each Carte
sian directiona and each pointp of the stacked honeycom
dual lattice. At each instant during the simulation,na(p) is
determined from

(
p

a

mod@f i2f j2Ai j ,2p#52p@na~p!2 f p#. ~2!

Here the summation runs along the bonds belonging to
plaquette labeledp,a ~a triangle in thexy plane, a square in
planes parallel to thez axis! and f p[(p

aAi j /(2p). From
na , one can also compute thestructure factor Sab(k)
5^na(k)nb(2k)&, wherena(k) is the Fourier transform o
the local vorticity vectorna(r ). We also calculate the prin
cipal componentsgxx and gzz of the helicity modulus
tensor,38 in the directions perpendicular and parallel to t
applied field. To within a constant factor,g represents the
phase rigidity or the superfluid density tensor of the syste
its derivation in terms of equilibrium thermodynamic ave
ages has been given elsewhere.39

B. Dynamics

To treat the dynamics, we model each link between gra
as an overdamped resistively shunted Josephson jun
~RSJ! with critical current I c52eJ/\, shunt resistanceR,
and Langevin white noise to simulate temperature effe
The effectiveIV characteristics are then obtained by nume
cally integrating the coupled RSJ equations, as descr
elsewhere,40 using a time constant typically of 0.1t0 and ob-
taining voltages by averaging over an interval of;600t0
22000t0. Since direct solution of these equations would
volve inverting and storing anN3N matrix, whereN is the
total number of grains;O(5000), we instead solve them
iteratively,41 incurring a speed penalty of a factor of lnN.
We verified that our solutions converge by comparing th
with those from direct inversion for time steps of 0.01, 0.0
and 0.1 on an 83838 system.

The most obvious approach to the dynamics of this mo
would be to use free boundary conditions, injecting curr
into one face of the lattice and extracting it from the opp
site, with periodic transverse boundary conditions.42 But this
has the following disadvantage. Once the flux lattice is
pinned from its underlying periodic pinning potential, it wi
drift along as a wholeunder the influence of the Lorent
force provided by the driving current. Since this occu
equally in the solid and the liquid state, such a geometry m
not distinguish clearly between flux lattice and flux liquid~in
r
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the absence of spatially inhomogeneous pinning cente!.
This problem may be even more conspicuous in our stac
triangular geometry, since the critical currentI dp for depin-
ning a single vortex pancake from the underlying triangu
grid at zero temperature (T50) is smaller (I dp'0.037I c)
than in a square grid (I dp'0.1I c).

43

We therefore adopt a different geometry for injecting a
extracting current, as shown in Fig. 1. Figure 1~a! corre-
sponds to injecting currentI /I c into each grain in theyz
plane atx50, and extracting it from each grain atx5Nx/2
~with periodic boundary conditions in all three directions!. In
this geometry, the Lorentz forces acting on the vortices in
two halves of the volume are oppositely directed, as in
cated by the arrows. Thus, in this geometry, we are eff
tively probing theshear modulusm of the vortex lattice, on a
length scaleLx/2. Similar geometries have been previous
discussed in the context of possible experiments.44,45 In Fig.
1~b!, we show a geometry which is designed to probe
c-axis resistivityrc . In this case, we inject a currentI into
each grain on thexy plane atz50 and extract it from each
grain atz5Nz/2. In this case, there is on average no Lore
force on the vortex lines.

III. ZERO-FIELD XY MODEL: f 50

A. Thermodynamics

The 3D unfrustratedXY model on acubic grid has been
extensively studied.45 Near the phase transition, the speci
heatCV;uT2TXYu2a with a;0 and the correlation length
j;uT2TXYu2n with n;0.6620.67. For a cubic lattice,
TXY;2.203J. In a stacked triangular grid, where each gra
has more nearest neighbors, the transition is shifted t
higher temperature. Numerically, we find in this case t
TXY;3.04J.

The XY phase transition is best characterized by thehe-
licity modulus tensorgab , which measures the phase rigidi
of the system.38 In stacked triangular lattice, this tensor
diagonal with elements

FIG. 1. Geometry for the dynamic calculations described in
text. ~a! To probe the shear modulus, current is injected uniform
into planeS in and extracted uniformly fromSout . The arrows indi-
cate directions of the Lorentz forces acting on the lines in the
half volumes~in opposite directions, because of the periodic boun
ary conditions!. ~b! To probe thec-axis resistance, the currents a
injected and extracted uniformly from the two planes indicated;
voltage drop between the planes is measured as in~a!.



re

e
a

n

th

to

d

e
,

,

e

i-

to

xi-
f

e

ity
c-
to

r-

on
the

57 14 479NATURE OF THE LOW-FIELD TRANSITION IN THE . . .
gaa5
1

V

d2F
d Aa* dAa*

5
J

VK (
i j

cos~Q i j !n̂i j •n̂aL
2

J2

kBTV S K F(
i j

sin~Q i j !n̂i j •n̂aG2L
2K (

i j
sin~Q i j !n̂i j •n̂aL 2D . ~3!

Here Aa* is a fictitious uniform vector potential in thea
direction, V is the volume,Q i j 5u i2u j2Ai j is the gauge-
invariant phase difference,n̂i j and n̂a are unit vectors along
the i j th bond and in thea direction.

It is useful to distinguish two contributions toQ i j : one
due to spin waves, and one due to vortices.47 The former is
dominant when the sinQij'Qij , while the other is nonzero
when the vorticitiesna(p)Þ0. Thus we writegaa5gaa

SW

1gaa
V , where the two terms on the right hand side are,

spectively, the spin wave and vortex contributions togaa .
The spin-wave degrees should predominate at low temp
tures, while the vortex degrees of freedom are the domin
excitations near the phase transition.48–52 The spin-wave
contribution gSW can be estimated within a self-consiste
harmonic approximation with the result53

gSW;J expF 2kBT

2DgSWG , ~4!

whereD54 for a stacked triangular lattice.
To characterize the vortex contribution, we introduce

net global vorticity vectorby54

Ma5n̂a•E
S
dŝ uv

5E
S1

uvds2E
S2

uvds, ~5!

whereS1 and S2 are the two bounding planes normal
n̂a , with normal vectors parallel or antiparallel ton̂a . We
assume that the singular portion of the phase variableuv has
been selected out.Ma is sensitive to existence of unboun
vortex linesperpendicularto n̂a . This is illustrated in the
left panel of Fig. 2 for the case of a single infinite vortex lin
piercing the sample normal to thea direction. In this case
the phase integrals on the planesS1 and S2 give nearly
equal but opposite values. ThusMa has large fluctuations
leading to a reduction in the value ofgaa ~see below!.
Closed vortex loops, such as shown in the right panel, giv
zero contribution toMa . In general, forf 50, the thermal
averagêMa&;0. For an applied fieldi ẑ, ^Ma&;0 for a
5x or y. It can be shown thatgaa andMa are related by

gaa;gaa
SW2

1

V

J2

kBT
$^Ma

2&2^Ma&2%. ~6!

Thus, the vortices make a negative contribution togaa aris-
ing from fluctuations inM. They may be said to predom
-

ra-
nt

t

e

a

nate over the spin waves when their fractional contribution
the helicity modulus is of order unity, that is

J

kBT
$^Ma

2&2^Ma&2%/N;O~1!, ~7!

whereN is total number of grains.
In Fig. 3, we show the calculatedgzz, as well as the value

gzz
SW determined from the self-consistent harmonic appro

mation ~SCHA!, Eq. ~4!. The other principal components o
g behave similarly.gzz andgzz

SW begin to differ for tempera-
tures as low asT;0.3TXY , where vortex loops start to b
excited. The SCHA predicts a discontinuous jump ingSW
from a value of about 0.37 atTXY to zero. This jump is an
artifact of the approximation, which neglects the periodic
of the Hamiltonian in the angle variables and the vortex flu
tuations. The inset shows a finite size scaling analysis
locate TXY . The helicity modulusg;uT2TXYuv with v
5(d22)n. Therefore, the scaled quantitygL for an L3L
3L system should cross a single point atTXY . Based on this
criterion, our numerical results giveTXY53.04J60.02. We

FIG. 2. Two illustrative phase configurations, one with net vo
ticity piercing the sample parallel to thexy-plane~left panel!, and
one with zero net vorticity but containing a bound vortex loop~right
panel!.

FIG. 3. gzz from Monte Carlo with 10 000 (T/J,2.7) to 50 000
(T/>2.7) MC sweeps. The line represents a calculation based
the harmonic self-consistent approximation. The inset shows
finite size scaling analysis to locateTXY53.0460.02J.
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14 480 57SEUNGOH RYU AND DAVID STROUD
also observe thatg(T) approaches zero withv;2/3 for
0.02,uTXY2Tu/TXY,0.1 and deviates from this outside th
range.

Equation~6! is equivalent to that derived in Fourier spa
by Chen and Teitel28 for l→`:

gzz~qx̂!5JF12
4p2J

VT

^ny~qx̂!ny~2qx̂!&

q2 G ~8!

if we takeq→p/Lx . An alternative form based on the vo
tex loop scaling picture has been obtained by Williams55 in
the limit l→` wheregaa is given in terms of vortex loop
diameter distribution. To check the importance of lar
loops, we show in Fig. 4 our calculated size distribution
connected vortex loopsnearTXY . Two vortex segments ar
consideredconnectedif they cross within a single unit cell
Such crossings become very extensive atTXY , suggesting
that the energy barrier for vortex line intersections vanis
nearTXY .

