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Electron-phonon coupling and properties of doped BaBiO3

V. Meregalli and S. Y. Savrasov
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

~Received 27 January 1998!

We report density-functional calculations based on the local-density approximation~LDA ! of the properties
of doped barium bismuthates. Using the linear-response approach developed in the framework of the linear
muffin-tin-orbital method the phonon spectrum of the Ba0.6K0.4BiO3 system is calculated and is compared with
the results of the neutron-diffraction measurements. The effect of doping in the calculation is modeled by the
virtual crystal and mass approximations. The electron-phonon coupling constantl is then evaluated for a grid
of phonon wave vectors using the change in the potential due to phonon distortion found self-consistently. A
large coupling of the electrons to the bond-stretching oxygen vibrations and especially to the breathinglike
vibrations is established. Also, a strongly anharmonic potential well is found for the tiltinglike motions of the
oxygen octahedra. This mode is not coupled to the electrons to linear order in the displacements; therefore an
anharmonic contribution tol is estimated using the frozen-phonon method. Our total~harmonic plus anhar-
monic! l is found to be 0.34. This is too small to explain high-temperature superconductivity in Ba0.6K0.4BiO3

within the standard mechanism. Finally, based on standard LDA and LDA1U like calculations, a number of
properties of pure BaBiO3 such as tilting of the octahedra, breathing distortion, charge disproportionation, and
semiconducting energy gap value is evaluated and discussed in connection with the negative-U extended
Hubbard model frequently applied to this compound.@S0163-1829~98!04522-6#
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I. INTRODUCTION

Since the discovery of superconductivity atTc;30 K in
Ba12xKxBiO3 ~BKBO!,1,2 and from earlier studies o
BaPb12xBixO3 ~BPBO! system withTc;13 K, there is a
fundamental question whether the conventional phon
mediated pairing mechanism is operative in these highTc
superconductors~HTSC’s!. Doped barium bismuthates ar
different from the HTSC cuprates,3 since no antiferromag
netic ordering exists for the parent compound BaBiO3. This
seriously doubts that strong electron correlations exist
are responsible for the pairing. The simple cubic superc
ducting phase makes BKBO and BPBO similar to the isot
pic low-Tc superconductors. However, there is a number
features which makes doped bismuthates similar to the
prates. Both systems are perovskite oxide superconduc
with a surprisingly low density of states at the Fermi lev
This can hardly give high transition temperatures for
BCS-like superconductors. As high-Tc cuprates are origi-
nated from antiferromagnetic insulators, the parent BaB3
compound is a charge-density-wave~CDW! insulator in
which oxygen octahedra around the Bi ions exhibit altern
ing breathing-in and breathing-out distortions. The Bi io
exist in the charge disproportionate state which is chemic
interpreted as 2Bi41⇒Bi311Bi51. It is therefore tempting
to connect the mechanism of superconductivity with the
ture of these insulators.

Unfortunately, experimental estimates of the electro
phonon coupling strength do not lead to a firm conclusion
the origin of superconductivity in the bismuthates. A lar
isotope effect witha 50.4 has been reported for BKBO4

Other measurements5 give a50.2160.03 for BKBO anda
50.2260.03 for BPBO. Using their analysis, the authors
Ref. 5 concluded that ‘‘phononic’’ effects in these materia
are only indicative of dressed electronic excitations. Fr
570163-1829/98/57~22!/14453~17!/$15.00
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studying the imaginary part of optical conductivity in BKBO
the authors of Ref. 6 gave the value ofl;0.2. Electronic
specific-heat measurements7 of Ba0.6K0.4BiO3 have yielded
Ns* (0);0.32 states/(spin3eV3cell) giving a mass en-
hancement factorNs* (0)/Ns

band(0);1.4 @Ns
band(0);0.23

states/(spin3eV3cell) for x50.4]. A complicated situation
exists with the transport measurements. The temperat
dependent resistivities for superconducting BKBO a
BPBO have ranged from metallic to semiconducting and
two-channel model of the conductivity in the bismuthat
was discussed.8 While good grain-boundary-free thin film
and single crystals of BKBO doped well away from th
CDW instability seem to exhibit metallic behavior, the va
ues of the resistivity itself are~like in the cuprates! unusually
high and are of the order a few hundredmV3cm at room
temperature This could point out that an additional~to stan-
dard electron-phonon! scattering mechanism is presented.

The most direct evidence on the importance of electr
phonon interactions in superconductivity of the bismutha
has been given by the tunneling measurements.9,10 Although
not identical for different junctions, the deduced Eliashbe
spectral functionsa2F(v) bear a close resemblance with th
phonon density of states determined by inelastic neut
scattering.11 The estimated values ofl vary from 0.7 to 1.2
which seem to be sufficient to explain high critical tempe
tures within the standard mechanism.

The electron-phonon coupling in doped BaBiO3 has been
investigated theoretically by several methods. The author
Ref. 12 study this problem using tight-binding~TB! fit to the
energy bands which are obtained from density-functio
calculations based on the local-density approximatio13

~LDA !. The computed Eliashberg spectral functiona2F(v)
has been found to display prominent features in the
quency range corresponding to the oxygen stretching mo
14 453 © 1998 The American Physical Society
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and the value ofl51.09 has been reported. Crude calcu
tions based on rigid-muffin-tin approximation~RMTA! also
give largel;3 indicating a strong-coupling regime.14 Two
estimates ofl using the total-energy frozen-phonon meth
appeared in the literature.15,16Note that, in contrast to the TB
and RMTA methods, the frozen-phonon calculations tr
screening of the potential due to lattice distortions se
consistently. The value of the electron-phonon coupl
strength equal to 0.3 for the breathing mode has been fou15

and the rough estimate ofl;0.5 was obtained16 using 12
q50 phonons for ordered cubic Ba0.5K0.5BiO3.

There was a partial success in predicting structural ph
diagram for the parent compound BaBiO3 within the
LDA.15,17–19 The experimental structure mainly consists
combined tilting and breathing distortions of the oxygen o
tahedra corresponding to the unstableR-point phonons of the
cubic phase.20,21 While rotational instability was found in al
calculations, the frozen-in breathing mode was not descri
by pseudopotential calculation17 and two linear-muffin-tin-
orbital ~LMTO! calculations15,19 give the value for the
breathing distortion about 30% off the experimental one. T
less rigorous potential-induced-breathing model obtai
both instabilities22 with similar accuracy. It is not clea
whether these discrepancies are due to sensitivity to com
tational details or due to the local-density approximation
self.

A great amount of work2 has been done to understand t
properties of the barium bismuthates on the basis of
negative-U extended Hubbard model originally introduced
Ref. 23. The valence configuration of semiconduct
BaBiO3 can be viewed as Ba2Bi31Bi51O6 which represents a
lattice of electron pairs centered at every second Bi
(Bi31). The sites occupied with Bi51 ions are interpreted a
those with no electrons. Rice and co-workers24 have pro-
posed that such local pairs are stabilized by polarizing th
octahedra and the effective on-siteU becomes negative du
to the large electron-phonon coupling. Recently, Varm25

has pointed out that negativeU can also be of electronic
origin due to the skipping of the valence ‘‘41’’ by the Bi
ion. The latter can provide a possible explanation for a w
separated optical and transport energy gap in
bismuthates.26 The mean-field phase diagram of th
negative-U Hubbard model exhibits several stable phases
volving a CDW semiconductor, and a singlet superco
ductor. This is in qualitative agreement with the experime
tal phase diagram.27

The question on the origin of negativeU is of great inter-
est since it may provide an insight on the superconducti
mechanism in the bismuthates. Recent calculations u
constrained density-functional theory have been carried
to obtain the Coulomb interaction parameters for the Bis
orbitals.28 No indication for negativeU of the electronic ori-
gin was reported.

In the present work we try to address several proble
seen from the above introduction by means of state-of-the
density-functional LDA calculations. As a first problem, w
study lattice dynamics of the superconducting cu
Ba0.6K0.4BiO3 using the recently developed linear-respon
approach implemented within the LMTO method.29 The ef-
fect of doping is modeled by the virtual crystal and virtu
mass approximations. On the basis of this calculation,
-
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estimate electron-phonon coupling in this compound. T
linear-response method used by us is advantageous in
trast to the frozen-phonon approach since it allows the tr
ment of perturbations with arbitrary wave vectorsq. We
have demonstrated its accuracy by calculating latti
dynamical, superconducting, and transport properties fo
large variety of metals,30 and we believe that our calculate
value ofl will be a realistic estimate for the electron-phono
coupling strength in this high-Tc superconductor. Also, a re
cent publication31 deals with the application of the linear
response method to study the electron-phonon interactio
another high-Tc superconductor CaCuO2.

The second problem that we focus on in our work
studying the effects of anharmonicity in the electron-phon
coupling. It is widely accepted that certain phonon modes
strongly anharmonic in the high-Tc materials. Frozen-
phonon calculations produce double-well potentials
buckling motions of oxygen atoms perpendicular to the C
planes. In nearly all HTSC’s,31–33chain-buckling distortions
are found to be anharmonic33 in YBa2Cu3O7, X-point tiltings
of the octahedra along~110! directions are unstable34 in
La2CuO4, andR-point instabilities corresponding to breath
ing and tilting exist in the doped barium bismuthates.15,19,16

The influence of anharmonicity to high-temperature sup
conductivity has been addressed in several publications,35–37

especially because of the small isotope effect found
HTSC cuprates. The triple-degenerate pure rotational m
at theR point of cubic ordered Ba0.5K0.5BiO3 was predicted
to exhibit a double-well potential and some estimates of
anharmonic contributions tol have been given.16 We extend
this analysis by solving numerically Schro¨dinger’s equation
for the anharmonic potential well found from frozen-phon
calculations. The anharmonicl is then computed along th
lines proposed in Refs. 37,38 by estimating the electr
phonon matrix elements from the energy bands computed
different tilting distortions. We conclude, in accord with th
previous findings,16 that this contribution, while not decisive
is not negligible for the total value ofl.

