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Quasistatic remagnetization processes in two-dimensional systems with random on-site
anisotropy and dipolar interaction: Numerical simulations
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We have developed a method that enables a fast and exact evaluation of the long-range interaction field by
simulating the lattice dipolar systems with periodic boundary conditions. The method is based on the combi-
nation of the fast-Fourier-transformation technique and the modified Ewald method for the lattice sum calcu-
lation. We have used our algorithm for simulations of the quasistatic remagnetization processes in two-
dimensional hexagonal lattices of dipoles with the uniaxial on-site anisotapgotropic Heisenberg model
with the long-range dipolar interactigrwhich can be considered as a plausible model of a thin polycrystalline
magnetic film with the intergrain exchange and with each crystallite having its own single-grain anisotropy.
During the remagnetization process we observe typical ripplelike magnetization structures well known from
the experimental observations. The parameters of these structures as functions of the exchange and anisotropy
strength are studiediS0163-182@08)03522-X]

I. INTRODUCTION as the Lorentz cavity field because on the large scale the
magnetization is assumed to be homogeneous. The question
Numerical simulation of strongly interacting many- how to choose the restriction radif.e has to be solved
particle models is currently one of the most important toolsseparately in each concrete case, but in most
for gaining information about a large variety of physical application§**it is sufficient to set this radius to be of the
system$ such as standard ferro- and antiferromagneticsame order of magnitude as the mean interparticle distance.
Heisenberg models, exchange and dipolar spin glasses, anfius only a small fraction of particles is contained in the
ferrofluids, among others® Micromagnetic simulations of néarzone making the operation count for the interaction field
equilibrium magnetization structurésee, e.g., Refs. 437 €valuation proportional te-nN, where the number of par-
and remagnetization dynamics in magnetic materials and thific/és N in the near zone isi<N and, more importantly,
films (such as those performed in Refs. 8 and:&n also be independent of the system size. In such cases simulations for

considered as simulations of many-particle models wher&P 0 several thousand partu;lgs cazm be easily performed even
with moderate computer facilitié's:

one particle can be associated with a single cell arising from ) .
the discretization of a continuous problem. The problem is muc_h worse for the sy_s;tems havmg both
: . the strong nearest-neighbor exchange interaction and the

Amof‘g the s_yster_ns “Ste.d above_, those with the _Iong'relatively weak but long-range dipolar interaction. The inter-

range mterpartlcle mterac_tlon, mainly Rudermqn-Klttel- play befween these two forces may create complicated do-

Kasuya-YosiddRRKY) or dipolar, are the most difficult o 4in structures where the magnetizatimonfining further

simulate for the obvious reason that the evaluation of aRyiscussion to magnetic systeyan be considered as homo-

interaction field oneachparticle requires the summation of geneous only on a very large length scateuch larger than

contributions fromall other system particles. Thus the com- the average domain sizeThis means that even methods us-

puter time for any algorithm using the straightforward sum-ing some artificial cutoff radiugsuch as the Lorentz cavity

mation grows as-N? (N being a particle numbgrso that  method would be extremely time consuming due to the very

using this simplest method only simulations for system haviarge value of this restriction radius required to obtain ad-

ing up to N~10° particles are possible even with modern equate results.

supercomputer¥) Fortunately, for thdattice systems of this kind the meth-
The corresponding calculation can be greatly acceleratedds using the fast-Fourier-transformatiGdFT) techniques

if we do not expect the formation of any long-range magne{or the dipolar field evaluation became available in the past

tization (or polarization structures such as magnetic do- decade®*® The methods are based on the observation that

mains. A good example of such a situation is the simulationshe dipolar field on thdth lattice site created by all other

of the quasistatic remagnetization processes in disorderesystem moments

systems without the strong nearest-neighbor exchange in a

homogeneous external field!12In this case only the field

contribution from the particles in the so-called near zone 3ej(&jm) — M

(i.e., from particles that are inside a sphere with the radius Hi:jEi - @

Riest around the given particleshould be calculated explic-

itly. The contributions from the rest of the system particles,

i.e., from the particles outside this sphere, can be computechn be rewritten as

ij
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The conceptually simplest way to resolve these difficul-
H?—B%i WﬁBMj ) 2 ties exists for the finite systems, i.€l) magnetization con-

’ figurations that are finite by themselves, such as small
wherea, B=X,y,z, unit vectorse; in Eq. (1) are defined as particles;® or (i) those systems for which only their finite
&;=ri;/rij, and the vectors;;=r;—r; connect the cells region creates the dipolar field, such as domain walls embed-
andj [we use the one-dimensiondD) notation for simplic- ded in an infinite homogeneously magnetized medjuior
ity]. For the translationally invariartegulaj latticer;; de-  such a finite system one can apply the zero padding tech-
pends on the site numbeis and j via their difference  nique, which is normally used in the signal processing to
li—j| only, so the elements of the interaction matriw‘éﬁ avoid aliasing due to the nonperiodicity of the signal.
also depend only on this difference. In this case the expres- For the evaluation of the dipolar field the application of

sion (2) for the dipolar field components this techniqgue means that we should first double the size of
the initial lattice padding the magnetization configuration
He=S S web 8 3) yvith zeros in al] direptions and seco_nd cut off the dipolar
"7 B =114 interaction matrices in Eq3) at the distance equal to the

size of theinitial lattice. Then we can treat our system as a
can be recognized as an example of the discrete convolutioperipdic magnetization configuration consisting of replicas
In Eq. (3) the configuration of the magnetization componentsyt our initial system separated by areas of the same size
u{ plays the role of asignal and the interaction matrices haying zero magnetization. There is no interaction between
Wi can be viewed as theesponse function® terms of  yarious replicas due to the cutoff of the dipolar matrices, so
the signal processing from where the whole formalismg| physics of this artificial periodic configuration is still de-
comes. Such a convolution is normally performed via theermined by the interaction inside one replica, as it was for
FFT using the corresponding theorem that under certain cong injtial system. On the other hand, both conditions of the

