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Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems
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Thermodynamic properties are presented for four magnetic impurity models describing the scattering of
fermions from a localized orbital at an energy-dependentlté&d which vanishes precisely at the Fermi level,
€=0. Specifically, it is assumed that for smgd|, T'(€)|€|" with r>0. The cases=1 andr=2 describe
dilute magnetic impurities in unconventional-(and p-wave superconductors, “flux phases” of the two-
dimensional electron gas, and certain zero-gap semiconductors. For the nondegenerate Anderson model, the
main effects of the depression of the low-energy scattering rate are the suppression of mixed valence in favor
of local-moment behavior and a marked reduction in the exchange coupling on entry to the local-moment
regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes
Kondo screened. The precise relationship between the Anderson model and the exactly screened Kondo model
with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by
Withoff and Fradkin(WF) is shown to have clear signatures both in the thermodynamic properties and in the
local magnetic response of the impurity. The underscreened, impurity-spin-1 Kondo model and the over-
screened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in
addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole
symmetry plays a crucial role in determining the physics both at strong coupling and in the vicinity of the WF
transition. These results are obtained using an extension of Wilson's numerical renormalization-group tech-
nigue to treat energy-dependent scattering. The strong- and weak-coupling fixed points of each model are
identified and their stability is analyzed. Algebraic expressions are derived for the fixed-point thermodynamic
properties and for low-temperature corrections about the stable fixed points. Numerical data are presented
confirming the algebraic results, identifying and characterizing intermediate-coupbtngFermi-liquid fixed
points, and exploring temperature-driven crossovers between different physical regimes.
[S0163-182698)04222-3

[. INTRODUCTION touch in such a way that, for smak|, p(€) is proportional
to |€]9"* in d spatial dimensions. Examples include PbTe-
In conventional metallic systems, it is well understoodSnTe heterojunctiod® and the ternary compounds

how many-body correlations induced by dilute magnetic im-pPp, _,SnSe, Ph_,SnTe, and Hg_,CdTe, each at a
purities in an otherwise noninteracting conduction band cafemperature-dependent critical compositldn.(Zero-gap
at low temperatures effectively quench all spin fluctuationsmercury cadmium telluride has been proposed as the basis
on each impurity sité.This, the Kondo effect, depends criti- for a giant magnetoresistance read-head for high-density
cally on the presence of fermionic excitations down to arbi-gioraget) (3) Various two-dimensional electron systems—
trarily small energy scales. The impurity properties are SeNincluding graphite sheet§,“flux phases” in a strong mag-
sitive to the density of electronic statgée) only through its netic field1® and exotic phases of the Hubbard mddelare

value at the Fermi levele=0. Other details of the band redicted to exhibit a linear pseudogap. It is a matter of

shape have negligible effect on the low-temperature physic%ngoing debate whether this pseudogap survives the pres-

. : ~10
A growing body of theoretical wofk™® shows that the ence of disordet® (4) The single-particle density of states in
standard picture of the Kondo effect must be fundamentall)fhe one-dimensional Luttinger model varies ljl&?, where

revised in order to treat “gapless” systems, in which thea changes continuously with the strenath of the bulk
effective density of states vanishes precisely¢atO but is . '9 9 y gth .
interactions™® In all these examples, the effective density of

nonzero everywhere else in th(_a vicinity of the Fermi ENCTY<1ates can be approximated near the Fermi level by a power
The goal of the present paper is to extend the understandlr]gw p(€)|e]" with r>0

of this issue through a comprehensive account of the differ- The first theoretical study of magnetic impurities in gap-

ent physical regimes exhibited by magnetic impurities in . . . )
gaplgsg host n?aterials, includingy detaﬁled caIcEIations o'fess Fermi systems_wa; _carned ogt by Withoft gnd Fra&km,
thermodynamic properties. who assumed. a simplified density of states in which the
Gaplessness may be realized in a number of physical Syg_c_)wer—law variation extends across an entire band of half-
tems:(1) The quasiparticle density of states in an unconveny\”dth D:
tional superconductor can vary like| or |e|? near line or
point nodes in the gal). Heavy-fermion and cuprate super- ; _
conductors are strong candidates for this behay®rThe pe)= pol€e/DI",  [¢[<D, (1.1)

valence and conduction bands of certain semiconductors 0, otherwise.
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Using poor-man’s scaling for the spinfi.e., impurity de- least in the cases of greatest interest,1 and 2—that over
generacyN=2) Kondo model and a largi-treatment of the a large region of phase space, the low-temperature state pos-
Cogblin-Schrieffer model—both methods being valid for 0 sesses an uncompensated local moment. This should be con-
<r=3i—these authors demonstrated that the Kondo effectrasted with systems having a regular density of states, in
takes place only if the dimensionless, antiferromagnetiavhich an Anderson impurity is always quenched at zero
electron-impurity exchange,J exceeds a critical value, temperaturé.
podc~T; for J<J., the depletion of low-energy conduction  This paper contains a detailed study of four models de-
states causes the impurity to decouple from the band at lowcribing a magnetic impurity in a gapless host: the nonde-
temperatures. generate Anderson model and three variants of the Kondo
Subsequent work has analyzed values afp to 2 and Model, representingn the nomenclature introduced by No-

beyond. LargeN methods have been appligito models zieres and Blandift) “exactly screened,” “underscreened,”

describing magnetic impurities in unconventional supercon@nd “overscreened” impurity spins. The nonperturbative RG

ductors, in which the power-law variation gf(e) is re- formalism originally developed to describe magnetic impuri-

stricted to a regiofe| <A<D. These studies, which may be ties in m.e_talé2 is extended. to provide algebraic results for
. . ; : the stability of, and properties near, the weak- and strong-
directly relevant for Ni-doping experimeifs on

YBa.ClLO h ielded its | | coupling fixed points of each model. Numerical implemen-
DUy, NAVE yielded resulis in genera agreementtation of the RG scheme enables characterization of the ther-
with Ref. 2. The logarithmic dependences on temperaiure

i i modynamic properties at intermediate-coupliingn-Fermi-

and frequencyw which characterize the standard<(0)  |iquid) fixed points, and allows the study of temperature-
Kondo effect are replaced far>0 by power laws. In the  griven crossovers between fixed-point regimes.
specific caser=1, these power laws acquire logarithmic  Three effects of the pseudogap are found to be common to
corrections! Forr<1 or N=2, any finite impurity concen-  all the models(1) Over a finite fraction of parameter space,
tration produces a small infilling of the pseudogap whichthe impurity becomes asymptotically free in the limfiit>0.
drivesJ,, to zero® The size of this weak-coupling region grows with increasing

Numerical renormalization-groufRG) calculation” for . (2) The presence or absence of particle-hole symmetry
the casdN=2 have revealed a number of additional featuresplays a crucial role in determining the low-energy behavior.
At particle-hole symmetry, the critical couplingy is infinite It turns out that each model can exhibit two distinct fixed
for all r >3, while for r <3 the strong-coupling limit exhibits points of the Withoff-Fradkin type: one preserving and the
anomalous properties, including values of the impurity en-other violating particle-hole symmetryThese fixed points
tropy and the effective impurity moment which are nonzerocoexist only over a limited range of values) The strong-
(even atT=0) and which vary continuously with> Away  coupling physics is also very sensitive to particle-hole
from particle-hole symmetry, the picture is markedly (a)symmetry.(3) Power-law dependences of physical quan-
different” Progressive introduction of band asymmetry or oftities on temperature and frequency are generally different
impurity potential scattering initially drived, for r>3 back  for sublinear and superlinear densities of states. Specifically,
down towards the largh-valuepgJ.~r; eventually, though, in many places where the exponengnters physical quanti-
further increasing the asymmetry tends to freeze the motioties forr <1, it is replaced for >1 by either 1 or —1. The
of conduction electrons near the impurity site, leading to arcaser =1, of particular interest in the contexts of high-
upturn inJ;. ForJ>J. andr>0, the impurity entropy and superconductivity and of two-dimensional flux phases, ex-
the effective impurity moment both approach zerdlatO. hibits logarithmic corrections to simple power laws.
An electron phase shift ofr suggests that the impurity con- Extensive results are provided for the Anderson model.
tribution to the resistivity also vanishéspstead of taking its We investigate in a systematic fashion the nature of the
maximum possible value as it does in the standard Kondphase diagram at a fixed, positive valuergfand study the
effect! various trends produced by increasing For r=0.5, it

The spins Kondo model presupposes the existence of groves impossible to observe Kondo screening of an Ander-
local moment at the impurity site, i.e., an impurity level hav- son impurity in a system having a pure power-law density of
ing an average occupangyg)~2s. The more fundamental states. The suppression of the Kondo effect becomes less
Anderson model allows for real charge fluctuations on thedramatic, however, if the power law is restricted to a
impurity site. In the nondegenerat®l€2) version of this pseudogap of half-widtlA<D. (A preliminary version of
model, mixed-valence (€@(ng)<1) and empty-impurity these results was used to support the perturbative scaling
({ng)=~0) regimes compete with=3 local-moment behav- theory presented in Ref.)8.
ior. Poor-man’s scaling has been appfied an Anderson Recently, Bullaet all° have also applied the numerical
impurity lying inside a power-law pseudogap. The reductionRG approach to the Anderson model with a pure power-law
in the density of states near the Fermi level has three maiscattering rate, limited to cases of strict particle-hole symme-
effects, each of which grows more pronouncedras-  try. With one minor exception, the weak- and strong-
creases: the mixed-valence region of parameter spaamupling thermodynamics reported fox 3 are in agreement
shrinks, and for =1 disappears altogether; there is a com-with Ref. 8 and the present work. The authors of Ref. 10
pensating expansion of the local-moment regime and, to aterpret these results, and certain noninteger exponents de-
lesser extent, of the empty-impurity regime; and the value okcribing their numerical data for the impurity spectral func-
the Kondo exchangé on entry to the local-moment regime tion, as evidence for non-Fermi-liquid behavior. We demon-
is reduced. Since the threshold exchange for the Kondo ektrate, however, that the fixed-point properties are precisely
fect (J. defined aboverises withr, these results imply—at those expected for a noninteracting gapless system. Hence,
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we argue that the weak- and strong-coupling limits can beyiven in Eq. (1.3). Section Il deals with the discretized
described within a generalized Fermi-liquid framework. conduction-band Hamiltonians that lie at the heart of Wil-
Previous studies of the exactly screensd; Kondo son’s method. Section IV addresses the stability of the weak
model with power-law exchange have focused on the exisand strong-coupling fixed points of the four magnetic impu-
tence and position), of the intermediate-coupling fixed rity models of interest, while Sec. V focuses on their ther-
point and on the thermodynamics in the weak- and strongmodynamic properties. The reader who is already familiar
coupling regimes. Here we concentrate instead on the propvith the models we study and who wishes to pass over the
erties of theJ, fixed point, which is shown to have a clear technical details of our treatment may wish to jump directly
signature in the impurity contribution to total thermodynamicto Sec. VI, where detailed numerical results are presented.
guantities and in a static response function which probes th&he results are summarized in Sec. VII. Two appendixes
local behavior at the impurity site. We also examine in somecontain mainly technical details.
detail the relationship between the Kondo and Anderson

models in gapless hosts, and conclude that the models aje GENERALIZED FORMULATION OF THE NUMERICAL

ino(l)ependent to a greater extent than in the standard rcase RG METHOD
dur investigation of the underscreenesk=1 Kondo In this section, we describe a generalization of Wilson’s

model and the overscreened=3 two-channel Kondo honperturbative numerical RG metHéd to treat impurity
model focuses on the fixed-point physics. Over a range ofnodels in which the scattering rate of conduction electrons
exponents &r=1/4, each problem exhibits an unstable from the impurity site is energy dependent. The generaliza-
fixed point of the Withoff-Fradkin type at a critical coupling tion, presented here in the context of the single-impurity
pode~r. The novel feature, however, is the existence at<ondo and Anderson Hamiltonians, was developed indepen-
some exchangd*>J, of a second intermediate-coupling dently by several groups. It has been applied to the two-
fixed point which is locally stable with respect to perturba-impurity Anderson modef? the two-impurity, two-channel
tions inJ. The J* fixed point of the underscreened problem Kondo 'mo%elz, the Anderson lattice in infinite spatial
has no counterpart in metals, but that of the overscreene‘é!mens'onfd and the single-impurity K_ondo and
model is the generalization t0>0 of the non-Fermi-liquid Andersof'® models with a power-law scattering rate. Only
fixed point identified by NoZies and Blandif! For r the last <_)f the papers C|ted_ reports any.techmcal details. Here
=1/4, theJ* fixed point disappears, and tide fixed point ~ We provide a pomprehenswe explanation of_ thg method.
can be reache@nd hence the Kondo effect obseryealy An {:\Iternatlve(but closely relatedgeneralization of the
under conditions of strong particle-hole asymmetry. numerical BG method, developed by Chen and
Before proceeding, we remark on a matter of terminologyJayaprakasf, has been used to obtain equivalent physical
It will be shown in the next section that the conduction-band'€Sults for the Kondo model with a pure power-law scatter-
density of stateg(e) and the energy-dependent hybridiza- N9 rate: T_he relationship between the two formulations is
tion t(e€) (describing hopping between a magnetic level andliscussed in Ref. 10.
the conduction bandenter the Anderson impurity problem
only in combination, through the scattering rate A. Anderson impurity model