The third purpose of our work is to study the properties
the undoped parent compound BaBiO3. We try to answer the
question whether the LDA gives an adequate description
the ground-state properties for this charge-density-wave
sulator. Since there was some inconsistency reported in
vious calculations,15–19we want to rule out possible sensitiv
ity of the final results to the internal parameters used in
band-structure calculations with the full-potential LMT
method.39 We carefully choose our LMTO basis set, numb
of k points, plane-wave energy cutoff, and other parame
by examining the convergency of the total energy and
calculated properties with respect to them. Based on the
converged data, we come to the conclusion that the breat
distortions areseriously underestimated~ideally, absent! in
the LDA, and, therefore, the insulated state is not correc
described. This strongly resembles the situation with the
tiferromagnetic ground state of the cuprates superconduc
which is also not described by the LDA.40 We perform a
number of model calculations in the spirit of the LDA1U
method41 in order to clarify this problem.

The rest of the paper is organized as follows: In Sec.
our linear-response calculations of the lattice dynamics
the electron-phonon interactions in doped BaBiO3 are de-
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scribed. Section III considers anharmonicity corrections tl
for the tilting motions of the oxygen octahedra. Section
reports our LDA and model calculations of the ground-st
properties for pure BaBiO3. In Sec. IV we give our conclu-
sions.

II. HARMONIC PHONONS AND l

This section presents our results on the lattice dynam
and the electron-phonon interaction for the cubic perovs
superconductor Ba0.6K0.4BiO3. We also summarize the mai
features of the calculated electronic structure and discuss
predicted equilibrium lattice configuration. The ban
structure calculations are performed with the highly prec
full-potential LMTO method.39 The details of the calcula
tions are the following: The effect of potassium doping
taking into account using virtual-crystal approximatio
~VCA! by considering a fractional nuclei chargeZ555.6 at
the Ba site. Numerous supercell investigations16,42 of the
doping influence on the calculated energy bands justify
applicability of the VCA. A multiple, three-k LMTO basis
set with the tail energies equal to20.1,20.8, and22 Ry is
employed for representing valence wave functions. The
lence states include 6s and 6p orbitals of Bi, 2p orbitals of
O, and 6s orbitals of Ba. Such semicore states as 5d orbitals
of Bi, 2s orbitals of O, and 5p orbitals of Ba are treated a
bands and are included in the main valence panel using
two k LMTO basis with k1,2

2 520.1, 20.8 Ry. The main
panel also includes unoccupied 5d orbitals of Ba with the
2k basis and 4f orbitals of Ba with the 1k basis (k25
20.1 Ry!. Deeper lying 5s states of Ba are resolved in
separated energy panel. All other states are treated as
levels. The muffin-tin sphere radii were taken to beSBa
53.25 a.u.,SBi52.25 a.u., andSO51.80 a.u. All calcula-
tions are performed at the experimental lattice constana
58.10 a.u. The von Barth–Hedin-like exchange-correlat
formula after Ref. 43 is used. The valence bands are tre
scalar relativistically and the core levels are treated fu
relativistically. A number ofk points for the Brillouin zone
~BZ! integration using an improved tetrahedron method44 is
taken to be 20 per148th BZ. The charge density and the p
tential in the interstitial region are expanded in plane wa
with the cutoff corresponding to the~28,28,28! fast-Fourier-
transform grid in the real space~approximately 10 000 plane
waves!.

We first summarize the main features of the calcula
electronic structure in doped BaBiO3. The occupied part of
the bands~see Fig. 1! mainly consists of a Bi(6s) –O(2p)
hybridized band complex. This is in accord with the previo
calculation.42 For the cubic perovskite phase, there is on
one band crossing the Fermi level, which is an antibond
Bi-O sp(s) band. A similar situation is found in the cupra
superconductors where Cu-Odp(s) antibonding bands
dominate at the Fermi energyEF . A simple tight-binding
model involving Bi(6s), O(2p) orbitals, and two-cente
nearest-neighborsp(s) interaction can be used to unde
stand the principal features of these energy bands.45 It was
noted45 earlier that for the case of half-filling~undoped cubic
BaBiO3) this model has a perfectly nested Fermi surface
the wave vectorq corresponding to theR point. Therefore, it
is tempting to interpret the appearance of breathing dis
e
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tions as commensurate Peierls instability and cubic per
skite Ba0.6K0.4BiO3 as a doped Peierls insulator.46 To under-
stand whether nesting can bring any effect in sta
susceptibility, we have analyzed theq dependence of the
function

(
k j j 8

d~Ek j !d~Ek1qj 8! ~1!

for the realistic energy bandsEk j ~relativeEF) using experi-
mental structures. We conclude that the nesting is far fr
perfect in the case of half-filling and dimerization of th
oxygen octahedra can hardly be connected with it. A reali
TB model should also include Bi(6p) orbitals and their
nearest-neighbor interaction with O(2p) states.45,28 Upon
potassium doping, the bands hardly change except fo
slight lowering of EF away from half-filling. For
Ba0.6K0.4BiO3 the Fermi surface represents a rounded cu
centered at theG point as shown in Fig. 2. Analysis of th
band structure factor given by Eq.~1! as a function ofq
shows featureless behavior and any effect of the nesting
hancement on the electron-phonon interaction is not
pected for this band dispersion.

We second discuss our results for the calculated equ
rium lattice configuration in Ba0.6K0.4BiO3. The theoretical-
to-experimental volume ratioV/Vexp is found to be 1.01, and
the calculated bulk modulus is equal to 1.25 Mbar. Bo
neutron-diffraction21 and x-ray-absorption-fine-structure47

~XAFS! measurements show that frozen-in breathing dis
tions are absent in the superconducting phase. We have
formed frozen-phonon calculations for the doubled cell c
responding to theR point and for several breathin
distortions. The total-energy minimum shows that the und
torted cubic phase is stable in accord with these experime
The curvature is well fitted with standard parabola, whi
shows that the breathing mode is harmonic in the superc
ducting phase.

FIG. 1. Calculated LMTO energy bands for cub
Ba0.6K0.4BiO3. The potassium doping is taken into account usi
virtual-crystal approximation.
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14 456 57V. MEREGALLI AND S. Y. SAVRASOV
We further investigate tilting of the octahedra. Expe
mentally, for the undoped compound the octahedra rotat21

at the angle;11.2° along the~1,1,0! axis. A more compli-
cated situation exists in the superconducting phase. Acc
ing to the neutron-diffraction data,20 the average structure i
cubic, although the presence of a weak long-range su
structure characterized by the octahedra rotations at
angles about 3° was also found.48,49 Recent XAFS
measurements50 report on the locally disordered rotation
From their analysis, the authors of Ref. 50 conclude that
rotations can either be along the~1,1,1! or ~1,1,0! axis. Pre-
vious frozen-phonon calculations16 performed for the or-
dered Ba0.5K0.5BiO3 investigate the~1,0,0! component of the
tilting mode which is found to be unstable with the tota
energy minimum corresponding to the angle 7°.

Our own total-energy calculations also confirm the ex
tence of tilting distortions. Figure 3 shows that the total e
ergy exhibits a double-well behavior as a function of t
rotation angle. We choose the~1,1,0! axis for the tilting as is

FIG. 2. Calculated Fermi surface for cubic Ba0.6K0.4 BiO3 using
the LMTO method. The effect of potassium doping is taken in
account within the virtual-crystal approximation. The center of
cube corresponds to theG point of the Brillouin zone.

FIG. 3. Frozen-phonon calculation of the total energy~meV/1
3cell! as a function of the tilting angle in Ba0.6K0.4BiO3. The levels
en are the solutions of the Schro¨dinger equation for the anharmon
oscillator with the double-potential well shown on the figure. T
transitionsvn5en2e0 involving different phonon excited state
are illustrated by arrows.
d-

r-
he

e

-
-

the case in the undoped compound. The unit cell in the
culation is doubled according to theR point of the cubic
phase. The total-energy minimum is found at the angle eq
to 5°. The energy gain compared to the cubic phase is o
10 meV/~13cell! which indicates that at the temperatures
the orderTc the rotations can be dynamic. The double-w
behavior at such a small energy scale unambiguously po
out the importance of evaluating the anharmonicity contrib
tion in total electron-phonon coupling. This problem will b
discussed in the following section.

We now report our main results on the calculated latti
dynamical properties of Ba0.6K0.4BiO3. The density-
functional linear-response approach29 implemented on the
basis of the full-potential LMTO method39 is used in this
calculation. The dynamical matrix is computed at 20 irredu
ible q points corresponding to the~6,6,6! reciprocal-lattice
grid of the cubic BZ. The effect of the potassium substituti
on the phonon spectrum is taken into account by virtual-m
approximation. The LMTO basis set and other technique
tails have been described above. One more comment sh
be made on evaluating BZ integrals in the linear-respo
calculation. Here, one can essentially improve the accur
of the integration by using a multigrid technique.29 A ~6,6,6!
grid ~20 irreducible k points! is used for finding linear-
response functions, while the effects of the energy bands
the Fermi surface are taken into account using a~30,30,30!
grid ~816 irreduciblek points!.