ditions (see below the Fourier transform of the fieldli is  conyolution theorem, the periodicity of the magnetization
the dot product of the Fourier transforms of the interactionconfiguration and the finite range of the interaction, are ful-
coefficientsWy” and magnetic momentsy, filled now and we can safely apply this theorem to evaluate
the dipolar field®°
HEZE WeBLE. (4) Impprtant as tr_ley are, finit@r, ge_nerally speaking, non-
B periodig magnetization configurations obviously do not
cover the whole range of physically interesting problems.
The major gain arises from the fact that the Fourier com-Simulations of magnetic systems with periodic boundary
ponents of the magnetization can be evalua#dimulta-  conditions are necessary, e.g., in classical micromagnetics,
neouslyin ~N In N operations N is the total number of \here periodic structures such as striped domains or bit
lattice site$ using the FFT algorithm; the inverse Fourier syryctures arising in information storage media are important
transform fromH{’ to the field components in real space for various applications. Another very common situation
H{*=H“(r;) requires the same effort. Finally, the multiplica- where periodic systems appear are the Monte Carlo simula-
tion (4) requires only~N operations(for N lattice sites we tions of the thermodynamical properties for various lattice
haveN independent Fourier componentsience the evalu-  models, where periodic boundary conditions are almost un-
ation of the dipolar field foall lattice sites can be performed 5yoidable to reduce the influence of the finite-size effetts.
in ~N In N operations only, which ensures the nearly linear Fqr systems with periodic boundary conditions the convo-
dependence of the calculation time on the particle numbersion theorem cannot be applied directly for the dipolar field

arllmo.jt aslln syster?s ;V[')th tréess[?ort_—range |nte.ract.|on.| USiNgaiculations. The reason is that although the magnetization
this idea, large-scale an micromagnetic simu atlon%onfiguration is now periodic by the very definition of the

i ~ ,16
(with the cell numbeN~10°) have been performétf periodic boundary conditiong¢for, e.g., 3D problems the

The implementation of this basically very simple ideasimulation region is supposed to be replicated infinitel
meets, however, serious technical difficulties that are due to 9 PP P y

the conditions implied by the convolution theorem. The firstMany tlmes.m thex, Y and z d|r_ect|on$, the '”tefac“"” .
condition formulated in terms of the signal processing theonp_etween various rephpas ,Of the S|mu_lated system is essential
requires that the signal should bgeriodic function of time (in fact, this |rl1t.eract|0n is the main reason tP use _SUCh
which in our case means the spatial periodicity of the mag_boundary conditions at alhnq hence the.dlpolar interaction
netization configuration. The second condition requires thaannot be truncated at any distance. This means that the sec-
the response function should havérate duration(this is the ~ ond condition necessary for the application of the convolu-
counterpart of the requirement concerning the compactnedion theorem, the finite duration of the response function, is
of the kernel support in the convolution theorem for continu-Vviolated.

ous functiony meaning for our situation that the interaction  In such cases one usually attempts to establish the con-
should be cut off at some finite distance. Both conditions ardgection between the Fourier components of the magnetiza-
violated in the micromagnetic applicatior(§} The magneti-  tion configuration and the dipolar fietd;, using the Poisson
zation configuration is, generally speakimmt periodic and  equation. This connection is then applied to calculd

(i) the dipolar interaction is a long-range one and no physifor any given periodical magnetization distribution. The
cally reasonable cutoff radius can be introduced due to itsnethod provides satisfactory results for the smooth magne-
quite slow decay €r~3). tization changes along the lattice, but fails for the rapid mag-
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netization oscillations due to the “unpleasant” behavior of Applying the Laplace operator to this Fourier transform of

the Fourier components of the dipolar field for large wavethe magnetic potential, substituting the result together with

vectors. the expansiori?7) into the initial Poisson equation, and using
In this paper we describe the modification of this methodthe orthogonality properties of the Fourier harmonics on a

which allows the rapid and exact calculation of the dipolarfinite lattice, we obtain the Fourier components of the mag-

field for dipole lattices with periodic boundary conditions. netic potential as

Details of the method are given in Sec. Il. The application of

our method for the calculation of the quasistat&mperature A (g det ¥ (q))ay

T=0) remagnetization processes in the 2D dipole system ¢(q"vq2):_ﬁ' 2 ' ®)
with the random uniaxial on-site anisotropy is described in a

Sec. IlI. In particular, this system is supposed to provide avhere g?=q7+qZ. For further calculations we need the

reasonable model of polycrystalline magnetic thin films withFourier components of this potential in tlxy plane, i.e.,
uniaxial single-grain anisotropy when the anisotropy axes ofj(q,,z=0). They can be easily evaluated as
the individual grains are distributed randomly in space. In

Sec. IV results of our simulations are compared with experi- PN g
mental observations made during the remagnetization of $(q,2=0)= 27 . A (q.92). ©
such films. Further possible applications of our method are
discussed in Sec. V. leading to the final result
L y
IIl. EVALUATION OF THE DEMAGNETIZING FIELD #(q,,z=0)=— %. Gl e (q”)qY. (10)
ay

To explain the principal difficulty arising from the Pois-
son equation method, we begin with the Poisson equation for In several applications, in particular, in numerical simula-

the scalar magnetic potential tions using the “equation-of-motion” algorithms, the dipolar
field HYP itself (rather than magnetic potentids required.
Ag(r)=—4mp(r), (5 Fourier components of this field can be found using the stan-

where p(r) is the density of artificial “magnetic charges” dard relxat|orH Ip__ V ¢, which ;or the Fourier components

defined via the magnetizatiovi (r) asp(r)=—VM(r). The '€adsh’™(a)=—iax$(a,) andH’(q,)=—iqy¢(q,), so that

magnetic charge density of a single dipglelocated at the for the field Fourier components one finally obtains

point r can be expressed using the gradient of the corre- x 2,y

spondings function asp(r) = — uV 8(r).2® For a 2DN, X N HX(qy,z=0)=— 2m wAA) Gt #7(6)G)Ax
1 ) \ X y oo i » AS ;

lattice of magnetic dipoles the corresponding magnetic i

charge density is

2 X(q,)9xay+ 1¥(q,) 92
Ny Ny Hy(q”,Z=0)=——7T- (g axay+ #Y(q qy.

AS
p(r)zp(r”,z)=—6(z)iJ_E:1 iV o(ry—rij), (6) %

(11)

