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Quasistatic remagnetization processes in two-dimensional systems with random on-site
anisotropy and dipolar interaction: Numerical simulations

D. V. Berkov and N. L. Gorn
INNOVENT e.V., Go¨schwitzer Strasse 22, D-07745 Jena, Germany

and Institute of Physical High Technologies, Helmholtzweg 4, D-07743 Jena, Germany
~Received 29 September 1997!

We have developed a method that enables a fast and exact evaluation of the long-range interaction field by
simulating the lattice dipolar systems with periodic boundary conditions. The method is based on the combi-
nation of the fast-Fourier-transformation technique and the modified Ewald method for the lattice sum calcu-
lation. We have used our algorithm for simulations of the quasistatic remagnetization processes in two-
dimensional hexagonal lattices of dipoles with the uniaxial on-site anisotropy~anisotropic Heisenberg model
with the long-range dipolar interaction!, which can be considered as a plausible model of a thin polycrystalline
magnetic film with the intergrain exchange and with each crystallite having its own single-grain anisotropy.
During the remagnetization process we observe typical ripplelike magnetization structures well known from
the experimental observations. The parameters of these structures as functions of the exchange and anisotropy
strength are studied.@S0163-1829~98!03522-X#
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I. INTRODUCTION

Numerical simulation of strongly interacting man
particle models is currently one of the most important to
for gaining information about a large variety of physic
systems1 such as standard ferro- and antiferromagne
Heisenberg models, exchange and dipolar spin glasses
ferrofluids, among others.2,3 Micromagnetic simulations o
equilibrium magnetization structures~see, e.g., Refs. 4–7!
and remagnetization dynamics in magnetic materials and
films ~such as those performed in Refs. 8 and 9! can also be
considered as simulations of many-particle models wh
one particle can be associated with a single cell arising fr
the discretization of a continuous problem.

Among the systems listed above, those with the lo
range interparticle interaction, mainly Ruderman-Kitte
Kasuya-Yosida~RRKY! or dipolar, are the most difficult to
simulate for the obvious reason that the evaluation of
interaction field oneachparticle requires the summation o
contributions fromall other system particles. Thus the com
puter time for any algorithm using the straightforward su
mation grows as;N2 (N being a particle number!, so that
using this simplest method only simulations for system h
ing up to N;103 particles are possible even with mode
supercomputers.10

The corresponding calculation can be greatly accelera
if we do not expect the formation of any long-range mag
tization ~or polarization! structures such as magnetic d
mains. A good example of such a situation is the simulati
of the quasistatic remagnetization processes in disord
systems without the strong nearest-neighbor exchange
homogeneous external field.4,11,12 In this case only the field
contribution from the particles in the so-called near zo
~i.e., from particles that are inside a sphere with the rad
Rrest around the given particle! should be calculated explic
itly. The contributions from the rest of the system particl
i.e., from the particles outside this sphere, can be comp
570163-1829/98/57~22!/14332~12!/$15.00
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as the Lorentz cavity field13 because on the large scale th
magnetization is assumed to be homogeneous. The que
how to choose the restriction radiusRrest has to be solved
separately in each concrete case, but in m
applications4,12,14it is sufficient to set this radius to be of th
same order of magnitude as the mean interparticle dista
Thus only a small fraction of particles is contained in t
near zone making the operation count for the interaction fi
evaluation proportional to;nN, where the number of par
ticles n in the near zone isn!N and, more importantly,
independent of the system size. In such cases simulation
up to several thousand particles can be easily performed e
with moderate computer facilities.4,12

The problem is much worse for the systems having b
the strong nearest-neighbor exchange interaction and
relatively weak but long-range dipolar interaction. The inte
play between these two forces may create complicated
main structures where the magnetization~confining further
discussion to magnetic systems! can be considered as homo
geneous only on a very large length scale~much larger than
the average domain size!. This means that even methods u
ing some artificial cutoff radius~such as the Lorentz cavity
method! would be extremely time consuming due to the ve
large value of this restriction radius required to obtain a
equate results.

Fortunately, for thelattice systems of this kind the meth
ods using the fast-Fourier-transformation~FFT! techniques
for the dipolar field evaluation became available in the p
decade.5,6,15 The methods are based on the observation
the dipolar field on thei th lattice site created by all othe
system moments

H i5(
j Þ i

3ei j ~ei j mj !2mj

r i j
3

~1!

can be rewritten as
14 332 © 1998 The American Physical Society
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Hi
a5 (

b, j Þ i
Wi j

abm j
b , ~2!

wherea,b5x,y,z, unit vectorsei j in Eq. ~1! are defined as
ei j 5r i j /r i j , and the vectorsr i j 5r i2r j connect the cellsi
and j @we use the one-dimensional~1D! notation for simplic-
ity#. For the translationally invariant~regular! lattice r i j de-
pends on the site numbersi and j via their difference
u i 2 j u only, so the elements of the interaction matricesWi j

ab

also depend only on this difference. In this case the exp
sion ~2! for the dipolar field components

Hi
a5(

j Þ i
(
b

Wu i 2 j u
ab m j

b ~3!

can be recognized as an example of the discrete convolu
In Eq. ~3! the configuration of the magnetization compone
m j

b plays the role of asignal and the interaction matrice
Wu i 2 j u

ab can be viewed as theresponse functionsin terms of
the signal processing from where the whole formali
comes. Such a convolution is normally performed via
FFT using the corresponding theorem that under certain c
ditions ~see below! the Fourier transform of the fieldHk

a is
the dot product of the Fourier transforms of the interact
coefficientsWk

ab and magnetic momentsmk
b ,

Hk
a5(

b
Wk

abmk
b . ~4!