(€)= mp(e)t?(e). (1.2 The nondegenerate Anderson Hamiltorifafor a single
magnetic impurity in a nonmagnetic host can be written as

The exchange and potential scattering in the Kondo modehe sum of conduction-band, impurity, and hybridization
have the same energy dependencd &s). In gapless sys- terms:
tems it is natural to assume thate) is given by Eq.(1.1)
while t(e) is essentially constant. However, the separate Ha=H.+Hy+ Hn, (2.1
forms of the density of states and the hybridization are un-
important provided that one is interested only in impurity Where
properties. In the remainder of the paper, we shall therefore

refer to a power-lawscattering rateor exchange We shall H.=> ecl ¢, (2.23
focus mainly on the simplest case, that of pure power-law i~ Kok
scattering,

Tole/D]", |el<D Ha=€aNat UngiNa, (2.2

0 ) = )
I'(e)= . 1.
(€) 0, otherwise. (.3
Ho=S (el d,+H.c) (2.20

However, we will examine the effect of including more re- "R N '
alistic features such as band asymmetry and restriction of the
power-law variation to a finite pseudogap region. The energies, and €4 of electrons in the conduction band

The organization of this paper is as follows: In Sec. Il weand in the localized impurity state, respectively, are mea-
describe the generalization of Wilson’s numerical RGsured from the Fermi energi, is the number of unit cells
method to handle magnetic impurity problems with anin the host,ng=ngy;+ng, is the total occupancy of the im-
energy-dependent impurity scattering rate. The three sectionmurity level, andU>0 is the Coulomb repulsion between a
that follow develop the analytical aspects of the technique irpair of localized electrons. Without loss of generality, the
the specific context of a pure power-law scattering rate, aBybridization matrix elements, between localized and con-



57 RENORMALIZATION-GROUP STUDY OF ANDERSON A . .. 14 257

duction states can be taken to be real and non-negativ&he first and second terms i describe exchange and po-

Throughout the paper, summation over repeated spin indicdential scattering, respectively.

(o in the equations aboyes implied. The impurity-spin3 version of the Kondo model can be
For simplicity, we consider a spatially isotropic problem, regarded as a limiting case of the nondegenerate Anderson

i.e., one in whiche,= € andt,=t(e), so that the impu- model[Eq. (2.1)]. If —€q, U+ €es>T, kgT (WherekgT is

rity interacts only withs-wave conduction states centered onthe thermal energy scalethen single occupancy of the

the impurity site. The energies of suchs-wave states are Anderson impurity level is overwhelmingly favored over

assumed to be distributed over the rangél+u)D<e  zero or double occupancy, in effect localizing a pure-spin

<(1—pu)D. It proves convenient to work with a dimension- degree of freedom at the impurity site. The exchange and

less energy scale,= ¢/D. Then, dropping the kinetic energy potential scattering coefficients can be determined using the

of all nons-wave conduction states, Eq@.2) can be trans-  Schrieffer-Wolff transformatior”

formed to the following one-dimensional form:

1
1-n ‘]k,k’:2 —_—t — tktk’; (2103
HCZDJ de ec! c.., (2.39 led  [U+ed
—(1+u)
Hd: e-dnd—i_ UndTndl ’ (23b) Vk K'= E i - ;) tktk’ . (210b
. T 2\ el |Uteqg
-
_ t
Hy= f(Hmds\/P(SD)Dt(SD)(deﬁH-C-)- Equations(2.10 imply that the exchange and potential

(2.30 scattering both exhibit the same dependenc&,cand hence

. . , (in a spatially isotropic problejmon . Thus, just as for the
The operatorc,,, which annihilates an electron in an apgerson model, the Kondo impurity interacts with a single
s-wave state of energy, satisfies the anticommutation rela- near combination of conduction states. Equati@rd) can

tions{c! .c,ip}=0(e—&") 8y . be rewritten

In this model, the impurity couples to a unique linear
combination ofs-wave conduction states associated with an fl— w
S:

1-p
operator dSVP(SD)DJ de’Vp(e'D)D
—(1+u) —(1+p)
1-p X ' St ' Jet corg
foa:Filj dew(e)c, | (2.4 [J(eD,e'D) 0,4 -5tV(eD,e'D) 6, 41C.,Cor s
-(1+
e =Dl p0Jod T+ Vo8 o TP, o0, (219
where
wheref,, andF are defined in Eqsi2.49—(2.6); pgJo and
. [TH 2 poVo are reference values of/p(€)p(e')I(e,€’) and
Fe= de we(e). (2.5 - f :
—(1+p) Vp(€e)p(e')V(e,e'), respectively.

While we shall primarily focus on the conventional
Kondo model[Eq. (2.8) with s=3], we shall also present

Y SV results for thes=1 model and for thes=3, two-channel
w(e)=VI'(eD)/T, (2.6 model. Following Ref. 21, we refer to these three variants as

whereT () is defined in Eq.(1.2) and T, is a reference the “exactly screened,” “underscreened,” and “over-

value of the scattering ratédor example, that at the Fermi Screened” cases, respectively. . _
level). With these definitions, the hybridization term in the ~ TheNc-channel Kondo Hamiltoniaff, describing an im-

The weighting functiorw(e) entering Eqs(2.4) and(2.5) is

Hamiltonian can be rewritten purity spin degree of freedom interacting with>1 degen-
erate bandsor “channels”) of conduction electrons, corre-
Hn=ToD/7F(f},d,+H.c). (2.7)  sponds to Eq(2.8) with
. . => Iews 2.1
B. Kondo impurity model He £ €kCijoCkjo (2.12

The Kondo modéP describes the interaction between a
conduction band and a localized impurity which has a spin and

of magnitudeys(s+1). The Hamiltonian is 50 v
Kk’

Kk’
— ‘Hs= 2 _CT'O.l(TO.O./C /'U/'S+_‘CT'O.C lig|s
Hy="Hc+Hs, (2.9 s i L NG kjo2 k’j No kjo k']
whereH, is the conduction-band Hamiltonian given in Eq. (213
(2.29 and wherej=1,2, ... N, is the channel index. In this paper we
treat only the channel-symmetric version of the two-channel
N Vi i — (1) _4(2) (1) _/(2)
Hs:E Jkk’ cl,,%a(,(,,ck,(,/-SJr Vkk” Cl(rck’rr . problgm, i.e., we .takexlc—Z, =k ande'k,—Vk‘K,.
kk' | No No (Multichannel variants of the Anderson model also exist, but

(2.9  they lie beyond the scope of the present wprk.
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C. Tridiagonalization of the conduction-band Hamiltonian hence in the notation introduced above, fote)=w, (a

Given the form of the weighting functiom(s) which constant Here, we present a generalization of the method to

definesf,,—the particular linear combination of delocalized arbitraryw(e). _ o

states that interacts with the impurity degrees of freedom in . e divide the band into two sets of logarithmic energy
the Anderson or Kondo model—the conduction-band Hamil-Pins, one each for positive and negative values.o'l‘.her+nth
tonian can be mapped exactly, using the Lanczodositive bin f=0,1,7...) extends over energies,, ;
procedure’! onto a tight-binding Hamiltonian describing a <e<egp,, where

semi-infinite chain:

H.=D EO [en fgafm,-l— Th (fgafn,lﬂ-i— H.c)],
n=
(2.19

where 7o=0. The operatoff,, annihilates an electron in a

spherical shell centered on the impurity site; this shell may

be reached, starting from shell 0, loyapplications of the
kinetic energy operator, E@2.39. Thef,,'s obey the anti-

eg=1—m, en=(1—pw)A*"#™ m>0. (2.189

The corresponding negative bin covers the ramgese
<&ms1. Where

gg=—(1+u), en=—(1+uw)A*"2"", m>0

(2.19
Here A parametrizes the discretization: numerical calcula-
tions are typically performed with = 2-3, while the con-

tinuum is recovered in the limih—21. Wilson’s original
treatment of the Kondo problem corresponds to setfing
=0 andz=1. Valuesz# 1 are used in the direct calculation
of dynamicaf? and thermodynami¢ quantities(Thermody-
namic results are presented in Sec. VI bejow.

Within the mth positive[negativg bin, we define a com-
plete set of destruction operatca§ [b{®] and an associ-
5B ated set of orthonormal functions@(e) [¢{%(e)], q=0,
(2.150 +1,+2,..., all ofwhich vanish for any outside themth

positive[negativg bin. Given such a basis, one can write

commutation relation$f; ,f. )= 8y 6,0
The dimensionless coefficients, and 7, are determined
by the following recursion relation:

8n:<fnrr|Hc/D|fn(r>: (2.159

Tn+l|fn+1,o>:(HC/D_Sn)|fna>_ Tn|fn*l,0'>’(2

1=(fri1olfnsse

Here,|f,,)=f!_|0), where|0) is the vacuum state. There is
no summation oves in Egs.(2.15.

(a) (a) (a) (q)
The first two coefficients generated by the recursion rela- Ex [am(&)amet Yom(€)bms] (220

q=—

oo
Ceo™ mzo

tions are
and
2 [P 2 (2.16
go=F"~ f de ew(e) 2.1 1-u , .
e 10 [ de ety eruh (o)ald ol
and ma.a’ S
e - MO (229
m=F de(e—gg) W(e). (2.1
—(1+w) The key step in generalizing the numerical RG method to

Beyond this point, the expressions for the coefficients enterarbitraryw(e) is the choice of ay=0 function within each
ing Eq. (2.14 rapidly become complicated. It is straightfor- bin that has the same energy dependence(a3:

ward to show, however, that if the problem is symmetric
w(e)lFam,

+ +
<
8m+1<8\8m '

about the Fermi energy—i.e., if u=0 and 0,

w(g)=w(—e)—thene,=0 for all n. am(®) = [ 0, otherwise, (2.229
For most functional forms ofv(e), the hopping coeffi-

cients 7, rapidly converge with increasing to a constant W(e)/Fpm, &em<e<enii,

value. This prevents a faithful approximation of the problem zﬁﬁ,?%(s): [ 0. otherwise (2.22h

using any finite-length chain, because termg&ininvolving
sitesn which are remote from the impurity are just as large The orthonormality condition on these functions implies that
as terms involving sites very close to the impurity.

fim“ds w2(e).

€m

+
P [T dowie), Fio=

D. Discretization of the conduction band Emi1

(2.23

Wilson showeé that, by replacing the continuum of con-

duction band states by a discrete subset, one can introduce ®ith this choice,
artificial separation of energy scales into the hopping coeffi-
cients 7, entering Eq.(2.14. This provides a convergent
approximation to the infinite-chain problem using finite-
length chains, which correctly reproduces the impurity con-
tribution to system properties. Wilson's procedure was dei.e., the impurity couples only to thg=0 mode within each
veloped for a flat conduction-band density of states, andbin. Following an extension of the reasoning applied by

f0U=F712 [Famag'r?()f'f_':bmbg\?()r]; (2.29
m=0
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Wilson?? it can be shown that the coupling between modes °°

q#q’ contained in the kinetic enerd¥q. (2.21)] vanishes He=aD >, A "e fl f,+to(fl f._1,+H.c)l.

in the continuum limitA—1. To a good approximation this n=0

coupling can be neglected far>1 as well.(The “discreti- (2.32

zation error” arising from this approximation is estimated in
Sec. V) We therefore assume that thet 0 modes decouple
completely from the impurity, and contribute to the kinetic
energy an uninteresting constant term which is droppe
henceforth. Then,

In the special casev(e)=wg with u=1 and z=1,
Wilsor?>34 was able to derive a closed-form algebraic ex-
ression for the hopping coefficients. Bulla et al!° have
ecently presented an ansatz fqrwhen the scattering rate
has the pure power-law form given in E{..3). In general,
% though, the algebraic expressions for the coefficients rapidly
= (0)t 5(0) (0)TH(0) ) become extremely cumbersome, and Egs29 must be it-
He DmE:O (eanmo Ams* £omPmo Oms), (229 erated numerically. A drawback of this approach is that the
recursion relations prove to be numerically unstabfwith

where double-precision arithmetic performed to roughly 16 decimal
+ places, it is typically possible to iterate Eq2.29 only to
Eam= F;mfi"‘ de ew?(e), (2.26a n=10 for A=3, and ton=13 for A =2.
Em+1 Chen and Jayaprakash have shdwmat it is possible to
reorder the calculation of thg’s in such a way as to cir-
_F-2|¢fm+1 2 cumvent the instability. In this work, however, we have
“om™ Fme‘ de sw(e). (2.269 adopted a brute-force approach, employing a high-precision

m

arithmetic package to compute the coefficients. Typically,
Equation (2.25 can now be tridiagonalized using the 120 decimal places suffice for the calculation of all coeffi-
Lanczos recursion relations introduced in the previous seazients up ton=30, beyond which point the deviation of
tion. We define ande, from their asymptotic values is insignificafhéss than
one part in 16P).