The calculated phonon spectrum along major symme
directions of the cubic BZ is plotted in Fig. 4. Solid circle
denote the calculated points and the lines result from in
polation between the circles. Several features can be s
from these phonon dispersions. Three high-frequency opt
branches around thev;17 THz are well separated from th
other modes distributed in the frequency range from 0 to
THz. The high-frequency modes mainly consist of the ox
gen bond-stretching vibrations. The longitudinal branch
the pointR corresponds to the breathing mode which in o
calculation has a frequency 15.7 THz. From the analysis
our polarization vectors, we conclude that oxygen bon
bending vibrations dominate in the frequency interval b
tween 6 and 10 THz. The octahedra tilting modes are at
low-frequency interval. They exhibit significant softenin
near theq point R5(1,1,1)p/a. Due to symmetry, one can
talk about pure tilting at the line between theq point M
5(1,1,0)p/a and theR point. Exactly at theM point the
nearest octahedra tilt in-phase and they tilt out-of-phase
theR point. A nearly-zero-frequency triple-degenerate mo
exists atq5(1,1,1)p/a which corresponds to the pure rota
tional T2u phonon. In fact, forT50 this mode should have
slightly imaginary frequency for the cubic structure acco
ing to our frozen-phonon analysis illustrated in Fig. 3. B
due to numerical inaccuracies, the linear-response calc
tion gives very small positivev50.5 THz. No significant
softening of the tilting modes near the pointM is predicted
by our calculation.

The phonon-dispersion curves alongGX, GM , and GR
symmetry directions for Ba0.6K0.4BiO3 have been very re-
cently measured by inelastic neutron scattering.48,49Horizon-
tal lines in Fig. 4 indicate measured phonon frequencies
the symmetry pointsG, X, M , and R as we were able to
deduce them from Fig. 1 of Ref. 49. The existence of s
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FIG. 4. Calculated phonon spectrum of Ba0.6K0.4BiO3 using density-functional linear-response method. The potassium doping is
into account using virtual-crystal and virtual-mass approximation. The calculated points are shown by symbols. The lines res
interpolation between the points. Horizontal bars indicate the measured~Ref. 49! phonon frequencies. Numbers for every phonon mo
indicate the calculated electron-phonon coupling constantslqn . ~Only the values larger than 0.01 are emphasized.! On top of the figure
shown are~i! the values ofl summed over all branches for givenq, ~ii ! the values ofq-dependent transport constantl tr . The calculated
phonon density of statesF(v) is shown on the right.
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rotational modes nearR can be directly seen from the mea
sured phonon dispersions. The authors of Ref. 49 have
ported that their samples still have a weak long-range su
structure characterized by the tilting of the octahedra.
extremely low-frequency;0.9 THz of these modes wa
measured. This is in agreement with our calculations.

Two other comments should be made on the compari
between our theory and the experiment. One comment c
cerns frequency interval from 0 to 10 THz. Here, our calc
lation is seen to reproduce measured phonon dispers
with the accuracy on the order of 10%. In particular, t
lowest mode inG hasvcalc53.79 THz which can be com-
pared withvexp;3.5 THz. This mode mainly involves Ba~K!
and Bi vibrations. The next mode inG is the oxygen out-of-
phase mode. Here,vcalc54.88 THz and the measured fre
quency is less than 6 THz. The so-called ferroelectric mo
has a frequency 5.59 THz in our calculation which is close
vexp found near 6 THz. This mode is bond-bending longit
dinal and it has the strongest polar character. Usually it
hibits large splitting from the TO mode atG in cubic perovs-
kites. The presence of free charge carriers screen Coul
interactions at long distances, and therefore, the LO-
splitting is absent in our calculation. The dispersion of t
ferroelectric mode as a function ofq is also seen to be cor
rectly reproduced.

The second comment concerns our comparison for
high-frequency interval, where the results of the calculatio
are found to be less accurate and the overall discrepa
consists of about 20%. The highest mode atG is the Bi-O
bond-stretching mode. Here, we report the value ofv equal
to 17.91 THz and av value only slightly larger than 15 THz
was found experimentally. The authors of Ref. 48 discuss
anomalous dispersion for the longitudinal-optical branch
the one-dimensional breathing mode alongGX with its pro-
nounced frequency renormalization. Our calculation, on
other hand, gives much fewer dispersive optical branc
-
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along this direction as can be seen from Fig. 4. It is not c
whether this result is due to inhomogeneity of the potass
distribution or other imperfectness of the samples used in
experiment or due to drawbacks in our calculation conne
with the virtual-crystal approximation. In fact, it is clear
seen that all our high-frequency branches are overestim
by ;20% in contrast to the experimental ones~except even-
tually the breathing vibrations near the pointR). This result
also follows from the comparison of our calculated and
measured11 phonon density of stateF(v) @see Fig. 5~a!#. It
was found experimentally11 that the oxygen bond-stretchin
modes exhibit softening with the substitution of Ba by
These modes are located at the energies;70 meV ~or 17
THz! in undoped BaBiO3. Therefore it is tempting to con
nect a possible source for the discrepancies with our p
treatment of doping. The authors of Ref. 11 discuss dop
induced appearance of localized holes on the oxygen 2p or-
bitals which screen the charge on the oxygen anions.
charge reduction will lower the energy of these modes. If
localized hole picture is correct, the VCA will not captu
this since it removes electrons from the conduction band
uniformly distributing the holes between O(2p) and Bi(6s)
orbitals.

We now report our results for the calculated electr
phonon interaction. Based on our screened potentials w
are induced by nuclei displacements and are found s
consistently, we evaluate matrix elements of the elect
phonon interaction,gk1qj 8k j

qn . The standard expression51 for
the electron-phonon matrix elements reads as

gk1qj 8k j
qn

5K k1qj 8U(
Ra

QRa
~qn!

A2MRvqn

dRa
1 VUk j L , ~2!

whereQRa
(qn) are the orthonormalized polarization vectors

sociated with the modeqn, MR are the atomic masses,R
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runs over basis atoms in the unit cell anda runs over direc-
tions x,y,z; dRa

1 V denotes self–consistent change in the p
tential associated with theq-wave displacements of atomsR
along thea axis. In practical calculations we have also add
so-called incomplete basis set corrections to the matrix
ments~2! according to the method developed in Ref. 30.

The coupling strengthlqn for the electrons with the pho
non of wave vectorq and branchn is given by the following
integral:

lqn5
2

Ns~0! (k j j 8
d~Ek j !d~Ek1qj 8!ugk1qj 8k j

qn u2, ~3!

whereNs(0) is the density of states atEF50 per cell and
per one spin. Indexesj and j 8 numerate the bands~not spins!
and spin degenerate case is assumed throughout the p
The total coupling constantl results by summinglqn overn
and by averaging over BZ. Twod functions in Eq.~3! im-
pose integration over the space curve resulting from
crossing of two Fermi surfaces separated byq. For this inte-
gral we have used as many as 816k points per irreducible
BZ.

The calculated values oflqn at the symmetry directions o
the BZ are indicated in Fig. 4 along with the calculated ph
non dispersions.~We emphasize only the values larger th
0.01.! On top of the figure shown are the values oflq which
are summed over all branches for givenq. It is seen that the
electron-phonon coupling is large for the high-frequen
bond-stretching longitudinal branch. This result is expec
from band-structure calculations,45 since bond stretching an

FIG. 5. Results for doped BaBiO3. ~a! Comparison between
calculated and experimental~Ref. 11! ~symbols! phonon density of
states.~b! Calculated Eliashberg spectral functiona2F(v) and the
results of the tunneling measurements~Ref. 9! ~symbols!. ~c! Cal-
culated transport spectral functiona tr

2F(v).
-

d
e-

per.

e

-

y
d

especially breathing vibrations produce modest change
the energy bands nearEF . Coupling is strongly enhance
near the pointsM andR, where it reaches the values;0.3.
Here, the mode corresponds to two- or three-dimensio
breathing. The value oflb50.3 for the breathing mode atR
is in accord with the previous frozen-phonon calculation15

The authors of Ref. 16, on the other hand, give a much lo
value forlb equal to 0.04. For other bond-stretching vibr
tions, we findlqn of the order 0.1.

From Fig. 4 we conclude that the electron-phonon co
pling is not small for the bond-bending oxygen modes. It
seen thatl is enhanced for the wave vectors nearR and also
along theGX direction. In the latter case, the vibrations co
respond to the ferroelectric mode and a value oflqn as high
as 0.43 is found for theq point ~1/3,0,0!p/a. Strongly an-
harmonic tilting modes, on the other hand, do not exh
noticeable electron-phonon coupling in the linear order w
respect to the displacements. Exactly at the pointR, these
modes have electron-phonon matrix element equal to zer
symmetry, and, therefore, small values ofv do not produce
any effect on enhancing the coupling. We refer to the f
lowing section on our evaluated anharmonicity correction

On the basis of our evaluated phonon dispersion
q-dependent electron-phonon interaction we calculate
Eliashberg spectral functiona2F(v). This is plotted in Fig.
5~b! by full lines. There, we also show by symbols tw
a2F(v) which were deduced from the tunnelin
measurements.9 Comparing the experiment with our calcula
tions, it is first seen that the intensities of high-energy pe
are approximately the same which means that we reprod
the coupling for these phonons sufficiently accurately. It
also seen both from the theory and the experiment that w
in the phonon density of states@Fig. 5~a!# mainly the
TO phonons contribute to the high-energy structure, for
a2F(v) these are the LO phonon modes. Our tendency
overestimate the phonon frequencies at high energie
again clearly distinguishable.

The most prominent feature seen from our calcula
a2F(v) is the absence of any structure for the low
frequency interval below 40 meV. This strongly contradic
the experimentala2F(v) which exhibits two intensive peak
in this region centered at 15 and 30 meV. According to o
analysis of partialF(v), the origin of the first peak could be
due to low-energy Ba~K! and Bi vibrations together with the
tilting modes, and the second peak can result from the bo
bending oxygen modes. It is not clear however why the c
culation seriously underestimates the electron-phonon c
pling for these phonons, while it correctly describes t
coupling for the bond-stretching modes. From the ba
structure arguments45 one can expect that only bond
stretching modes will have a large interaction with electro
The bond-bending modes cannot produce any signific
changes in the bands nearEF since sp(s) interaction for
these kinds of distortions is not changed in linear order. T
same is true for the tilting modes. Since there is no par
weight of the Ba~K! orbitals atEF , we also do not expec
strong electron-phonon coupling for the low-frequency int
val.