The major gain arises from the fact that the Fourier co
ponents of the magnetization can be evaluatedall simulta-
neously in ;N ln N operations (N is the total number of
lattice sites! using the FFT algorithm; the inverse Fouri
transform fromHk

a to the field components in real spac
Hi

a5Ha(r i) requires the same effort. Finally, the multiplic
tion ~4! requires only;N operations~for N lattice sites we
haveN independent Fourier components!. Hence the evalu-
ation of the dipolar field forall lattice sites can be performe
in ;N ln N operations only, which ensures the nearly line
dependence of the calculation time on the particle num
almost as in systems with the short-range interaction. Us
this idea, large-scale 2D and 3D micromagnetic simulati
~with the cell numberN;105) have been performed.6,9,16

The implementation of this basically very simple id
meets, however, serious technical difficulties that are du
the conditions implied by the convolution theorem. The fi
condition formulated in terms of the signal processing the
requires that the signal should be aperiodic function of time
which in our case means the spatial periodicity of the m
netization configuration. The second condition requires t
the response function should have afinite duration~this is the
counterpart of the requirement concerning the compactn
of the kernel support in the convolution theorem for contin
ous functions! meaning for our situation that the interactio
should be cut off at some finite distance. Both conditions
violated in the micromagnetic applications:~i! The magneti-
zation configuration is, generally speaking,not periodic and
~ii ! the dipolar interaction is a long-range one and no phy
cally reasonable cutoff radius can be introduced due to
quite slow decay (;r 23).
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The conceptually simplest way to resolve these diffic
ties exists for the finite systems, i.e.,~i! magnetization con-
figurations that are finite by themselves, such as sm
particles,16 or ~ii ! those systems for which only their finit
region creates the dipolar field, such as domain walls emb
ded in an infinite homogeneously magnetized medium6!. For
such a finite system one can apply the zero padding te
nique, which is normally used in the signal processing
avoid aliasing due to the nonperiodicity of the signal.

For the evaluation of the dipolar field the application
this technique means that we should first double the size
the initial lattice padding the magnetization configurati
with zeros in all directions and second cut off the dipo
interaction matrices in Eq.~3! at the distance equal to th
size of theinitial lattice. Then we can treat our system as
periodic magnetization configuration consisting of replic
of our initial system separated by areas of the same
having zero magnetization. There is no interaction betw
various replicas due to the cutoff of the dipolar matrices,
all physics of this artificial periodic configuration is still de
termined by the interaction inside one replica, as it was
the initial system. On the other hand, both conditions of
convolution theorem, the periodicity of the magnetizati
configuration and the finite range of the interaction, are f
filled now and we can safely apply this theorem to evalu
the dipolar field.5,6,9

Important as they are, finite~or, generally speaking, non
periodic! magnetization configurations obviously do n
cover the whole range of physically interesting problem
Simulations of magnetic systems with periodic bounda
conditions are necessary, e.g., in classical micromagne
where periodic structures such as striped domains or
structures arising in information storage media are import
for various applications. Another very common situati
where periodic systems appear are the Monte Carlo sim
tions of the thermodynamical properties for various latt
models, where periodic boundary conditions are almost
avoidable to reduce the influence of the finite-size effects17

For systems with periodic boundary conditions the con
lution theorem cannot be applied directly for the dipolar fie
calculations. The reason is that although the magnetiza
configuration is now periodic by the very definition of th
periodic boundary conditions~for, e.g., 3D problems the
simulation region is supposed to be replicated infinite
many times in thex, y, and z directions!, the interaction
between various replicas of the simulated system is esse
~in fact, this interaction is the main reason to use su
boundary conditions at all! and hence the dipolar interactio
cannot be truncated at any distance. This means that the
ond condition necessary for the application of the convo
tion theorem, the finite duration of the response function
violated.

In such cases one usually attempts to establish the
nection between the Fourier components of the magnet
tion configuration and the dipolar fieldHdip using the Poisson
equation. This connection is then applied to calculateHdip
for any given periodical magnetization distribution. Th
method provides satisfactory results for the smooth mag
tization changes along the lattice, but fails for the rapid m
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14 334 57D. V. BERKOV AND N. L. GORN
netization oscillations due to the ‘‘unpleasant’’ behavior
the Fourier components of the dipolar field for large wa
vectors.

In this paper we describe the modification of this meth
which allows the rapid and exact calculation of the dipo
field for dipole lattices with periodic boundary condition
Details of the method are given in Sec. II. The application
our method for the calculation of the quasistatic~temperature
T50) remagnetization processes in the 2D dipole sys
with the random uniaxial on-site anisotropy is described
Sec. III. In particular, this system is supposed to provid
reasonable model of polycrystalline magnetic thin films w
uniaxial single-grain anisotropy when the anisotropy axes
the individual grains are distributed randomly in space.
Sec. IV results of our simulations are compared with exp
mental observations made during the remagnetization
such films. Further possible applications of our method
discussed in Sec. V.

II. EVALUATION OF THE DEMAGNETIZING FIELD

To explain the principal difficulty arising from the Pois
son equation method, we begin with the Poisson equation
the scalar magnetic potential

Df~r !524pr~r !, ~5!

wherer(r ) is the density of artificial ‘‘magnetic charges
defined via the magnetizationM (r ) asr(r )52¹M (r ). The
magnetic charge density of a single dipolem located at the
point r can be expressed using the gradient of the co
spondingd function asr(r )52m¹d(r ).18 For a 2DNx3Ny
lattice of magnetic dipoles the corresponding magne
charge density is

r~r ![r~r i ,z!52d~z! (
i , j 51

Nx ,Ny

mi j ¹d~r i2r i j !, ~6!

where the lattice plane is chosen as theOxy plane; in this
plane lie the vectorr i and vectorsr i j that define the lattice
node locations. For the sake of simplicity we also assu
that magnetic dipoles have onlyx and y components~ori-
ented in the lattice plane! so that mi j 5m i j

x ex1m i j
y ey . For

such a lattice with periodic boundary conditions the cha
density~6! is also periodic in theOxy plane; expandingmi j
andd(r i2r i j ) into a Fourier series andd(z) into a Fourier
integral, we obtain the Fourier expansion of the charge d
sity as

r~r i ,z!52
i

2pDSE2`

`

dqze
iqzz

3(
$qi%

@mx~qi!qx1my~qi!qy#e
iqi–r i, ~7!

whereDS is the area of one lattice cell in theOxy plane,
mx(y)(qi) are the Fourier transforms of the dipole compon
arraysm i j

x(y) , and the discrete sum is taken over the wa
vectors corresponding to the lattice under consideration.