For T,TXY , the maximum vortex loop size is finite
while for T>TXY , there start to occur vortex lines spannin
the entire simulation cell. ThusTXY somewhat resembles
bond-percolation transition, althoughTXY does not corre-
spond to the percolation threshold, but to a point where c
nected cluster first forms a (D21)-dimensional manifold if
the system is in dimensionD. Because such infinite cluster
occur, it appears that the behavior seen in Fig. 4 is no
consequence of the finite simulation cell, but persists in
thermodynamic limit. A similar picture, but with no long
range interactions among the vortex segments~the so-called
polymer limit!, has been discussed by Akao56 and by Kul-
tanovet al.57

B. Dissipation nearTXY

We have also calculated the dissipation nearTXY( f 50),
using the periodic current injection geometry of Fig. 1.
this case, since there are no field-induced vortex lines,

FIG. 4. Size distribution ofconnectedvortex segments forf
50. The insets show typical vortex configurations forT/J52.7 and
3.1.
f

s

n-

a
e

e

calculated dissipation can be unambiguously related to
resistivity. Our results are shown in Fig. 5 for several valu
of the bias current density.~More details of the method ar
described in Sec. VI D.! To calculate the differential resis
tance dV/dI we carried out two separate runs atI /I c
50.083 and 0.043, to obtain dV/dI5V(0.083)
2V(0.043)/0.04. Figure 5 shows this result as well asR
[V(0.083)/I in the inset. These bias currents are lo
enough to show sharp features atTXY( f 50) while not sig-
nificantly disrupting that transition. At higher current dens
ties ~not shown!, there are numerous current-induced vort
loops. These increasingly round out the sharp jump
TXY( f 50) shown in the figure, which eventually wash
away entirely.

Figure 6 shows the average number of vortex segme
per plaquette as calculated both by Monte Carlo simulati
~with no driving current! and by coupled RSJ dynamics~with
a finite bias current!. Evidently, just at theXYtransition, the
system becomes filled with thermally generated vortex s
ments,one per grain or elemental cell. Below TXY( f 50),
while there may exist vortex loops of arbitrary size, the nu
ber of theseP( l ) falls off exponentially for large clusters~cf.
Fig. 4!. By contrast, forT>TXY , P( l ) diminishes algebra-
ically with l . This subtle change inP( l ) implies that the
average size of the connected vortex tangle remains finite
T,TXY , but diverges above it.48 We find that there are nu
merousfinite vortex loops at temperatures as low as 0.5TXY .
Moreover, at any given temperature, we find that a large b
current further enhances both their number and their size

A simple argument suggests that the dissipation be
TXY( f 50) may be exponentially activated. The effective e
ergy for a vortex loop of radiusr oriented normal to a
uniform driving current density j is U(r )
;2pr min@ln(r),ln(l)#2cpr2j, where l is the penetration
depth. Thus, there is a barrier to loop expansion with a c

FIG. 5. Dissipation „dV/dI5@V(I 50.083)2V(I 50.043)#/
0.04… across theXY transition,TXY53.04J. A uniform current of
I /I c per grain is flown throughyz planes. The inset showsr[V/I
at I 50.083I c .
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cal radiusr c; ln l/j and heightUmax;(ln l)2/j. For suffi-
ciently small j , only those vortex loops of sizer .r c will
expand and contribute to dissipation. From our simulatio
for T,TXY , P( l ) decays exponentially. Therefore, the sm
dissipation involving the expansion of thermally nucleat
vortex rings should have an activated temperature dep
dence forT,TXY , resulting in highly nonlinearIV charac-
teristics.

IV. DENSE LIMIT: f 51/6

This is the largest value we studied which allows a tria
gular vortex lattice commensurate with the underlying tria
gular grid. This value yields a strong first-ord
transition,11,12 with an entropy of meltingDS of about 0.3kB
per vortex pancake.

In the present MC simulation, the lattice was gradua
warmed up from a perfect triangular lattice in temperat
steps ofdT50.1J, with 50 000 MC sweeps for eachT. The
insets show the in-plane density-density correlat
^nz(r' ,z)nz(0,0)& for T/J51.175 and 1.3, slightly below
and slightly above the melting temperature. At the melt
temperatureTm , our MC histogram for the internal energ
distribution agrees with that of Ref. 11. We have also cal
lated bothgzz(T) and the Bragg intensitySzz(G1) at the
smallest reciprocal lattice vectorG1 for the triangular vortex
lattice. The results are shown in Fig. 7. To withindT/J
;0.025, both quantities vanish close toT5Tm(1/6)
;1.175J, the melting temperature as determined from
double peaks in the energy histogram.11 The apparent melt-
ing T'1.2J, slightly higher than inferred from the energ
histogram, seems to be due to a superheating effect.

The occurrence of only a single phase transition af
51/6 ~Refs. 11,33! is not surprising: At this field, there is
one vortex pancake for every three grains, and hence,

FIG. 6. Average number of vortex segments in equilibriu
~Monte Carlo! and with various bias current densities~RSJ dynam-
ics!. The equilibrium density very closely follows an activated for
with U516J for T,TXY .
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three phase degrees of freedom per pancake. Thus, mos
tential vortex excitations are already exhausted by the lat
fluctuations of field-induced vortex lines in the liquid phas
This can be seen in Fig. 8, where we show two typical vor
configurations, one slightly below and the other above
melting transition. Clearly, the transverse line fluctuatio
quickly dominate the thermodynamics aboveTm . The strong
first-order transition atf 51/6 can be then understood by th
close connection between the lateral line fluctuations
incipient vortex loops. We conclude, with an accuracy
dT/J50.025, that in the dense limit off 51/6, supercon-
ducting coherence is destroyed in all directions as soon
the lattice melts.

FIG. 7. Normalized Bragg intensity~open circles! andgzz ~filled
circles! for f 51/6. The solid line is guide for the eyes. The inse
show the real space density correlation^nz(r ,z)nz(0,0)& for the
local z vorticity taken over 40 000 MC sweeps.

FIG. 8. Typical flux line configurations at for two temperatur
(T/J51.1 and 1.3) spanning the melting temperature atf 51/6,
plotted for an 18318318 grid. The upper panels are top views.
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V. DILUTE LIMIT

By dilute limit, we mean the regime where the numb
density of thermally excited vortex line segmentsnc equals
or exceed the density of field-induced vortex line segme
To make this more quantitative, we first consider a perf
line lattice atT50 with a givenf . The number of unit vortex
line segmentsper grain will be 1/(3f ), or 1/(15f ) per
plaquette~since there are five plaquettes per grain!. Thus, for
f 51/6, there are 0.4 vortex segments per plaquette. In
6, we show the densitync of thermally excitedvortex seg-
ments atf 50, including all three directions. Note that at th
XY transition,nc[0.15. Thus,f 51/6 is clearly in the dense
regime, whilef ,1/18 is roughly in the dilute regime.

Figure 9 shows the specific heatCV per grain, as calcu-
lated from energy fluctuations for several values off @1/162
~4 flux lines!, 1/81, 1/24, 1/18, and 1/6~108 lines!# in both
the dilute and dense regimes. At lowT, all the CV’s ap-
proachkB/2 per grain, as expected from the Dulong-Pe
law. The overall behavior of the peaks inCV up to f 51/24 is
remarkably similar to that seen in YBa2Cu3O72d.

58 For f
50, it is known thatCV has a weak divergence [}utu2a with
a'0.0 ~Ref. 45!#, as expected for the 3DXY model. At
finite f , this peak is rounded as seen experimentally.58,59 As
discussed below, these broad peaks inCV generally occur
well abovethe melting transition in this field range. Note th
our results for the dense (f 51/6) case differ qualitatively
from all those at lowerf . The sharp peak forf 51/6 is actu-
ally a d-function singularity, consistent with the finite heat
fusion of a first-order transition known to occur at th
density.11

Figure 10 shows that the height of the peak forf <1/18
roughly follows a logarithmic dependence on the magne
lengthLB defined asLB51/Af , the average vortex spacing
Furthermore, as we show in Fig. 11, the position of the p
at a finite f shifts from TXY( f 50) by an amountdTc(LB)
which closely follows the law;LB

23/2. As we will show in
more detail forf 51/24 below the phase rigidity along th
applied field, as measured bygzz, vanishes for allf near the

FIG. 9. Specific heat per grain for various frustrations. Fof
51/6, Cv at T51.2 shows a clear divergent behavior, apart fro
other dilute cases.
r

s.
t
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t
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broad maximum in specific heat. At the temperatures@which
we denoteTl ( f )# wheregzz( f ) vanishes, we observe that th
average number of thermally generated vortex segmentsper
grain normal to the ẑ direction closely follows the law
nxy

c (Tl );0.1LB
0.660.1. All this behavior is discussed in mor

detail below.

VI. f 51/24

A. Statics: Melting and gzz

In the dilute regime, such asf <1/24, there are numerou
phase degrees of freedom per field-induced vortex panc
Thus, a double transition, if there is one, might be mo

FIG. 11. Shift of peak inCv from the f 50 position (Txy
0 ) vs the

magnetic lengthLB . The line (;LB
23/2) is a guide for the eyes.

FIG. 10. Dependence of peak height ofCv on the magnetic
lengthLB . The line is a guide for the eyes.
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57 14 483NATURE OF THE LOW-FIELD TRANSITION IN THE . . .
plausible here than atf 51/6, one transition being the mel
ing of the field induced flux lattice, the other connected
the XY degrees of freedom.36

To check this possibility, we have studiedf 51/24 ~a field
which allows for a commensurate triangular flux lattice of
lines! on a stacked triangular grid of 24324324 grains. We
first did an extensive simulated annealing run on a sin
layer, verifying that the vortices freeze into a perfect tria
gular lattice. We then stacked 24 such layers to form a th
dimensional ground state. Next, the lattice was gradu
warmed up in intervals ofdT/J50.1 or 0.05, typically with
50 000 MC steps for each temperature. For severalT close to
a transition, we ran up to 106 MC steps to ensure equilibra
tion. The resulting Bragg intensityS(G1) and helicity modu-
lus componentgzz(T) are plotted in Fig. 12.@The transverse
componentsgxx(T) and gyy(T) fluctuate around zero fo
most T.0, as expected for a very weakly pinned vort
lattice which is free to slide in theab plane.#

The results do indeed suggest the possibility oftwo phase
transitions. The first—the melting of the vortex lattice—
occurs nearT51.5J[Tm , where the Bragg intensity drop
sharply. At higher temperatures, there is a broad dip in
normalized Bragg intensity which reaches a plateau
around T/J;2.1. The possible upper transition, nearT
52.0J[Tl , is the point wheregzz(T) vanishes. Essentially
the same behavior, but with an even wider temperature s
ration, has previously been observed on a cubic grid by
and Teitel.25

We have carried out several checks to see if the separa
of these two transitions is an artifact due to a finite-size
fect. First, as shown in the inset, we monitored the dep
dence ofgzz on accumulation timet up to 106 MC steps.
More precisely, we definêA&t[ (1/t) *0

tA(t)dt and use
this in calculating the averages which definegzz in Eq. ~3!.
The ^gzz(T)&t thus defined generally evolves approximate
logarithmically in t ~Ref. 60! until it reaches its apparen

FIG. 12. Normalized Bragg intensity~open circles; 53104 MC
sweeps! and gzz ~filled circles: 531052106 MC sweeps; crosses
53104 MC sweeps! for f 51/24. The solid lines are guides for th
eyes. The inset shows the dependence of^gzz& on the accumulation
time, as discussed in the text.
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equilibrium value. For temperaturesTm,T,Tl , the system
tends very slowly towards an apparentlyfinite limiting value.
We have also checked the size dependence up to 24324
348, verifying that the 24324324 behavior represents th
asymptotic limit. Li and Teitel have carried out simila
checks up to 200 layers in the cubic model.26 Nonetheless,
gzz has some size dependence to a degree strongly depe
on anisotropy of the system.