Note the difference between this result and the corre-
where the lattice plane is chosen as D&y plane; in this  sponding formulas for the stray field components used in
plane lie the vector; and vectors; that define the lattice Refs. 19 and 20i.e., Eq.() in Ref. 20. The formulas given
node locations. For the sake of simplicity we also assumén Refs. 19 and 20 are incorre@rong power dependence
that magnetic dipoles have onk/andy componentgori- ~ on the wave vector componeptwhich may be due to the
ented in the lattice planeso that u;; =,U«ixj%<+//«i)}ey- For abse_nce_ of thed(z) func_tion in the definition of th_e charge
such a lattice with periodic boundary conditions the chargelensity in the papers cited above and the following absence
density(6) is also periodic in th@xy plane; expandingy;  ©f the integration(9) overq, .

and &(r,—r;;) into a Fourier series and(z) into a Fourier XThe required stray field components at the lattice nodes
integral, we obtain the Fourier expansion of the charge derH(rj) andHY(r;;) (where magnetic moments are located
sity as can now be obtained in the same way as by the application of

the convolution theorem for finite systems, i.@), calculat-
_ i ° iq,2 ing the Fourier componentﬁ"(y)(qu) of the magnetization
p(r,2)=— TAsﬁxdqze ‘ arraysu ) via a FFT algorithm ¢N In N operation (ii)
multiplying them by the corresponding components of the
« T wave vectorg, to obtain the Fourier transforrtll) of the
X{%:H} [w(ap)ax+m(a)ayled ™, (7) stray fieldH*®(q,) (~N operationg and (i) performing
the inverse FFT to obtain the real space components®tf
whereAS is the area of one lattice cell in th@xy plane,  (again~N In N operations
w*¥(q,) are the Fourier transforms of the dipole component The main problem when using this algorithm is due to the
arrays;Lﬁ‘j(y), and the discrete sum is taken over the wavefollowing two circumstances: First, for the finite lattice with
vectors corresponding to the lattice under consideration. the periodic boundary conditions we have at our disposal
The same Fourier transformation should be done for thenly a finite number of the Fourier components and, second,
magnetic potentialexpansion into the Fourier series in the the Fourier components of the dipolar filtl) do not, gen-
Oxy plane and into the Fourier integral in tlzedirection. erally speaking, tend to zero for the large values of the wave
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vectorq (they even diverge as-q whenq,~q,~q andq inside a single cell thus avoiding the increase of the compu-
— ). The first circumstance forces us to cut off the Fouriertational time due to the lattice refinement. The method is

spectrum of the dipolar field at the maximal wave vectorbased on the combination of the Poisson equation method
components},~ 1/Ax andq,~ 1/Ay, whereAx andAy are explained above and the modified Ewald method that is nor-

the sizes of a single lattice cell. Due to the second circumMally 3azpplied for the evaluation of the Coulomb lattice

‘ 24
stance this meanssharp (abrupi cut off of theHP Fourier sums: _ .
spectrum, which may lead, as it is well known, to large arti- Following the basic idea of the Ewald method we add and

ficial oscillations of the dipolar field. These oscillations canSubtract at each lattice nodé ) (which carries the dipole
be observed very clearly if one tries to evaluésing the momgntgij) an artificial “Gaussian dipole” with the charge
algorithm described aboyehe dipolar field of asingledi- ~ density given byfhere and below thé(z) dependences of
pole placed somewhere on the lattice. the charge density are omitted for simplidity

In the classical micromagnetics this problem is often not
very serious because the variation of the magnetization com-
ponents along the lattice are quite slow due to the strong
exchange interaction between the neighboring cells, i.e., both )
wj; and w}; are smooth functions of the node positidnj§. < exd — (r=rij)
Hence their Fourier components for the large wave vectors © 232

(ax~1/Ax, gy~ 1/Ay) are very small thus leading to small ) o o .
Fourier components dfi%? [see Eq.(11)]. In this case the where the choice of the “dipole widtha will be discussed

cutoff of the HIP Fourier spectrum at the maximal wave 't€r- One can easily verify that the total dipole moment of
vectors available does not introduce any substantial oscilld!€ distribution(12) is — u;; . After this operation the charge
tions because the spectrum components for these tege density of the system can be written as the sum of two parts
are already small by themselves. This is the reason why the p(r)=pa(t)+pg(r), (13)
direct evaluation of the dipolar field using the relations such ]

as Eq.(11) can provide satisfactory resultsee, e.g., Refs. Where the first part

pij(r)= [OX=Xi) i + (Y~ i) ]

B (2 7T) 3/2a5

; (12

15 and 21 Ny Ny
However, in many systems such a “pleasant” behavior of [, (r)=— > piV(r=ri)
the magnetization componenttheir smooth variationis ij=1
clearly not the case. For example, even in classical micro- No N
magnetics rapid changes of the magnetization between the 1 iy XX V(Y ) )
neighboring cells are possible if polycrystalline samples with (2m)¥2a5i 21 [« INSIRAS AT
the weakened exchange across the grain boundaries are
simulated(see, e.g., Refs. 7 and 19 he problem is always (r—rij)2
present also in the Monte Carlo simulations of the thermo- xexp — ? (14

dynamical properties of various lattice modéf&where dif-
ferences between the magnetic moments on the adjacent laentains the sum of the pointlike dipolég) [p(r) of the
tice sites are large at least above the ordering temperature. initial systeni and the contribution of the “negative” Gauss-
these examples the error resulting from the sharp cutoff ofan dipoles given by Eq(12) and the second part
the field spectrum is uncontrollable and hence some methods
to resolve this difficulty are clearly needed. 1
One obvious way to avoid the problem of the rapid field pe(r)
oscillations resulting from the abrupt magnetization changes
along the lattice is to introduce some artificial magnetization (r=rij)?
variationinsidea single celki.e., to mimic the magnetization xXexpg — 7
behavior in nature This is equivalent to the enhancement of a
the lattice spatial resolution and obviously removes the artirepresents the density of the “positive” Gaussian dipoles
ficial field oscillation mentioned above because much largethat is added to cancel the second sum in @§).
Fourier vectors are now available, for which the Fourier The gain achieved by this transformation is the same as in
components of the magnetization tend to zero due to ¢he standard Ewald methdd?* The total dipole moment of
smoothvariation of the magnetization inside a single cell. the first partp,(r) connected with each lattice site is zero
Thus the problem is removed exactly for the same reason d®cause the total moment of the negative Gaussian dipole
described above for the system with the smooth magnetizaexactly compensates the pointlike dipole of the initial system
tion changes along the initial lattice. However, the price toat each lattice site. For this reason the field created by the
be paid for such a simple solution is the correspondindirst part of the charge densify,(r) associated with each
growth of the computational time and required computerattice site rapidly tends to zer(see below and may be
memory due to the larger number of lattice sites resultingreated as a short-range interaction. On the other hand, the
from the lattice refinement. second parpg(r) of the charge density is relatively smooth
For this reason we propose another method that enabléi is described not by the pointlike dipoles but by the smooth
exact calculation of the dipolafor any other long-range Gaussian distribution at each lattice siteo the field created
field on finite lattice systems with the periodic boundary con-by this part can be safely calculated using the Poisson equa-
ditions without introducing any magnetization distribution tion technique(see the corresponding arguments above