Another possible explanation for the observed peaks
due to the contributions connected with anharmonicity. F
the anharmonic phonons, not only are one-phonon virt
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transitions seen in thea2F(v), but also higher-order virtua
states. The detailed discussion on this subject will be p
sented in the next section, here we only give the value 0
as our final answer for the anharmonic contribution tol
resulting from the tilting motions. While not negligible, th
value alone again does not explain the intensity of the
perimentala2F(v) at low energies.

Our calculated total value ofl resulting from the har-
monic phonons and linear electron-phonon coupling is fou
to be 0.29.This is too small to account for the supercondu
tivity at 30 K in the compoundBa0.6K0.4BiO3. In fact, only
the high-energy phonons contribute to our coupling. As
result, our estimated value ofv log as high as 550 K is found
Using McMillan’s Tc expression52 with m* 50 we, however,
find the critical temperature with our set of parameters as
as 4.5 K. One can try to estimate the error in ourl value due
to the overestimation of the frequencies for the bon
stretching modes. Using the expression52 l.NI2/M v̄2,
whereNI2 is the electronic prefactor andM v̄2 is an average
force constant, one sees thatl should increase with lowering
v̄2. Our 20% error inv̄ results in 30% error inv̄2, and this
can lead to the actuall values which are 30% higher than w
calculate. However,l;0.4 is also not sufficient to explain
the value ofTc .

Our calculated electron-phonon contribution to the tra
port properties is a final subject of this section. The qua
ties responsible for the electronic transport are easily
duced from the linear-response calculations.30 By inserting
the electron velocity factor (vk j2vk1qj 8)

2 to the expression
~3!, we calculate transport constantl tr . Its q dependence is
shown at the top of Fig. 4 along with theq dependence of the
electron-phononl. We see that both functions exhibit ver
similar behavior in the BZ. The transport spectral functi
a tr

2F(v) is the central quantity needed for evaluati
temperature-dependent electrical and thermal resistivity
low-order variational solutions of the Boltzmann equation53

Our calculateda tr
2F(v) is shown in Fig. 5~c!. It is seen that

this function behaves closely to the superconductinga2F(v)
which is usually the case in metals.30 The total averagel tr is
found to be 0.32. Based on these data, we evaluate elect
phonon limited electrical resistivityr to be 14.3mV3cm at
T5273 K. This is at least one order of magnitude lower th
the values ofr reported in the literature.8 It is clear that the
source for this discrepancy is the same as in our descri
superconducting properties. It is unlikely that strong el
tronic correlations are presented in these materials bec
the parent compounds are diamagnetic~not antiferromag-
netic! insulators. Therefore, it is unlikely that other~than
electron-phonon! scattering mechanisms take place, such
spin fluctuations, for example, in HTSC cuprates. Tak
into account anharmonic phonons, polarons, or bipolar
may be decisive for describing the superconductivity a
transport phenomena here. Our basic conclusion is thatthe
conventional ideas on the electron-phonon mechanism
not operative in the bismuthates.

III. TILTING AND ANHARMONIC l

Towards further understanding of superconductivity in
bismuthates, we try to evaluate anharmonicity correction
e-
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the electron-phonon interaction. As we have mentioned
the Introduction, several experiments and numerous froz
phonon calculations point to a possible importance of th
effects in the theory of HTSC cuprates.33–37 In the bismuth-
ates, the first candidate in which to study anharmonicity
the tilting mode: Our linear-response calculations g
nearly-zero-frequency vibrations for this mode at theR point
of the cubic BZ. Our own~and previous16! frozen-phonon
calculations predict here a double-potential-well behav
with a very shallow energy minimum at 5° as illustrated
Fig. 3. Despite that the reported average structure for
superconducting phase is cubic,21 some experiments48 dis-
cuss the existence of a long-range superstructure chara
ized by the rotations of the octahedra. Recent XA
measurements50 report on the presence of locally disorder
rotations.

Unfortunately, though formulated,54 the problem of the
influence of anharmonicity to superconductivity is not tra
table numerically in a full volume. Our simplified treatme
is based on the expression introduced by Hui and Alle38

which generalizes zero-temperature electron-phonon c
pling to the anharmonic case by including matrix eleme
over all phonon excited states. The phonon statesun& and
their energiesen are obtained by solving the Schro¨dinger
equation for an oscillatory mode characterised byq and n.
@We will not label the statesun&,en with (qn) for simplicity.#
For harmonic potential wellsen2e0 is just nvqn ~in atomic
units!, wherevqn is the phonon frequency. This leads only
the one-phonon virtual states (n51) which are involved in
the matrix elements of the electron-phonon interaction.
anharmonic potential wells the spectrum is generally diff
ent from the set of equidistant levels. One example is
double well of the tilting mode which is shown in Fig. 3. Th
real spectrumen obtained as the solution of the Schro¨dinger
equation is plotted in Fig. 3 by horizontal lines. Therefo
our first purpose is to examine what effect in ourl would
bring the proper treatment of all virtual-phonon states. T
second problem is connected with the modification of
electron-phonon matrix elements due to higher-order te
in the expansion of the change in the ground-state poten
with respect to the atomic displacements. Since we wish
examine these effects only for the tilting mode at pointR of
the cubic BZ, we make an essential approximation by ass
ing that the tilting mode is not coupled to the other modes
either this wave vector or other wave vectors which is g
erally not true when anharmonic terms are included into
lattice-dynamical problem. We assume that the polarizat
vectors for this mode are known and are given by exactly
out-of-phase rotations of the nearest octahedra along
~1,1,0! axis. Any processes of phonon-phonon interactio
will be neglected in this treatment. We also neglect t
finite-temperature effects using the arguments given in R
37. In the double-well problem one expects that the mod
cations due to frequency and electron-phonon-mat
elements renormalization are quite dramatic35,37 and bring
the largest effect in the values ofl.

We start from a general zero-temperature expression
the electron-phonon coupling in the anharmonic case, wh
can be written as follows:38
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lqn5
1

Ns~0! (
k8 j 8k j

(
n

~ f k j2 f k8 j 8!

3d~Ek j2Ek8 j 81vn!uGk8 j 8k j
[n] u2/@vn#2, ~4!

wherevn5en2e0. For the moment we will not assume as
Ref. 38 thatvn are small at the electron energy scale.@The
latter reduces the integral with the Fermi step functionsf k j
2 f k8 j 8 to the integral with thed functions as given by Eq
~3!.# We introduce a generalized matrix elementGk8 j 8k j

[n] for
the virtual transition to then’s phonon state:

Gk8 j 8k j
[n]

5^nuDgk8 j 8k j u0&. ~5!

The electron-phonon matrix elementDgk8 j 8k j in Eq. ~5! in-
volves the transitions between the statesuk j & anduk8 j 8& near
the Fermi surface

Dgk8 j 8k j5^k8 j 8uDVuk j &, ~6!

whereDV is the total change in the ground-state poten
induced by the lattice distortion associated with the mo
qn. We have especially includedD in the notationDgk8 j 8k j
sinceDV is not a derivative of the potential with respect
the displacements but it is the difference between the s
consistent potentialV(r ,$tR1DtR%) for the distorted crysta
and the potentialV(r ,$tR%) for the undistorted crystal. The
atomic positions at the equilibrium are given by the vect
tR5t1R, where t denotes the translations andR are the
basis vectors. The displacements associated with the m
qn are described by the vector fieldDtR . ThereforeDV is
proportional toDtR and so doesDgk8 j 8k j . By introducing
complex ~infinitesimal! polarization vectorsdQR of the
mode55 qn, the displacements in any atomic cellt can be
found using the formula

DtRa5dQRaeiqt1c.c., ~7!

wherea runs over directionsx,y,z, and c.c. stands for the
complex conjugate.~The quantitiesDV, DtR , and dQR
should, in principle, be labeled withqn but we omit this for
simplicity.!

The phonon statesun& are the functions of the displace
mentsDtRa or dQRa . In order to compute the matrix ele
ment ^nuDgk8 j 8k j u0& over the phonon states we should e
pand DV with respect to the displacements. Keeping t
terms up to second order, this expansion reads as

DV5(
Ra

dQRa(
t

eiqt
dV

dtRa

1
1

2 (
RR8aa8

dQRadQR8a8(
tt8

eiq„t1t8)
d~2!V

dtRadtR8a8
8

1
1

2 (
RR8aa8

dQRa~dQR8a8!* (
tt8

eiq„t2t8)
d~2!V

dtRadtR8a8
8

1c.c. ~8!

Here,dV/dtRa is associated with the first-order derivative
the potential when a single nucleus centered att1R experi-
ences an infinitesimal displacement along theath direction,
l
e

lf-

s

de

e

andd (2)V/dtRadtR8a8
8 stands for the second-order derivativ

@Notation tRa is shorthand for (t1R)a .] Obviously, both
these response functions have no dependence on the m
qn. If V(r ) has a periodicity of the original lattice, th
changedV/dtRa is a function of general type. One expec
thatdV/dtRa is only not zero in the vicinity of the displace
atom and it goes to zero whenr departs from the sitet1R.
However, because of the translational invariance of the or
nal crystal, considering the response at the pointr due to the
movement of the atom int1R must be equivalent to consid
ering the response at the pointr2t due to the movement o
atom at R ~when t50). Therefore we can write tha
dV(r )/dtRa5dV(r2t)/dRa . We now introduce the lattice
sum

dRa
1 V5(

t
eiqt

dV

dtRa
, ~9!

which represent a variation of the potential per unit displa
ment induced by the movements of atomsR along theath
axis by an infinitesimal amountdtRa proportional to
exp (iqt) in every cellt. It is easy to prove that expressio
~9! translates like a Bloch wave with wave vectorq in the
original lattice, i.e., d1V(r1R)5eiqRd1V(r ). ~We will
sometimes omit indexesRa.) Notation d1V refers to the
traveling wave of vector1q, while complex conjugated
quantity d2V would refer to the traveling wave of vecto
2q.