If the ratioJz /Jxy is increased to 4.0~whereJz andJxy are
the couplings perpendicular and parallel to the triangu
plane!, the separation (Tl 2Tm)/Jxy between the melting
transition and the upper possible transition actually grows
a given size. For these values, the smallest-Q Bragg peak
vanishes atTm;2.9Jxy , while gzz vanishes atTl ;4.0Jxy .
On the other hand, for weakly coupled layers withJz /Jxy
50.1, the two transitions merge to within less than 0.1Jxy ,
as in theisotropicdensef 51/6 case. In this weakly couple
caseTm;0.6Jxy .

These observations suggest that phase coherence at
f in a disorder-free system may possibly be destroyed in
steps. First, coherence transverse to the average field d
tion is lost through melting of the lattice. But longitudina
coherence persists until it is destroyed, along with linel
correlations of the individual vortex segments, at a sligh
higher temperatureTl . This is most apparent for theisotro-
pic system only whenf <1/18.

B. Vortex analysis of possible transition atT l

There are several ways to look at general phase corr
tion function ^Q(r,z)Q(0,0)& where Q is the gauge-
invariant local phase93 of the superconducting order param
eter. To probe the longitudinal phase coherence, we o
consider c(0;z)[ (1/A)*d2r^exp$i@Q(r,z)2Q(r,0)#%&,
whereA is the sample area—that is, the correlation functi
in the ẑ direction. Glazman and Koshelev have pointed o
that phononlike fluctuations in the vortex lattice lead to
power law decay ofc(0;z) ~Ref. 93! ~not explicitly shown in
Fig. 13!. We observe that this holds true forT,Tm . For
higher temperatures, this dependence changes to an expo
tial decayc(0,z)}exp(2z/j0z). The correlation length

j0z;F lnS T2

T0
2

ln~T/T0!

2p2 D G21

,

where T0 is the temperature scale such th
^@Q(0,z)2Q(0,z11)#2&;1. This behavior is shown for
T/Tm51.1 in Fig. 13 for systems of several thicknesses.
ensure equilibration, we ran 86 000 MC sweeps before ac
mulating data over the following 30 000 MC sweeps. T
check the effect of boundary conditions, we used both o
boundary~OBC! and periodic boundary conditions~PBC!
along ẑ; periodic boundary condition was used in thexy
plane for both cases. In all cases, we observe a robust e
nential dependence over a limited range 1,dz,jx , where
deviation sets in atdz;jx;12 for T/Tm51.1, for example.
In this temperature range, we do not find significant dep
dence of c~0, z! on either system size or boundary cond
tions. For a given temperature aboveTm , we can use this
robust temperature regime to extract the phase correla
lengthj0z from our numerical simulation.
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14 484 57SEUNGOH RYU AND DAVID STROUD
The result is shown in Fig. 14. For allT.Tm , and for
separations less thanjx(T), we observe thatc(0,z)
;exp@2z/jz0#. jz0 gradually decreases with increasing te
perature approximately as (T2Tm)21, becoming equal to
the unit layer spacing nearT/J53.0;TXY(0) as shown in
the inset. We also observe~not shown in the figure! that
*drc(r,z) has far milder dependence onz. The exponential
decay inc(0,z) is accounted for by random walklike excu
sions of the vortex lines and the presence of dislocation
disclination loops in this temperature regime. Note that sp
wave excitations in the vortex lattice usually lead to an al
braic decay ofc(0,z). Note that given astatic deformed
vortex line configuration, we may still find a coordina
transformation$x,y,z%→$x8,y8,z% into a curved space in
which the vortex line is straight. In that coordinate syste
we will have a long-range phase coherence along the stra
line in the ẑ direction. Therefore, the apparent exponen
decay ofc(0,z) is not an equivocal indicator for the destru

FIG. 13. Phase correlation functionc(0;z) for various system
sizes and boundary conditions.

FIG. 14. Longitudinal phase correlation lengthjz0 determined
from fitting c(0;z) to the forma exp@2z/xiz0# for z,jx(T) as dis-
cussed in the text.
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tion of phase coherence alongẑ, but gives information abou
the deformation of vortex lines from the straight configur
tion.

In the large-distance tail ofc(0;z), wherez.Lz/2, c(0,z)
does depend on the boundary conditions and system
having an upturn for the periodic boundary condition as
pected. Moreover,jz0(T) rapidly falls asT decreases toward
TXY from above, leaving a large intervaljx(T),dz!Lz/2 in
which the behavior deviates from simple exponential de
and is independent of the boundary condition used. We a
observe that the deviations have relatively poorer statist
which suggests that they are due to slow kinetics. It is lik
to originate from vortex entanglement and cuttin
reconnection, which develop on length scales larger thanjz0.
Each of these rare and slow vortex crossings produces a d
tic and long-lasting impact on the local phase correlatio
The rarity of these events is due to the sizable barrier
vortex cutting and to the subdiffusive nature of vortex lin
motion. Because of this rarity, a rapid thermal cycling acro
this sluggish region may lead to hysteresis.

We now look more closely into the vortex configuratio
near Tl for f 51/24. Figure 15 shows the density-dens
correlation function n2,z(r' ,Lz/2)5^nz(r' ,Lz/2)nz(0,0)&
describing theẑ component of local vorticity at separation
equal to half the total thicknessLz ~524!. The most promi-
nent feature inn2,z is the disappearance of triangular corr
lations in thexy plane at melting (Tm;1.5J). This behavior
is consistent with the disappearance of the Bragg spot
Fig. 12. Note, however, that the central spot, correspond
to the self-correlation between the two ends of the same l
persists well above melting until it vanishes nearT/J52.0,
close toTl . This is consistent with the fact that linelik
correlations are maintained over at least 12 layers up
T/J52.0 as we already noted in Fig. 14.

In a sample of truly macroscopic thickness, the lines
the liquid phase should carry out random-walk-like exc

FIG. 15. Real space top-to-bottom density correlation funct
^nz(r ,z512)nz(0,0)& for T/J51.5,1.6,1.8, and 2.0 forf 51/24 in a
24324324 grid. Melting occurs aroundTm /J51.55 while linelike
correlations ~white spot at the center! vanish aroundT/J52.0
;Tl /J. 50 000 MC steps for each temperature.
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57 14 485NATURE OF THE LOW-FIELD TRANSITION IN THE . . .
sions, leading to loss of top-to-bottom vortex density cor
lations over a finite correlation length denotedjvz(T), which
may be of the same order of magnitude asj0z defined above.
A finite jvz(T) means that the underlying lines areflexible,
not that they break up into 2D vortices. This breakup b
comes relevant only forT.Tl . The objects which break
apart into 2D objects above the melting transition are not
lines themselves, but thetopological defects of the lattice,
such as disclinations, which tend to appear aswell-aligned
line defects nearTm .14,61 Topological defects look wel
aligned only whenur i(z)2r i(z11)u/aB!1, wherer i(z) is
the position of the segment of vortex linei in the zth layer.
Note that the relevant minimum length scale for alignmen
defect lines is the mean vortex spacingaB . The destruction
of the lattice orderalong the field, which may be detected b
vanishing Bragg peak in neutron diffraction, is related
proliferation and unbinding of these defects. On the ot
hand, the destruction of phase coherence alongB, as we
discuss in more detail later, is related to the presence
fluctuations in the transverse vorticity. As the vortex dens
decreases, it is nota priori obvious if the energy scales fo
these different types of defects should remain the same.

Thus the line-liquid regime, if it is really a distinct the
modynamic phase, may possibly be described as a ne
gas of topological defects~disclinations of both signs! within
the triangular lattice in each plane, which are correlated o
a finite length in theẑ direction. Above melting, one expec
unbound disclinations to proliferate. Hence, the long-ran
structural correlations of the vortex lattice are lost in all
rections upon melting. However, thephase rigidity, as mea-
sured bygzz, may persist even above melting, but sca
down by the factor ofjz0 /Lz , the fraction of the volume of
the sample into which the applied twist penetrates. Pres
ably, this continuous suppression, unless pre-empted b
first order transition~for high densities!, persists until the
condition Lz /jz0→` is met via proliferation of ‘‘unbound
vortex loops’’ ~vortex lines extending an infinite distance
the transverse direction!. At this point, the phase coherenc
even between neighboring planes normal toB will be lost.

In Fig. 16, we show snapshots of vortex configurations
Tm , Tl , and a temperature betweenTm and Tl . In this
regime, by using a bond-searching algorithm, we have id
tified three distinct classes of vortex lines. The first cons
of small vortex loops which close on themselves witho
crossing either of the two opposite bounding surfaces.
second class contains all isolated lines beginning at the
tom xy plane and ending at the top one. Most of the dis
tangled field-induced vortex lines fall into this group. F
nally, there occur ‘‘vortex tangles.’’ These are line
connected at a given time to one another by the crossin
two vortex segments in the same unit cell. Such tangles
formed either by collision of two flux lines or by interaction
of such lines with the vortex loop excitations. This tangle
not static: the collisions which produce it are more and m
frequent with increasing temperature and its overall sh
will evolve with more rapidity asT increases.