The same Fourier transformation should be done for
magnetic potential~expansion into the Fourier series in th
Oxy plane and into the Fourier integral in thez direction!.
f

,
r

f

m
n
a

f
n
i-
of
e

or

-

c

e

e

n-

t
e

e

Applying the Laplace operator to this Fourier transform
the magnetic potential, substituting the result together w
the expansion~7! into the initial Poisson equation, and usin
the orthogonality properties of the Fourier harmonics on
finite lattice, we obtain the Fourier components of the ma
netic potential as

f~qi ,qz!52
4p i

DS
•

mx~qi!qx1my~qi!qy

q2
, ~8!

where q25qi
21qz

2 . For further calculations we need th
Fourier components of this potential in theOxy plane, i.e.,
f(qi ,z50). They can be easily evaluated as

f~qi ,z50!5
1

2pE2`

`

dqzf~qi ,qz!, ~9!

leading to the final result

f~qi ,z50!52
2p i

DS
•

mx~qi!qx1my~qi!qy

qi
. ~10!

In several applications, in particular, in numerical simu
tions using the ‘‘equation-of-motion’’ algorithms, the dipola
field Hdip itself ~rather than magnetic potential! is required.
Fourier components of this field can be found using the st
dard relationHdip52¹f, which for the Fourier component
readsHx(qi)52 iqxf(qi) andHy(qi)52 iqyf(qi), so that
for the field Fourier components one finally obtains

Hx~qi ,z50!52
2p

DS
•

mx~qi!qx
21my~qi!qyqx

qi
,

Hy~qi ,z50!52
2p

DS
•

mx~qi!qxqy1my~qi!qy
2

qi
. ~11!

Note the difference between this result and the cor
sponding formulas for the stray field components used
Refs. 19 and 20@i.e., Eq.~6! in Ref. 20#. The formulas given
in Refs. 19 and 20 are incorrect~wrong power dependenc
on the wave vector components! which may be due to the
absence of thed(z) function in the definition of the charge
density in the papers cited above and the following abse
of the integration~9! over qz .

The required stray field components at the lattice no
Hx(r i j ) and Hy(r i j ) ~where magnetic moments are locate!
can now be obtained in the same way as by the applicatio
the convolution theorem for finite systems, i.e.,~i! calculat-
ing the Fourier componentsmx(y)(qi) of the magnetization
arraysm i j

x(y) via a FFT algorithm (;N ln N operations!, ~ii !
multiplying them by the corresponding components of t
wave vectorqi to obtain the Fourier transform~11! of the
stray fieldHx(y)(qi) (;N operations!, and ~iii ! performing
the inverse FFT to obtain the real space components ofHdip

~again;N ln N operations!.
The main problem when using this algorithm is due to t

following two circumstances: First, for the finite lattice wit
the periodic boundary conditions we have at our dispo
only a finite number of the Fourier components and, seco
the Fourier components of the dipolar field~11! do not, gen-
erally speaking, tend to zero for the large values of the w
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vector q ~they even diverge as;q when qx;qy;q and q
→`). The first circumstance forces us to cut off the Four
spectrum of the dipolar field at the maximal wave vec
componentsqx;1/Dx andqy;1/Dy, whereDx andDy are
the sizes of a single lattice cell. Due to the second circu
stance this means asharp~abrupt! cut off of theHdip Fourier
spectrum, which may lead, as it is well known, to large a
ficial oscillations of the dipolar field. These oscillations c
be observed very clearly if one tries to evaluate~using the
algorithm described above! the dipolar field of asingle di-
pole placed somewhere on the lattice.

In the classical micromagnetics this problem is often
very serious because the variation of the magnetization c
ponents along the lattice are quite slow due to the str
exchange interaction between the neighboring cells, i.e., b
m i j

x andm i j
y are smooth functions of the node position (i , j ).

Hence their Fourier components for the large wave vec
(qx;1/Dx, qy;1/Dy) are very small thus leading to sma
Fourier components ofHdip @see Eq.~11!#. In this case the
cutoff of the Hdip Fourier spectrum at the maximal wav
vectors available does not introduce any substantial osc
tions because the spectrum components for these largeq’s
are already small by themselves. This is the reason why
direct evaluation of the dipolar field using the relations su
as Eq.~11! can provide satisfactory results~see, e.g., Refs
15 and 21!.

However, in many systems such a ‘‘pleasant’’ behavior
the magnetization components~their smooth variation! is
clearly not the case. For example, even in classical mic
magnetics rapid changes of the magnetization between
neighboring cells are possible if polycrystalline samples w
the weakened exchange across the grain boundaries
simulated~see, e.g., Refs. 7 and 19!. The problem is always
present also in the Monte Carlo simulations of the therm
dynamical properties of various lattice models22,23where dif-
ferences between the magnetic moments on the adjacen
tice sites are large at least above the ordering temperatur
these examples the error resulting from the sharp cutof
the field spectrum is uncontrollable and hence some meth
to resolve this difficulty are clearly needed.

One obvious way to avoid the problem of the rapid fie
oscillations resulting from the abrupt magnetization chan
along the lattice is to introduce some artificial magnetizat
variationinsidea single cell~i.e., to mimic the magnetization
behavior in nature!. This is equivalent to the enhancement
the lattice spatial resolution and obviously removes the a
ficial field oscillation mentioned above because much lar
Fourier vectors are now available, for which the Four
components of the magnetization tend to zero due t
smoothvariation of the magnetization inside a single ce
Thus the problem is removed exactly for the same reaso
described above for the system with the smooth magne
tion changes along the initial lattice. However, the price
be paid for such a simple solution is the correspond
growth of the computational time and required compu
memory due to the larger number of lattice sites result
from the lattice refinement.

For this reason we propose another method that ena
exact calculation of the dipolar~or any other long-range!
field on finite lattice systems with the periodic boundary co
ditions without introducing any magnetization distributio
r
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inside a single cell thus avoiding the increase of the com
tational time due to the lattice refinement. The method
based on the combination of the Poisson equation met
explained above and the modified Ewald method that is n
mally applied for the evaluation of the Coulomb lattic
sums.13,24

Following the basic idea of the Ewald method we add a
subtract at each lattice node (i , j ) ~which carries the dipole
momentmi j ) an artificial ‘‘Gaussian dipole’’ with the charge
density given by@here and below thed(z) dependences o
the charge density are omitted for simplicity#

r i j ~r !52
1

~2p!3/2a5
@~x2xi j !m i j

x 1~y2yi j !m i j
y #

3expF2
~r2r i j !