Ny .Ny

:(277)7&,12:1 [Ox=xij) i + (Y= Vi) adf ]

(15
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More precisely, the field created by the first part of the . NUMERICAL SIMULATIONS
magnetic charge densipa(r) associated with the lattice site OF 2D HEXAGONAL LATTICE SYSTEMS
(i.5) s Using the method introduced above, we have performed
numerical simulations of quasistatic remagnetization pro-
« 3(X=Xjj) (mijAr;) M cesses in a 2D system of magnetic moments located on the
Haij(r)= (Ar)S T Ar)? fo(Arij) hexagonal lattice with lattice constafthe nearest-neighbors
g g distance ay,., and periodic boundary conditions. The system
2 (x—xij) (mijAry)) (Arj)? can be viewed as an anisotropic 2D Heisenberg model with
—\/= >3 exp ——— | the long-rangéin this case dipolarinteraction. It can also be
T (Ary)a 2a treated as a plausible model of a thin polycrystalline mag-
(16)  netic film where each crystallite has its own magnetic anisot-
ropy. In this case the hexagonal lattice is supposed to model
the hexagonal structure of certain kinds of magnetic thin
Hy (= | 2O WAL Ry e films 25:26
Al (Afij)5 (Afij)3 AT The total system energy includes the energy of magnetic

moments in the external fielH,;, the local anisotropy en-
ergyE,,, the energy of the exchange interaction between the
nearest neighborg,,., and the dipolafalso called demag-
netizing interaction energ iy

\F(y—yu)(m,—m”) p[ (Ar;)?
-\= exg — ,
™ (Arij)2a3 2a?

(17)

whereAr;;=r—r;; and the functiorf(r) is defined via the
standard error function erff as

1o " \Fr F{ r2
G(I’)— —er E + ;aex _ﬁ

From Egs.(17) and(18) it can be seen that the field created
by a single lattice node decays fiora as exp€r2/2a) and
hence by the evaluation of the dipole fieIFij\'p due to the
partA of the charge density only the contributions from sev-
eral nearest neighbors of each dek., from those for which Eex=— 2 mi(miHE) (20)
Arj;~a) should be taken into account. This means that the '
Hi‘p evaluation takes-N operations for the whole lattice.  (here and below we use for simplicity the 1D notation to

The fieIdH‘éIp due to the second part of the charge densitymark lattice nodes the external fieldH®*' can be inhomo-
(15) can be calculated exactly as it was done for the lattice ofjeneoudsite dependeint
the pointlike dipoledsee Eqs(5)—(11)]. The result is that The local anisotropy energy is assumed to include the
the Fourier components dfi” can be obtained from the contributions from the random uniaxial anisotroflye, e.g.,
Fourier transform(11) of the field created by the point di- to statistical orientation of the anisotropy axgsof various
poles by multiplying the componentd1) by the factors crystallite and from the homogeneous uniaxial anisotropy
exp(—qfa2/2). These factors assure thﬁ@'p(q“) tend to zero  (which may arise due to some specific features of the film
for large wave vectors so that the spectrum cutoff due to th@reparation procegslong thex ory axis in the film plane:
finite number of the Fourier components used does not lead
to any artificial field oscillations. - _ N (m.n)2_n0 2

The last methodical problem is the choice of the Gaussian Ean EI Di(miny) DX(V)? My (2D
dipole widtha. From Eqs(17) and(18) it can be seen that . .
shri)uld be chosen as gmall as possible to ensure rapid dechf™® the anisotropy CO”,StaD'_ti(r) char%c)tenzes the random
of the short-range fielt1%P, so that by its calculation only 2Nisotropy strength on thiéh site andD,,) are the constants
the contributions from the few nearest neighbors could b@f homogeneous anisotropy along théy) axis. Below we
taken into account. On the other hamdshould not be too assume.that alD’s are positive, which corresponds to the
small because otherwise the factors exgfa?/2) that should ~ €Sy axis case. :
cause the decay of the largeFourier components dﬂgip The exchange energy has the standard Heisenberg form
will be not sufficiently small even for the largest available 1
wave vector componentgh,,,~1/Ax and g}~ L/Ay. We Eexchi= — 52 Jij (mim;) (22
found that the choica=max(Ax,Ay) for which the contri- (.J)
butions from the three nearest-neighbor shells have to b@&here the sum is taken over the nearest neighbiof$ and
taken into account by thblf;'p evaluation provides the opti- the exchange constanlg may be also site dependent. The
mal compromise between the calculation speed and accuwemaining energy contribution, the dipolar interaction en-
racy. ergy, is evaluated as

Etot= Eextt Eant Eexcit Edip . (19

Keeping in mind that the magnituge, of the magnetic mo-
ment at each lattice site is usually constamhiich is the case

for a standard Heisenberg model and by the micromagnetical
simulations when a material is supposed to be well below its
. (19 Curie temperatupeit is convenient to introduce the unit vec-
tors m; = u; / u; defining the direction of magnetic moments
at theith lattice site and express the energy as a function of
the orientations of these vectors. In this notation the energy
in the external field is
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1 i the relaxation method described in Ref. 6. For the hysteresis