The three columns of the figure represent the fraction
the vortices belonging to each class at a given instant.
melting (T/J51.5), the fluctuating lines in our finite samp
still remain largely disentangled and separated from e
other. AsT→Tl , the density of loop excitations increas
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~left column!, while the field-induced lines~central column!
have stronger lateral fluctuations. Both of these effects ca
more and more ‘‘connected’’ clusters~i.e., vortex tangles! to
appear. Finally, atTl , an infinite tangle, connected by cross
ing vortex lines, forms. At this temperature, the connec
tangle of vortices form a (D21)-dimensional manifold of a
tortuous shape, transverse toB, and cut the original (D
53)-dimensional coherentXY system into halves.

Figure 17 shows an instantaneous vortex cluster size
tribution for various temperatures atf 51/24. To generate
this distribution, we define theprojected transverse lengthof
each vortex loop~or tangle! by l xy[ruẑ3nvu for each iso-
lated cluster composed of unit vortex segmentsnv , and ac-
cumulate a histogramP(l xy). @We consider only the size
distribution projected onto thexy plane because the fiel
induced lines~which are infinite alongẑ) could mask the
loops with large extent in thez direction. We also believe
that these fluctuations are more relevant to the vanishing
gzz.#

In the first panel of Fig. 17, we plotP(l xy) for several
T<Tm . Each plot has a sharp maximum cutoff and a p
nounced peak, which is due to the finite average lateral fl
tuations of the field-induced vortex lines. ForTm,T,Tl

~second panel!, the weight of distribution is shifted toward
larger l xy , because lines in the liquid phase undergo lar
transverse fluctuations. Closed vortex loops also begin to
pear in this region. AsT increases, the distribution is cut o
at progressively larger values, as more and more lines
the connected clusters. Finally, forT.Tl , all curves are
characterized by the appearance of ‘‘infinite’’ clusters, w
no obvious length cutoff. The distribution appears to fall o

FIG. 16. Vortex configurations for temperaturesT in the range
Tm<T<Tl . The left column shows the portion of vortex fluctua
tions which form bound loops. The center column shows mai
those field-induced vortex lines which are not entangled, while
right column shows the largest cluster of entangled lines~as defined
in the text!.
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14 486 57SEUNGOH RYU AND DAVID STROUD
algebraically in this regime, i.e.,P(l xy);l xy
2m with m

;1.0,2, suggestinĝ l xy&→` for T.Tl .
In Fig. 18, we show the maximum valuel xy occurring

over 10 000 MC sweeps for each temperature. The siz
normalized by the linear system dimension in thexy plane

FIG. 17. The distribution of transverse vortex lengthsl xy pro-
jected onto thexy planel xy for three sets of temperatures in the~a!
lattice, ~b! line liquid, and~c! tangled vortex web states.

FIG. 18. Maximum projected lateral vortex lengthl xy , given in
terms of the lateral box dimension~548!, and normalized per laye
in a 24324324 grid with f 51/24.
is

~48!, and also by the number ofxy planes~24!. Although
l xy grows monotonically forT.Tm , it seems to jump dis-
continuously from;1 to ;2 betweenT/J52.0 and 2.1
~nearTl for samples of this size!. Qualitatively similar be-
havior occurs for the isotropicf 50 XY transition near
TXY( f 50) ~cf. Fig. 4!.

C. Entanglement, winding number, and other exotica

We now suggest a possible extension of the vortex lo
picture of the zero-fieldXY transition to the hypotheticalTl

transition or crossover forf <1/24. Such loop excitations
have received far less attention in 3D systems49 than their 2D
counterparts, possibly because they require more energ
excite and therefore matter only very close to the mean fi
transition. But in high-Tc materials, the short correlatio
lengths, high anisotropy, and high-Tc broadens the vortex
loop-dominated regime,62,63before amplitude fluctuations se
in.

In a cubic sample with periodic boundary conditions,
vortex lines naturally close on themselves to form loo
These loops are of two topological types: those which c
continuously shrink to a point~‘‘trivial class’’ ! and those
which cannot~‘‘nontrivial’’ !. The latter are said to have
nonzero ‘‘winding number,’’ i.e., number of infinite lines i
a given direction. In the 2D periodic case, the loops lies
the surface of a torus. In this case, there are two dist
subclasses of nontrivial loops: one which winds around
circumference, and another which runs transverse to it. In
infinite 2D geometry, these correspond to lines infinite
either thex̂ or the ŷ direction. On the 3D hypertorus, ther
are infinite lines in any ofthreedirections.

These notions play critical role in the description of d
sipation via vortex motion, i.e., phase slips.64 For current
flowing in a given direction, the dissipation may occur eith
through the expansion of loops, or through motion of
infinite line. In either case, the dissipation arises from flu
tuations in the winding number of vortex lines perpendicu
to the current@c.f. Eqs.~6! and ~7!#. Note that when a finite
field is applied along theẑ direction, the hypertorus alread
contains many ‘‘windings’’ along that direction even witho
an applied current.

In the absence of pinning, dissipation in the plane norm
to ẑ is governed by fluctuations of the winding number in t
ẑ direction. This dissipation should not depend directly
whether or not the ‘‘windings,’’ that is, the vortex lines, form
a lattice, but may depend on thedensity and mobility of
windings.

Dissipation parallel to the field direction~c-axis resis-
tance! depends mainly on winding number fluctuations tran
verse to ẑ. Clearly, the average winding in this directio
vanishes, unless the field-induced lines themselves, w
winding alongẑ as required, also wind along another dire
tion such as wires around a solenoid. For this to occur,
lines would have to break a chiral symmetry, spontaneou
generating a global surface current with a net magnetiza
normal toẑ—an effect which should be prohibited energe
cally in the ground state.

It may occur, however, if there exist entangled field i
duced vortex lines which collide with each other to swit
connections~a process we may call ‘‘cutting and reconne
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57 14 487NATURE OF THE LOW-FIELD TRANSITION IN THE . . .
tion’’ !. In Fig. 19, we show two field induced lines residin
on the surface of a torus~left panel! going through such a
cutting and reconnection@panels~a!,~b!#. The right column
of the figure shows an alternative view of the same proc
in an infinite space with open boundary conditions. Initial
both vortex lines wind only along theẑ axis. After the cut-
ting and a special reconnection process in which one str
circles around the torus before meeting its other end, a
transverse winding number has been created. This ‘‘glob
process is, however, energetically expensive because i
volves a spatially extended excursion@panel~b!# and should
occur very rarely, even in the melt.

If we introduce an ‘‘entanglement length’’l c , defined as
the average distance alongẑ required for any two vortex
lines to wind around each other, we expectl c to be infinite
for T,Tm , but to become finite in the liquid phase. Becau
of the finite line tension and repulsive interactions betwe
vortex line segments, such entanglement events along
flux lines are costly in energy and hence rare, in the liq
near melting. Deeper into the liquid phase, as the repul
interaction between vortex lines is overcome by entro
forces of attraction,l c should become much shorter, leadin
to a much denser entanglement pattern. The now nume
local transverse fluctuations, and local cutting and reconn
tion events~i.e., collisions! generate fluctuations in the ‘‘glo
bal’’ transverse winding number and causegzz50. On sym-
metry grounds, the average transverse vorticities^nx& and
^ny& have to be zero at all temperatures. But possi
^unxu21unyu2& acquires a finite value forT.Tl , suggesting
that this quantity could be used as another ‘‘order para
eter’’ for the hypothetical phase transition atT5Tl ~with a
nonzero value athigher temperatures!.

FIG. 19. Effect of switching connections among entangled fl
lines in a torus geometry~a! and in an infinite plane with open
boundary conditions. For the case of only two lines~b!, note that it
is necessary to make a long excursion spanning the whole plan
change the global winding number. The latter may be easily
duced in a dense environment through collective occurrence o
cal reconnections~c!.
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Alternatively, we may view the upper transition in th
context of a bond percolation transition. The field induc
lines provide a kind of backbone network. With increasi
T, vortex lines undergo more and more transverse collisio
At T5Tl , these collisions induce the entire ensemble
field-induced vortex lines to form an infinite connected (D
21)-dimensional structure transverse to the applied fie
causing large fluctuations in the transverse winding num
@thick gray line in panel~c!#, thereby wiping out any super
conducting path connecting the top and the bottom lay
normal to the field.

Let the mean-square transverse displacem
of field-induced vortices per layer be denotedl T

2

[^ur i(z)2r i(z21)u2&. Thenl c /d is defined as the numbe
of layers alongẑ over which a line wanders transversely b
the average intervortex distance. We write this condition
l T

2@ l c /d#2z5aB
2 , where we introduce an unspecified ‘‘wan

dering’’ exponentz. In the limit of dilute ~independent!
lines, we expectz'1/2, corresponding to a random walk o
each vortex line segment. Long-range intervortex repuls
is known to renormalize the unit step sizel T from
c(T)(T/Jz)

0.5 down to a smaller value with a similar form
with an unspecifiedT dependence encoded inc(T),1.65,66

It is not clear howz is affected by intervortex repulsion, bu
possibly the interactions with other fluctuating lines a
equivalent to the line of interest being in a random enviro
ment. For a flexible line in a 3D random environment,z
;0.6.67,68For D>2, in the actual system of interacting fluc
tuating lines, no exact result is available forz, although sev-
eral numerical results and conjectures suggestz;0.220.6.69

We can use these crude estimates to make a guess a
field dependence ofTl , interpreted as a bond percolatio
transition. Along a given field-induced vortex line, the pro
ability per unit length that a transverse connection is mad
a neighboring vortex line at any position along theẑ axis is
p5d/l c5(l T /aB)1/z. Since l T}(T/Jz)

0.5 and aB}B20.5,
the percolation threshold is reached roughly wh
c(T)2TB/Jz.@pc#

2z, wherepc is an appropriate percolatio
threshold. This condition defines alower boundsfor a pos-
sible transition atBl (T) which approximately follows

Bl }
@pc#

2z

c~T!2

Jz~T!

T
. ~9!

For a dense lattice or large anisotropy~i.e., smallJz), this
condition is probably satisfied immediately upon melting,
at f 51/6. For dilute systems, however, the second transit
is not automatically triggered by melting and may occur on
deep into the liquid phase, at a temperature where the
tanglement barrier is sufficiently weak to allow an infini
vortex tangle to form. Whether this percolation transition i
true phase transition or only a sharp crossover remains t
determined.