2

2a2 G , ~12!

where the choice of the ‘‘dipole width’’a will be discussed
later. One can easily verify that the total dipole moment
the distribution~12! is 2mi j . After this operation the charge
density of the system can be written as the sum of two p

r~r !5rA~r !1rB~r !, ~13!

where the first part

rA~r !52 (
i , j 51

Nx ,Ny

mi j ¹d~r2r i j !

2
1

~2p!3/2a5 (
i , j 51

Nx ,Ny

@~x2xi j !m i j
x 1~y2yi j !m i j

y #

3expS 2
~r2r i j !

2

2a2 D ~14!

contains the sum of the pointlike dipoles~6! @r(r ) of the
initial system# and the contribution of the ‘‘negative’’ Gauss
ian dipoles given by Eq.~12! and the second part

rB~r !5
1

~2p!3/2a5 (
i , j 51

Nx ,Ny

@~x2xi j !m i j
x 1~y2yi j !m i j

y #

3expS 2
~r2r i j !

2

2a2 D ~15!

represents the density of the ‘‘positive’’ Gaussian dipo
that is added to cancel the second sum in Eq.~15!.

The gain achieved by this transformation is the same a
the standard Ewald method.13,24 The total dipole moment of
the first partrA(r ) connected with each lattice site is ze
because the total moment of the negative Gaussian di
exactly compensates the pointlike dipole of the initial syst
at each lattice site. For this reason the field created by
first part of the charge densityrA(r ) associated with each
lattice site rapidly tends to zero~see below! and may be
treated as a short-range interaction. On the other hand
second partrB(r ) of the charge density is relatively smoo
~it is described not by the pointlike dipoles but by the smoo
Gaussian distribution at each lattice site!, so the field created
by this part can be safely calculated using the Poisson e
tion technique~see the corresponding arguments above!.
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14 336 57D. V. BERKOV AND N. L. GORN
More precisely, the field created by the first part of t
magnetic charge densityrA(r ) associated with the lattice sit
( i , j ) is

HA,i j
x ~r !5F3~x2xi j !~mi j Dr i j !

~Dr i j !
5

2
mx

~Dr i j !
3G f G~Dr i j !

2A2

p

~x2xi j !~mi j Dr i j !

~Dr i j !
2a3

expF2
~Dr i j !

2

2a2 G ,

~16!

HA,i j
y ~r !5F3~y2yi j !~mi j Dr i j !

~Dr i j !
5

2
my

~Dr i j !
3G f G~Dr i j !

2A2

p

~y2yi j !~mi j Dr i j !

~Dr i j !
2a3

expF2
~Dr i j !

2

2a2 G ,

~17!

whereDr i j 5r2r i j and the functionf G(r ) is defined via the
standard error function erf(x) as

f G~r !512erfS r

aA2
D 1A2

p

r

a
expS 2

r 2

2a2D . ~18!

From Eqs.~17! and~18! it can be seen that the field create
by a single lattice node decays forr @a as exp(2r2/2a) and
hence by the evaluation of the dipole fieldHA

dip due to the
partA of the charge density only the contributions from se
eral nearest neighbors of each cell~i.e., from those for which
Dr i j ;a) should be taken into account. This means that
HA

dip evaluation takes;N operations for the whole lattice.
The fieldHB

dip due to the second part of the charge dens
~15! can be calculated exactly as it was done for the lattice
the pointlike dipoles@see Eqs.~5!–~11!#. The result is that
the Fourier components ofHB

dip can be obtained from the
Fourier transform~11! of the field created by the point di
poles by multiplying the components~11! by the factors
exp(2qi

2a2/2). These factors assure thatHB
dip(qi) tend to zero

for large wave vectors so that the spectrum cutoff due to
finite number of the Fourier components used does not
to any artificial field oscillations.

The last methodical problem is the choice of the Gauss
dipole widtha. From Eqs.~17! and~18! it can be seen thata
should be chosen as small as possible to ensure rapid d
of the short-range fieldHA

dip , so that by its calculation only
the contributions from the few nearest neighbors could
taken into account. On the other hand,a should not be too
small because otherwise the factors exp(2qi

2a2/2) that should
cause the decay of the large-q Fourier components ofHB

dip

will be not sufficiently small even for the largest availab
wave vector componentsqmax

x ;1/Dx and qmax
y ;1/Dy. We

found that the choicea5max(Dx,Dy) for which the contri-
butions from the three nearest-neighbor shells have to
taken into account by theHA

dip evaluation provides the opti
mal compromise between the calculation speed and a
racy.
-

e
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f

e
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n
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e
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III. NUMERICAL SIMULATIONS
OF 2D HEXAGONAL LATTICE SYSTEMS

Using the method introduced above, we have perform
numerical simulations of quasistatic remagnetization p
cesses in a 2D system of magnetic moments located on
hexagonal lattice with lattice constant~the nearest-neighbor
distance! ahex and periodic boundary conditions. The syste
can be viewed as an anisotropic 2D Heisenberg model w
the long-range~in this case dipolar! interaction. It can also be
treated as a plausible model of a thin polycrystalline m
netic film where each crystallite has its own magnetic anis
ropy. In this case the hexagonal lattice is supposed to mo
the hexagonal structure of certain kinds of magnetic t
films.25,26

The total system energy includes the energy of magn
moments in the external fieldEext, the local anisotropy en-
ergyEan, the energy of the exchange interaction between
nearest neighborsEexch and the dipolar~also called demag-
netizing! interaction energyEdip :

Etot5Eext1Ean1Eexch1Edip . ~19!

Keeping in mind that the magnitudem i of the magnetic mo-
ment at each lattice site is usually constant~which is the case
for a standard Heisenberg model and by the micromagne
simulations when a material is supposed to be well below
Curie temperature!, it is convenient to introduce the unit vec
tors mi5mi /m i defining the direction of magnetic momen
at thei th lattice site and express the energy as a function
the orientations of these vectors. In this notation the ene
in the external field is

Eext52(
i

m i~miH i
ext! ~20!

~here and below we use for simplicity the 1D notation
mark lattice nodes!; the external fieldH i

ext can be inhomo-
geneous~site dependent!.

The local anisotropy energy is assumed to include
contributions from the random uniaxial anisotropy~due, e.g.,
to statistical orientation of the anisotropy axesni of various
crystallites! and from the homogeneous uniaxial anisotro
~which may arise due to some specific features of the fi
preparation process! along thex or y axis in the film plane:

Ean52(
i

Di
~r !~mini !