Egip=— 52 wi(mHP), (23)  loop simulations(results of which are described belpwe

' started, as usual, from the largbh.{~10) field where the

wherex andy (in-plane components of the dipolar field®™?  magnetization configuration was nearly saturated and de-
are evaluated using the formalism described in Sec. Il, andreased the field consequently by a small amount using the
thez component is calculated as the demagnetizing field of @&quilibrium configuration obtained for the previous value as
thin film, i.e., HI= — 47(u?/V,) whereV, is the volume of ~ a starting condition for the new one.
one lattice cell so that the quantiy//V. corresponds to the
material magnetizatioM , used in classical phenomenologi-
cal calculations. This simplified calculation method for the IV. RESULTS AND DISCUSSION
perpendicular dipolar field component provides a good ap-
proximation when the variation of the component of the
magnetic moments along the lattice is smooth, which wa

In this section we present results of our simulations of the
gemagnetization processes in 2D hexagonal lattice systems
always the case in our simulations with the nearest-neighbor exchange and long-range dipolar

If the 2D system described above is supposed to simulat@teracnon .betwe.en magnetic moments. Spe_cifically e con-
the behavior of a thin magnetic film having a thicknesand sider our simulations as modeling the behavior of thin poly-

consisting of closely packed hexagons with the gidehen crystalline magnetic films with random anisotropy, keeping

parameters entering the energy expressiih—(23) can be lnln;mtd p(;stIbtlﬁ (;orr]nprfrlr?or]s (i):qotjrtirensults \r/;/ltrmexdperrl]men-h
related to the magnetic material parameters: saturation mag; ata and other humerical simuiations periormed on suc

netizationM g, exchange stiffness of the bulk matergland Ims. The parameter set used in our simulations, which wil
T . be referred to as a standard set, corresponds to thin Co films
random and homogeneous uniaxial anisotropy constéfits

L L and is as follows: the material saturation magnetizal
andK(9, . The only nontrivial step when deriving the corre- d hon

X(y) - _ , , =1.4x10° A/Im (=1400 G; the bulk exchange constaAt
sponding formulas is the establishment of the relation be- 107 J/m (=10° erg/cm); an easy axis anisotropy with

tween the Heisenberg exchange constdrasd the material = 0o cionk (= 4% 108 J/nd (=4x10° erg/cn?) and an-
exchange stiffnes. This can be done most conveniently by isotropy axes randomly distributed in three dimensions is

Assigned to each grainell or magnetic momehtthe homo-
place mainly on the grain boundaries between the neighbor- 9 grai 9 n

! . . o i eneous anisotropy contributidqwhen not stated otherwise
ing crystallites. This suggestion is also physically reasonablg Ry ¢ 5

W@ _ (@ _Q- ; ;
because the exchange interaction is usually weaker in tha absentK, =K, "=0; the side of thehexagonal grain

intergrain space due, e.g., to the enhanced concentration (fazllsnrl]m;b:m 'Qtlslrg_ral'ggie;:éaﬂgzz ﬁnnm.olpl;isr’n:cﬁ;tggﬁs
nonmagnetic impurities there. Under this assumption, usin XNy

; ; ding physical system size wagXL
the method proposed in Ref. 27 we obtain the relation _e correspon Ry
=k (Abd/ 6), where § is the intergrain boundary thickness — V3b Ny x 1.90N,~1.1x 1.9 um (we neglected in this esti-

and k (<1) denotes the exchange weakening in the intermate the intergrain separatjorExchange weakening on

grain space when compared to the bulk exchange in the ideHTedgraLn boundariesdandéhe filrg thickneiss;]ere_lvaried o
material. The remaining connection between the anisotrop tudy the corresponding dependences of the film properties

constants readd =KV, whereK's are the usual material SeAellbgiI%%Iations of the remagnetization processes were
anisotropy constantéin ergs/cni) and V.= (3%%2)b%d is : )
the volupmye of the hgxago%al Iat)tice cellc ( ) performed on the IBM Pentium PC 133 MHz with 32 MB

If we assume that all lattice sites carry equal magnetidq'o"vI using a code_wrltten IFORTRAN An average run f(_)r a
moments(meaning, in the thin film model, equal volumes complete.hyst('areas IOO@V“.O va]ues of the.external field,
V=V, and equal magnetizationd, of all graing, then it is ~2x10* |tgrat|ons or effective field evaluations totgllfor
convenient to introduce the reduced fidletH/M and ex- 2 SyStem SIZ&N, XNy =128X256~3x 10" cells took about

2 . 10 h.
press the total energy oM; units as A typical hysteresis loop obtained in our simulations is

shown in Fig. 1 together with the gray-scale maps of the
E 1 ot -
:_2 (m;heY — _2 Bi(r)(mini)z magngtlzayon cor.nponemnX perpend|cular.to the external
VM2 i 25 field direction, which was chosen as thieaxis. The forma-
tion of the ripplelike magnetization structure can be clearly
seen already for the relatively large external figfiy. 1(a)].
When the field is decreased in the direction opposite to the
initial system saturation, this ripple structure continuously
B }2 (m.heP) (24) transforms into the so-called blocked structlieay.1(b); see
24 L also Fig. 1c)], which shows the system state immediately
before the irreversible magnetization jump. The blocked
where the reduced anisotropg=2D/M2V,=2K/M3 and  structure then disappears after the magnetization switching
exchangeCi; = Jj; /M§V0 constants are introduced. occurs in larger field§Fig. 1(d)].

To simulate quasistatidor the system temperatufie=0) The most useful characteristics of a random magnetiza-
remagnetization processes in such a system we have pdien pattern such as those shown in Fig. 1 is the correlation
formed the minimization of the enerd24) as a function of function (CF) of the magnetization, in our case the 2D cor-
the unit vector orientationsy; in a given external field using relation function of them, component

1 1
- 55’&%2 M )~ 5% Cij(mim;)
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FIG. 1. Simulated hysteresis loop obtained for the film thickness
d=10 nm and the exchange weakening on the grain boundaries
=0.1 together with the gray-scale mapswf values corresponding
to various fields as indicated in the figure. Gray-scale maps pre-
sented here and in Figs. 4 and 5 showx@428 cuts from 128
X 256 lattices actually simulated.

GM(r)=G™(x,y)={(m,(0)m,(r)), (25 L 0.05—
oy S

where the averaging is performed over the whole sample. In 000
Fig. 2 them, pattern in the remanent magnetization state for
the entire simulated sampldl, X N,=128<256 together X

with the contour map of its CHFig. 2(b)] is shown. Only the

central part of theG™(r) function is presented {16 o _
<ry,r,<16, where the distance is measured in lattice npdes /G- 2. Remanent magnetization state of a 1256 lattice
because outside the drawn region the CF exhibits only smalfhown as then, (a) gr%'sca'e '(Tr‘n‘";‘p an) the corresponding space
statistically insignificant oscillations around zero. The longj-c0"elation functionG™(r) =G (x,y) of my values(see the text
tudinal (along the initial direction of the external figld for detail3.