]

- 0) 4 0)

fo mE:o (UnmAm + Vnmbmg), (227 E. Discretized impurity problem

where After discretization of the conduction band, the one-
impurity Anderson or Kondo Hamiltonian can be written as

Uom=Fam/F, vom=Fpm/F. (2.28 the limit of a series of finite Hamiltonians,

Then Egs(2.15 imply that H= lim A "N2DHy, (2.33
N— o0
&n= % (U2 € am™T U b (2299 whereH,, describing ani+ 1)-site chain, is defined for all

N>0 by the recursion relation

Tn+1n+1m= (San™ £n)Unn™ Tothn-1m, - (2:290 Hy=AYHy 1+ enfliofne+ tn(flofn- 10t H.C)—Eg .-
(2.39

Here,Eg y is chosen so that the ground-state energh gfis
zero. The HamiltoniaH, describes the atomic limit of the

1'nJrlvn+1,m=(<‘3bm_‘9n)vnm_ ThiUn—1m> (2.299

— 2 2
1_% (Unt1m*Vnsam)- (2.290 impurity problem. For the Anderson model,
These equations retain the feature of the undiscretized con- H0=e0f50f00+5dnd+0nmnm
duction band that ifu=0 andw(e)=w(—¢), theng,=0 5
for all n. +TYAf{ d,+H.c)—Egp, (2.39

As will be discussed in greater detail below, the hopping
coefficients 7, typically decrease likeA "2 for large n, ~ Where
while the on-site energies, drop off at least this fast. For

this reason, it is convenient to work with scaled tight-binding ~ €& ~ U - FT,
gg=——, U=—, I'= , (2.36
parameters oD D —a?D
en=a 'A%, ty=a A1, (230 while for the Kondo models,
where

Ho=(eot+ V)i, fo,+ 30,30 0 fopr-S—Eg o,
a=3(1+A"HA%2~2 (2.3D (2.37)
is a conventional factéf?>*?which approaches unity in the With

continuum limit A—1. With these definitions, the dis- _ _
cretized conduction-band Hamiltonian becomes J=F2polo/a, V=F?pyVyla. (2.38
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In the two-channel variant of the Kondo model, edcand At particle-hole symmetryi, commutes with all three com-
1 operator in Egs(2.34) and(2.37) acquires a channel in- ponents of an “axial charge” operatdk, : >
dexj, which is summed over.

An important feature of both the Anderson and Kondo L
Hamiltonians is their behavior under the following particle- Jzn=320n, (2.423
hole transformations:

Anderson f,,—(—1)"f! d,——d!,

no _ toet _ qtot
Jon=2> (=1l ff —dfdt, (2.42h
Kondo fp,—(—1)"! , s--s". (239 = nene
Examination of Eqs(2.34—(2.38 indicates that the effec-
tive values oft,, I', U, andJ remain unchanged under the J_o =3 0" (2.429
transformations, but tha,— —e,, eq— — (£4+U), andV
——=V. Thus, the HamiltonianHy can be diagonalized indepen-

A symmetric weighting function such thaw(—e)  dently in subspaces labeled by different values of the quan-
=w(e) guarantees tha,=0 for all n. In this case, one sees tum numbersS,, S, Q, and (at particle-hole symmetyyJ.
that the physical properties of the Anderson model are idenMoreover, the energy eigenvalues are independers,of
tical for impurity energieseq and —(eq+U), all other pa- and whenJ is a good quantum number they are also inde-
rameters being the same. Thus, it is necessary to considgendent ofQ. It is therefore possible to perform the numeri-
only e4=—U/2 (or 4= —U/2) in order to fully explore the cal RG calculations using a reduced basis consisting only of
physical properties of the mod&l. states withS,=S and, where appropriateQ=—2J. (See

It should further be noted that, provided —e)=w(e), Refs. 23 and 36 for further details. Note that in the two-
the symmetric Anderson modélefined by the conditiot channel Kondo model, axial charge quantum numicg¥s
+2€4=0) and the Kondo models with zero potential scat-andJ') can be defined separately for channjetsl and 2)
tering (Vo=0) are completely invariant under the transfor- By taking advantage of these symmetries of the Hamiltonian,
mations in Egs(2.39. In cases where the impurity scattering the numerical effort required to diagonalikl, can be con-
rate is regular[w(0)>0], the presence or absence of siderably reduced.
particle-hole symmetry does little to affect the physics. By Even with the optimizations described in the previous
contrast, this symmetry turns out to play a crucial role inparagraph, after only a few iterations the Hilbert spacH @f
determining the strong-coupling behavior of systems withbecomes too large for a complete solution to be feasible.

power-law scattering. Instead, the basis is truncated according to one of two pos-
sible strategies, which give essentially the same results: one
F. Iterative solution of the discretized problem either retains thev states of lowest energy, whehé is a

predetermined number, or one retains all eigenstates having
n energy within some rande, of the ground-state energy.
compromise must be made between two conflicting goals:

i . i accurate reproduction of results for the original undiscretized
used to construct the basis for iteratiin Before each step, system, favored by choosingj to be close to unity to mini-

the Hamiltonian is rescaled by a factor af' so that the 1 jiscretization errorand by makingM or E, large to
smallest scale in the energy spectrum remains of order unityeq,,ce truncation error and a short computa?cional time
and at the end of the iteration the ground-state energy i§nich points to IargeA'and smallM or E... Unless other- '
subtracted from each eigenvalue. This procedure is repeateico noted. the thermodynamic quantitiés presented in this
until tr_le eigensolution approaches a fixed point, at which th%aper Weré obtained using=3 and E.=>25, for which
low-lying eigenvalues ofty are identical to those dfln.2.  chojces the primary source of error is the discretizatiBhe
(The spectra oHy andHy 1 do not coincide because of a magnitude of the error is estimated in Sec. V C.
func_iamental inequivalence between the eigensolutions for |, summary, the numerical RG method can be generalized
chains containing odd and even numbers of sites. FOr 4 5 fairly straightforward manner to treat energy-dependent
ample, particle-hole symmetry ensures the existence of g:attering of conduction electrons from the impurity site. The
zero eigenvalue foN+1 odd, whereas there is no such re- .onqyction band is divided into logarithmic energy bins just

The sequence of Hamiltoniarsy defined by Eq(2.34)
can be solved iteratively in the manner described in Refs. 2
and 23. The many-body eigenstates of iteratidn 1 are

striction forN+1 even) _ o as for the case of a constant scattering rate. However, the
_All the Hamiltonians described in this paper commute m,de expansion within each energy bin has to be modified in
with the total spin operator order that the impurity couples to a single mode=(0). This

N in turn alters the hopping coefficients which enter the re-

_ fr 1 fo+dtL d. 24 cursive definition of the Hamiltoniandy [see Eq.(2.34)];
SN nZO no2 Foo'Ing! T Be2 Too'lo (240 away from strict particle-hole symmetry, furthermore, the
hopping terms are complemented by on-site terms of the
form enfﬁ,,fn,,. Finally, a factorF, which depends on the
N overall normalization of the weighting functiom(e), is in-
Qn= 2 (f:rmfng—l)*'(nd—l)- (2.41) Erzogg(]:ed into the starting Hamiltoniat, [see Eqs(2.35-

n=0 . .

and with the charge operator
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IIIl. CONDUCTION-BAND HAMILTONIANS

For the remainder of the paper, we focus on systems in

14 261

TABLE I. Tight-binding parameters, for three different pow-
_ersr entering Eq(3.1).

which the scattering raté(e) vanishes in power-law fashion
at the Fermi level. Initially, we consider the simplest possible

Scaled hopping coefficient,,

form of I'(€), given by Eq.(1.3). In the notation of Sec. I, n r=0 r=02 r=1
this corresponds to a particle-hole-symmetric problem in 1 0.8320502943 08839953062 1.0277402396
which u=0 and the weighting functiomw(e) satisfies > 0:9076912302 0:8239937041 0:5598150205
|8|,/2 |8|$1 3 0.9651711910 0.9890229755 1.0707750620
W(e)= ’ o (3.1) 4 0.9879052953  0.9005285244  0.6177933421
0, otherwise. 5 0.9959128837 1.0141188271 1.0818574579
. 6 0.9986313897 0.9103510027 0.6246054709
Herer can take any non-negative valuez O corresponds to
a constant density of states. Subsequently, we shall general-; g'ggggﬁéggg é'gigiigggz éggg;g?ig;g
ize this form to restrict the power-law variationwi€) to a ' : '
narrow region around the Fermi level, and to allow for 9 09999491990 1.0174154894 1.0833149885
particle-hole asymmetry. However, the essential physics is 10 0.9999830654 0.9115837523 06254521995
captured by the prototypical function in EG.1). 11 0.9999943550  1.0174523707  1.0833312949
In this section, we apply the formalism described in Sec. 12~ 0.9999981183  0.9115974746  0.6254616147
Il to construct and analyze a family of discretized 13 ~ 09999993728  1.0174564690 1.0833331068
conduction-band Hamiltonians based on Ehl)’ 14 0.9999997909 0.9115989993 0.6254626609
15 0.9999999303 1.0174569244 1.0833333082
N 16 0.9999999768 0.9115991687 0.6254627771
HE=> AN f1f +t,(fl f,_,+H.c)]. 17 0.9999999923 1.0174569750 1.0833333305
n=t 3.2 18 0.9999999974 0.9115991876 0.6254627900
32 19 0.9999999991 1.0174569806 1.0833333330
The parametel. determines the innermost shdll onto 20 0.9999999997 0.9115991897 0.6254627914
which conduction electrons can hop, andtsds necessarily 21 0.9999999999 1.0174569812 1.0833333333
zero. The casé =0 represents the free-electron problem, 22 1.0000000000 0.9115991899 0.6254627916
while L=1 andL=2 will turn out to describe electronic 23 1.0000000000 1.0174569813 1.0833333333
excitations at different strong-coupling fixed points of the 24 1.0000000000 0.9115991899 0.6254627916

Anderson and Kondo models. In each of these limits, spin-up 25

1.0000000000

1.0174569813

1.0833333333

and spin-down electrons decouple from one another, and seo
the indexo can be dropped.

All information about the energy dependence of scattering
from the impurity site enters the discretized Anderson and
Kondo Hamiltonians through the normalization fackoand
through the tight-binding parametees andt,. From Eq.
(2.5), it is straightforward to see thd&2=2/(1+r), while
the particle-hole symmetry of Eq3.1) ensures thag,=0

lime,=0, limt,=1.

n—oo

n—oe

(3.5

All such problems can be shown to exhibit essentially the
same physic&??® and in particular to be described by the

for all n. By contrast, the coefficients must be determined same set of RG fixed points. The functional formvefe)

numerically, as outlined in Sec. Il DBulla et all° have

away from the Fermi energy determines only the deviations

recently deduced an algebraic formula which appears to figt ¢ andt, from their asymptotic values. These deviations

the numerical value of,, for all n.)

Values oft,, forr=0, 0.2, and 1 are illustrated in Table I.
Whereas for a constant scattering rate=Q), t,, rapidly ap-
proaches unity, in the power-law cases the asymptotic valu
alternates with the parity af:

t*, n odd,

limt,= A2

n—oo

n even,

where

2 1l4+r1-A"@tD
CTlrAi2trpa

The asymptotic behavior df, given by Eq.(3.3) should

A. Free-electron Hamiltonian (L =0)

act as irrelevant perturbations in the RG sense. The only
exception isg, which acts as a marginal variable, equivalent
to an additional potential scattering term of the type appear-
ﬁ1g in Eq. (2.9. The scenario of power-law scattering con-
sidered in this paper is interesting precisely becaute)
=0, which places the impurity problem in a different uni-
(3.3 versality class.

The free-electron Hamiltonian, describing the noninteract-
(3.4) ing conduction band in the absence of any magnetic impurity
level, corresponds to the largedimit of H(NO) as defined in
Eq. (3.2.
EigenvaluesNumerical diagonalization indicates that for

be contrasted with that obtained for all weighting functionslargeN, the eigenvalues approach limiting values, which we

in which w(0) is finite and nonzero:

denote
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N odd: 7/, j=+1,+2,...,* 1(N+1); In this situation, the conduction-band excitations of the sys-
(3.6 tem are described by an effective Hamiltontdf}? obtained
N even: ;71* j=0,+1,+2, ... =iN. by settingL=1 in Eq.(3.2.