22Dx~y!
~0! (

i
mi ,x~y!

2 . ~21!

Here the anisotropy constantDi
(r ) characterizes the random

anisotropy strength on thei th site andDx(y)
(0) are the constants

of homogeneous anisotropy along thex(y) axis. Below we
assume that allD ’s are positive, which corresponds to th
easy axis case.

The exchange energy has the standard Heisenberg fo

Eexch52
1

2(
^ i , j &

Ji j ~mimj ! ~22!

where the sum is taken over the nearest neighbors^ i , j & and
the exchange constantsJi j may be also site dependent. Th
remaining energy contribution, the dipolar interaction e
ergy, is evaluated as
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Edip52
1

2(i
m i~miH i

dip!, ~23!

wherex andy ~in-plane! components of the dipolar fieldHdip

are evaluated using the formalism described in Sec. II,
thez component is calculated as the demagnetizing field
thin film, i.e.,Hz

dip524p(m i
z/Vc) whereVc is the volume of

one lattice cell so that the quantitym i
z/Vc corresponds to the

material magnetizationMz used in classical phenomenolog
cal calculations. This simplified calculation method for t
perpendicular dipolar field component provides a good
proximation when the variation of thez component of the
magnetic moments along the lattice is smooth, which w
always the case in our simulations.

If the 2D system described above is supposed to simu
the behavior of a thin magnetic film having a thicknessd and
consisting of closely packed hexagons with the sideb, then
parameters entering the energy expression~20!–~23! can be
related to the magnetic material parameters: saturation m
netizationMs , exchange stiffness of the bulk materialA, and
random and homogeneous uniaxial anisotropy constantsK (r )

andKx(y)
(0) . The only nontrivial step when deriving the corr

sponding formulas is the establishment of the relation
tween the Heisenberg exchange constantsJ and the material
exchange stiffnessA. This can be done most conveniently b
assuming that the magnetization rotation in real films ta
place mainly on the grain boundaries between the neigh
ing crystallites. This suggestion is also physically reasona
because the exchange interaction is usually weaker in
intergrain space due, e.g., to the enhanced concentratio
nonmagnetic impurities there. Under this assumption, us
the method proposed in Ref. 27 we obtain the relationJ
5k(Abd/d), whered is the intergrain boundary thicknes
and k (,1) denotes the exchange weakening in the in
grain space when compared to the bulk exchange in the i
material. The remaining connection between the anisotr
constants readsD5KVc , whereK ’s are the usual materia
anisotropy constants~in ergs/cm3) and Vc5(33/2/2)b2d is
the volume of the hexagonal lattice cell.

If we assume that all lattice sites carry equal magne
moments~meaning, in the thin film model, equal volume
Vi5V0 and equal magnetizationsMs of all grains!, then it is
convenient to introduce the reduced fieldh5H/Ms and ex-
press the total energy inV0Ms

2 units as

E

V0Ms
2

52(
i

~mihi
ext!2

1

2(i
b i

~r !~mini !
2

2
1

2
bx~y!

~0! (
i

mi ,x~y!
2 2

1

2(
^ i , j &

Ci j ~mimj !

2
1

2(i
~mihi

dip!, ~24!

where the reduced anisotropyb52D/Ms
2V052K/Ms

2 and
exchangeCi j 5Ji j /Ms

2V0 constants are introduced.
To simulate quasistatic~for the system temperatureT50!

remagnetization processes in such a system we have
formed the minimization of the energy~24! as a function of
the unit vector orientationsmi in a given external field using
d
a

-

s

te

g-

-

s
r-
le
he
of
g

r-
al
y

c

er-

the relaxation method described in Ref. 6. For the hyster
loop simulations~results of which are described below! we
started, as usual, from the large (hext;10) field where the
magnetization configuration was nearly saturated and
creased the field consequently by a small amount using
equilibrium configuration obtained for the previous value
a starting condition for the new one.

IV. RESULTS AND DISCUSSION

In this section we present results of our simulations of
remagnetization processes in 2D hexagonal lattice syst
with the nearest-neighbor exchange and long-range dip
interaction between magnetic moments. Specifically we c
sider our simulations as modeling the behavior of thin po
crystalline magnetic films with random anisotropy, keepi
in mind possible comparisons of our results with experim
tal data and other numerical simulations performed on s
films. The parameter set used in our simulations, which w
be referred to as a standard set, corresponds to thin Co fi
and is as follows: the material saturation magnetizationMs
51.43106 A/m (51400 G!; the bulk exchange constantA
510211 J/m (51026 erg/cm!; an easy axis anisotropy with
the constantK (r )543105 J/m3 (543106 erg/cm3) and an-
isotropy axes randomly distributed in three dimensions
assigned to each grain~cell or magnetic moment!; the homo-
geneous anisotropy contribution~when not stated otherwise!
is absent:Kx

(0)5Ky
(0)50; the side of the~hexagonal! grain

b55 nm; and intergrain separationd51 nm. Thus, for the
cell numberNx3Ny51283256 used in most simulation
the corresponding physical system size wasLx3Ly

5A3bNx31.5bNy'1.131.9 mm ~we neglected in this esti
mate the intergrain separation!. Exchange weakeningk on
the grain boundaries and the film thicknessd were varied to
study the corresponding dependences of the film prope
~see below!.

All simulations of the remagnetization processes w
performed on the IBM Pentium PC 133 MHz with 32 M
RAM using a code written inFORTRAN. An average run for a
complete hysteresis loop~;40 values of the external field
;23104 iterations or effective field evaluations totally! for
a system sizeNx3Ny51283256'33104 cells took about
10 h.

A typical hysteresis loop obtained in our simulations
shown in Fig. 1 together with the gray-scale maps of
magnetization componentmx perpendicular to the externa
field direction, which was chosen as they axis. The forma-
tion of the ripplelike magnetization structure can be clea
seen already for the relatively large external field@Fig. 1~a!#.
When the field is decreased in the direction opposite to
initial system saturation, this ripple structure continuou
transforms into the so-called blocked structure@Fig.1~b!; see
also Fig. 1~c!#, which shows the system state immediate
before the irreversible magnetization jump. The block
structure then disappears after the magnetization switch
occurs in larger fields@Fig. 1~d!#.