G™(0yy) and transverséerpendiculgrG™(x,0) cuts of this . .
CF looks qualitatively different, as shown in Fig. 3, which is Variation of the exchange coupling strength between the

a well known feature of the ripple structure occurring due tonelghborlng grains.We hav_e StUd'?d the system properties
the dipolar interaction of individual grains. We define thefor the exchar_1ge weakening region fror+=0 (exchange
characteristic ripple wavelength as the double distance decoupled grainsup to x=0.2. For larger values the cor-
from the coordinate origin to the first minimum of the lon-

gitudinal CF[Fig. 3(@] and the transverse correlation length  1°{ G(y) a) 1 G(x) b)
as the integral 0.8
0.6
L,/2
Ltzf G™(x,0)dx. (26) 0.4r A2

0 0.2—\ - 5
Such a definition ofL; is chosen because for an exponen- 09 Q/ﬁ 30 25 0.0 L 20 W %
tially decaying CFG™(x,0)=exp(—x/x.) it would give the 0.2 Y 02l Tt
natural valueL,=x. if the simulated area is so large that
Xc<Ly. FIG. 3. Typical(a) longitudinal G(y)=G(0yy) and (b) trans-

Important parameters of a thin filifmade from a given  yerseG(x)=G(x,0) correlation functions of then, magnetization
magnetic materialthat can be changed without a great effort components for the remanent magnetization state. The characteristic
are the exchange weakening on the grain boundariesd  ripple wavelengthh is defined as shown in the figure and for the
the film thicknessd. Dependences of the system propertiesdefinition of the transverse correlation lendthsee Eq(26). Here
on these two parameters obtained in our simulations are dignd in all other figures all distances are measured in lattice constant
cussed below. units.
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FIG. 4. Remanent magnetization states showmasgray-scale FIG. 6. Dependences ¢d) the reduced remanent magnetization

maps for various exchange weakening constangs indicated in  1r @and(b) the coercivityh, (b) on the exchange weakening

the figure. The same realization of the random directions of the eas?/ ) )
anisotropy axes was used for allvalues. | provides an accuracy better thanf which should lead

to substantial improvement of the accuracy by the simulation

relation length of the magnetization pattern was of the sam@f the equilibrium magnetization configuration in small and
order of magnitude as the sample size, so a reliable statisticafr0 external fields. To check the effect of small additional
estimate of the system properties was not possible due to tfgTors made by the dipolar field evaluation we have per-
finite size effects. formed separate calculations adding to the exact values of

The remanent magnetization struct¢peesented again as the dipolar field calculated by our method random errors
them, gray-scale maypfor variousx values is shown in Fig. with the Gaussian distribution and the dispersion 1%. Indeed
4. The structure clearly becomes coarser for larger exchang¥e found that such small errors lead to drastic changes in the
coupling, which manifests itself in the corresponding depenf€manence, so that far=0 (exchange decoupled grajrtse
dences of the average ripple wavelengffig. 5a)] and rémanence value obtained this way was-0.65 instead of
transverse correlation lengfgig. 5(b)]. the correct valugr=0.26 obtained without adding artificial

The dependence of the most important parameters of th@ors. _ _ _ _
hysteresis loop, the reduced remanent magnetizatipn We would like to point out that this observation doest
— 1y (h=0)/" and the coercivih.=H./My, is shown mean that a relative error about0.01 by the stray field
in y,:ig_ 6. AyS it was already observed in previous evaluation leads to such drastic result changesafiyrmag-
studies?®% the remanencgFig. 6a)] increases monotoni- netic system and parameter set. However, these results dem-
cally with the exchange coupling strengtthe slight de- onstrate how important trm(ac_tevaluatlon of the demz_igne-
crease observed for large values is within the statistical 1Zing field for a micromagnetic problemay be especially
errors and will not be discussed until more precise data bef Other interactions are abseiiés in the example given
come available However, thevaluesof the remanence that 2°0ve, where the magnetization configuration for the ex-
we observe for small exchange coupling are much Iowpr change decoupled grains in the absence of the external field
to 3 time$ than those reported in Refs. 28 and 29. is calculatedl It is also the manifestation of the well known

The explanation of this discrepancy that we propose is thaCt that an equilibrium magnetization configuration may be
following. For small exchange coupling the main interaction V€Y “Soft” so thatincreasing the computational accuracy by
between grains(magnetic momenjsis the dipolar one. the field eva_;lluatlon even fromO_.Ol up to~0.001 may lead
Hence, to obtain correct values of the magnetization in thd® Substantial changes in the final result. _
absence of the external fielsvhich is the remanengst is The dependence of the coercivity on the exchange inter-
crucially important to evaluate the interaction field exactly.action strengtt{Fig. 6(b)] is also in qualitative agreement
As it was mentioned above, both the hierarchical methodVith the results of previous numerical simulatigh€ apart
used in Ref. 29 and the cutoff of the dipolar interaction usedrom the slight increase df. for small « values, which is
in Ref. 28 lead to errors of 1% in the dipolar field evalu- almost within the statistical errors and will be discussed else-
ation, whereby our method with parameters described in Se&/here. Here we W°U|2g like to point out that, in contrast to

the previous result®?° the decreaseof the coercivity for
large exchange interaction values is much more pronounced.