A Eigenvalues:For largeN, the eigenvalues oH{ are
Due to the particle-hole symmetry;;=0. For |j|>1 the found to approach limiting values which we denote

eigenvalues are well approximated by N odd: o i—0%1+2 Ci(N-1)
o N OX ’ J =VU=1=4...,=3 - ;
i

* ~ % . * il—v (312
7y, m;=sgn(j) t AllF=o, 3.7 a, N
N even: oj, j=*1,+2,...,=3N.
where

Due to the particle-hole symmetryy5=0, while for N/2

1, N odd, >|j|>1, the eigenvalues are well approximated by

NTl1 N even 3.8 ~ i

> ‘ of , of =sgrj) (CA-2)AI L (313

EigenvectorsWe also consider the single-particle eigen- wherer,=min(r,1). Alternatively, one can write
states ofH{’, associated with particle operatags (j=0) o .
and hole operatorb_; (j<0). It will later prove useful to Wi =Nyt wi= ATy (3.149
have expansions of the original operatffsn terms of these

eigenoperators: These expressions point to a significant difference be-

tween the cases=0 andr>0. In the former instance, the
(N+1)/2 strong-coupling energies given tlry(Nl) become identical to
> Aylgi+(—1)"h/1, N odd, the weak-coupling energies &f{), in the limit of largeN.
f = =1 " In other words, the transition from weak to strong coupling is
equivalent to an interchange between the dddnd even-
AnoJo+ 21 Anlgi+(=1)"h[1, N even. Nspectra? This relation between weak and strong coupling
= 3.9 no longer holds true in the presence of a power-law scatter-
' ing rate. Forr>1, however, an even simpler pattern
It is found, again numerically, that fge>1, the coefficients emergesw’ =7 (j#0) andw*=7*_ Thus. for su-
Ao and A;; separate into alN-dependent prefactor and a ey doopd 1 - 1= son) ’
j 1j perlinear scattering rates, the low-energy sector of the

part that depends only on the parity idf strong-coupling spectrum differs from that at weak coupling
o (2nt14rIN/ _ only by the insertion of one additional zero-energy eigen-
Anj=A"ENIEONRY L n=0,1, 310 gate.
where Phase shiftsTheL =1 eigenvalues can also be expressed
in terms ofs-wave phase shift$,(e) applied to theL=0
;= an(Z) AN mI2) spectrum: forlN odd,
[ag(2)]2=3[1- A~ (+DJAL D@12 (317 w]}":A—ngfﬂj*)ﬁo(aA*lenj’)/wn;, (3.15

1)]2= 171 — A ~(B+D7A(BHN2 and similarly forN even. The values ofy(€) in the limits
[ea(D] =2l ] : €— 0~ can be deduced from Eg&.7) and(3.13, while the
(The generak dependence of; cannot be written so com- form of the leading corrections away from the Fermi energy
pactly as that ofy,.) can be in_ferred_ by _studying either pure potential scattering
Just as in the standard case 0, the expansion of all from the impurity sit8 or power-law mixing between con-
other f,’'s becomes more complicatétiFor n>1, f,, con- duction _electrons and a noninteracting resonant l¢seé
tains components which vary as 2m*1+0N4 for m—p, ~ Appendix A). The result is
n—-2,n—4,...nhmod?2. -
We emphasize that Eq€3.7), (3.10, and(3.11) are very So(€)=(1-r,) = sgn—e)+O(|e/D|I*~"). (3.16
good approximations even for comparatively small values of 2
N andj. ForA=_3, for instance, these formulas hold to at The main feature of Eq3.16 is a jump of (1—r,) in the
least seven decimal places for alisy<N/2. The rate of phase shift on crossing the Fermi energy. The interpretation
convergence to the asymptotlc_forms with increagisgems ¢ tnis jump will be deferred until Sec. V D 4.
to be independent af, at least in the range<r <2. Eigenvectors:We can expand the annihilation operators

f. IN terms of single-particle eigenoperatorsH" :

B. Symmetric strong-coupling Hamiltonian (L =1)
(N-1)/2

In Sec. IVE, we shall discuss thgymmetric strong- Ta. —(— 1\t
couplingfixed point of the Anderson and Kondo models. At Broo* 121 Brylg;— (=11, N odd,
this fixed point, an infinite coupling between the localized fo=1 npe

level and conduction electrons at the impurity site com- E B,[gi—(—1)"h!], N even.

pletely suppresses hopping of conduction electrons onto or = Y 1=

off shell 0; i.e., thef, degrees of freedom are “frozen out.” (3.17
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For sufficiently largeN andN/2>j> 1, the coefficients,; V. STRONG- AND WEAK-COUPLING FIXED POINTS
and B,; separate into am-dependent prefactor and a part OF THE IMPURITY MODELS

that depends ol only throughuy—: In this section, we analyze RG fixed points of the Ander-

son and Kondo models with a power-law scattering rate de-

Bpj=A (2n-2+-rINMg L n=12, (3.18  scribed by Eq(3.1). The focus is on hosts having a single
conduction channel, although reference will be made in pass-

where ing to the two-channel Kondo model.
We consider only those fixed points that can be obtained
, by setting each impurity parameter enteribg [see Egs.

Bnj=BnA 272D 002 (319  (2.35 and(2.37] either to zero or to infinity. In such cases,

a local Fermi-liquid description applies: the low-energy
The parameterg, can be determined numerically, but we many-body excitations of the system can be constructed as
have not obtained algebraic expressions for their dependen#ee product of two independent sets of single-particle excita-
on A andr. There is an important exception to £8.18 for  tions, one set describing the conduction band, the other aris-

r>1: in the limit N—o, By, for N odd (B4, for N even ing from any active impurity degrees of freedom. By study-

approaches a constant value which is independeni .of mg small deviations from the fixed-point Hamiltonian, one

Therefore, the effective scaling i« A~ "IN4 and f,  can determine the stability of the fixed point and the func-
o« A~ (@F1-T)N4 These forms will turn out to have impor- tional dependence of certain physical properties. These re-

tant implications for the stability of the symmetric strong- Sults can be obtained by largely algebraic meafise only
coupling fixed point. numerical step is the derivation of the results presented in

The approximate expressions for the eigenvalues angec._lll, yvhich involves diagonalization of simple quadratic
eigenvectors oH{Y do not apply so widely as those for ~ Hamiltonians) _ . .
=0. First, Egs.(3.13, (3.18, and(3.19 are restricted not In Sec. VI, we shall also discuss a number of fixed points
only to j>1, but also tgj<N/2. Second, the rate of conver- Wh'Ch appear at |nterr_ned|a(ee|ther ZEro nor mﬂmt}a(_:ou_- .
gence with increasinly is slower than fot. =0 and depends plings. Such fixed points are generally non-Fermi-liquid in

explicitly onr: for instance, the deviation of each eigenvaluenature’. and at present can he studied only via a full imple-
I i e A, ) mentation of the numerical RG scheme outlined in Sec. II.
(wj or ;) from its largeN limit (] or ;) is proportional

to A ~117"IN2 There is again an exception for-1: the two
smallest everN eigenvalues obey the relatiorﬁ):1

« A~ (T=UN and hence converge to their asymptoted {

=0) even more slowly than the other eigenvalues.
The results above provide clear evidence that a linear

scattering rate represents a singular case. The expansion of

f1 acquires anN-independent component at=1, and for  |n this context, “=" means that two Hamiltonians have
this value ofr alone several quantitighe eigenvalues and jdentical low-energy spectra and that they share the same set
eigenvectors as functions ®f, the conduction-band phase of matrix elements of any physically significant operator be-
shift as a function of energyconverge in a logarithmic, tween their low-lying eigenstatés.

rather than exponential, fashion. As pointed out by Cas- Any deviation from a fixed-point Hamiltonian must be
sanello and Fradkifthis case in some sense represents thelescribable in the form

upper critical dimension of the theory.

A. Stability of RG fixed points

Within the nonperturbative RG approach, a fixed-point
HamiltonianH* satisfies

HN+2:HN:H*' (41)

SHy=Hy—H*=2 Y0, 4.2
C. Asymmetric strong-coupling Hamiltonian (L =2) Y
It will be _shovx_/n belov_v that, in most cases, the Stablewhere} is a dimensionless coupling, a, is composed of
strong-coupling fixed point of the Anderson and Kondo

operators associated with those degrees of freeffoom

problems is not described by the conduction-band Ham"amongfm,, d,, ors) that remain active at the fixed point,

tonian H{ introduced in the previous subsection. Instead,mump"ed by an overall factor oA N2 which reproduces the
the system reaches either thhezen-impurityfixed point, de- scaling ofH,, implied by Eq.(2.34). The only constraint on
scribed byH(, or the asymmetric strong-couplinfixed  the combination of operators enteri@, is that the pertur-
point, at which both thef, and f; degrees of freedom are bation must preserve all symmetries of the original model.
frozen out and the low-lying excitations of the system are As explained in detail in Refs. 22 and 23, one can use the
described byH(?). Due to the asymptotic form of the hop- expansion of the operatofs, developed in Sec. Iil to ana-
ping coefficientst, [see Eq.(3.3)], which only depend on lyze the stability of the strong- and weak-coupling fixed
whethern is odd or even, the low-energy propertiestif’  points with respect to all possible perturbations. Consider,
are equivalent to those cH(Nolz, provided that one relabels for example, the weak-coupling limit in which the electronic
the operators,, appropriately; i.e.f, at theL =2 fixed point ~ degrees of freedom are described Bff’. Equations(3.9)

has the same expansionfas , at theL=0 fixed point. The and (3.10 imply that the perturbatiorOV=AN’Z(ngfOU
L=2 eigenstates are related to those for0 by a low- —3) can be written as\ ~"™"’? times anN-independent part
energy phase shiidy(e) = wsgn(—e). composed of the single-particle and single-hole operagprs
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andh;. Making use of the effective temperatufg associ- the Kondo models. It is described by the same effective

ated with iteratiorN (see Sec. V for more detalls Hamiltonian as the free-impurity fixed point, but doubly oc-
o cupied impurity configurations are eliminated from the Hil-
ksTn=aA "N?D/B, (4.3  bert space. Of the four dominant perturbations at the free-

—. . , impurity fixed point [see Egs.(4.5], only O, and Op
where 5 is a small dimensioniess parameter, one sees th%turvive Since the former is a relevant o erat(;r forathe
OyxT'"; i.e., the perturbation igrelevantfor all r>0. X P a

In the remainder of this section, we identify the mostvalence-fluctuation fixed point is always unstable.
relevant(or least irrelevantoperators in the vicinity of the
various Fermi-liquid fixed points. At each fixed point, the
expansion off, (n=L) contains a piece which varies like  The local-momenfixed point corresponds to the original
T(=L+[1xrl2  The dominant perturbations are therefore ongerson model with =0 andU = — 25 4= . The effec-
those operator®,, that contain the fewest possiblg's, and e Hamiltonian at the fixed point is still given by E6t.4),
in which thef,’s that are present have the smallest possiblg, only singly occupied impurity states are allowed, and so

D. Local-moment fixed point

indicesn. o there is a decoupled spindegree of freedom,
We shall present our analysis in the context of the nonde-
generate Anderson model. Features of the various Kondo s= dLl‘T oy, (4.6

models will be noted where they are different.
localized at the impurity site. This is the weak-coupling fixed

B. Free-impurity fixed point point of the Kondo models; i.e., it corresponds to setting
The free-impurity or “free-orbital”?® fixed point of the :VNZO in F% (2.37). bations in < allowed at th
Anderson model corresponds to setting=U=I=0 in Eq. one of the perturbations in Eqt.5) is allowed at the

(2.35. This fixed point, which has no analog in the Kondo Ipcal-moment f|xed.p0|nt. Instead, the dominant perturba-
: : ; oI tions are as follows:
models, is described by an effective Hamiltonian

H\?VC,N:HE\]O)_EG,N- (4.9 0y = AYH5, 50y Toor 55T,
Each many-body eigenstate is the product of an eigenstate of ovaN/Z(ngfOU— )T,
H(® and a zero-energy eigenstate of a free impurity level. (4.7)
By combining the reasoning outlined in the previous sub- OtleN’Z(fSUflqu H.c)oe T,
section with theN-dependences given in Sec. Ill A, one can
identify four operators which are, or may be, relevant in the OUOZAN/Z(fg(rfOU_1)20<T1+2|’_

vicinity of the free-impurity fixed point:
NJ2 . Here,O; and Oy describe exchang&ondo scattering and
O =AT(ng—1)cT 7, pure potential scattering, respective®, is a term from the

kinetic energy, ancDUO represents a Coulomb interaction

(4.5 between two conduction electrons in shell 0. OBly breaks
particle-hole symmetry.
In the standard cage=0, exchange and potential scatter-
. . . 2 .