This same picture suggests how correlated pins such
columnar damage tracks70 may increaseTl . Such columnar
disorder will encourage the vortex lines to stay straight alo
the defect track, reducing the effective unit stepl T by a
factor cp!c. As a result, the wandering exponentzp may
also change from its thermal valuez. Consequently,Tl will
be enhanced by an overall factor of (c/cp)2(1/pc)

2(z2zp).
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14 488 57SEUNGOH RYU AND DAVID STROUD
In summary, the upper transition is characterized by
following set of equivalent criteria:26,23 Disappearance of fi-
nite transverse diamagnetism, disappearance of phase r
ity along the field direction, appearance of an infinitetrans-
verse vortex cluster, large fluctuations in the glob
transverse winding number or the net vorticityM, and onset
of finite c-axis phase-slip resistance in the limit of vanishi
bias current in thec direction, which is equivalent to sayin
no superconducting path exists over macroscopic distan

D. Dissipation for f 51/24

While Bitter decoration serves as a detailed probe of s
tial vortex configurations,61,71,72it yields ambiguous informa-
tion about freezing, and is restricted to very low flux den
ties. Cubittet al. obtained evidence of a melting transition
Bi2SrCa2Cu2O8 from low angle neutron diffraction.4 Similar
results were obtained by amSR technique, which probes th
local magnetic field distribution.5 NMR ~Ref. 73! and atomic
beam74 techniques have also been used to study both
static properties and the melting of the vortex lattice. Mo
recently, Schillinget al. employed a differential thermom
etry to search for the latent heat of melting in YBa2Cu3O72d
and to obtain a melting curve.6,7

Far more information has been accumulated from tra
port measurements, but this is much less easily interprete
terms of vortex lattice melting. The interpretation is comp
cated by disorder, as well as by the fact that the meas
ments are nonequilibrium and usually involve nonunifo
current distributions. Safaret al.8 measured a sharp jump i
resistivity in the mixed state of YBa2Cu3O72d . The resistiv-
ity also showed a hysteretic behavior upon thermal cycli
suggestive of a first-order transition. The transition line th
obtained seems to coincide with ‘‘melting curves’’ obtain
by torque measurements,9 and more recently, by differentia
specific heat measurements.6 Kwok et al. have carefully
demonstrated the effect of twin boundary pinning on
melting transition in a series of transport measureme
which track the so-called ‘‘peak effect’’ associated with vo
tex lattice softening.21 They find that the peak effect sets in
a few degrees below the melting curve determined from
sharp kink in resistivity. This sharp resistivity kink, as o
served by both Safaret al.8 and Kwok et al.,75 tends to be-
come less pronounced both at very high (B.10 T) or low
flux densities (B,1 T).76

An ideal, but impractical, transport measurement to de
mine the melting curve would consist of applying an infin
tesimal current to induce a net Lorentz force on the latti
which is held in place by a balancing pinning force. As so
as the lattice melts, individual lines would begin to dri
inducing ‘‘flux flow’’ resistance. Most real materials, how
ever, are complicated by disorder, and even the static p
erties of the lattice with disorder are incomplete
understood.77,78 In the presence of disorder, varying the fie
density produces changes in both the effective pinn
strength and the effective flux lattice anisotropy. Depend
on relative strengths of all these competing effects, m
complications may arise in probing thermodynamic prop
ties using transport experiments.79–83

A number of recent transport measurements have, no
theless, produced rich information about flux lattice meltin
e
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Pastorizaet al. have used a nonuniform distribution of pin
ning strength to probe the shear modulus directly,44 giving
direct information about the lattice stability. Zeldovet al.3

have used local Hall probes in Bi2SrCa2Cu2O8 to monitor the
local field density. They found a very sharp jump, aga
interpreted as a signature of a first-order melting transiti
More recently,24 Fuchset al. performed simultaneous mea
surements of the resistance and local magnetization, c
firming that that the jump in local magnetic density coincid
with a sharp increase in resistance~but not necessarily a
discontinuousjump!. The heat of meltingper vortex per
layer inferred from this local magnetization jump, howeve
shows rather peculiar features: it vanishes continuously
the field is increased, while steeply increasing as the fiel
lowered toward zero.

These results raise several outstanding questions. H
can the seemingly first-order transition line terminate app
ently at a point in theH-T plane? Does the melting line
monotonically approachTc(H50) or follow a reentrant
melting curve? Another important issue is the longitudin
phase coherence probed byc-axis resistivity vs T
measurements,84,85,65which show a striking series of broa
peaks in Bi2SrCa2Cu2O8 single crystals. The nonlocal con
ductivity associated with this phase coherence can be pro
in the so-called flux transformer geometry. The experimen
data of Keeneret al.31 suggests that phase coherence ove
finite correlation length alongB persists above the meltin
transition of the vortex lattice in some region of theH-T
phase diagram.

A simple and natural model for probing the dynamics
the mixed state is a network of resistively shunted Joseph
junctions with Langevin noise. In this section, we prese
some results of simulations using this model, and to conn
these to the analogous staticXY results. Our calculations ar
carried out as follows. At any given temperature, the fin
snapshots from the MC simulations are used as the in
dynamical phase configurations. We use an integration t
step nt50.1t0. After the current is switched on, 100
25000nt is allowed for the system to reach a steady sta
following which the voltage is averaged over the next 60
212 000 steps ofnt.

Figure 20 shows the ‘‘bulk in-plane resistance’’ atf
51/24. The measurement geometry is as shown in Fig. 1~a!;
thus, these calculations probe the shear rigidity of the lat
in contrast to the usual transport experiment in which r
dom pins play an essential and complicating role. Throu
the rest of this paper, we will call these calculated quantit
Rab and Rc , even though they differ from the resistivit
measured in most transport experiments. At the highest
current of 2.83I c per grain~equivalent to 1.4I c per bond!, we
have a smooth curve without any noticeable changes eith
Tm or at Tl . For lower values of driving current, sharpe
features emerge. There is a slope discontinuity nearTm
51.5J for both I /I c50.83 and 0.083, but the most dramat
change occurs nearTl 52.0J. The entangled line liquid for
Tm,T,Tl seems to have a sizable viscosity. This viscos
impedes the motion of the flux lines in the liquid, the tw
halves of which are driven past each other by opposing L
entz forces. As a result, the lines move slowly, and dissi
tion ~defined as a ‘‘resistance’’Rab) is small. The steady
increase ofRab with temperature in this region is due t
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screening by vortex loops which gradually lowers the visc
ity. For T.Tl , this viscosity vanishes, leading to a ste
increase inRab This increase atTl is enhanced by additiona
~and probably dominant! dissipation produced as the syste
goes through anXY-like transition or crossover. The larg
viscosity for Tm,T,Tl is also consistent with the slow
(ln t) equilibration seen in the Monte Carlo measuremen
gzz for Tm,T,Tl .60 We believe that the change inRab
near Tl shares the same mechanism as that seen
TXY( f 50) shown in Fig. 5.

Figure 21 shows the ‘‘c axis resistivity’’ Rc at f 51/24, as
calculated using the geometry of Fig. 1~b!. For comparison,
we also show the calculatedgzz. As the driving current is
reduced,Rc seems to approach a curve which vanishes

FIG. 20. Calculated bulk in-plane resistance vsT for f 51/24.
Currents of 0.08322.83I c per grain were injected uniformly into a
yz plane.

FIG. 21. Calculatedc-axis resistance~arbitrary units! vs T for
f 51/24. A current of 0.083I c per grain is injected uniformly into a
plane. The inset shows the same results, but with temperature
caled to model a hypotheticalisotropic high-Tc superconductor as
in the previous figure.
-

f

ar

s-

ymptotically asT→Tl
1 , coinciding with the vanishinggzz.

Our numerical results thus suggest that the dramatic incre
in Rc results from theTl transition rather than melting. Th
increase inRc is thus correlated with massive vortex lin
cutting, as suggested earlier,66,65 and with an increase in the
density of transverse vortex segments^unxyu&, the frequency
of vortex line crossings, and fluctuations in the transverse
vorticity dMz

2 . This distinction betweenTe andTm may be
most important for Bi2SrCa2Cu2O8 at low fields, and in dis-
ordered dense systems,33 where the temperatures may b
most separated.

The current dependence of bothRab and Rc suggests
some conclusions relevant to experiment. First, the ‘‘melt
line,’’ as detected via a voltage criterion at constant curre
in a bulk resistance measurement, should be sensitive to
driving current, even at a very low bias. Existence of pinni
force is essential in getting distinct transport behaviors
the lattice and the liquid. On the other hand, the transition
Tl , whether monitored by the vanishing ofRc in the limit of
small current or by a jump inRab between twofinite values,
should be relatively insensitive to applied current dens
since the main mechanism of dissipation~presence of trans
verse vorticity! in this case is switched off belowTl and sets
in aboveTl irrespective of whether we have pins or no
Indeed, just such an observation has been made by Ke
et al.32 in describing their curves forTm(H) ~melting! and
TD(H) ~‘‘decoupling transition’’!, as obtained by flux-
transformer measurements on Bi2SrCa2Cu2O8 single crys-
tals. It is plausible that theirTD(H) at very low fields (B
,100 G! corresponds toTl in our model. True melting line
is presumably the limiting value of the current-depend
Tm(H,J) as J→0. It is not experimentally verified whethe
such a limiting value coincides withTD or not.