One can analogously define lattice sums associated
the second-order changes of the potential. These ente
second and third contributions in Eq.~ 9!. Consider, for ex-
ample, the lattice sum associated with the second contr
tion:

dRa
1 dR8a8

1 V5(
tt8

eiq„t1t8)
d~2!V

dtRadtR8a8
8

. ~10!

This expression translates like a Bloch wave of vectorq
because

(
tt8

eiq„t1t8)
d~2!V~r1t9!

dtRadtR8a8
8

5(
tt8

eiq„t1t8)
d~2!V~r !

d~ t2t9!Rad~ t82t9!R8a8

5e2iqt9(
tt8

eiq„t1t8)
d~2!V~r !

dtRadtR8a8
8

. ~11!

Analogously, the lattice sum associated with the third con
bution in Eq.~9! can be denoted asd1d2V. It represents a
traveling wave of wave vector0, i.e., it is periodic at the
original lattice.

Using notations~9! and ~10!, the change in the potentia
DV given by the formula~8! now has the form

DV5(
Ra

dQRa3dRa
1 V1

1

2 (
RR8aa8

dQRadQR8a8



he
r

s

en

th
a

th
c-

he

in-

an
the
Eq.

of

on

el-
ver
the
n

-
-
ity,
e
s

for
en-

nd,
s
wo

fer
ed.

57 14 461ELECTRON-PHONON COUPLING AND PROPERTIES . . .
3dRa
1 dR8a8

1 V1
1

2 (
RR8aa8

dQRa~dQR8a8!*

3dRa
1 dR8a8

2 V1c.c. ~12!

It is clear that when this expansion is used in t
matrix element ~6!, a certain selection rule will occu
for the wave vectors k8 and k. Namely, the
matrix element ^k8 j 8ud1Vuk j & is equal to zero unles
k85k1q, ^k8 j 8ud1d1Vuk j &50 unless k85k12q, and
^k8 j 8ud1d2Vuk j &50 unlessk85k.

Let us now introduce the electron-phonon matrix elem
associated with the first-order change in the potential

Gk8 j 8k j
[n] $1% 5dk8k1qK k1qj 8U(

Ra
^nudQRau0&3dRa

1 VUk j L .

~13!

The electron-phonon matrix elements associated with
second-order changes in the potential have two forms
cording to the second and third contributions in Eq.~12!:

Gk8 j 8k j
[n] $2% 5

1

2
dk8k12qK k12qj 8U (

RR8aa8
^nudQRadQR8a8u0&

3dRa
1 dR8a8

1 VUk j L , ~14!

Gk8 j 8k j
[n] $28%5

1

2
dk8kK k j 8U (

RR8aa8
^nudQRa~dQR8a8!* u0&

3dRa
1 dR8a8

2 VUk j L . ~15!

Then, the expression~4! for lqn splits into three contribu-
tions

lqn5lqn
$1%1lqn

$2%1lqn
$28% ~16!

associated with one electron-phonon matrix element from
first order, Eq.~13!, and two matrix elements from the se
ond order, Eqs.~14!, and~15!, i.e.,

lqn
$1%5

2

Ns~0! (k j j 8
(

n
~ f k j2 f k1qj 8!

3d~Ek j2Ek1qj 81vn!uGk1qj 8k j
[n] $1% u2/@vn#2, ~17!

lqn
$2%5

2

Ns~0! (k j j 8
(

n
~ f k j2 f k12qj 8!

3d~Ek j2Ek12qj 81vn!uGk12qj 8k j
[n] $2% u2/@vn#2,

~18!

lqn
$28%5

2

Ns~0! (k j j 8
(

n
~ f k j2 f k j 8!

3d~Ek j2Ek j 81vn!uGk j 8k j
[n] $28%u2/@vn#2. ~19!

The double sums overk and k8 which appeared in Eq.~4!
are now reduced to the single sums overk according to the
t

e
c-

e

selection rules in the matrix elements~13!, ~14!, and ~15!.
Taking into account matrix elements coming from t
complex-conjugated quantitiesd2V, d2d2V, and d2d1V
gives contributions with wave vectorsk2q, k22q, andk.
However making substitutionsk2q→k and k22q→k in
thek-space integrals of Eq.~4! results in an extra factor of 2
which appears in Eqs.~17!, ~18!, and ~19! compared to Eq.
~4!.

We now discuss the derived expressions. First, it is
structive to see how Eq.~17! for lqn

$1% goes to the standard
formula ~3!. For the case of the harmonic oscillator we c
use the properties of Hermite polynomials and prove that
matrix element over the phonon states which appeared in
~13! is reduced to

^nudQRau0&5dn1

QRa

A2MRvqn

, ~20!

where QRa denote orthonormalized polarization vectors
the modeqn in contrast todQRa which are related to the
actual nuclei displacements.55 The matrix element~20! is
only not zero for the transitions including the one-phon
virtual state. Substituting Eq.~20! into Eq.~13! gives exactly
formula ~2!. By placing Eq.~13! into Eq. ~17! we see that
only the n51 term in the sum overn survives, and the
energy differencev1 is equal tovqn . The standard formula
~3! is then recovered51 by replacing (f k j2 f k8 j 8)d(Ek j
2Ek1qj 81vqn) with vqnd(Ek j )d(Ek1qj 8) which is valid for
small vqn .

Second, it should be noted that the number of matrix
ements necessary to reach the convergency in the sum on
is actually not large. From the numerical estimates of
oscillator strengthsf n for the transitions from the phono
ground stateu0& to excited statesun&, the authors of Ref. 38
concluded that thef -sum rule ~sum over all oscillator
strengths gives unity! is closely satisfied by taking into ac
count only the single termf 1. Even for the infinite rectangu
lar well which represents an extreme case for anharmonic
n55 is sufficient.38 Our own numerical experiments with th
double-potential well of the form shown in Fig. 3 confirm
this conclusion both for the dipole matrix elements and
quadrupole ones. This implies that the phonon excitation
ergiesvn5en2e0 which appeared in expressions~17!, ~18!,
and~19! are still too small at the electronic energy scale a
therefore, all integrals overk are reduced to the integral
over the space curve resulting from the crossing of t
Fermi surfaces separated byq. It then follows thatthe ex-

pression forlqn
$28% is always equal to zerounless there are

electronic interband transitions with zero momentum trans
at the phonon energies. The latter is not standardly assum
We are, therefore, left with the following formulas forlqn

$1%

andlqn
$2% :

lqn
$1%5

2

Ns~0! (k j j 8
d~Ek j !d~Ek1qj 8!(

n
uGk1qj 8k j

[n] $1% u2/vn ,

~21!

lqn
$2%5

2

Ns~0! (k j j 8
d~Ek j !d~Ek12qj 8!(

n
uGk12qj 8k j

[n] $2% u2/vn .

~22!
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Another comment concerns expressions~18! and~22! for
lqn

$2% which involves electronic intraband transitions with mo-
mentum transfer equal to 2q. If wave vectorq is such a
zone-boundary vector that 2q5G, where G is one of the
reciprocal-lattice vectors, then it is obvious thatlqn

$2%50 ac-
cording to the arguments given above. The situation her
analogous to the discussion of contributions tol from theG
optical phonons~see, for example, Ref. 56!. It is well known
that exactlyq50 phonons do not couple to the electro
since the energy cannot be conserved. Therefore, smal
finite vectorsq;vqn /vF , wherevF is the Fermi velocity,
must be considered.

We now discuss implications of the theory given abo
for the tilting mode in Ba0.6K0.4BiO3. Exactly for theq point
R5(1,1,1)p/a the contribution tol connected with the
first-order changes in the potential,lqn

$1% , vanishes due to
symmetry of the matrix elements. Also the contribution co
nected with the second-order changes,lqn

$2% , is zero since

vector 2q is equivalent to theG point. The contributionlqn
$28%

is always zero since there is only one band crossingEF and
there is no interband transitions nearEF . In the higher or-
ders, there are contributions tol connected with the odd
order changes in the potential and with the even-or
changes. In the odd orders, changes in the potential w
represent traveling waves of vectorsq , 3q, 5q, etc., and the
contributions tol would be equal to zero due to symmetry
the matrix elements. In the even orders, changes in the
tential would represent traveling waves of vectors0, 2q, 4q,
etc., which are all equivalent to theG point when q
5(1,1,1)p/a, and corresponding contributions tol also
vanish. Therefore, we conclude that thepure rotational mode
at R does not couple to the electrons in any order.

In order to obtain an estimate of the effect, we must,
principle, step out from the pointR. Unfortunately, for gen-
eral q we cannot perform frozen-phonon calculations of a
harmonic coefficients, and the problem loses its numer
tractability. Another approach is to discuss quantities res
ing from the integration of expressions~21! and ~22! over
q . In this way, we should assume that the matrix eleme
Gk1qj 8k j

[n] $1% and Gk12qj 8k j
[n] $2% have noq dependence~which is

generally not true but the order of magnitude of the eff
will be certainly captured!, and can be approximated by th
values at the pointR. Therefore, the contribution resultin
from the integration oflqn

$1% disappears due to symmetry o
Gk1qj 8k j

[n] $1% at R, and integration oflqn
$2% over q gives

ln
$2%52(

k j
d~Ek j !(

n
uGk j k j

[n] $2%u2/vn . ~23!