AN + (-1 ing are marginal; further analy$is? reveals that antiferro-
Ory =A™ Ng,-o(fo,do+ H.C)oT ' magnetic (ferromagnetit exchange is marginally relevant
Here, O, , O, and Oy are essentially equivalent to the (marginally irrelevant and hence the fixed point is unstable

y Edv il

on-site energy, on-site Coulomb repulsion, and h bridization(Stable' For r>0, by contrast, all perturbations are irrel-
9, ; . pulsion, Y evant, and s¢he local-moment fixed point is stable irrespec-
terms (respectively in the original Hamiltonian, WhllEOFd

S tive of the sign of JThis is the first of several important
represents correlated hybrldlzatlon. Of these operators, onlyifferences between the fixed-point behaviors ffer0 and
Oy and Oy respect particle-hole symmetry and are allowed, ~ ¢

in the symmetric limit of the Anderson model. Note tiGaf, We note that for the two-channel Kondo model, each of
and Oy are always relevant, where@ and Or  are rel-  the operator®, listed in Eq.(4.7) should be replaced by a
evant forr<1 but are irrelevant for >1. Since there is at pair of operatorso(f)=o(71)io(72), WhereO(yj) (j=1,2is
least one relevant operator for both the symmetric and asymidentical toO,, except that all it operators carry a channel
metric cases, and also for all the free-impurity fixed point label j. Throughout this paper it is assumed that the two

Oy=AM2(ng—1)%T 1,

Or=ANZ(f{,d,+H.c)oeT (17072,

is always unstable. conduction channels couple to the impurity spin with equal
strength, in which case only the symmetric operafdj’’
C. Valence-fluctuation fixed point can entersHy . In addition, one can construct allowed per-

- . o3 turbations that contaifi's belonging to both channels. At the
The valence-fluctuationfixed point® of ~the ~Anderson local-moment fixed point, the leading perturbation of this
model corresponds to the original model witgh=I"=0, but  type is

U=, This is clearly not a fixed point of the symmetric

e ,— AN2cgt _ T _ 1+2r
Anderson model sinct) +2g4#0, and it has no analog in Oug= A" T o1, Torr = 1) (Topyfoze = 1) T 4.8
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Similar remarks concerning the two-channel Kondo model F. Asymmetric strong-coupling fixed point
apply at each of the remaining fixed points described in this The asymmetric strong-couplinixed point of the Ander-

section. son model and of the single-channel Kondo models is ob-
tained in the same fashion as the symmetric strong-coupling
E. Symmetric strong-coupling fixed point fixed point considered above, with a further condition: either
the coefficiente; entering Eqs(2.32 and (2.34) is made
infinite, or the model HamiltoniaHy is augmented by a

term \710\,1, whereOy, is defined in Eqgs(4.10 and |V,
—o. As a result, thef, degrees of freedom are frozen, in

addition to those associated with shell 0 and the impurity.
The effective Hamiltonian becomes

The symmetric strong-couplinfixed point is obtained by
settingl' = in Eq. (2.35 while keepinge 4 andU finite, or
by settingd=c in Eq. (2.37). We first consider the ground
state of the atomic Hamiltoniahl,. In the nondegenerate
Anderson model and the conventiors# 3 Kondo model,
any moment at the impurity site is completely screenedpy
electrons(In the Anderson model, the ground-state impurity Hascn= Hﬁf)— Eon. (4.1

occupancy(ny) varies continuously with the parameterg . ] )

and U. For any given set of couplings, however, there is aThe}WO fixed pomt~s described ey = +°c ande, = —e (or
unique ground state, and hence no residual impurity degré®y V1=+% and V,;=-—x) have different ground-state
of freedom) The s=1 Kondo model and the two-channel charges as defined in Eq¢2.41), but they are otherwise
Kondo model have spig-ground stated! in the former in- physma_lly equ!valent and will henceforth be treated as a
stance, the impurity isinderscreenedand in the latter, it s Single fixed point.

overscreened The dominant perturbations are

In all cases, an infinite energy gap separates the ground N2et 1 ~
statés) from all other eigenstates of the atomic Hamiltonian. 0,5,=A 25 30440 o0 7T,
As a consequence, thg, degrees of freedom are frozen out
and the effective Hamiltonian becomes OV2=AN’2(f£,,f2l,—1)ocTr,

(4.12
Hisen=HN —Ecn- (4.9 O, = ANZ(f],f3,+ H.c)oc T,
Based on the results of Sec. Ill B, the dominant perturba- OU2=AN’2(f;Uf20—1)20<T1+2f,

tions at this fixed point are _
where 7 describes a residual spin-degree of freedom
O, =ANRfT 1o f L ioT N present only in the_z underscreened Kond_o model. Since_ these
! lo 2%o0" 1o ' operators are all irrelevanthe asymmetric strong-coupling
fixed point is stable for all ¥ 0.
OV1=AN’2(fJ{Uf10—1)ocT"1, In the standard case € 0), the symmetric and asymmet-
(4.10 ric strong-coupling fixed points represent two points on a
O N2eet S continuous line of marginally stable fixed points described
Ou, =A™ (F1pf1,=D)7T 0, by a family of effective Hamiltonians

O, = ANZ(f] o+ H.c)o TAT2¥ 11002 HA(V) = HRO+ VAN T~ 1) —Een. (413

These fixed points share essentially the same physical prop-

erties, independent of the value\of. The effect of a power-

involving the residual spirr, is present only in the under- |aw scattering rate is to destroy all but two of the fixed points
screened and overscreened mod€lg; describes nonlocal _ 4 0 make the cas¥, =0 unstable with respect to the

potential scattering of electrons in shell 1 from the impurity preaking of particle-hole symmetry.
site. BothO, and Oy, are relevant perturbations for al The two-channel Kondo model also has a stable, strong-
>0. Oy,, representing Coulomb repulsion betwegrelec-  coupling fixed point ati=c, e;=+%. However, we have
trons, is relevant for> 3. Finally, the kinetic energy term not found any choice of the bare paramet&sandV, that
O, is marginal forr =1, but is irrelevant otherwise. produces flow to this limit, in which the ground state carries
The fixed point is stable for>0 if, and only if, three @ residual spirk degree of freedom. Instead, it is helpful to
conditions are satisfied: the impurity moment is exactlyconsider the Hamiltoniarty+3;05)+V,0(") [see Egs.
screenedto rule outO; as an allowed perturbatitnthe (4,10 and the last paragraph of Sec. IV...The asymmetric
powerr is less tharg (to ensure thaOU1 is irrelevany, and  strong-coupling fixed point of interest is reached by first set-
the problem exhibits particle-hole symmetiso thatOVl is ting J=% and V=0 to lock the impurity into an over-
disallowed. Thus, one sees thahe symmetric strong- Scréened spin doublet, and then taking the simultaneous lim-
coupling fixed point is generically unstabl€his represents its J;—« and V;— +o% in such a way that 1R |V,|/J,
another significant departure from the standard cas@, in ~ <3/4. Under this prescription, the impurity combines with
which the fixed point is always marginally stable, except inshells 0 and 1 to produce two degenerate ground states car-
overscreened problems, where it is marginally unstdble. rying quantum numbers QW,Q?)=(0,1,0) and

where, as before,;=min(r,1). 0,,, a Kondo-like operator
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(0,0,+1). This pair of spinless states represents a “flavor- 1+r

2 degree of freedom[The generators of electron flavor Po=55 (5.9
symmetry are obtained from the standard spin generators by

interchanging spin and channel indicegs~1, | 2. For With these assumptions, it is straightforward to show that

example, the component of flavor measures the differencefor kgT<D, the host entropy, specific heat capacity, and
between the number of electrons in channels 1 and 2, i.estatic susceptibility are given by
Jlavor— 1(QW—Q?)).] The fixed point is described by the

. N . ) (0) Lr
.effef:tlve Hamllton|ar1-|A.SCN defined in Eq(4.11); the lead- S—=2N0 (2+r)¢(1+r)<kB_T> ’ (5.23
ing irrelevant perturbations ai@{;’ and a flavor analog of B D
(+)
OJZ . C(O) kBT 1+r
—=2Np(1+r)(2+r)p(1+r)| — , (5.2b
Kg D
G. Frozen-impurity fixed point
. - . . kaTv(©@  Nno_ koT\2HT
The frozen-impurityfixed point of the Anderson model is B'X " _ Mo B(1+1) "Bl _ (5.20
obtained by setting 4=+ in Eq.(2.35. Here, the impurity (gug)? 2 D

level becomes completely depopulated, and the excitatio
of the system are just described by E4.4). The leading
perturbations at this fixed point a@,, O, andOU0 from () =1 (x+1), g(x)zx[gl(x)—gz(x)], (5.3

Egs.(4.7), and so the fixed point is stable for ali>0. o ind®
The electronic excitations at the frozen-impurity andWhere, for allx>0 and all positive integers, we defin

nﬁo is the number of unit cells making up the solid, and

asymmetric strong-coupling fixed points are described by . w1
H(® and H(®, respectively. As pointed out in Sec. Ill C, §n(X)=f du — (5.4
these two Hamiltonians can be made equivalent by a suitable (e"+1)"

relabeling of the operatorfs,. The leading irrelevant pertur- _ — . _ _

bations about the two fixed points become identical undefThe functionsé and ¢ will also enter the impurity proper-
this relabeling. Thusthe frozen-impurity and asymmetric tiés calculated in Sec. V D. .
strong-coupling fixed points are physically equivalam,to ‘One sees from Eq$5.2) that the exponent which deter-

a shift in the ground-state charge. In treating the Andersofines the density of states is directly reflected in the tem-
Hamiltonian, it will prove more convenient to refer to the Perature dependence of the host properties. For later refer-
frozen-impurity fixed point(since (ny) can be made arbi- €nce, we define the host WilsSr{or Sommerfeldi ratio

trarily small in this model whereas the asymmetric strong-

) —
coupling fixed point more naturally describes the Kondo o) _ Iim4—7T2 kg Tx'” _ 7 p(1+T)
models(which correspond to the limity=2s). W0 3 (gpe)?C®  3(14r)(241)d(1l+r)
(5.9
V. THERMODYNAMIC PROPERTIES Since ¢(1):772/12 andg(l)zé, Eqg. (55) reduces in the

_ S _ ~limit r—0 to the standard resur({’=1.
This section is primarily concerned with the numerical

and analytical calculation of the contribution made by mag-
netic impurities to various thermodynamic properties. First,
though, we remark briefly on the thermodynamics of the The impurity contribution to a thermodynamic propefty
pure host Fermi systems. is defined to be the change in the total measured value of
brought about by adding a single impurity to the system.
Each such contribution can be computed from an expression

B. Impurity thermodynamic properties

A. Host thermodynamic properties of the form
As we have emphasized in the Introduction, the impurity Aimp={(AVimp=(A)—(A)o
properties of the models we consider depend on the P P
conduction-band density of states and the energy-dependent = lim [Tr(Ae—BNHN)_TrO(Ae—ENH(NO))], (5.6)
hybridization only in the particular combinatiod’(e) N— o0

= mp(€)t?(€). However, in order to compute the properties . .
of the pure system in the absence of magnetic impurities, it igvhereA is an operator which depends on the property of
necessary to specify(e) explicitly. If the power-law energy Interest,

dependence of the scattering rate arises solely from the hy- _ ~N/2

bridization, then the host properties will be those of a con- An=aDA T (keT) ©.2
ventional metal. Here we focus on the opposite limit, moreis the natural energy scale of iteratibhdivided by the ther-
appropriate for describing the gapless systems listed in thmal energy scale, and “§f means a trace taken over an
Introduction, in which the hybridization is essentially con- impurity-free system.

stant and the density of states has the form given i Ed). For example, the impurity contributions to the entropy
In this case, unit normalization gf(€) implies that and the specific heat are obtained as
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IF imp 02Fimp for A>1 aspB becomes much smaller than unity. I-_|owever,
Simp= "~ ?v imp=— T aT2 (5.8 there is another factor which militates against takpg1.
Limitations of computer time and memory permit the reten-
Here,F i, is the difference between the total Helmholtz freetion only of those states having an energy witkip of the
energy of the system with and without the impurity: ground state. In order to minimize the contribution of the
missing states tq.4)in,, one wantsgE, to be as large as
possible. In practice, thereforg,is chosen as a compromise
to take a value somewhat smaller than 1. The results pre-
with sented in Sec. VI were calculated far=3 or 9, retaining all
© eigEnstates up to a dimensionless energy 25 and using values
Zy=Tre A, ZQ)=Troe Avin". (5.10  of B between 0.6 and 0/6 Y2 It is shown in Ref. 23 how
one can calculate corrections to compensate for such rela-
tively large values of3. Our studies indicate that while the
corrections are formally of ordeg/A~0.1-0.2, they have

Fimp= — kg TINZmp= lim kgTIN(Z/Zy), (5.9

N— o0

Another quantity of interest is the impurity contribution to
the zero-field magnetic susceptibility, given by

ksTXim small prefactors which reduce the overall shift@g,, and
—Z'J:<S§/Z>imp Ximp 0 less than 1 part in £0 Since this level of error is
(Que) smaller than that arising from the discretization of the con-
2~ BuHN 2~ ByH? duction band, we have neglected {BEA corrections.
= lim Tr(s;e ) _Tr(See ) ’ As a practical matter, Eq$5.8) are not used directly to
N— o Zy z¥ evaluateS,,, and Cj,,. A more accurate evaluation of the
(5.1 entropy, which avoids numerical differentiation, exploits the
' relation
where ug is the Bohr magnetong is the Landeg factor
(assumed to be the same for conduction and localized elec- Simp=Ke({ BH/ Z)imp— BF imp)- (56.12

trong, and S, is the z component of the total spin of the
system. The quantity & T ximp €quals the square of the ef- It is likewise possible to obtain the specific heat without
fective moment contributed by the impurity to the system. differentiation, through the equation