Let us briefly comment on the experimental possibility
distinguishing betweenTm and Tl . If we imagine a hypo-
thetical isotropic high-temperature superconductor, the co
pling constantJ in our model calculation is related to th
parameters of the superconductor viaJ; df0

2/16p3l2(0)
3(12@T/Tc0#4) ~assuming the two-fluid model!. Taking
Tc0592 K, d510 Å, and l(0)51000 Å, we find Tm
;89.7 K andTl ;90.3 K @Eq. ~11!#. Thus the two transi-
tions are remarkably close even for the isotropic case. In
materials such as YBa2Cu3O72d and Bi2SrCa2Cu2O8, the
separation between the two will be further reduced by
anisotropy factor, although pinning disorder may tend
separate them. Therefore, in many cases, it will be ne
impossible to separate the two transitions experimentally

VII. LOCAL MAGNETIZATION JUMP AND HEAT
OF MELTING

A striking result of the Bi2SrCa2Cu2O8 micro-Hall probe
measurements is the sharp jump in local magnetization~vor-
tex density! across the phase transition.3 At ‘‘high’’ fields
(;200 G), the jump occurs at nearly constantT, and even
for lower fields, still withindT;3 mK. The heat of melting
per vortex per layer,TmnS52 (TmnB/4p)(dHm /dT), as
obtained from the Clausius-Clapeyron relation, increa
monotonically from 0 atB;400 G to about 0.6kB at B
;55 G, beyond which the slopedHm /dTincreases very
sharply~see Fig. 6 of Ref. 3!.
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14 490 57SEUNGOH RYU AND DAVID STROUD
Similar jumps also seem to occur in YBa2Cu3O72d , as
suggested by recent calorimetric6 and magnetization
measurements.86,87 In this case, the estimated latent heat
melting yieldsnS ~per vortex per layer! ;0.4kB for 1,B
,8 ~T!. The data~see Fig. 1 of Ref. 6! suggest that the jump
DM at T585 K (B;3.7 T! for YBa2Cu3O72d is spread over
a field rangedB;0.1 T, or, for a given field, over a tem
perature rangedT;0.1 K. This jump decreases rath
abruptly for flux densitiesB<1 T. The estimated entropy o
melting (;0.4kB per vortex pancake! is quite close to that
numerically obtained by Hetzelet al.11 (;0.3kB per pan-
cake!, and also to the values obtained in model calculatio
based on the lowest Landau level and Lond
approximations.88

As the field decreases, the jump inM occurs over a
broader temperature range~see Fig. 3 of Ref. 3!. The resis-
tance jumps measured by Kwoket al.,75 attributed to the
melting transition, also become broader with decreas
field. By contrast, the height of the resistivity kink seem
quite uniform over a wide range of fields. These last t
observations are consistent, however, if we interpret
jump in resistance as a signal thatgzz→0. In view of all
these facts, it is plausible that, at least at relatively high fie
which corresponds tof Jxy /Jz.1/18, the experimental jump
observed in local magnetization and resistance3,6,75 shows
the combined effects of two distinct processes, occurr
within nT,10 mK. As a corollary, the very low-field mea
surements (f Jxy /Jz,1/18) actually may not track the mel
ing transition itself, but various manifestations of the p
dominant XY fluctuations ~vortex loops! which are most
conspicuous nearTl .

Observation of thereentrantmelting curve has not bee
reported in any high-Tc materials. In NbSe2, the melting line
detected by the peak effect was reported to be nonmonot
in field,20 consistent with the reentrant melting curve pr
posed for the more anisotropic high-Tc superconductors.2

But if one interprets the magnetization jump
Bi2SrCa2Cu2O8 as evidence for melting, then the meltin
curve for Bi2SrCa2Cu2O8 apparently approachesTc0 mono-
tonically at field as low as;1 G. This behavior is surprising
since, at these fields, the vortex separation far exceeds
magnetic screening length. Furthermore, in YBa2Cu3O72d ,
the peak effect at 0.3521.5 T is observed to lie below th
resistivity kinks21 ~about 0.8 K below at 0.5 T!. These mea-
surements suggest that, at least for low flux densities, tr
port measurements may actually not be probing flux lat
melting.

We propose that low-field melting is indeed reentra
Most low-field experiments which probe magnetization,3,24

thermal properties,6 and transport coefficients8,24,31,75 actu-
ally track Tl , which is progressively more separated fro
Tm and approachesTXY(0) as the field is reduced. We hav
already shown that dramatic changes inRab andRc occur at
Tl . Moreover, the broad peaks inCV are centered atTl and
they, too, approachTXY(0) as B decreases. Our estimate
upper bound for the total entropy release in the tempera
rangeTm,T,Tl , as estimated from theT dependence o
the internal energy, qualitatively resembles that of Zeld
et al. ~Fig. 6 of Ref. 3! in that it steeply increases asf de-
creases. At higher fields, the observed~and also calculated!
nS;0.320.5kB is consistent with the destruction of pha
f
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coherence at asingle transition. By contrast, at low fields
phase rigidity is lost in a two-step process. Most of the e
tropy release (nS>0.5kB per vortex per layer! occurs near
T;Tl .Tm , whether or not this is a true phase transitio
Note that a hysteresis in the resistivity may be observed n
Tl due to finite vortex-cutting barriers belowTl . This is not
necessarily an evidence for a first-order melting transition
very low fields.

The melting line in the dilute limit may be quite difficul
to detect experimentally. Conceivably it may be tracked
the peak effect, by high-resolutionIV measurements, or by
direct measurement of the shear modulus.44 Of course, direct
observation of a vanishing neutron diffraction pattern as
Ref. 4 would be ideal, but this technique is of limited app
cability in this density range.

To shed further light on this problem, we have carried o
calculationswith mixed boundary conditions. That is, we al-
low local density fluctuations in the netz component of vor-
ticity by using free boundary conditions in thex and y di-
rections, while retaining periodic boundary conditions alo
the z axis. Of course, surface effect are now stronger, po
bly reducing the melting temperature. Another point is th
our uniform-frustration model assumes thatl5`. There-
fore, we should proceed with some caution in relating o
numerical results to experimental data.

To study the system with these mixed boundary con
tions, we again did a simulated annealing run for a sin
layer of the triangular grid to find the lowest-energy config
ration. By stacking the resulting state layer by layer, we fo
the ground state lattice, which, because of incommensura
ity and the free boundaries, now consists of an imperf
triangular lattice with some defects. This lattice melts
T/J<1.4 for the nominal density off 51/24 on a 26326
312 grid. This is slightly below the valueTm /J;1.5 found
for the fixed density system of 24 layers with period
boundary conditions. For a nominal density off 51/6, melt-
ing occurs nearT/J<1.15 with these mixed boundary con
ditions.

One might think of defining the ‘‘magnetization’’Mz as
the average net vortex densityn[*nz(r )dr /A, wherenz(r )
is the local vortex density andA is the total area. However
Mz defined in this way suffers from spurious boundary
fects, arising from the depletion of vortices near the bou
aries in the lattice phase.89 Upon freezing, the lattice devel
ops arigid free surface of irregular shape, expelling some
the vortices from the rectangular bounding box. The res
ing change in densitydn/n is an artifact of the open bound
ary conditions, and we find that it vanishes for large samp
as 1/AA, confirming that it originates from a surface effec

Instead, we defineMz by a criterion involving thelocal
Voronoi cell areaAi , i.e., the area of the generalize
Wigner-Seitz cell for vortexi ~the shaded area shown in Fig
22!. Before applying the procedure, we first eliminate t
thermally induced vortex loops, which are present in addit
to the field-induced vortices forT>0.53Tl . To do this, we
pair each antivortex with the nearest vortex in each pla
identifying the resulting pairs as bound dipoles to be e
cluded from the count~see left panel of Fig. 23!. Since most
such dipole pairs have linear dimensions much smaller t
1/A^n&, this criterion is justified. We then perform a De
launay triangulation on the field-induced vortices to det
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mine topological neighbors for each vortex. From the bo
configuration thus determined, we obtain its dual, which
the desired Voronoi diagram. A local vortex density at
point R may then be defined as

n~R!5(
i

d~RPAi !/Ai , ~10!

whered(RPAi)51 if the point R lies in the Voronoi cell
associated with vortexi , and zero otherwise. Next, the loc
magnetizationMz , which we interpret as thebulk average
density^n& is calculated from

^n&5 (
r iPC

1

Ai
, ~11!

i.e., as the average of the inverse Voronoi area for vorti
lying within a measurement areaC suitably distant from the
sample boundary.

In Fig. 24, we show the relative average vortex dens
~filled circles! along ẑ, ^nz&/n0, normalized to the nomina
density per layer atf 51/6 and f 51/24. For f 51/6, ^nz&
shows a sharp jump atTm to a value about 7% larger tha
n0. For f 51/24, there is a similar change of about 15
which is less sharp than atf 51/6 and is centered atTl .
From these two data points, we observe that [^n&(Tl )

FIG. 22. Example of the local Voronoi cell occupied by a vo
tex.

FIG. 23. Example of the vortex configuration in anxy plane at
z56 in a 48-48-12 system withf 51/24 atTl . The black dots are
field-induced vortices, gray dots connected by lines are bound
poles identified. The right panel shows the Delaunay triangula
applied to the field induced vortices only.
d
s

s

y

2n0]/n0; f 21/2. Comparing the result for two differen
sample areasLxLy for f 51/24, we have verified that the
observed change is indeed abulk phenomenon, independen
of any surface influence. Note that we have about the sa
number of flux lines@;O(200)# for both f 51/6 and f
51/24 for our chosen sample sizes of 24324312 and 48
348312. While the jump occurs atTm for f 51/6, we do
not observe a similar feature near melting (Tm51.35J) at f
51/24. Therefore, the cause of the jump in the local vor
density should be sought in the nature of transition atTl ,
rather than in the mechanism for flux lattice melting. No
that these jumps resemble those in Fig. 5 of Ref. 3 in
‘‘anomalous low-field regime’’ (1,B,55 G) in the fol-
lowing sense: the fractional change in vortex density
creases, and the jump becomes sharper, as the field incre
Probably, the line densitŷnz& increases with increasingT
for Tm,T<Tl because the repulsive intervortex interacti
is screened by polarizable vortex loops. The 2D analog
this effect is the screening of the repulsion between fie
induced vortices by thermally excited vortex-antivort
pairs.90

Does the jump in flux density occur exactly at the melti
transition, or is it more closely connected to the other ‘‘tra
sition’’ at Tl , i.e., to a transition between two liquids wit
different compressibilities? This question may actually
rather academic, sinceTm andTl may practically merge in
real, anisotropic materials at high fields. Equation~9! gives a
rough criterion for Tl in isotropic systems: 1/l c
5(c2BT/Jz)

1/z.pc . For anisotropic systems such a
Bi2SrCa2Cu2O8 and YBa2Cu3O72d , a given value off cor-
responds to a field which is reduced, relative to the isotro
system, by a factor ofJz /Jxy . Therefore, the merging ofTl

andTm , which in isotropic systems occurs aroundf ;1/18,
should in anisotropic materials occur aroundf
5(1/18)Jz /Jxy , This anisotropy factorJz /Jxy could be as
small asO(0.0001) in Bi2SrCa2Cu2O8.