) } a) 20 L b) It is well known that, in general, such a decrease can be
30r # ! I explained by the formation of large exchange-coupled clus-
z 15 ters of grains that leads to the averaging of the randomly
20¢ directed anisotropy fields of various grains and hence to the
15 £ 10 I large reduction of the effective anisotropy constant of such a
10} cluster. This decrease of the anisotropy, in turn, leads to the
s ,‘.!"" ’ I decrease of the coercivity of the system.

coer K P K One possible reason why do we observe a much larger
&00 005 010 0.15 020 (?.00 005 010 0.15 020

decrease of the coercivity with the growth of the exchange
FIG. 5. Dependences 6#) the ripple wavelength and(b) the ~ coupling is a much larger size of the system that we are able

transverse correlation length (b) on the exchange weakening  to treat using our FFT-Ewald technique. Namely, the system

In this and the following figures statistical errors, where not shownsizes considered in Ref. 28 (280 graing and in Ref. 29

are smaller than the symbol size. (~40x50 graing are of the same order of magnitude as the
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The most characteristic feature of the dependences shown
in Fig. 8 is the nonmonotonic behavior of bathandL; as
functions of the film thicknessl: They have a maximum
around a valuel=10 nm[we note, however, that the maxi-
mum on theL,(d) dependence is almost within statistical
errord. Although we lack the complete explanation for such
a behavior, we would like to present some qualitative specu-
lations. The initial increase of both correlation lengthand
L, for smalld’s is obviously due to the increasing strength of
the intergrain interaction resulting from the increasing mag-
netic moment of a single cell; this leads to the establishment

FIG. 7. Remanent magnetization states showmagray-scale  of a strong correlation between adjacent moments and to the
maps for various film thicknessesas indicated in the figure. formation of the ripple structure. After such a structure has

been formed completelithis happens fod=~6—-10 nn), the
correlation lengths. andL, for large k values(see Fig. 5. dipolar and the exchange interactions begin to compeéte:
This means that in the latter cases the coercivity could b&he dipolar interaction tries to decrease the average ripple
determined by the finite size effects because effectively thevavelength because the magnetostatic energy decreases
reversal of~ 1 cluster was considered. Another probable ex-when the charges of the opposite signs are drawn closer to
planation for such a difference in the coercivity values couldeach other andii) the exchange interaction tends to avoid
be again the higher precision in our stray field calculationgapid changes in the magnetization direction, thus trying to
because this field is also very important near the coercivityncrease the average wavelength. Both interaction fields scale
point where the magnetization variatiéand hence “mag- with the film thickness as-d, but the dipolar interaction is a
netic charges” creating the stray figlts especially strong. long-range one and hence its strength increases fébier

Variation of the film thicknesslo study the dependence corresponding coefficient before thed dependence is
of various system properties on the film thickndsse have largep so that the average wavelength decreases avifter
performed simulations of the remagnetization processes fahe ripple structure has been formed.
films with thicknesses fromd,,;,=1 nm up tod,,,=40 nm. Here some comments concerning the validity of the dipo-
Examples of the remanent magnetization structures for variar approximation used by the stray field evaluation are nec-
ous thicknesses are shown in Fig(agjain as the gray-scale essary. For the basic parameter set, where the film thickness
maps of them, component It can be clearly seen that for is 10 nm and the cell size in the film plane is alsd0 nm,
the smallest thickness studied=t 1 nm) there are no ripple this approximation is quite goadbecause a single cell can be
manifestations whatsoever and the magnetization pattern agpproximated reasonably by a sphetdowever, for much
completely isotropic, which can be verified plotting its 2D smaller and much larger film thicknesses this approximation
correlation function(in this case only the decay correlation clearly becomes poorer, so that results presented in Fig. 8
lengthL, can be defined The obvious reason is that for such should be considered at best as semiquantitative if we have
a small thickness the magnetic moment of an individuain mind the simulation of magnetic thin films. However,
grain is so small that intergrain interactions play almost nahese results are exact if one would like to consider our com-
role so that the system behaves itself as an assembly of ghutations as simulations of remagnetization processes in 2D
most noninteracting single-domain particles having uniaxialdipolar lattices with constant lattice spacing by various di-
anisotropy and the randomly distributed anisotropy axes. pole strengthgbecause, in the dipolar approximation, vary-

When the thickness is increased, the characteristic rippleng the film thickness, we change only the magnitude of the
structure starts to establish itself and the longitudiaédng  dipole moment connecting with each gell
the external field directionlD correlation functions begin to Effect of the homogeneous uniaxial anisotroftyis well
resemble those shown in Fig(ap, starting approximately known that some film preparation technigues lead to the in-
from the thicknessl=4 nm, it is possible to define the av- duction of the(usually weak homogeneous uniaxial anisot-
erage ripple wavelength. Thickness dependences of this avepy. Hence it would be interesting to study the effect of
erage wavelength and the transverse correlation length ~ such an anisotropy on the magnetization structure.
are presented in Fig. 8. Figure 9 demonstrates remanent magnetization states ob-
tained by the simulation of the remagnetization processes in
the films with a standard parameter $s¢e above, in par-

A2 a) J L, I .......... } b) ticular, «=0.1 andd= 10 nm and the homogeneous uniaxial
6f { N I anisotropy with the easy axes directed as shown in the figure.
i kY I :{ The initial direction of the saturation field was chosen as
ol I 5 F usual along they axis. The value of the homogeneous an-
., , I isotropy constant isk(©=5x10* J/n? (=5%10° ergs/
b e . 1! cm’), which is approximately 10 times smaller than the cor-
1 responding value of the anisotropy constant of the randomly
N SN 6:’0(1’11'1’1) ) (— i{)(nm) directed single-grain anisotropyKf?=4x10° J/in? (=4

x 1P ergs/ci)]. Nevertheless, the effect of the homoge-
FIG. 8. Dependences @¢#) the ripple wavelength and(b) the =~ neous anisotropy can be clearly seen; as expected, the anisot-
transverse correlation length on the film thicknessl. ropy directed along the ripple stripéperpendicular to the
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est correlation lengdh which is qualitatively consistent with
our results. A good example of the Lorentz microscopy im-
ages is given in Ref. 38, where the magnetic microstructure
of the thin CoCr films was investigated. Images presented
there are qualitatively very similar to those observed in our
simulations, but again no quantitative comparison can be
made.