The numerical RG formulation provides a controlled ap-
proximation for computing the impurity contributions to Cimp= kB[((BH/Z)2>imp—((BH/Z)imp)Z], (5.13
each thermodynamic property according to Eg.6). The
method does not yield reliable results fod) or (A), sepa-  but the results turn out to be rather prone to discretization
rately, even though these are the values that would have ®@rror. All plots of the specific heat presented below were

be measured experimentally in order to deterning,. instead obtained usinGy,=TdSi,,/dT with a simple two-
point approximation to the derivative.
C. Numerical evaluation of impurity As mentioned above, the thermodynamic quantities pre-
thermodynamic properties sented in this paper were obtained usig 3 or A=9 and

an energy cutoffE.=25. With these choices, the primary

_In Sec. VI, we present thermodynamic properties obtainedoyrce of error is the discretization. One of the main effects
via the direct numerical evaluation of EG$.9) and(5.11). ot yyorking with a value ofA greater than unity is the intro-
This subsection pnefly reviews some of the technical detailgy,ction into( A)mp Of oscillations which are periodic in T
of these calculations. , _ The oscillations have a periodAnand a magnitude propor-

The general strategy for computing thermodynamic propsjong) to expt-#2/InA). Oliveira and Oliveira have showh
ertles.usmg the discretized Hamll.tonlaH.ﬁ;, IS as fOHOW_S: that these oscillations can be greatly reduced by averaging
One first selects a value for the dimensionless parangeter values of(.A);,, computed for different band discretization

Then for each iteratioN=0,1, . . ., oneassigns the result of parametersz (see Sec. Il . We have employed four’s
Eq. (5.6) to the temperature defined through E8.7) by the (0.5, 0.75, 1, 1.25) in obtaining the results presented below.
condition By=p. This gives the quantitf.A)n, at a se- Another consequence of the band discretization is a re-

guence of temperaturds, satisfying Eq.(4.3). TheTy's are  duction in the effective coupling between impurity and delo-
equally spaced at intervals &fnA on a logarithmic scale. If calized degrees of freedofh. Study of a discretized
desired, this “grid” of temperatures can be refined by usingresonant-level model with a power-law scattering 1aiedi-
several different values o at each iteration. The choice Cates that the most faithful description of the continuum
E:EOA—J'/ZM for j=0, ... M (we have uset = 4) proves problems d_escribed by EqR.7) and (2.1)) is obtained_ by
convenient because the corresponding temperature gr emdyltlplyt/_mgdthel paltr?metetr)Eo, ’;0‘]?’ and poVo entering
{Tn,j} contains the redundanci€Byo=Ty:q1m - The dis- € discretized caiculations Dy a factor
crepancy between the two independent evaluations of a ther- 1. ot

=

InA

modynamic property at the same temperature provides a use-

ful measure of the error in the result. 1—A-(1+D)
Since the smallest energy scaletof, is of order unity,

one expects Eq5.6) to provide increasingly reliable results ~1+0O(InA)?> for A—1. (5.19

A=

l_A(2+r)r+f
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Forr=0, Eq.(5.149 reduces to the standard result given in
Ref. 39. In the remainder of this paper, we quote the con-
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2. Valence-fluctuation fixed point

The valence-fluctuation fixed point describes a decoupled

tinuum equivalent of each coupling. Thus, any numericalyrhital which has three degenerate states, double occupation

data labeled with a particular value ®f,, pgJg, Or poVo
were actually computed by substitutingl’y, ApgJg, OF
ApyVy into Egs.(2.36 or Egs.(2.39. Note that parameters
describing the impurity alone, i.eeq and U entering Egs.
(2.36), do not have to be corrected.

The measures outlined in the preceding paragraphs
greatly reduce, but cannot completely eliminate, discretiza-

Simp: kgIn3, Cimp: 0,

being forbidden. The impurity properties include

KeTximp _ 1

. (5.16
(QIU«B)Z 6

3. Local-moment regime

tion errors in the computed thermodynamic properties. We One can apply standard perturbative metfidéto the
estimate on the basis of limited calculations performed foreffective Hamiltonian HN=H\’;\,C,N+Eﬁ/Oy, where the
other values ofA that for A=3, the overall error in the fixed-point HamiltoniarHy,c \ is given by Eq.(4.4) and the
impurity contributions to the susceptibilifiyy or the entropy perturbation®O,, are those defined in E¢4.7). For the non-

S is less than 5%, while that for the specific h€ais less

degenerate Anderson model or the exactly screened Kondo

than 10%. It should be emphasized that these are errors model one finds, to lowest order in each of the perturbative
absolute quantities at finite temperatures. Zero-temperatuigouplings, that

properties and exponents describing the ratios of properties

at different temperatures or couplings generally have much Fimp

smaller errorgbelow 1%. Indeed, fixed-point properties can
be computed to better than 1% using values\ads large as
10, with a considerable reduction in the numerical effort
compared to that required fox= 3.

B

D. Perturbative evaluation of impurity
thermodynamic properties

In the vicinity of any of the fixed points described in Sec.
IV, perturbation theory can be applied to the appropriate ef-
fective Hamiltonian to obtain analytical expressions for ther-and

modynamic quantities as functions of the couplingshich
parametrize the deviation from the fixed poiftee Eq.
(4.2)]. Once perturbative expressions have been obtained for (gpe)?
the discretized version of the problemM 1), they can be
extrapolated to the continuum limitA\(=1).

A similar perturbative treatment of the standard Kondo
and Anderson models is described in detail in Refs. 22 and
23, respectively. The extension to systems with a power-law
scattering rate is conceptually straightforward but algebra-
ically laborious. One novel feature is that in certain physical
regimes the dominant temperature dependences derive from
second-order corrections to the fixed-point properties,
whereas in the standard case=(0) it is not necessary to go
beyond first order in perturbation theory.

The remainder of this section summarizes properties of
the five distinct fixed points discussed in Sec. IV. Perturba-
tive corrections to the fixed-point properties are presented for
each of the three stabl@r conditionally stable regimes.
Certain technical details have been relegated to Appendix Bdere,

1. Free-impurity fixed point

The free-impurity fixed point describes a decoupled or-
bital which has four degenerate states. The impurity contrib-
utes to the thermodynamic properties as follows:

KgTXimp _ 1 J —IN/2 2
=TT ;aoj'pjpj

=In2— 8T1BNA7(1+I')N/22 Qo)A pJ
J

+2(V2+ 533 pyA ™™

2 2
aojaOk 1 —
X(Z X aéjpj(—ﬁﬁij)
Lk gyt 7,
2 2
adad P,
—4y Lz’] (5.17
i#k o=y

- 2~tl,3NA7(1H)N/2; agjay; pjﬁ(ﬁj— pj)

2
+4U0,3NA(1+2”N/2(; a%ijPJ’)
vz a%‘aékﬂ‘* — —
——ByA ™MD L hi(pi—p)
2 BN { {7k 77]_*2_ 77;zplpl pJ pl
—| pj—p; —
+; agjpjpj{ ]77* J_ﬂN(l—Gpjpj)“-

]

(5.18

efﬁN 7/;

pi=1-p;= (5.19

1+e Avr

is the occupation probability of a fermionic state having en-
ergy »; , and the indiceg andk run over the range 1 to

(N+1)/2, inclusive. We have omitted the lowest-order con-

I(BTXimp :1
(gue)? 8

Smp=kglIn4, Cinp=0, (5.15

tribution of OUO to Finp, because it is highly irrelevant

(«T3*4"). The equations above are written fdrodd; simi-
lar expressions hold fax even.
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In the continuum limit N—o, A—1, and8y<<1), the D
sums entering Eq$5.17) and (5.18 can be evaluated alge- Y(r)—In{ = (5.26
braically (see Appendix B The resulting equations, valid BkeT
for all positiver except =1, are in Egs. (5.20 and (5.22). Here,E is the small parameter
= keT )| 17° introduced in Eq(4.3), the precise value of which cannot be
— ™ n2— 4T, (14 1)(3+1) G(1+T) L) determined uniquely within the present formalisiBee Ap-
kgT pendix B for further discussionAs a result, there is some
rytr uncertainty in the thermodynamic properties, but it is clear
T2, 372 2 Kel that AS;,,, and AC;,, must contain contributions propor-
F2(Vi 56 )(14r) z//(r)¢(r1+r)( D ) tional to T2InT and others varying likd2. The ratio of the
prefactors of these terms will determine whether or not the
(5.20 logarithmic correction is observable at temperatures of
and physical interest. We shall return to this point in Sec. VI A.
kBTXimp 1 J_ B r 4. Symmetric strong-coupling regime
(guep)? - Z+ Z p(1+1)| — The methods of the previous section can be applied to
compute impurity properties at the symmetric strong-
- _ kgT L coupling fixed point, plus the leading corrections for those
—tV(1+1)(3+T1) p(1+T) o cases in which the fixed point is stable, i.e., for the particle-
hole-symmetric Anderson model and the exactly screened
1+2r Kondo model, both wittr <3. Here, first-order perturbation
+L~JO[$(1+r)]2 i) theory suffices, yielding the expressions
V2 keT\ ™" —m’:ln4+2 41nq,— >, 4lnp;
+ ?(l+r)2¢(r)¢(r1+r) i) . keT | 4 )
(5.21 _872,31\1/\7(17”’\”22' BuB2ar  (5.27)

Both ¢(x) and ¢(x), defined in Eqs(5.3), vary smoothly
with x and are of order unity over the range=s@=<3. By
contrast, the function

and

keTxi 1 — —
2 Imp:§+§|: Q|Q|_§j: P;p;

o ra 2
—tan— for 0=<r<1, (gre)
pry=y2 2 (5.22 L
(r=1)~1 forr=1, —2tzBNA‘(1‘”N’ZZ| BuB9191(d—a;)
has a simple pole at=1. )
Similar calculations can be performed for the1 and +40, B A~ (120N 2 B2 Q@ (5.28
two-channel Kondo models. To summarize the results, the - ’

fixed-point impurity properties of the Anderson model and of — ] _
the two s=3 Kondo models are just those expected for awherep; andp; are given by Eq(5.19, andq, andg, are

decoupled spirkimpurity: the analogous quantities defined for the eigenenergies of
HSson:
kgT xi 1 .
Smp=Kgln2, Cipp=0, — F=7 (623 e Bo
(9us) q=l-q="—""—"—=. (5.29
1+e Anel

The corresponding results for the underscreened model are
The index| runs from 1 to N—1)/2, inclusive, whilej still
KeTXimp 2 runs from 1 to N+1)/2.
( 2 -3 (5.29 The sums entering Eqg5.27) and (5.28 can be per-
9ke formed algebraically for values af close to unity. Extrapo-

In all four models, the leading corrections at low tempera-1ation of the resulting expressiorisee Appendix Bto the

Simp: kgln3, Cimp: 0,

tures take the form continuum limit gives
X rqt+r . r F _
Asimp,AC|mp°<T , A(Tlep)OCT (525) —ﬂ:r1|n4_4t2blb2 ,—(1_r)(3_r) d)(l_r)
for all positiver #1. kgT

For the special case=1, the second-order terms H,, 1-r
and ximp acquire logarithmic corrections, necessitating the

replacement

kgT
x| 2=

5 (5.30
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and tion r, of a conduction electron from each band occupies a
1o decoupled level of zero energy, the remaining fractionrl
kBTXimp_ rg - — ) kgT presumably being absorbed into a many-body resonance cen-
W‘ g_ul[bl‘ﬁ(l_ ] F tered on the Fermi energy.
The properties described above appear to be highly
_ . (ksT) 1-r anomalous. It should be emphasized, though, that since the
—tob1b,V(1=r)(3—1) ¢(1—1)| — , impurity has no internal degree of freedom at the fixed point
D (at least in the Anderson and exactly screened Kondo mod-
(5.3) €9, it acts only to exclude conduction electrons from its
immediate vicinity. The fixed-point behaviors are simply
where those of independent electrons subjected to a phase shift.
2 Indeed, the noninteractingU(=0) limit of the Anderson
b2(r)= lim L (5.32 model reproduces the low-energy phase shifts of (BdL®
‘ . . . : . ;
A—1 (2n+1-r)InA and hence yields precisely the thermodynamic properties de-
scribed in Eqs(5.33. Furthermore, the noninteracting model
It is found numerically thab; andb, are of order unity, at js shown in Appendix A to exhibit a spectral function
least for all O<r<3, the range over which the symmetric A(w)m|w|llfr\*l, in agreement with thé)>0 results of

strong-coupling fixed point is stable. Ref. 10. We conclude thahe symmetric strong-coupling
Thus, the fixed-point impurity properties of the Andersonfixed point embodies a natural generalization of standard
and exactly screened Kondo models are Fermi-liquid physics to gapless hosts.
kgTyxi r 5. A tric strong- li f -i it i
Simp=2r1kBIn2, B )(lmzpz _1; (5.33 symmetric s rong coupling c?r rozen-impurity regl.me |
(gus) 8 The thermodynamic properties at the frozen-impurity
those of the underscreened Kondo model are fixed point of the Anderson model and at the asymmetric
strong-coupling fixed point of the exactly screened Kondo
model are simpl
Sinp=(1+2r,)kgIn2 M:ﬁ- (5.34 i
mp VReTe (gus)? g ' ' Simp=0, Cimp=0, TXimp=0. (5.37

The corresponding properties of the underscreened Kondo

model are those of a free spinimpurity, given by Egs.

keTximo 1473 (5.23. The overscreened Kondo model has a decoupled
P= (5.395 flavor- degree of freedom, which contributes

and those of the overscreened model are

Smp: (1+4r1)kB|n2,

(0ue)” ‘ S In2, C 0, T 0 (5.38
o=1n2, Ci,,=0, imp=0. .
In all four models Ciy,=0 at the fixed point, and the leading e e Ximp
corrections to the fixed-point properties vary as The corrections to the fixed-point values can be obtained

from the corrections at the local-moment fixed point by the
replacements —0, V—V,, t;—15, andUy—U,. The re-
§ults are of the form

ASinp, ACimp= T, A(Tximp) = TH 2. (5.3

The fixed-point properties and temperature exponent
above agree with those obtained fo0<1 by Chen and A AC T4 A(Tyo)ocTratr 53
Jayaprakashfor the exactly screened Kondo model and by Simp & Cimp o (T Ximp) ( 9)
Bulla et all® for the Anderson model[At extremely low Note that these expressions do not extrapolate=®, in
temperatureskg T/D<10"1°, the latter authors identify a which limit the leading corrections atmear in T.