The most useful characteristics of a random magnet
tion pattern such as those shown in Fig. 1 is the correla
function ~CF! of the magnetization, in our case the 2D co
relation function of themx component
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Gm~r ![Gm~x,y![^mx~0!mx~r !&, ~25!

where the averaging is performed over the whole sample
Fig. 2 themx pattern in the remanent magnetization state
the entire simulated sampleNx3Ny51283256 together
with the contour map of its CF@Fig. 2~b!# is shown. Only the
central part of theGm(r ) function is presented (216
,r x ,r y,16, where the distance is measured in lattice nod!
because outside the drawn region the CF exhibits only sm
statistically insignificant oscillations around zero. The lon
tudinal ~along the initial direction of the external field!
Gm(0,y) and transverse~perpendicular! Gm(x,0) cuts of this
CF looks qualitatively different, as shown in Fig. 3, which
a well known feature of the ripple structure occurring due
the dipolar interaction of individual grains. We define t
characteristic ripple wavelengthl as the double distanc
from the coordinate origin to the first minimum of the lo
gitudinal CF@Fig. 3~a!# and the transverse correlation leng
as the integral

Lt5E
0

Lx/2

Gm~x,0!dx. ~26!

Such a definition ofLt is chosen because for an expone
tially decaying CFGm(x,0)5exp(2x/xc) it would give the
natural valueLt5xc if the simulated area is so large th
xc!Lx .

Important parameters of a thin film~made from a given
magnetic material! that can be changed without a great effo
are the exchange weakening on the grain boundariesk and
the film thicknessd. Dependences of the system propert
on these two parameters obtained in our simulations are
cussed below.

FIG. 1. Simulated hysteresis loop obtained for the film thickn
d510 nm and the exchange weakening on the grain boundarik
50.1 together with the gray-scale maps ofmx values corresponding
to various fields as indicated in the figure. Gray-scale maps
sented here and in Figs. 4 and 5 show 643128 cuts from 128
3256 lattices actually simulated.
In
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Variation of the exchange coupling strength between
neighboring grains.We have studied the system properti
for the exchange weakening region fromk50 ~exchange
decoupled grains! up to k50.2. For largerk values the cor-

s

e-

FIG. 2. Remanent magnetization state of a 1283256 lattice
shown as themx ~a! gray-scale map and~b! the corresponding spac
correlation functionG(m)(r )[G(m)(x,y) of mx values~see the text
for details!.

FIG. 3. Typical ~a! longitudinal G(y)[G(0,y) and ~b! trans-
verseG(x)[G(x,0) correlation functions of themx magnetization
components for the remanent magnetization state. The characte
ripple wavelengthl is defined as shown in the figure and for th
definition of the transverse correlation lengthLt see Eq.~26!. Here
and in all other figures all distances are measured in lattice cons
units.
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relation length of the magnetization pattern was of the sa
order of magnitude as the sample size, so a reliable statis
estimate of the system properties was not possible due to
finite size effects.

The remanent magnetization structure~presented again as
themx gray-scale map! for variousk values is shown in Fig.
4. The structure clearly becomes coarser for larger excha
coupling, which manifests itself in the corresponding depe
dences of the average ripple wavelength@Fig. 5~a!# and
transverse correlation length@Fig. 5~b!#.

The dependence of the most important parameters of
hysteresis loop, the reduced remanent magnetizationj R

5my(h50)/my
max and the coercivityhc5Hc /Ms , is shown

in Fig. 6. As it was already observed in previou
studies,28–30, the remanence@Fig. 6~a!# increases monotoni-
cally with the exchange coupling strength~the slight de-
crease observed for largek values is within the statistical
errors and will not be discussed until more precise data
come available!. However, thevaluesof the remanence tha
we observe for small exchange coupling are much lower~up
to 3 times! than those reported in Refs. 28 and 29.

The explanation of this discrepancy that we propose is
following. For small exchange coupling the main interactio
between grains~magnetic moments! is the dipolar one.
Hence, to obtain correct values of the magnetization in
absence of the external field~which is the remanence! it is
crucially important to evaluate the interaction field exact
As it was mentioned above, both the hierarchical meth
used in Ref. 29 and the cutoff of the dipolar interaction us
in Ref. 28 lead to errors of'1% in the dipolar field evalu-
ation, whereby our method with parameters described in S

FIG. 4. Remanent magnetization states shown asmx gray-scale
maps for various exchange weakening constantsk as indicated in
the figure. The same realization of the random directions of the e
anisotropy axes was used for allk values.

FIG. 5. Dependences of~a! the ripple wavelengthl and~b! the
transverse correlation lengthLt ~b! on the exchange weakeningk.
In this and the following figures statistical errors, where not show
are smaller than the symbol size.
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II provides an accuracy better than 1023, which should lead
to substantial improvement of the accuracy by the simulat
of the equilibrium magnetization configuration in small an
zero external fields. To check the effect of small addition
errors made by the dipolar field evaluation we have p
formed separate calculations adding to the exact values
the dipolar field calculated by our method random erro
with the Gaussian distribution and the dispersion 1%. Inde
we found that such small errors lead to drastic changes in
remanence, so that fork50 ~exchange decoupled grains! the
remanence value obtained this way wasj R'0.65 instead of
the correct valuej R50.26 obtained without adding artificia
errors.

We would like to point out that this observation doesnot
mean that a relative error about;0.01 by the stray field
evaluation leads to such drastic result changes forany mag-
netic system and parameter set. However, these results d
onstrate how important theexactevaluation of the demagne
tizing field for a micromagnetic problemmay be, especially
if other interactions are absent~as in the example given
above, where the magnetization configuration for the
change decoupled grains in the absence of the external
is calculated!. It is also the manifestation of the well know
fact that an equilibrium magnetization configuration may
very ‘‘soft’’ so that increasing the computational accuracy
the field evaluation even from;0.01 up to;0.001 may lead
to substantial changes in the final result.

The dependence of the coercivity on the exchange in
action strength@Fig. 6~b!# is also in qualitative agreemen
with the results of previous numerical simulations28,29 apart
from the slight increase ofhc for small k values, which is
almost within the statistical errors and will be discussed el
where. Here we would like to point out that, in contrast
the previous results,28,29 the decreaseof the coercivity for
large exchange interaction values is much more pronoun
It is well known that, in general, such a decrease can
explained by the formation of large exchange-coupled cl
ters of grains that leads to the averaging of the random
directed anisotropy fields of various grains and hence to
large reduction of the effective anisotropy constant of suc
cluster. This decrease of the anisotropy, in turn, leads to
decrease of the coercivity of the system.