~Here we have assumed thatk12q is equivalent tok.! The
obtained expression is an average of the squared deform
potential which is induced by the tilting of the octahedra
the second order with respect to the displacements. It has
same meaning as discussed in the literature;56 the magnitude
of the change of the phonon self-energy due to transiti
across the gap in the superconducting state~so-called super-
conductingls).

The value of ln
$2% can be readily evaluated using th

frozen-phonon method. Let us measure55 the tilting distor-
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tions by tilting anglet. Quadrupole matrix elements betwee
the phonon states are then given by^nut2u0& and the
electron-phonon matrix elements arêk j ud (2)V/dt2uk j &
whered (2)V/dt2 is the second-order derivative of the pote
tial with respect to the tilting angle taken att50. The matrix
elements^k j ud (2)V/dt2uk j & can be approximated58 by the
second-order derivatives of the one-electron energiesEk j
relative toEF. They are accessible from band-structure c
culations. Using this, formula~23! for ln

$2% can be rewritten
as follows:

ln
$2%52(

k j
d~Ek j !

d~2!~Ek j !
2

dt2
3(

n

u^nut2u0&u2

vn
, ~24!

where the quadrupole matrix elements and the energy dif
encesvn are obtained by solving the Schro¨dinger equation
for the double-potential well shown in Fig. 3. Only eve
order matrix elementŝn52kut2u0& are allowed by symme-
try of our distortion, and therefore, the transition betwe
nearly degenerate first and second states shown in Fi
~i.e., v1→0) does not contribute57 to ln

$2% .
In order to evaluate Eq.~24!, we first calculate energy

bandsEk j@ t# relative toEF@ t# for a set of distortionst, and
then integrate

F~ t !52(
k j

d~Ek j@0# !3~Ek j@ t# !2 ~25!

over the unperturbed Fermi surface. Due to symmetry,
energy bandsEk j@ t# have only even terms in the Taylor’
expansion overt aroundt50. The functionF(t)2F(0) is
fitted to the polynomial starting withat.4 Then, ourln

$2% is

ln
$2%5a(

2n

u^2nut2u0&u2

v2n
. ~26!

Using the frozen-phonon calculation, we evaluatea
52.991 Ry/rad4. Solving the Schro¨dinger equation for the
double well, we also evaluate the sum overn in Eq. ~26!
equal to 0.0044 rad4/Ry. This gives the total estimate
ln

$2%50.013. Since the tilting mode is triply degenerate, t
final result l$2%53ln

$2%;0.04 is obtained. It can be com
pared with the value 0.11 previously reported by Kunc a
Zeyher16 who used a somewhat analogous approach. Un
tunately no details were presented in Ref. 16 and, theref
it is difficult to determine the main source of our discrepa
cies.

Despite several approximations which were made in
above derivation, we think that the values of the order 0
~to 0.11! can be realistic for anharmonic contribution tol
from the tilting modes involving large ionic excursions. Th
constitutes about 20% of thel value 0.29 found by the
linear-response method. Unfortunately, our total harmo
plus anharmonicl tot50.33 is still too small to account fo
the superconductivity at 30 K in Ba0.6K0.4BiO3.

In order to have a large effect inl due to anharmonicity,
one has to analyze the three contributions in Eq.~24!. The
first one is connected with the changes in the energy ba
The second contribution goes from the matrix eleme
u^nut2u0&u2, which can be large if large atomic displacemen
are possible due to the flatness of the potential well of



he
th

l
tin
th

ar
fo

nd
in
d
o
ib

-
es

ow
a
ro
bl
n

ea
en
at
he
po
-

.

o

no

st
t
g
al

e-
cu

n

se
x-

ra

n
a-

-

-

-

the

er-
A
dy
m-

o,
ould
to

ral
e
t
he
w-
ced
he

he
lk
de-
ally,
l,
s,
rgy
he

ni-
e

cter
ns

e
y

a-
g
ta-

to

57 14 463ELECTRON-PHONON COUPLING AND PROPERTIES . . .
oscillator. This is exactly the case for tilting distortions. T
third contribution can go from the energy denominator in
case where valuesvn5en2e0 become sufficiently small.57

The fact that our anharmonicl$2% is small is due to smal
changes in the one-electron energies associated with til
This is so because the tilting distortions do not change
distance between Bi and O atoms, thus keepingsp(s)
nearest-neighbor interaction nearly constant. Possible l
contributions from the energy bands would be expected
breathing distortions. Unfortunately we have not fou
strong anharmonicity for the breathing potential well
doped BaBiO3. It is, however, known that in the undope
compound there exist frozen breathing distortions which c
respond to a deep-double-well situation. It could be poss
that our LDA description of breathing distortions is not com
pletely correct. The following section is devoted to this qu
tion.

IV. BREATHING AND LDA

So far we have discussed the compound Ba0.6K0.4BiO3
which is a metal in its normal state. Our calculations sh
that such ground-state properties as equilibrium structure
lattice dynamics in the adiabatic approximation are rep
duced by the density-functional LDA method reasona
well. This suggests that our description of the electro
phonon interactions based on the LDA energy bands is r
istic. We now turn to the discussion of the undoped par
compound BaBiO3. It has been known for many years th
pure BaBiO3 is a charge-density-wave semiconductor in t
sense that two bismuth atoms exist in the charge dispro
tionate state Bi46q. This leads to the modulated Bi-O dis
tances~breathing distortions! in the cubic perovskite lattice
In addition, there are strong tilting distortions.20 The nature
of the disproportionate state is still not very well understo
and several explanations involving Fermi-surface nesting,45 a
real-space pairing based on a strong electron-pho
interaction,24 and the existence of negative electronicU due
to Bi41 valence skipping25 have been suggested in the pa
It is also unclear whether there is any connection between
origin of the semiconducting behavior and the dopin
induced superconductivity at the border of the met
insulator transition.

If intra-atomic correlations of Bi 6s electrons are strong
and responsible for the appearance of negativeU, one ex-
pects that the LDA theory will fail to describe the charg
disproportionate state. This exactly happens in HTSC
prates where due to large positiveU of Cu 3d electrons, an
antiferromagnetic ground state of undoped cuprates was
predicted by the LDA.40 If, on the other hand, negativeU is
due to strong electron-lattice coupling,24 the LDA should
quantitatively explain the observed instabilities.~It is likely
that the nesting idea is not very convincing as we discus
in Sec. II of this paper. The breathing instability, for e
ample, has not been found in La2CuO4 where the same logic
is valid.!

Several total-energy LDA calculations of the structu
phase diagram for pure BaBiO3 exist in the literature15,17–19

and the results seem to be inconsistent. Pseudopote
calculations17 predicted rotational but not a breathing inst
bility. In contrast to that, a pure breathing distortionb
e
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.0.06 Å with large energy loweringDEb.250 meV/~1
3cell! has been found18 by the linear-augmented-plane
wave calculation. A third calculation15 based on the full-
potential LMTO method59 gives here nearly zeroDEb;
20.7 meV/(13cell! with the equilibrium valueb;0.03
Å for pure breathing. Using the same method,59 the authors
of Ref. 19 calculatedDEb5220 meV/(13cell! and b
50.07 Å. The calculations of the total energyEtot as a func-
tion of combined tilting plus breathing~tb! distortions have
also been reported. The first such calculation15 predicts
DEtb5214 meV/~13cell! relative to rotational energy mini
mum, t58.5° and b50.055 Å. The second calculation19

gives DEtb5240 meV/~13cell!, t59.6°, andb50.11 Å.
Note that the experimental values found forT5150 K are
texp511.2° andbexp50.085 Å. A less rigorous potential
induced breathing model predicts22,60 these properties with
similar accuracy. In addition, the reported15 frequencyvb
546 meV of the breathing mode is too low compared to
measured11,48 values;70 meV.

These large discrepancies in predicting structural prop
ties of BaBiO3 seem to contradict the accuracy of the LD
which is of the order of a few percent. This could alrea
signal that the ground state of this semiconductor is not co
pletely captured within the mean-field LDA solution. Als
another possible reason for the obtained discrepancies c
be due to unusual sensitivity of the calculated properties
the computational details.

We have performed our own studies of the structu
phase diagram for pure BaBiO3 based on the highly precis
full-potential LMTO method.39 We have indeed found tha
there is a sensitivity of the final results to the details of t
calculations, and we will discuss this in due course. Ho
ever, we have also found that serious errors are introdu
by the LDA. Our general setup for the calculations is t
same as was used for the doped compound Ba0.6K0.4BiO3. It
was described at the beginning of Sec. II of this paper.

As a first step we check an equilibrium cell volume. T
value of V/Vexp50.998 is found and the calculated bu
modulus is equal to 1.29 Mbar. These values essentially
pend on the treatment of the semicore states. Especi
treating deep-lying 5d Bi states in the main valence pane
i.e., allowing their full hybridization with the valence state
is found to be crucial for the appearance of the total-ene
minimum itself. Such a sensitivity is due to the fact that t
ground-state potentialV(r ) is highly not spherical. In the
Bi-O directions, the potential exhibits a pronounced mi
mum (;0.5 Ry down its average value at the Bi MT spher!,
and the average kinetic energy of Bi 5d orbitals in the inter-
stitial region is nearly zero. As a consequence, the chara
of Bi 5d electrons appear at O atoms. In the Bi-Ba directio
the potential exhibits a large maximum (;0.5 Ry up its av-
erage value at the Bi MT sphere!, and the kinetic energy her
is largely negative. Kinetic energy variation of about 1 R
leads to the necessity of using a multiple-k LMTO basis
even for semicore states.