T1~2" variation in the specific heat. Such a term can arise Forr=1, the thermodynamic properties above should be
only from the operatolO defined in Egs(4.10. Under supplemented by terms proportional TInT. In 'this same
conditions of strict particle-hole symmetry, howeve,, ~ €ase, Cassanello and Fradkinave found logarithmic cor-

: . rections to the Kondo temperature, the static susceptibility,
cannot contrlblu_tczer to the _spe_:cmc héét\/\_/e suspect, there- and theT matrix. These authors point out that under such
fore, that theT behavior is a numerical artifa¢tin ad-

" ' . . circumstances, multiple energy scales enter the problem and
dition, Bullaet al. find that for 0<r <1 the impurity spectral ; i
J .o ; L ; h I tit I troll the K
function A(w) varies like|w| ™" in the limit «—0, in con- physical quantities are no longer controlled by the Kondo

. . scale alone.
tiaost to the Lorentzian form found in the standard case The resilts of the previous two paragraphs imply that for

. . i . the Anderson and exactly screened Kondo models, 6
At the symmetric strong-coupling fixed point, one sees y b

. L and T xim, approach zero a§'t"". This is the only instance
that each conduction bar_ld_ _makes a contrlbutlon to the enaimong all the fixed points and models discussed in this paper
tropy and to the susceptibility equal tq times that of an

isolated level described by E6.2b with e,—U=0. Fur- in which a system described by a scattering expomend

) . ) exhibits a nontrivial impurity Wilson ratio
thermore, the impurity density of statespiny(€)
=x"198,/9e computed using Eq3.16, has adfunction an? KTy,
peak of weightr; at e=0 (see also Ref.)5 These observa- Ry= lim— _ B Amp_ (5.40
tions suggest the phenomenological interpretation that a frac- T—0 3 (QMB)ZCimp
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Examination of Egs(5.20 and (5.21) shows that forr
=1, Ry is a function ofV3/t; as well as ofr, and is thus
expected to depend on the bare couplingg, €4, andU for
the Anderson model], andV, for the Kondo modeél For
0<r<1, however, the leading contribution to both the sus-
ceptibility and the specific heat is proportional\?@ alone,
and so the Wilson ratio takes a universal value

o
N

keTximp/ (gua)?
o

_ mg(ar)
T Br(1+2r)é(2r)

This expression will be compared with the host Wilson ratio 0.0
RS,S)(r) in the next section.

(5.4

wi(r

/L

VI. NUMERICAL RESULTS

This section presents numerical RG results obtained using

the formalism described in the earlier parts of this paper. We 2 0.1
concentrate primarily on pure power-law scattering rates of S
the form of Eq.(1.3). At the end of this section, we discuss é

the effect of various modifications to the scattering rate, in-
cluding the introduction of particle-hole asymmetry and the
restriction of the power-law variation to a pseudogap region
around the Fermi energy. 0.0

A

For simplicity, we shall henceforth skg=gug=1. (We 05 105 A 1_4 1_ _2 10-1

remind the reader that tlgefactor is assumed to be the same

for localized and conduction electrons. keT/D

FIG. 1. Impurity susceptibilityT xin, and specific heaCin, vs
A. Anderson model temperaturdl for the infinited Anderson model with values af;
This subsection treats the nondegenerate Anderson modéf labeled and a pure power-law scattering rate specified by
Eq.(2.1), restricted to the domaid >0. For pure power-law =0.2 andl';=0.1D. The legend shows the local-moment fraction
scattering rates of the form of EL.3 it is necessary to v [see Ea(6.1)] for each curve.

consider onlyey=—U/2 (see Sec. Il E Most of the results The casdJ = is shown in Fig. 1. At very high tempera-
will be presented for the extreme casds= —2ey andU  {yresT>D (not shown, the properties are close to those of
= which, respectively, preserve and maximally breakihe valence-fluctuation fixed poirisec. IV O: Tyimp=~1/6
particle-hole symmetry. _ _ andC;y,~0. OnceT drops belowD, the properties become
We first examine in some detail the properties of thesepsitive to the position of the impurity level relative to the
model for a fixed exponent=0.2. In particular, we show pFermj level. Ife, is positive or weakly negativée.g., see the
how t_he variation of the therm(_)dynamlc pr_opert|es with de-c;rve foreg/D=—0.1), Tximp falls monotonically with de-
creasing temperature can be interpreted in terms of Crosgyeasing temperature, indicating a crossover from valence
overs between various of the fixed-point regimes enumerateg\,ctyation to the frozen-impurity regimesec. IV Q. This
in Sec. IV. This mterpretatlon can in some mstances be corgrossover is accompanied by a peak in the specific heat rep-
roborated by computing the relative populations of the fourresenting a loss of impurity entropy equal to In3.
impurity configurations. We then explore some of the sys- £qr more negative values ef;, Ty, initially rises asT
tematic changes that take placerds varied, focusing onthe 55 below D, but at lower temperatupres it drops back to-
progressive damping of impurity charge fluctuations and thg, 5,qs zerg(see the curves fogy/D=—0.15 and—0.175 in
consequent suppression of the Kondo effect. Finally, we 'eFig. 1). The rise can be associated with a crossover from
late the preceding results to the simple scaling theory of 5jence-fluctuation to local-moment behavi@ec. IV D),
Ref. 8. even thoughT xiy, does not climb all the way to 1/4, the
value characterizing a free spés 3. The subsequent drop in
Tximp Signals a second crossover to the frozen-impurity fixed
Figures 1 and 2 provide an idea of the range of possiblg@oint as the impurity becomes Kondo screened. The specific
behaviors in the temperature variation of the impurity mag-heat shows two well-defined peaks, corresponding to the
netic susceptibility and specific heat. In these plaisand  two-stage quenching of the impurity entropy from In3 at the
I'y are held fixed, and each curve represents a different valuealence-fluctuation fixed point to In2 in the local-moment
of €4. (To prevent overcrowding, we generally place a sym-regime to zero at strong coupling. This double-peak structure
bol at only one in every six temperature points along eachmay be taken as a signature of the Kondo effect, just as it is
curve when plotting thermodynamic quantities. The line con4in a system with a flat scattering rate.
necting the symbols results from a fit through the complete If the impurity level lies far below the Fermi energy
data se). (e4/D=—0.3 and—0.5 in Fig. 1, then as the temperature

1. Pure power-law scattering rate with=+0.2
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falls, Tximp rises monotonically towards the local-moment
value of 1/4. The crossover from valence fluctuation to local-
moment behavior is marked by a single peak in the specific

o
N

heat as the impurity loses the entropy associated with the o
empty-impurity configuration. In contrast to the standard 32
caser =0, where the system eventually flows to strong cou- g
pling for any choice of bare impurity parameters, these g
curves show that for=0.2 andey sufficiently negative, an Rad 0.1
unscreened spin survives on the impurity site down to abso- &

lute zero. This is made possible by the local stability of the
local-moment fixed point for alt>0 (see Sec. IV S

The final curve shown in Fig. 1ef /D= —0.223) quickly 0.0l | | | | )
reaches a plateau &ty;y,,~0.2, and remains there down to
at leasfT=10°D. This behavior is not compatible with any
of the fixed points described in Secs. IV and V. Moreover, it
is achieved only by a careful tuning ef; for a givenr, U,
andI',. We therefore interpret it as evidence for an unstable,
intermediate-coupling fixed point—the manifestation in the
Anderson model of the fixed point identified by Withoff and
Fradkirf in the Kondo model. This interpretation is discussed
further in Sec. VIB 1.

As mentioned in the introduction to this subsection, it can
also be useful to examine the ground-state impurity configu-
ration. At temperatures sufficiently high that the system is in 0k o PP )
the free-impurity T>U) or valence-fluctuationT<U) re- 10_ " _ 0_4 10-3 10-2 10~
gime, one expects the Anderson model to exhibit charge
fluctuations between subspaces labeled by different values of keT/D
ny. However, oncel drops below the_ effective values of FIG. 2. Impurity susceptibilityT xum and Specific heaByp Vs
both I' and |ey|, real charge transfer is frozen out a(‘qt temperaturdl for the symmetric Anderson model with valuesegf
least fore,=—U/2) the_ Iocal_ Ieve_l should be well described as labeled and a pure power-law scattering rate specified by
by one of three configurationsi) a local moment(only  _g 5 andr,=0.1D.
states withng=1 are significantly populated(ii) an empty
impurity ((ng)~0), or (iii) a mixed-valence configuration  The susceptibility plots for a symmetric Anderson impu-
(involving significant occupation of states with more thanrity in Fig. 2 exhibit many of the features found for=cc. In

//

Cimp/ kB

oneny value. particular, large, negative values &f drive the system to the
The three low-temperature impurity configurations can bdocal-moment regime, and there exists a critical value

differentiated using the local-moment fraction (€4/D=—0.40) for which Ty;,, remains approximately
) equal to 0.2 down to very low temperatures. However, the

fLM=TI|m0<nd—2ndTndl). (6.1)  susceptibility curves foey/D>—0.40 head towards a low-

temperature limit ofT y;,,~0.025 instead of zero. This is
For U=, f), is identical to the ground-state impurity oc- precisely the behavior expected at the symmetric strong-
cupancy{ng). ForU=—2¢4, however,(ny) always equals coupling fixed point(see Secs. IV E and V D)4which ex-
1 (due to particle-hole symmetrywheread varies from 0 hibits a susceptibilityl x;yn,=r1/8, wherer ; =min(r,1). This
to 1 to 1 asey is changed from+o to 0 to — . departure from the cadd = demonstrates the importance
The legend of Fig. 1 lists the local-moment fraction for of particle-hole (a)symmetry in determining the low-
each of the curves. The valug,=0.63 for e,/D=—0.1  temperature properties.
places the impurity within the mixed-valence range. All the The specific heat curves in Fig. 2 are qualitatively similar
remaining curves havh ,,>0.75, signaling the existence of to those in Fig. 1, a double peak again indicating the forma-
a well-developed local moment. It is interesting to compardion and subsequent Kondo screening of a local moment.
this information with that provided by the thermodynamic However, differences in quantitative features such as the area
properties. Note that the caseg/D=—0.10 and—0.175 under each peak reflect the fact that the cd$es> andU
result in flow to the same fixed point, despite having differ-= —2¢4 have different fixed points in both the high- and
ent ground-state impurity configurations. Conversely, thdow-temperature limits.
local-moment configuration present foey/D=—0.175, The approach to the low-temperature fixed points is high-
—0.223, and-0.30 is nonetheless associated with three disdighted in Fig. 3, which shows the deviations By, and
tinct fixed-point behaviors. These observations serve to emc;,,, from their zero-temperature limits. Examples are pro-
phasize that,,,, which probes only the local impurity con- vided of both the infinitdd and symmetric cases, and for
figuration in the ground state of the system, isflow both to strong coupling €5/D=—0.05) and to the
complementary to the fixed-point analysis, which is based ofocal-moment fixed point€;/D = —0.50, — 0.65). (A sym-
the low-energy excitations above the many-body groundol is placed at every second data point in this figure.
state. Each curve in Fig. 3 is labeled with an exponent obtained
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FIG. 3. Deviation of properties from their fixed-point values:
impurity susceptibilityA(Tximp) and specific head Ci,, vs tem-
peratureT for the Anderson model with a pure power-law scatter-
ing rate specified by=0.2 andl’;=0.1D. Straight lines represent
fits to the data points over three decades of temperature. Each curve
is labeled with its fitted slopéestimated error=0.01).

by fitting the low-temperature data to a power lawTinThe
exponents for thé) =« curves are all close to or 2r, in
good quantitative agreement with E@5.25 and(5.39. For

a symmetric impurity there are greater departures from the
asymptotic forms in Eqg5.25 and(5.36). The exponent of
0.64+0.01 for A(Tximp) in the symmetric strong-coupling

regime (4= —0.09D) probably reflects the admixture of a 100 10°7 105 10-3 10
substantial residudl*~" contribution into the leading* 2" keT/D

term [see Eq.(5.31)]. The deviation fromT?" behavior in

ACjnyp near the local-moment fixed poing{= —0.63) can FIG. 4. Impurity susceptibilityT xin,, specific healC;y,,, and

also be attributed to incomplete convergence; fits limited tQntropy Smp Vs temperaturel for the Anderson model witheg
the lowest decade of temperatures for which reliable data are — .29, values ofU as labeled, and a pure power-law scattering
available yield an exponent of 0.3®.02, completely con- rate specified by =0.2 andl’,=0.1D.

sistent with perturbation theory.