One possible reason why do we observe a much lar
decrease of the coercivity with the growth of the exchan
coupling is a much larger size of the system that we are a
to treat using our FFT-Ewald technique. Namely, the syst
sizes considered in Ref. 28 (26330 grains! and in Ref. 29
('40350 grains! are of the same order of magnitude as t

sy

,

FIG. 6. Dependences of~a! the reduced remanent magnetizatio
j R and ~b! the coercivityhc ~b! on the exchange weakeningk.
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14 340 57D. V. BERKOV AND N. L. GORN
correlation lengthsl andLt for largek values~see Fig. 5!.
This means that in the latter cases the coercivity could
determined by the finite size effects because effectively t
reversal of;1 cluster was considered. Another probable ex
planation for such a difference in the coercivity values cou
be again the higher precision in our stray field calculation
because this field is also very important near the coercivi
point where the magnetization variation~and hence ‘‘mag-
netic charges’’ creating the stray field! is especially strong.

Variation of the film thickness.To study the dependence
of various system properties on the film thicknessd we have
performed simulations of the remagnetization processes
films with thicknesses fromdmin51 nm up todmax540 nm.
Examples of the remanent magnetization structures for va
ous thicknesses are shown in Fig. 7~again as the gray-scale
maps of themx component!. It can be clearly seen that for
the smallest thickness studied (d51 nm! there are no ripple
manifestations whatsoever and the magnetization pattern
completely isotropic, which can be verified plotting its 2D
correlation function~in this case only the decay correlation
lengthLt can be defined!. The obvious reason is that for such
a small thickness the magnetic moment of an individu
grain is so small that intergrain interactions play almost n
role so that the system behaves itself as an assembly of
most noninteracting single-domain particles having uniaxi
anisotropy and the randomly distributed anisotropy axes.

When the thickness is increased, the characteristic ripp
structure starts to establish itself and the longitudinal~along
the external field direction! 1D correlation functions begin to
resemble those shown in Fig. 3~a!; starting approximately
from the thicknessd54 nm, it is possible to define the av-
erage ripple wavelength. Thickness dependences of this
erage wavelengthl and the transverse correlation lengthLt
are presented in Fig. 8.

FIG. 7. Remanent magnetization states shown asmx gray-scale
maps for various film thicknessesd as indicated in the figure.

FIG. 8. Dependences of~a! the ripple wavelengthl and~b! the
transverse correlation lengthLt on the film thicknessd.
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The most characteristic feature of the dependences sh
in Fig. 8 is the nonmonotonic behavior of bothl andLt as
functions of the film thicknessd: They have a maximum
around a valued510 nm@we note, however, that the max
mum on theLt(d) dependence is almost within statistic
errors#. Although we lack the complete explanation for su
a behavior, we would like to present some qualitative spe
lations. The initial increase of both correlation lengthsl and
Lt for smalld’s is obviously due to the increasing strength
the intergrain interaction resulting from the increasing ma
netic moment of a single cell; this leads to the establishm
of a strong correlation between adjacent moments and to
formation of the ripple structure. After such a structure h
been formed completely~this happens ford'6 – 10 nm!, the
dipolar and the exchange interactions begin to compete~i!
The dipolar interaction tries to decrease the average rip
wavelength because the magnetostatic energy decre
when the charges of the opposite signs are drawn close
each other and~ii ! the exchange interaction tends to avo
rapid changes in the magnetization direction, thus trying
increase the average wavelength. Both interaction fields s
with the film thickness as;d, but the dipolar interaction is a
long-range one and hence its strength increases faster~the
corresponding coefficient before the;d dependence is
larger! so that the average wavelength decreases withd after
the ripple structure has been formed.

Here some comments concerning the validity of the dip
lar approximation used by the stray field evaluation are n
essary. For the basic parameter set, where the film thick
is 10 nm and the cell size in the film plane is also'10 nm,
this approximation is quite good~because a single cell can b
approximated reasonably by a sphere!. However, for much
smaller and much larger film thicknesses this approximat
clearly becomes poorer, so that results presented in Fi
should be considered at best as semiquantitative if we h
in mind the simulation of magnetic thin films. Howeve
these results are exact if one would like to consider our co
putations as simulations of remagnetization processes in
dipolar lattices with constant lattice spacing by various
pole strengths~because, in the dipolar approximation, var
ing the film thickness, we change only the magnitude of
dipole moment connecting with each cell!.

Effect of the homogeneous uniaxial anisotropy. It is well
known that some film preparation techniques lead to the
duction of the~usually weak! homogeneous uniaxial aniso
ropy. Hence it would be interesting to study the effect
such an anisotropy on the magnetization structure.

Figure 9 demonstrates remanent magnetization states
tained by the simulation of the remagnetization processe
the films with a standard parameter set~see above, in par-
ticular,k50.1 andd510 nm! and the homogeneous uniaxi
anisotropy with the easy axes directed as shown in the fig
The initial direction of the saturation field was chosen
usual along they axis. The value of the homogeneous a
isotropy constant isK (0)553104 J/m3 (553105 ergs/
cm3), which is approximately 10 times smaller than the co
responding value of the anisotropy constant of the rando
directed single-grain anisotropy [K (r )543105 J/m3 (54
3106 ergs/cm3)]. Nevertheless, the effect of the homog
neous anisotropy can be clearly seen; as expected, the an
ropy directed along the ripple stripes~perpendicular to the
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initial field direction! greatly enhances the contrast of t
ripple structure. We expect that for larger exchange coup
even lower values of the homogeneous anisotropy can ha
pronounced influence on the magnetization structure. Ou
sults are in a qualitative agreement with the observati
made by McCord.31

A comparison of our results with the existing ripple the
ries ~see Refs. 32 and 33 and references therein! is not very
useful because most of them are built in the linear appro
mation, i.e., small magnetization deviations from the sa
rated state are assumed. The most qualitatively nontri
prediction of such theories that can be related to our sim
tions is the calculation of the magnetization correlation fu
tion done by Maass.34 The shapes of the contour lines o
tained in Ref. 34 agree qualitatively remarkably well wi
those shown in Fig. 2~b!. Results for the correspondin
Green function~which in this case behaves itself qualit
tively similar to the correlation function! are presented in
Ref. 35, which can be accessed much more easily. The
nonlinear ripple theory known to us36 ~which, according to
Ref. 36, should be valid for permalloy films if the magne
zation deviation angle does not exceed'20°) predicts the
growth of the ripple correlation length with the exchan
constant~however, only a linear growth! and does not pre
dict any nonmonotonic behavior of the correlation lengths
functions of the film thickness.