We now report our results for the calculated tilting inst
bility. The unit cell is doubled in this calculation accordin
to theR point of the cubic phase. The rotations of the oc
hedra are performed along the direction~1,1,0! as in the
experiment.20 The calculatedEtot versus tilting angle is
shown in Fig. 6. A pronounced minimum corresponding
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the anglet513° is found by our calculation, and large e
ergy loweringDEt52200 meV/~13cell! is predicted. Note
that for the doped compound, the calculated energy lowe
becomes only210 meV/~13cell! as can be seen from Fig. 3
The tilting angle calculated by us agrees with t
experiment20 within the same accuracy as previous
reported.15,19 However, our calculatedDEt disagrees with
DEt5224 meV/~13cell! of Ref. 15 and withDEt5260
meV/(13cell! of Ref. 19. To check the sensitivity of ou
values to the treatment of semicore states, we have
formed the calculations by placing Bi 5d orbitals into a sepa-
rate energy panel. This indeed has an effect in the equ
rium tilting angle equal now 9° andDEt5250 meV/
(13cell!. A four-times change in the latter value looks ve
unusual and again shows the importance of proper hand
with the semicore. We have also tried to increase the num
of k points in the integration over the BZ but this hardly h
any effect on the final results.

We now discuss our studies for the breathing distortio
The dimerizations of the octahedra are performed for a se
tilting angles from 0 to 15° in order to search for a glob
total-energy minimum at thebt plane. The crystalline struc
ture consists of two formula units and has now a monocli
symmetry. Our calculations do not predict pure breath
distortions (t50°) leaving the cubic structure stable again
this perturbation. However, fort50° our total energy dis-
plays a very flat highly anharmonic potential well assum
closeness to the instability. When tilting appears, the po
tial well starts to exhibit a double minimum indicating
weak but nonzero breathing distortion. We have found th
global total-energy minimum occurs whent513°. The cal-
culatedEtot versusb for this angle is shown in Fig. 7. A very
shallow minimum can be seen from this figure located ab
;0.04 Å. The corresponding energy loweringDEb is only
equal to27 meV/~13cell! relative to the structure which i
purely tilted. These results are in contradiction with the e
perimental findings20 which give bexp50.085 Å. Moreover
such a lowDEb gives us the breathing phonon frequen
nearly equal to zero in contrast to the measured values11,48of
the order 70 meV. This indicates that real energy lowering
much larger than we evaluate.

Furthermore, the LDA one-electron spectrum calcula
at our minimum still corresponds to the metallic grou

FIG. 6. Frozen-phonon calculation of the total energy~meV/1
3cell! as a function of the tilting angle for undoped BaBiO3.
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state. We have found that the energy gapEg opens at larger

values of b;0.07 Å. At b5bexp50.085 Å the calculated
minimal gap is indirect and occurs between the pointsX and
L ~see also Ref. 15!. Its value is approximately equal to 0.
eV. The minimal direct gap is found at the pointL and is
about 1 eV. These values are lower than the correspon
experimental values26 most likely due to systematic undere
timation of gaps by the LDA. The measured transport a
vation gap is 0.24 eV. However, it does not show up
photoconductivity, optical absorption or photoacoustic m
surements. Sometimes this is interpreted27 as bosonic bound
state of two electrons due to negative electronicU. Therefore
it is unclear whether the transport activation gap can be
lated to the minimal indirect gap of our calculation. The g
seen from the optical measurements is about 2 eV whic
substantially larger than our 1 eV direct gap. We have, ho
ever, not performed the calculations of the optical propert
therefore an exact comparison between the theory and
periment is not currently possible.

Several test calculations have been made to check
results. This mostly concerns the breathing instability;
energy bands were found to be insensitive to the comp
tional details. First, we place Bi 5d orbitals into a separate
energy panel. This has the interesting effect that the bre
ing become more pronounced, the calculated value ob
50.065 Å becomes much closer to the experiment, and
energy lowering is now217 meV/~13cell! relative to the
purely tilted structure. This result, however, should be co
sidered as artificial, since a separate treatment of Bi 5d states
does not allow us to reproduce the equilibrium cell volum
Second, we tried to analyze the convergency with respec
the multiplek LMTO basis. We have used up to 5k basis
functions for representing valence wave functions but t
practically does not affect the final results. Adding high
lying Ba 6s and Bi 6d orbitals has no effect either. Thi
indicates that the basis set described above~see Sec. II! is
sufficiently complete. Third, we try to investigate the relati
istic effects due to heavy Bi atoms. Inclusion of spin-or
coupling along with the scalar relativistic terms was found
have a negligible effect at the calculated equilibrium stru

FIG. 7. Frozen-phonon calculation of the total energy~meV/1
3cell! as a function of the breathing distortion~Å! for undoped
BaBiO3. The upper curve is obtained using 68k points for the
integration over14 BZ of the monoclinic lattice and the lower curv
corresponds to 476k points.
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ture. Fourth, we increased the number ofk points to 476 per
1
4th BZ of the monoclinic lattice. This has the effect of low
ering the total energy for metallic states~i.e., whenb<0.07
Å! and practically does not change the values ofEtot for
semiconducting energy bands. As a result, total energy
function of b becomes even more shallow~see Fig. 7! and
predicted breathing at the equilibrium is extremely small.

Based on our findings we conclude thatthe breathing dis-
tortions are seriously underestimated (ideally absent) in
LDA, the predicted ground state is metallic and, therefo
the charge-density-wave instability is not correctly d
scribed.This situation is analogous to that with HTSC c
prates where the antiferromagnetic ground state was also
found within the LDA.40 ~It therefore seems that LDA may
generally, have problems with both spin-density waves
charge-density waves.! We also think that due to either im
proper handling with Bi 5d orbitals or approximate treatmen
of the full-potential terms in the LMTO method of Ref. 5
previous calculations15,19 did not converge to the true LDA
ground state.

Following the Hohenberg-Kohn theorem,13 we know that
a more proper treatment of exchange-correlation effects
yond LDA should, in principle, reproduce the semicondu
ing ground state of BaBiO3 and the correct values for breath
ing distortions. At the same time, the energy gap will n
necessarily be reproduced since it is not a ground-state p
erty of a single system. However, in such systems as BaB3
the energy gap is directly related to the charge disproport
ation between two Bi atoms since the splitting between
cupied and empty Bi 6s levels is proportionate to the occu
pancies of these orbitals. The latter is related to the cha
density distribution which is a ground-state property.
therefore seems that until the correct theory reproduces
energy-gap values, the correct breathing distortions will
be obtained. Speculating on this,~i! we do not see how the
LDA can describe the correct ground state and, at the s
time, strongly underestimate the gap value,~ii ! we think the
exact density-functional theory would describe both
ground state and the energy gap in this system.

It is worth mentioning in this context an example wi
antiferromagnetic oxides like NiO. It is known that LDA
calculations underestimate both the magnetic moment
the energy-gap value in this compound. It is also clear t
the magnetic moment is given by the occupancies of 3dx22y2

and 3dz2 orbitals of Ni, and the same factor defines the sp
ting between occupied and empty states which is dire
related to the energy gap. A so-called LDA plusU method41

provides a more proper treatment of the systems with str
electronic correlations. It has been shown41 that this method
predicts the correct ground state for many Mott-Hubbard
sulators and, at the same time, gives more accurate value
the energy gaps compared to the LDA. Also, similar i
provements are obtained with the use of the self-interact
corrected density functional.61 If we would interpret these
results as using a better energy functional, then the situa
with NiO should be completely analogous to BaBiO3 with
the exception that not the spin transfer but the charge tran
defines the properties of this system.

These conclusions may bring an attention to the existe
of intra-atomic correlations of Bi 6s electrons not captured
by the LDA. It does not necessarily follow from our calc
a
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lations that the CoulombU is negative in these system
What only follows from our calculations is thatthere exists a
correction term to the LDA in which the parameter respo
sible for the attraction of two electrons at the Bi sites
negative. To illustrate this, let us restrict ourselves for th
moment by only Bi 6s orbitals. The correction energy for th
doubled unit cell Ba2Bi41qBi42qO6 can be represented in th
form ~see Appendix!

DEcorr5
1

2 (
i 5Bi1,Bi2

DUeff~ni2n̄!25DUeffq
2, ~27!

whereni is the occupancy of the Bi15Bi41q or Bi25Bi42q

6s state andn̄5(nBi11nBi2)/2. The charge disproportion
ation parameterq5(nBi12nBi2)/2. WhenDUeff,0, the cor-
rection ~27! to the LDA total energy is negative for an
nonzeroq, and therefore the charge disproportionate st
becomes favorable. This construction is purely heuristic a
is built on the analogy to the LDA1U density functional.41

~A better name here could be ‘‘LDAminus U.’’ ! In order to
avoid double counting effects we interpretDUeff as U
2ULDA , where ULDA is a part of the on-site interactio
taken into account in the LDA.~In this way, when the LDA
is adequate for describing the correlations, the correc
term becomes automatically zero.! Therefore, from our cal-
culations follows that the LDA overestimates CoulombU for
Bi 6s electrons, and the differenceDUeff is less than zero.
Adding DEcorr to the LDA functional will obviously result in
obtaining the charge disproportionation.

Unfortunately this simplified illustrational model has se
eral drawbacks. First, the antibonding band crossing
Fermi level~see Fig. 1! consists not only of the Bi 6s elec-
trons but also has a substantial character of the O 2p and Bi
6p electrons. Therefore,DUeff in Eq. ~27! should be inter-
preted as the on-site interaction between the correspondi
constructed Wanier functions. Second, since these Wa
functions are long ranged,intersiteCoulomb interaction pa-
rameters must be introduced into the expression~27!. ~In
fact, by Fourier transforming the antibonding band atEF , we
evaluate the range of Wanier states to be four lattice c
stants of the cubic phase.! Another possibility is to conside
a multiband model involving charge fluctuations and Co
lomb interactions between Bi 6s, O 2p, and Bi 6p states.