We also would like to make some comments concerning
the comparison of our method for the dipolar field evaluation
with other proposed algorithris!®20:28.29.3949the advan-
tages of our method when compared with the techniques
based on the increasing number of the Fourier compoftfents

FIG. 9. Remanent magnetization states showmagray-scale ~are explained in Sec.)ll First of all, some authof§%94!
maps (128 256 lattice$ for various kinds of homogeneous anisot- Propose to truncate the dipolar interaction taking into ac-
ropy as shown in the figure. The homogeneous anisotropy constagount only contributions from the finite number of nearest
for casega) and(c) is K(®=5x10" J/n? (=5% 10° ergs/cr). neighbors, thus reducing the operation count for the dipolar

field evaluation formally to~N (we recall that in our
initial field direction greatly enhances the contrast of the method the corresponding dependence BInN). Although
ripple structure. We expect that for larger exchange couplingormally possiblefor 2D problems this trick does not help
even lower values of the homogeneous anisotropy can havevgry much because, due to the quite slow decay of the dipo-
pronounced influence on the magnetization structure. Our rdar interaction ¢-r ~3), alarge number of nearest neighbors,
sults are in a qualitative agreement with the observationgypically several hundred$;***! should be taken into ac-
made by McCord? count to achieve a reasonable accuracy. Hence the propor-

A comparison of our results with the existing ripple theo- tionality factor in the~N dependence of the operation count
ries (see Refs. 32 and 33 and references thgisimot very  is so large that for the cell numbeXscurrently available the
useful because most of them are built in the linear approxiFFT method turns out to be faster. Another drawback of the
mation, i.e., small magnetization deviations from the satutruncation method is that for each set of system parameters
rated state are assumed. The most qualitatively nontrivigthe truncation radius should, strictly speaking, be determined
prediction of such theories that can be related to our simulaseparately by performing simulations with an increasing
tions is the calculation of the magnetization correlation func-number of nearest neighbors taken into account. Thebast
tion done by Maas¥! The shapes of the contour lines ob- not the leagtproblem is that this methodannotbe applied
tained in Ref. 34 agree qualitatively remarkably well with to 3D problems, whereas our FFT-Ewald algorithm can be
those shown in Fig. ®). Results for the corresponding easily generalized for this case.

Green function(which in this case behaves itself qualita- The next method that allows large-scale micromagnetic
tively similar to the correlation functionare presented in simulations including the dipolar field effects is the hierar-
Ref. 35, which can be accessed much more easily. The onghical model developed by Miles and Middlet&h The
nonlinear ripple theory known to @s(which, according to model is based ofi) the explicit summation of the dipolar
Ref. 36, should be valid for permalloy films if the magneti- field contributions over drelatively small number of near-
zation deviation angle does not excee®0°) predicts the est neighbors andi) summation of the contributions from
growth of the ripple correlation length with the exchangethe far zones divided into larger cell blocks. The algorithm
constant(however, only a linear growjhand does not pre- also has the operation courtNInN and an adequate choice
dict any nonmonotonic behavior of the correlation lengths a®f block sizes and structure enables us to make the dipolar
functions of the film thickness. field calculation errorgarising from the moment averaging

For the experimental verification of the results of ourinside large blocksreasonably small. The major problems in
simulations the observation of the magnetic structures duringhis method are the relatively complicated algorithm imple-
the remagnetization process with the resolution of at leashentation, the choice of the parameters of the hierarchical
several hundreds of nanometers is necessary. From the elock structure, and the error estimation, whi@s for the
perimental images the correlation functions such as(#).  truncation methodsshould be performed separately for each
could be obtained to compare corresponding correlatiomew set of system parameters. This is not the case in our
lengths with our results. Independent measurements of th@lgorithm, which is simple to handle and for which the error
exchange coupling between grains and the film thicknesgarising only from the truncation of the short-range field
would be necessary. Whereby the latter could be performeti3") can be estimated in advance. As mentioned above, it
relatively straightforward, estimations of the exchange couturned out to be vanishingly small already for tWio the
pling could be done using the values of the remanence andorst case thrgenearest-neighbor shells taken into account.
coercivity obtained from the hysteresis loops. Another question when applying the hierarchical model is

There are currently two groups of methods that possesisow to take correctly into account periodic boundary condi-
the necessary spatial resolution: magnetic force microscoptjons.

(MFM) and Lorentz microscopy. High-resolution measure- However, it should be pointed out that both groups of
ments using MFM can be found, e.g., in Ref. 37, where it ismethods discussed abov&uncation and the hierarchical
shown that the polycrystalline film with the lowest coercivity mode) are able to simulateisorderedstructures, which is
exhibited the coarsest magnetic microstruciiiue, the larg-  not possible for our technique because the Fourier expansion




14 342 D. V. BERKOV AND N. L. GORN 57

requires the translational invariance of the lattice. We carthe nearly linear computational time dependence on the lat-
account for any type of randomngsandom anisotropy, ran- tice site number almost the same performance as by the
dom distribution of the intergrain exchange coupling, distri-simulations of the short-range mod®lis expected. It should
bution of the saturation magnetizatiéomagnetic momenjs also be mentioned that the transfer of our method on other
among the lattice sites, et@xcept for thestructural disor-  long-range interaction types such as the RKKY interaction is
der. The introduction of such a disorder is believed to bestraightforward.
necessary for simulating real thin films because in some

cases it clearly influences the macroscopic magnetic proper-

. . V. CONCLUSION
ties of the systeri®*° However, the question whether the

same effect can be produced usingegular lattice with the We have presented a method for the evaluation of the
statistical distribution of another parameters mentionedong-range dipolar interaction fields in lattice systems with
above is(to our knowledggstill not sufficiently studied. periodic boundary condition. Using this method, we were

Another important and quickly developing area where ourable to perform large-scale numerical simulations of the qua-
algorithm for the dipolar field evaluation can be used is thesistatic remagnetization processes in 2D dipolar systems with
simulation of the equilibrium and nonequilibrium thermody- random on-site anisotropy and nearest-neighbor exchange in-
namics of various 2D lattice systerh® which for the mod-  teraction. A couple of results concerning the dependence of
els with the long-range interactions are still performed forthe hysteresis loop parameters and the magnetization corre-
moderate lattice sizes onf{>>*3It should be clear that our lation lengths were presented. The applicability of our
method is not suitable for the Metropolis-type algorithmsmethod to the simulations of equilibrium and nonequilibrium
used for the simulation of equilibrium thermodynamical thermodynamics of lattice systems with long-range interac-
properties where single-moment updates are performed bé&eon was discussed.
cause the great acceleration by the dipolar field evaluation
(~N In N instead of~N?) is achieved only when this field ACKNOWLEDGMENTS
is evaluatedgsimultaneouslyn all lattice sites. Hence, to take
advantage of this acceleration an algorithm based on the The authors are greatly indebted to Professor W. Andra
Langevin dynamics of the system should be U§¢dDue to  and Dr. R. Mattheis for many useful discussions.
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