For the experimental verification of the results of o
simulations the observation of the magnetic structures du
the remagnetization process with the resolution of at le
several hundreds of nanometers is necessary. From the
perimental images the correlation functions such as Eq.~25!
could be obtained to compare corresponding correla
lengths with our results. Independent measurements of
exchange coupling between grains and the film thickn
would be necessary. Whereby the latter could be perform
relatively straightforward, estimations of the exchange c
pling could be done using the values of the remanence
coercivity obtained from the hysteresis loops.

There are currently two groups of methods that poss
the necessary spatial resolution: magnetic force microsc
~MFM! and Lorentz microscopy. High-resolution measu
ments using MFM can be found, e.g., in Ref. 37, where i
shown that the polycrystalline film with the lowest coercivi
exhibited the coarsest magnetic microstructure~i.e., the larg-

FIG. 9. Remanent magnetization states shown asmx gray-scale
maps (1283256 lattices! for various kinds of homogeneous aniso
ropy as shown in the figure. The homogeneous anisotropy con
for cases~a! and ~c! is K (0)553104 J/m3 (553105 ergs/cm3).
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est correlation length!, which is qualitatively consistent with
our results. A good example of the Lorentz microscopy i
ages is given in Ref. 38, where the magnetic microstruct
of the thin CoCr films was investigated. Images presen
there are qualitatively very similar to those observed in o
simulations, but again no quantitative comparison can
made.

We also would like to make some comments concern
the comparison of our method for the dipolar field evaluat
with other proposed algorithms15,19,20,28,29,39,40~the advan-
tages of our method when compared with the techniq
based on the increasing number of the Fourier componen20

are explained in Sec. II!. First of all, some authors28,39,41

propose to truncate the dipolar interaction taking into
count only contributions from the finite number of neare
neighbors, thus reducing the operation count for the dipo
field evaluation formally to;N ~we recall that in our
method the corresponding dependence is;NlnN). Although
formally possiblefor 2D problems, this trick does not help
very much because, due to the quite slow decay of the d
lar interaction (;r 23), a large number of nearest neighbors
typically several hundreds,28,39,41 should be taken into ac
count to achieve a reasonable accuracy. Hence the pro
tionality factor in the;N dependence of the operation cou
is so large that for the cell numbersN currently available the
FFT method turns out to be faster. Another drawback of
truncation method is that for each set of system parame
the truncation radius should, strictly speaking, be determi
separately by performing simulations with an increas
number of nearest neighbors taken into account. The last~but
not the least! problem is that this methodcannotbe applied
to 3D problems, whereas our FFT-Ewald algorithm can
easily generalized for this case.

The next method that allows large-scale micromagne
simulations including the dipolar field effects is the hiera
chical model developed by Miles and Middleton.29 The
model is based on~i! the explicit summation of the dipola
field contributions over a~relatively small! number of near-
est neighbors and~ii ! summation of the contributions from
the far zones divided into larger cell blocks. The algorith
also has the operation count;NlnN and an adequate choic
of block sizes and structure enables us to make the dip
field calculation errors~arising from the moment averagin
inside large blocks! reasonably small. The major problems
this method are the relatively complicated algorithm imp
mentation, the choice of the parameters of the hierarch
block structure, and the error estimation, which~as for the
truncation methods! should be performed separately for ea
new set of system parameters. This is not the case in
algorithm, which is simple to handle and for which the err
~arising only from the truncation of the short-range fie
HA

dip) can be estimated in advance. As mentioned above
turned out to be vanishingly small already for two~in the
worst case three! nearest-neighbor shells taken into accou
Another question when applying the hierarchical model
how to take correctly into account periodic boundary con
tions.

However, it should be pointed out that both groups
methods discussed above~truncation and the hierarchica
model! are able to simulatedisorderedstructures, which is
not possible for our technique because the Fourier expan

nt
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14 342 57D. V. BERKOV AND N. L. GORN
requires the translational invariance of the lattice. We c
account for any type of randomness@random anisotropy, ran
dom distribution of the intergrain exchange coupling, dis
bution of the saturation magnetization~magnetic moments!
among the lattice sites, etc.# except for thestructural disor-
der. The introduction of such a disorder is believed to
necessary for simulating real thin films because in so
cases it clearly influences the macroscopic magnetic pro
ties of the system.39,40 However, the question whether th
same effect can be produced using aregular lattice with the
statistical distribution of another parameters mention
above is~to our knowledge! still not sufficiently studied.

Another important and quickly developing area where o
algorithm for the dipolar field evaluation can be used is
simulation of the equilibrium and nonequilibrium thermod
namics of various 2D lattice systems,2,42 which for the mod-
els with the long-range interactions are still performed
moderate lattice sizes only.22,23,43It should be clear that ou
method is not suitable for the Metropolis-type algorithm
used for the simulation of equilibrium thermodynamic
properties where single-moment updates are performed
cause the great acceleration by the dipolar field evalua
(;N ln N instead of;N2) is achieved only when this field
is evaluatedsimultaneouslyon all lattice sites. Hence, to tak
advantage of this acceleration an algorithm based on
Langevin dynamics of the system should be used.44,45Due to
er
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the nearly linear computational time dependence on the
tice site number almost the same performance as by
simulations of the short-range models42 is expected. It should
also be mentioned that the transfer of our method on o
long-range interaction types such as the RKKY interaction
straightforward.

V. CONCLUSION

We have presented a method for the evaluation of
long-range dipolar interaction fields in lattice systems w
periodic boundary condition. Using this method, we we
able to perform large-scale numerical simulations of the q
sistatic remagnetization processes in 2D dipolar systems
random on-site anisotropy and nearest-neighbor exchang
teraction. A couple of results concerning the dependenc
the hysteresis loop parameters and the magnetization c
lation lengths were presented. The applicability of o
method to the simulations of equilibrium and nonequilibriu
thermodynamics of lattice systems with long-range inter
tion was discussed.
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