VIII. DISCUSSION

Analogy to XY transitions of slabs of finite thickness. In
the previous sections, we made following observations fr

i-
n

FIG. 24. EntropyS ~upper panel! and normalized vortex density
~lower panel! for f 51/24 and 1/6 in 24324312 and 48348312
systems with open boundary conditions. The error bars denote
rms deviations from layer to layer.
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14 492 57SEUNGOH RYU AND DAVID STROUD
numerical simulations:~i! gzz vanishes atTl ÞTm for isotro-
pic system withf .1/18 andTl (B) appears to terminate a
TXY for B→0; ~ii ! asB changes, it tracks the broad peak
CV which behaves

CV
max~B!;2 ln~LB!, ~12!

and

uTl 2TXYu;LB
22/3, ~13!

whereLB[ f 21/2;B21/2; ~iii ! Tl , and notTm , appears to
coincide with the principal change in local vortex dens
which follows

nM /B;B21/2 ~14!

~there is a corresponding change in bulk resistancesRab and
Rc over the same temperature range!; ~iv! Tl andTm seem to
merge at a sufficiently high field.

We now summarize some recent experimental obse
tions which appear to be consistent with these numer
results. Schillinget al.7 have reported high resolution calor
metric evidence for a first-order transition in YBa2Cu3O72d ,
which they interpret as a melting transition. They observ
very sharpd-function-like peak lying on the left shoulder o
the broad peak in specific heat in the range of 0.7529 T,
which roughly corresponds to 1/81, f ,1/6 in our isotropic
sample. Thed function appears to vanish for densities low
than about 0.5 T. This remarkable experiment thus es
lishes the existence of a first-order melting transition lin
which empirically follows uTm2Tc(0)u;LB

21.61 over 0.75
29 T. These data are consistent with our numerical res
on the following points:~i! a first-order melting transition
exists, and becomes weaker as the flux density is lowe
~ii ! the melting transition is located on the left shoulder o
broader peak inCV ; and ~iii ! the height of this broad pea
and its position generally follow the behavior described
Eqs. ~12!, ~13!, and ~14!. As further evidence of the corre
spondence, we show in Fig. 25, the data extracted from
1 of Ref. 7 for fields as high as 6 T. At higher fields (.7 T!,
the points deviate from the observed power law behav
shown in the figure.

Other experimental data which agree well with our n
merical results are those of Roulinet al.59 These workers

FIG. 25. Dependence of ‘‘broad’’ peak maximum in speci
heat and their shift in temperature on the magnetic lengthLB taken
from Schilling et al. ~Ref. 7!.
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have reported that both the melting curveTm(H) and a point
they label the ‘‘superconducting-normal’’ (S-N) transition
as monitored by tracking the maximum inCV as a function
of H both follow the equationuT2Tc(0)u;LB

23/2, consistent
with our numerical results and the scaling analysis discus
above~to within logarithmic corrections!. Welp et al.87 have
reported a detailed study ofDM as a function ofT andH.
The data presented in Fig. 2 of their paper show t
nM /B;B21/2 for 1.8<B<5.6 T, once again in agreemen
with both our numerical results and the scaling data. Fr
these data, we conclude that our numerical observati
based on a frustrated 3DXY model, are generally consisten
with recent experimental observations.

Most interpretations of these experimental results focu
on only one true phase transition in the low-field regim
namely, a first-order liquid-solid transition. This view poi
is consistent with our numerical results only if we assu
that Tl 2Tm ~whereTl is defined as the temperature whe
gzz vanishes! will go to zero in the thermodynamic limit. In
the following, we will briefly review a multicritical scaling
approach which assumes a single melting transition wh
happens to be in the vicinity of the zero-fieldXY critical
point. Our data are not sufficient to determine without am
guity whether or not this assumption is correct. Therefo
we follow it by giving an alternative discussion based on t
hypothesis that there are actually two separate phase tr
tion lines: Tm(H) for flux lattice melting andTl (H) for
complete destruction of any superconducting path~phase co-
herence! in all directions.

Friesen and Muzikar91 describe theS-N transition at a
finite B in the vicinity of the f 50 XY critical point. Their
scaling hypothesis takes the form

f s~B,T!;utu22af6~Butu22n! ~15!

for the singular portion of the free energy density in theXY
critical region. Herea andn are the standard critical expo
nents describing the specific heat and correlation length
the f 50 critical point,t5T2TXY(0), andf6 are appropri-
ate scaling functions.B is put in by hand based on the a
sumption that it is the only relevant length scale. It is pla
sible, but does not have rigorous justification. Sincea;0
and n;2/3 for thed53 XY model, this expression can b
rewritten as

f s~B,T!;utu2lnutuf6~Butu24/3!. ~16!

The singular part ofCV;2]2f s /]t2 can now be shown
to satisfy the relation~for T,TXY)

CV~B,T!;C~x!ln t, ~17!

where x5Butu24/3 is the appropriate scaling variable an
C(x) is another scaling function. From this we find~i! that
the quantityCV / lnutu has a maximum at some fixed value
x and ~ii ! at that fixed value ofx, the maximum value
Cv

max; lnutu. Both ~i! and ~ii ! are in agreement with our nu
merical data. Similarly, the magnetization is given
M (B,T);(] f /]B)T . It is readily shown to satisfy

M;M~x!~B1/2lnuxu2 ln B!, ~18!
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whereM is another scaling function. A reasonable interp
tation of the ‘‘jump’’ DM in magnetization is the differenc
in M between two fixed valuesx1 and x2 of the scaling
variable. Then, if the term involving lnB can be neglected
we haveDM /B'B21/2 in agreement with our numerical re
sults.

This same scaling picture can be used to interpret the
of fusion at the first-order melting transition atTm(B). As-
suming thatTm(B) happens to be in theXY critical region,
we write the free energy densities below and aboveTm(B) as
2t2lnutufs(Butu24/3) and2t2lnutuf l (Butu24/3), wheref s and f l

are two different scaling forms for the free energy dens
above and below the melting transition. At the melting poi
these free energy densities must be equal. Then a little a
bra shows that the jumpDs in the entropy densityS5
2(] f /]T)B takes the formDs52t2lnutu@fs8(xm)2f l8 (xm)#,
wherexm5Butmu24/3 is the value of the scaling parameter
the melting point. UsingB;utu4/3 along the melting curve
we find that along the melting curve

Ds;B3/2ln B. ~19!

Thus the melting transition should have an entropy ju
which gets smaller as the field is reduced.

If Tl (B) represents a true phase transition as we desr
using the idea of vortex tangles, how can it be understoo
terms of the phase coherence? One possibility is aline of
critical points for a continuous phase transition similar to t
XY transition in a semi-infinite slab. This view provides
natural explanation why the scaling theory with the scal
variableBj2 should be successful. Mathematically, one c
attach a ‘‘phantom’’ cut line to the core of each vortex se
ment across which phase slips by 2p. These are benign sinc
continuity and single valuedness of the phaseQ at every
point is ensured. However, their shape and motion can
monitored most conveniently to keep track of the spatial a
temporal disturbance of the phase coherence which have
portant consequences such as phase slip dissipation in s
conductors. For an isolated vortex segment placed at or
with positive vorticity alongẑ, the cut line may lie straigh
along the positivex̂ axis. A negative vortex will then have
the cut-line on the negativex̂ axis. Once we choose a cut-lin
for a particular vortex by fixing the reference phase angle
provides the reference for all other vortices. Note that th
cut lines can only terminate either at the sample boundar
at the core of vortices of opposite charges. When there
several interacting vortices, these cut lines are no lon
straight, and their tortuosity reflects the phase disturban
induced by deformation of the vortex configuration aw
from perfect lattice. If the vortex lines were straight, we w
observe that the cut lines associated with each segmen
line up as we move along a vortex line. Therefore, a cut l
associated with each vortex line will form a semi-infinite c
sheet, separated from other sheets by roughlyLB;B21/2. As
the vortex lines become tortuous in the liquid phase ab
Tm , the cut sheets will become wrinkled and our system w
look like a three-dimensional maze walled by these she
Both in the vortex solid and line-liquid phases, this maze w
allow a arbitrarily curved path connecting both sides~either
along ẑ or x̂ axes! of the sample, and the average width
the path free of the walls will beO(LB). We conjecture that
-
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it is possible that the phase variables may maintain lo
range coherence. At low fields~largeLB), this tortuous slab
contains manyXY phase degrees of freedom which, bei
confined within the walls,do not feelthe presence of free
vortices, and therefore could conceivably undergo a ph
transition in the universality class of a zero-fieldXY model
in a ‘‘film’’ of thickness ;LB , i.e., a quasi-3D-XY transi-
tion. This crosses over to a bulkXY transition asB→0.

There are two possible objections to this picture. First,
numerical results only hint at, and certainly do not prov
two separate phase transitions. Second, the ‘‘film’’ me
tioned above is a dynamical rather than an equilibrium fil
in the sense that its boundaries are not fixed. It is not c
that such a dynamical object could have anXY phase tran-
sition. The boundaries~i.e., cut sheets of the deformed vorte
lines! are, of course, moving subdiffusively14,92 as long as
jvz /d.O(10). This condition, as we confirmed numerical
in Sec. VI B, holds true in the rangeTm,T,Tl and makes
the above picture more plausible. It also greatly enhances
chance if we consider pins in real material, since eve
single vortex line then becomes collectively pinned into
glassy state.