The Coulomb interaction parameters can, in principle,
calculated using a constrained density-function
method.62,63However, the number of parameters required
our system seems to be much larger than just one num
DUeff . This gives a lot of extra freedom and complicat
their finding. Despite this difficulty, some progress has
ready been made in this direction.28 We also plan to investi-
gate the parameters required for the extended multib
Hubbard model using constrained LDA calculations. Th
question will be addressed in future publications.

In the following, we take the simplified model~27! to
illustrate which features will bring the inclusion of the co
rection energy to the LDA functional. Using a variation
principle to minimize our LDA-U expression for the tota
energy ELDA1DEcorr leads to solving the single-particl
equations with the potentialVLDA1DVcorr

i , where DVcorr
i

5DUeff(ni2n̄)5DUeffq is the contribution which has an
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orbital dependence. It is clear that the value 2DVcorr
i deter-

mines the effective splitting between two nonequivalent
6s levels. If our LDA calculation gives this splitting nearl
equal to zero~unless we set the breathing distortion to t
experimental one!, then its real value should be of the ord
of the optical gap experimentally determined as 2 eV.~A
simple connection between the charge disproportiona
and the gap value is clearly seen from here, and we a
state, that we do not see how the LDA can obtain the cor
breathing and at the same time seriously underestimateEg .)

We perform the calculations involvingDVcorr
i using our

full-potential LMTO method.39 The calculations are analo
gous to the constrained LDA calculations described in R
63. Using the projector-operator technique we define the
rections to the Bi 6s diagonal matrix elements of the LMTO
Hamiltonian. The projection is simply taken to thel 50
spherical harmonic inside the MT sphere of the Bi site a
zero everywhere else. According to our model, the differe
between two nonequivalent Bi 6s occupation numbers
should be associated with the charge disproportionationq.
If we now fix DUeff to some value, the self-consistent pr
cedure will define this charge disproportionation, and
correctionDEcorr to the LDA total energy can be estimate
In this way, we can find a new equilibrium structure a
compare that with the experiment. Choosing suchDUeff to
reproduce the experimental breathing distortion can g
some insight on this value.

We have performed a set of self-consistent calculation
the total energyELDA1DEcorr as a function of breathing dis
tortion for different values ofDUeff . We have indeed found
that for DUeff of the order minus 10 eV, the experiment
breathing distortion is fairly well reproduced and the corr
breathing phonon frequency is obtained. Also, the ene
gap becomes much closer to the experiment. It is interes
to note that the form~27! of the functional assumes broke
symmetry, i.e.,the existence of the charge disproportio
ation regardless of the presence of breathing distortions. As
a consequence, the double-potential well does not exhib
smooth behavior atb50 and has a kink there.

The value ofDUeff5 –10 eV required to describe the e
perimental structure seems to be unphysically large. Thi
mainly due to small self-consistent values ofq of the order
of 0.1 electrons which are obtained in our calculatio
~Even smaller values;0.01e are obtained for the charg
transfer between two Bi MT spheres because of the scr
ing by the tails of O 2p orbitals.! In fact, if we take a simple
relationship 2qDUeff52DVcorr

i ;Eg52 eV, the sameDUeff

5210 eV is obtained. This again shows that our logic
valid. As we discussed above, a better way would be to
terpret 2q as a charge transfer between two Wanier sta
centered in the sites of the cubic lattice with two nonequi
lent Bi atoms.~We associate these Wanier states with the
atoms, but it is clear that they represent a mixture of a wh
set of orbitals.! Indeed, our tight-binding calculations for
one-band model with long-range interactions~fitted to de-
scribe the dispersion of the band crossing the Fermi le!
show that introducing a small splitting between the effect
Bi levels gives the charge transferq of the order 1e. ~The
chemical interpretation of the charge disproportionat
2Bi41→ Bi311Bi51 is thus valid for the Wanier function
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and is, of course, wrong for the real charge densities.! Un-
fortunately, implementing the Wanier representation in o
LDA-U functional is not straightforward and we postpo
this for the future work. However, a rough estimate of t
DUeff operative between the Wanier states can be found
settingq to 1 in the relationship 2qDUeff;2 eV. This will
result in more realistic value ofDUeff521 eV. Such values
are expected from the errors introduced by the LDA,
example, due to self-interaction effects.

This discussion shows that the proper treatment of
parameters of the model~27! is required. It is also clear tha
inclusion of theintersite Coulomb interactions is necessa
to obtain a quantitative description of the ground state
BaBiO3 . The above calculations cannot be considered
estimates ofU. Therefore we would await making the con
clusion that negative on-siteU of Bi 6s orbitals is of elec-
tronic origin until we evaluate the errors introduced by t
LDA. In the above discussion we were trying to argue th
the insulating behavior and breathing distortions in this s
tem are directly related to the charge disproportionation,
the LDA must fail in describing this ground state alrea
because it is not able to reproduce the energy gap. On
other hand, the LDA1U like techniques were seen to b
very perspective for performing accurate calculations, a
we will try to address this subject in a future work.

V. CONCLUSION

In the present paper we have reported our dens
functional LDA studies of the compound Ba12xKxBiO3. For
its superconducting phase (x50.4) we have performed the
calculations of full wave-vector-dependent lattice-dynami
properties and the electron-phonon interactions. These ca
lations were based on the recently developed linear-resp
approach implemented in the framework of the full-potent
LMTO method. The following conclusions are made on t
basis of our studies: The calculated phonon-dispers
curves along major symmetry directions agree reasona
well with the results of the neutron-scattering experimen
Some discrepancies have been found to occur in reprodu
the bond-stretching oxygen modes. They were attributed
the virtual-crystal approximation used for the treatment
potassium doping. It was found that the bond-stretch
modes have a large coupling to the electrons. Especially
breathing modes at theR andM points of the cubic Brillouin
zone have a large coupling equal to 0.3. Relatively stro
coupling is also predicted for the bond-bending oxyg
modes. However, our calculated averaged value ofl was
found to be 0.29 which is too small to account for the hig
temperature superconductivity in the doped barium bismu
ates. These results were supported by the calculated tran
properties such, e.g., as electron-phonon limited electr
resistivity.

Our own and previous frozen-phonon calculations p
dicted highly anharmonic double-potential-well behavior f
the tilting of oxygen octahedra corresponding to the pointR.
We have performed detailed studies on the influence of
harmonicity corrections to the electron-phonon coupling.
neglecting the processes of phonon-phonon interactions
utilizing the zero-temperature treatment of Hui and Allen38

we have worked out the formula for anharmonic contrib
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tions tol up to the second order with respect to the displa
ments. It was found that anharmonicl can be not small if
large ionic excursions take place as in the case of the til
vibrations. Using the full-potential LMTO method and th
frozen-phonon approach, we have estimated that contribu
to be equal to 0.04. Our totall is thus 0.33. We conclude
that while not negligible, anharmonicity corrections due
tiling modes do not help to explain the superconductivity
the bismuthates, and therefore, its origin still remains
open and intriguing problem.

As a final issue, we have done the calculations of
structural phase diagram for the undoped parent compo
BaBiO3 . A low-temperature experimental structure consi
of combined breathing plus tilting distortions. In agreeme
with the previous conclusions, we have found that tilti
distortions are reasonably well reproduced by the LDA c
culation. However, we have also found that the breath
distortions are seriously underestimated~if not absent! within
the LDA. This contradicts the previous findings most like
due to improper handling of the semicore states. The un
estimation of breathing leads to the predicted ground s
which is metallic while it should be insulating of the charg
density-wave type. This situation closely resembles anti
romagnetism of HTSC cuprates which was also not predic
by the LDA. Using a simple correctional scheme in the sp
of the LDA1U method we have tried to argue that the pro
lem of breathing is most likely due to underestimation of t
energy gap by the LDA. While we cannot make any defin
conclusions on whether negativeU in the bismuthates is o
the electronic origin, the failure of the LDA indicates that t
electron correlations of the Bi 6s electrons are not properl
treated. Since LDA calculations contain all electron-latt
coupling effects, we conclude that in order to recover
insulating state, an existence of the correction to the L
with some negativeDUeff of the electronic origin must be
assumed. We believe that LDA6U like approaches will help
in the further understanding of the physics in these syst
from the density-functional point of view.
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APPENDIX

The form of the correction can be understood using
following arguments: Suppose the LDA total energyELDA
gives a nondegenerate ground state described by the de
r0 as is the case of predicting BaBiO3 without breathing
distortions. Let us expandELDA(r) around its minimum.
Due to the extremal property, this expansion starts from
second-order variations:

ELDA~r!5ELDA~r0!1
1

2E d~2!ELDA

drdr
~r2r0!~r2r0!1•••.

If the predicted ground state is wrong, then the first candid
which can take responsibility for this is the second-ord
derivative. The value ofd (2)ELDA /drdr at r5r0 is posi-
tively defined sinceELDA(r) has a minimum here. On th
other hand, the true density functional atr0 would indeed
have a local maximum or, more generally, a saddle po
since the true ground state is double degenerate corresp
ing to either breathing-in and breathing-out distortions
vice versa. Therefore,d (2)Etrue/drdr should be negatively
defined atr5r0. ~We assume that the first-order variatio
d (1)Etrue/dr is equal to zero atr5r0 due to the symmetry of
the saddle point.! It is thus tempting to construct a densi
functional with the corrected second-order variation, i.e.,

Ecorr~r!5ELDA~r!1
1

2E S d~2!Etrue

drdr
2

d~2!ELDA

drdr D
3~r2r0!~r2r0!. ~A1!

Assuming that kinetic energies of bothEtrue andELDA func-
tionals are the same, the difference between the second-o
derivatives is described by effective Coulomb interactio
This leads to form~27! of the correction.
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