We now discuss a 3DXY-like transition for the infinite
slab of thicknessLB . Such a slab belongs to theG2 class in
Barber’s classification of finite size systems.94 From this
identification, we can derive many characteristics of t
phase transition. First, consider a thermodynamic quan
for an infinite system in 3D, which varies asP`(T)
;C`t2r, wheret5(T2Tc)/Tc with Tc the transition tem-
perature for an infinite system andr an appropriate critical
exponent. For a slab of thicknessLB , a general finite size
scaling ansatz dictates that

PLB
~T!;LB

vQ~LB
u ṫ ! ~20!

asLB→`, ṫ→0 with u51/n. The exponentv is determined
by requiring bulk behavior in the limitLB→`; this condition
gives v5r/n. The transition temperature for a finiteB is
shifted,

@Tc2Tc~LB!#/Tc;LB
2l , ~21!

and the shift exponentl is generally equal to 1/n, as has
been discussed for the superfluid transition in bulk4He of
finite thickness by Ambegaokaret al.95 For our purposes, it
is sufficiently accurate to taken;2/3, which then agrees
very well with our numerical result@Eq. ~13!#. Equation~20!
needs to be modified for a quantity with a logarithmic dive
gence; it becomesP`(T);C`ln t as t→0, one modifies the
ansatz96 so that we have PLB

(T)2PLB
(T0);Q(LB

u ṫ )

2Q(LB
u ṫ0!, whereT0 is some noncritical temperature. Fo

ṫ→0 at a fixedLB , we obtain for such a variable

PLB
@Tc~LB!#;2C`u ln LB , ~22!

where we have assumed thatQ(z)5O(1) for z→0. This
prediction is in good agreement with the calculated ma
mum height of specific heat peak@Eq. ~12!#, which for the
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3D XY model, has a weak divergence witha;0. Similar
results have been discussed for the superfluid transition in
II of finite thickness by Ambegaokaret al.95

As the field increases, one may eventually reach the li
LB /jXY(T),1, at which the transition atTc(LB) will cross
over to a 2DKT universality class and we expect the mer
ing of the two transitions,Tl 5Tm . In our model, we believe
this happens for a value off between 1/6 and 1/8.

IX. OTHER RECENT SIMULATIONS

Before the completion of this work, we became aware
some of the more recent studies based on similar models
briefly discuss them in comparison with our main results a
interpretations. To avoid confusion, we use our own conv
tions for the flux density given in terms of the frustrationf
defined earlier and introduce the anisotropy factorG2

[Jxy /Jz . For an isotropic system,G51 while for
YBa2Cu3O7-d it is ;O(10) and for Bi2Sr2CaCu2O8, it is
@O(100). We also use the same notationTl for the tem-
perature wheregzz drops to zero. Some researchers opted
useTz .

Nguyen and Sudbo”

35 have extended their earlier work o
the anisotropic London loop model.34 Their numerical results
in both the vortex structure factor andgzz for G51 with f
51/32 follow a pattern qualitatively similar to our main re
sults for G51, f 51/24 ~see Fig. 6 of Ref. 35!, as well as
those of Li and Teitel.25,26 By looking at the dependence o
Tl (Nz) on the thickness of the system 16<Nz<96, and lin-
early extrapolating the finite size effect, they conclude t
Tl

`5Tm in the thermodynamic limit (Nz→`). Their argu-
ment is based on the following observations:~1! Tl de-
creases with an approximately linear dependence on incr
ing Nz , Tl (Nz1dNz);Tl (Nz)2cdNz with a positive
number c and ~2! In the thermodynamic limit, below the
melting transition (T;Tm), the energy scale for the inter
layer phase fluctuationT* ;j2Jz diverges due to long-rang
lattice order. Therefore, the linear progression cannot c
tinue belowTm . From these, they conclude thatTl →Tm in
the thermodynamic limit.

We agree with the validity of the second assumption
general grounds. However, this does not exclude the pos
existence of an intermediate phase in which the interla
fluctuation may be suppressed due to the quasi-long-ra
phase correlations in a line liquid ‘‘phase.’’ With this poss
bility open, Tm is only a lower bound for theTl . It should
also be noted thatgzz does not show a significant depe
dence on size in the region where 0.8,gzz,1, in tempera-
turesTm,T,1.8Tm . It is only at higher temperatures, ne
wheregzz→0, that the linear dependence of the shift inTl

on Nz is observable. In other words, the size dependenc
gzz is not trivial as temperature varies and one should
expect the same size dependence be uniformly applied
the whole temperature rangeTm,T,TXY .

Furthermore, the linear dependence of shift inTl on Nz in
the region wheregzz;0 is anticipated on more gener
grounds. In the London limit,gzz measured in the simulatio
under periodic boundary conditions is
e
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gzz~qx5p/ANxNy!

;
J

VG2F12
4J

NzG
2Tp

3^ny~qx5p/Nx!ny~q1x52p/Nx!&G , ~23!

whereny(qx5p/Nx) is the Fourier component of the vortic
ity vector field lying along theŷ direction. Position ofTl is
governed by the condition that the vortex fluctuations ma
the factor in the bracket vanish. Let us assume that there
characteristic number of layersNz* for which the true ther-
modynamic transition is realized atTl

* . For a sizeNz

smaller thanNz* , Nz5Nz* 1dNz(dNz,0), linearization of
the condition gives

Tl ~Nz!;Tl
* 1g~Tl

* !dNz ~24!

with g(T)5G2]@^ny(p/Nx)ny(2p/Nx)&/T#/]T. What is
the temperature dependence of^nyny&? Near Tm , where
thermally activated vortex loopsbegin to appear, it is domi-
nated by the vortex loop fugacity factor and is steeply
creasing function ofT following an S-shaped curve. How-
ever, near the foot ofgzz, where ourTl is located, it is
numerically observed that it has reached the plateau and
temperature dependence is dominated by the 1/T factor. It is
also consistent with the interpretation ofTl in terms of
XY-type unbinding transition. Sinceg(Tl ),0 anddNz,0
in this region, we then reach the conclusion thatTl (Nz)

linearly increases away fromTl
* with c u̇Nz* 2Nzu asNz de-

creases from the asymptotic~thermodynamic! limit. Note
that we do not assumeTl

* 5Tm in reaching this conclusion
If one should follow Nguyen and Sudbo” and extrapolate the
observation of the linear dependence in the limited range
the system size and conclude thatTl

* (B)5Tm(B), it also
follows that we have a paradoxical consequence of pred
ing TXY→0 for the zero field, based on the similar bahav
numerically observed forgaa for f 50.

Following the convention of Koshelev, we employ th
scaled field variable h5G2f which characterizes the thermo
dynamics of the mixed state as long asl→`. As we pointed
out earlier,83 f 51/6 with G251 (h51/6) represents a situa
tion where the interlayer decoupling sets in right at the m
ing transition. From our numerical results withh varying
from 1/6 to 0, we believe that there is a universal crosso
value of scaled densityh between 1/6 and 1/18 which sep
rates alow-field regime from thehigh-fieldregime for which
Tm5Tl 5Tc(B). Koshelev97 made a numerical observatio
that suggestsTl →Tm . However, it is again made forG2

5Jxy /Jz536,f 51/36, i.e.,h51, equivalent to an extremely
dense limit. Recent calculations by Hu and Tachiki98 based
on f 51/25,G2510 in a larger system size of 50350340
falls into the same category withh510/25@1/6. For this
dense limit, they observe thatgzz drops sharply to zero at th
melting transition, as we had observed earlier for theh
51/6 case in the stacked triangularXY model.83

The technical difficulty of simulating the very low field
limit ( h,1/18) with large number of field-induced vorte
lines remains largely unsurmounted. To minimize the art
cial grid pinning effect, one is required to choose a fai
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small value off (,1/32 for the square grid,,1/16 for the
triangular grid!. However, choice of a large anisotropy fact
to mimic HTSC then tends to push the model into the hig
field regime as pointed out earlier. To access the truly lo
field regime (B!1 T for YBa2Cu3O72d , !200 G for
Bi2SrCa2Cu2O8), we had to employ an isotropic model for
practical value off ,1/18. Summarizing this section, w
make educated guess on the thermodynamics of extrem
low-field limit, where the field-induced vortex degrees
freedom are no longer viable.99 Here, the transition atTl

takes over the first order melting transition as theS-N tran-
sition which possibly belongs to the universality class
zero-field transition of XY filmwith thicknessaB . The phase
for Tm,T,Tl may still be considered superconducting
the sense that a superconducting path, however narrow,
exist across a macroscopic distance alongB, which defines a
tiny, but finite critical current. This may be enhanced
collective pinning of the single lines, but resistance measu
with a large driving will show a nonlinear IV characteristic
and hysteresis as current has to distribute itself among
superconducting paths and normal channels.

The field-induced lines in the low-field limit, if we take
the world-line analogy, are equivalent to extremely mass
bosons and eventually drop out of the thermodynamics. T
become localized charges which tend to polarize the und
lying vacuum and induce adielectric breakdownas theXY
medium become more and more polarizable asT increases
towardTl

* . It is somewhat similar to ametal-insulatortran-
sition in a narrow band-gap semiconductor in which loc
field gradient~due to the field-induced vortices! and shrink-
ing band gap~asT→Tl ) conspire to a massive generation
screening dipole pairs~vortex loops! leading to a metallic
state.

X. CONCLUSIONS

To summarize, we confirmed the existence of a sin
first-order melting transition at high vortex densities. W
o
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ely
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also showed that upon melting the local vortex density
creases due to the screening effect of thermally genera
vortex loops. More significantly, however, we observed th
in the absence of disorder, destruction of phase coherenc
a superconductor may proceed by two separate transition
low magnetic fields: a quasi-long-range phase coherence
allel to the field disappears at a temperatureTl higher than
Tm at which the lattice periodicity disappears and true lon
range phase coherence is lost. In this low-field regime,
lattice first melts into a liquid of lines with a finite entangle
ment length along the applied field. These lines eventua
disappear through increasing entanglement, and through
interaction with thermally induced vortex and antivorte
loops. While the melting transition is best characterized
the disappearance of Bragg peaks for the vortex lines an
d-function peak in the specific heat, there is a narrow reg
aboveTm where we observe dramatic changes in dissipat
tensor which coincide with jump in the local vortex densi
and disappearance of the longitudinal phase rigidity,gzz
50. Instead of being a gradual crossover, we propose th
possible transition atTl ÞTm sets in at low densities. It
tracks the broad peak in specific heat asB increases, obeying
the behavior of 3D zero-fieldXYsystem confined to a semi
infinite slab of finite thicknessLB;B21/2. It can alterna-
tively described in terms of appearence of connected vor
tangle which effectively leads to decoupling of neighborin
layers. Within this picture, origins of several puzzling an
conflicting anomalies recently obtained on Bi2SrCa2Cu2O8
and YBa2Cu3O72d may be understood.
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