Figure 4 shows that the low-temperature state can also be position of the unstable intermediate-coupling fixed point
tuned by varyindJ at fixedI'y andeq. Particularly interest-  which separates the stable weak- and strong-coupling basins
ing are the three curves that show signs of entry to the localef attraction. Discussion of the physical properties of this
moment regime and subsequent Kondo screening. Thiixed point will be deferred until Sec. VIB 1.
middle curve /D =0.5) displays the anomalous properties As shown in Figs. 1-4, the intermediate fixed point can
associated with the symmetric strong-coupling fixed pointbe located by adjustingy at fixedI'y andU or by tuningU
(TXimp=T1/8, Smp=riInd). The curves on either side while holdingI'y and 4 constant. The third possibility is to
(U/D=0.4 and 0.6) eventually enter the frozen-impurity re-define a critical scattering raf;, such that fod"(>T"; the
gime (Tximp=0, Smp=0), but only after lingering close to system flows to strong coupling, while fol,<I' the low-
the symmetric fixed point over some range of temperaturesemperature physics is governed by the local-moment fixed
(The effect is especially pronounced fat/D=0.6. This  point. Figure 5 plotd"./| ey as a function of for two fixed
curve has only just begun to move away from the symmetrizvalues ofey and for bothU=o andU=—2¢4. The two
fixed point at the lowest temperatures shown. infinite-U curves coincide almost perfectly and are roughly
linear inr. For a symmetric impurity, the dependenceron
and e4 is more complicated, the most notable feature being

In the paragraphs that follow, we examine some of thethe divergence of the critical scattering rateras 3, beyond
systematic trends that arise wheiis varied. We begin with  which point the strong-coupling fixed point is completely

2. Trends with increasing r
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FIG. 5. Position of the intermediate-coupling fixed poili, vs |‘°/D
r for the Anderson model with a pure power-law scattering rate.
Solid lines are provided as a guide to the eye. FIG. 7. Boundaries of the mixed-valence reging, (open

symbols, dashed lingsnd €;_ (solid symbols, solid lingsvs T'y
inaccessible. These trends will be discussed further in Sefor the infiniteld Anderson model with several different pure
VIB 3. power-law scattering rates. Individual points were determined by

We now turn to the strong-coupling behavior governed bythe criteriaf ,,=0.75 and 0.25 while the lines were obtained using
the frozen-impurity fixed point. The perturbation theory of Poor-man’s scalingsee Sec. VIA R Dashed lines from top to
Sec. V indicates that in this regime the impurity Wilson ratio Pottom correspond to=0, 0.25, 0.5, and 0.75. Foe=1, the scal-
Ry defined in Eq.(5.40 takes a universal(although N9 theory predictsg, =eg- .
r-dependentvalue over the range<Qr<1. The Wilson ra- g

i be obtained cally f h ted val efined in Eqs(5.5). If the deviation from unity of the ratio
10 can be obtained numericatly rom the computed values o w/R{Y can be taken as a measure of the impurity-induced
TXimp @and Ci,,. To the accuracy that we can achieve, our

. - i many-body effects, it appears that these effects weaken or
results for 0.2r=0.8 confirm that there is indeed a single even vanish as approaches 1.
value of Ry, for eachr.

) . As noted above, the strong-coupling regime can be
Figure 6 compares the best value Ry, (i.e., the value L : ' ' :

. . / . ivided— n the ground- impuri nfiguration—
with the smallest estimated erjodetermined numerically divided—based on the ground-state impurity configuratio

) ; . . : into empty-impurity, mixed-valence, and local-moment sub-
using a discretization parametdr=3 with the continuum py-impurtty

perturbative value, Eq5.41). The two sets of results agree regions. Figure 3 of Ref. 8 shows the variation of the impu-
to within 1.5% forr<0.5, 5% forr=0.6, and 8% forr rity occupancy witheq for U =c2, T'o=0.1D, and for values

- ) ) . of r ranging from 0 to 2. In all casegng) (=f.y for U
=0.8. (As shown in Sec. VD5, the subleading correctmnszoo) increases from 0 to 1 as the impurity level moves from
to Tximp and Ci,, are smaller than the leading terms by a

fact Gonal L. Th ; R b far below to far above the Fermi energy. The effect of a
a(f orl ptrodportlona o~ " | llJS’ as tmcreaset w MUS de ._power-law scattering rate is to narrow the rangesgfover
calculated at progressively lower temperatures, proaucingnicn the crossover takes place from an empty impurity,

larger errors. Figure 6 also plots the host Wilson rafy), through mixed valence, to a full local moment.
5 N In order to quantify the narrowing of the mixed-valence
regime, we define), ande}_ as the values of the impurity

L ) ] 4 energy which result in a ground-state occupatipg=0.25
impurity and 0.75, respectively. These energies, which we take to rep-

resent upper and lower bounds on the mixed-valence regime,

are plotted in Fig. 7. It is clear that the mixed-valence region

of parameter space shrinks monotonically as the power

increases at fixedl .

The local-moment fraction for a symmetric impurity with
I'p=0.1D is plotted as a function of the impurity energy in
Fig. 8. (Only negative values ofy are shown. Due to

T particle-hole symmetryf, , is mapped to * f,, when the
00 02 04 06 08 1.0 sign of g4 is reversed. Just as for the infinité) case, the

r range ofey over whichf y takes values between 0.75 and

FIG. 6. Wilson ratioRyy vsr for the infinitelU Anderson model 0'25_ decreases dram?t'ca"_y with increasing

with a power-law scattering rate. Individual points, representing the  F1gure 9 plotsf y — 3 against— €4 on a log-log scale. For
impurity Wilson ratio defined in Eq(5.40, were determined nu- '<0.5, fLu clearly dips downward to approach the valhie
merically using a discretization parametar=3. The solid line  linearly ase;—0. The curves for =0.75 and 0.9 also show
shows the perturbative result of E&.41) for the continuum limit, ~ Signs of the same behavior, although the linear regime is
A—1. The dashed line plots the host Wilson ratio in the absence opushed to much smalleey|. By contrast, the curvature of
impurities, calculated assuming a power-law density of stites  the data forr =1 andr=2 suggests that, \, approaches a
Eqg. (5.5)]. value greater thag ases— 0, and hence undergoes a dis-
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—ed/D

FIG. 8. Local-moment fractiorf,, vs impurity energyey for
the symmetric Anderson model with pure power-law scattering
rates specified by’ (=0.1D and several different values of The
lines are provided as a guide to the eye.

continuous jump when the impurity level passes through the

Fermi energy.
Figures 7—-9 show that as the exponendescribing the

power-law scattering rate increases, there is a progressive 0.0
shrinking of the mixed-valence region of parameter space in

favor of the local-moment and empty-impurity regimes. This

0.2
™~
~~
[2 2 I I = A - A - A - A - k.= ¥
$ |eoecooocsnoce
o
g —eq/D  fuu
g 5001 015
£0.1F v0037 026
o o 0.0379 0.67
~ e 0.040 0.88
L & 0.20 0.96

Cimp/kE

| ! f 1 ik
107 1075 10~* 1073 102 10!

trend is a natural consequence of the depression of the scat- keT/D

tering rate near the Fermi level, which strongly inhibits mix-
ing between the impurity level and low-energy conduction
states.

The numerics also reveal a second trend with increasinE

r, namely, the progressive disappearance of the Kondo e
fect. Forr=0.5 it proves almost impossible to find any re-

FIG. 10. Impurity susceptibilityl xim, and specific heaiy,, vs
temperaturel for the Anderson model with a linear scattering rate
specified byr=1 andI'(=0.1D. Data points connected by solid
nes correspond tdJ = and values ofe; shown in the legend.
The dashed line shows the symmetric ci§8= — e;=0.04D.

gion of parameter space within which the thermodynamic
properties indicate that entry to the local-moment regime isinoccupied in the ground staté (;,<1/4), and the system

followed by a crossover to either of the two strong-coupling
fixed points. This is illustrated in Fig. 10, which shows the
impurity susceptibility and specific heat for a linear scatter-
ing rate. As noted above, the casel is of particular inter-

crosses directly from valence fluctuation to the frozen-
impurity regime; there is neither a peak My;y,, nor a
double peak inCiy,, to signal the Kondo effect. Fo¢y/D
=< —0.040, the renormalization is from valence fluctuation to

est because it may describe a magnetic impurity dhiveave  the stable local-moment fixed point, and thie=0 ground

superconductd? and in flux phases of two-dimensional

state has an unquenched spin at the impurity site. Between

electrons. these behaviors lies an unstable intermediate-coupling fixed
Consider first the solid curves in Fig. 10 representing thepoint, obtained by tuning the impurity level tey/D

caseU =o. Forey/D=—0.037, the impurity level is almost

100

fLM—1/2

10-2

1073

] ]
10°510=*% 10°3 10-2 10" 100
—ed/D

FIG. 9. Same as Fig. 8, plotted on a log-log scale.

~—0.0379. The absolutely flatx;n, curve in this case in-
dicates that the fixed point is reached directly from the high-
temperature regime, rather than from the local-moment re-
gime as was found for=0.2 (see Figs. 1 and)2

Figure 10 also provides one representative example of the
properties exhibited by a symmetric impurity with a linear
scattering ratédashed ling As far as we have been able to
determine, any negative value gf, however small in mag-
nitude, results in flow to the local-moment fixed point. This
observation is consistent both with the absence of any finite
critical couplingI’, for r>3 (as shown in Fig. and with
the evidence that there is a jump in the local-moment frac-
tion ate4=0 for r=1 (see the discussion of Fig).9

Figure 11 illustrates the approach of the 1 thermody-
namic properties to their zero-temperature values. As dis-
cussed in Sec. V D, a linear scattering rate admits logarith-
mic corrections to power-law behaviors at both the local-
moment and frozen-impurity fixed points. Foi<10 3D,
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FIG. 11. Deviation of properties from their fixed-point values
for the Anderson model with a linear scattering rate specified by
r=1 andly=0.1D. Top: impurity susceptibility (T xjmp) Vs tem- .
peratureT. Straight lines represent fits to the data over the range FIG. 12. Scaling of the effective impurity energy with the
kg T/D<10 3. Each curve is labeled with its fitted slopestimated  temperaturel, shown schematically fofa) r=0 and(b) 0<r<1.
error =0.01). Bottom: specific heatC;,,,/T? vs T, with straight-  Renormalization ofe4 from its bare valuesy begins on entry into
line fits to the data over selected temperature ranges. the valence-fluctuatiofVF) regime, atD~Up=min(U,D). Scal-

ing ends at a crossover to local-moménivl), empty-impurity(El),
AT ximp is linear inT on approach to the local-moment fixed or mixed-valencgMV) behavior. A power-law scattering rate flat-
point [as predicted by Eq(5.21)] and quadratiqwith no  tens the trajectoriesy(T) and also moves the boundary of the MV
significant component oT2|nT) in the frozen-impurity re- regime to the left, reducing the range of bare impurity energies
gime. The specific heat is expected to behaveldaT at  (e5-<eq<ej,) which yield MV behavior.

both fixed points. The deviations from a puFé form are . .

only weak for the frozen-impurity examples{= —0.01D) renormal!zed_.(Note that partlcle—hol_e symmetry prevents

but are considerably stronger for the two flows to the Iocal_renormallzz;tlon d(jfed for tﬁ symmetng_lm_[t)#rlty. rlp ;h's case,

moment fixed point. In all three cases, the lowest decade otPe upper boundp on the range off within which renor-

temperature before the data become too noisy for a reliabl a|llzat|on occurs essentially coincides with the lower bound
€y )

fit seems to be consistent with BInT form, although . . . . .
higher-accuracy calculations would be needed to rule out In th|_s scaling picture, real charge fluctuations on the im-
completely any other behavior purity site are expected to become frozen out around a tem-

perature Te=max(eg.I). (As usual, we assume tha
3. Comparison with scaling theory =2|eg|.) If Te=—€4>T, then only the singly occupied con-

The numerical results presented above can be comparé@uraﬂons will be significantly po'pulated, and 'the impuri’;y
with the predictions of an approximate analytical treatmentVill POssess a local moment, while an empty impurity will
of the problem based on the poor-man’s scaling techniquéesult if Te=+e>T. Finally, if Te=T>|¢y|, then the
first developed for the Kondo probleth.Jeffersoff’ and ~ ground state will have mixed valence. Figurgd2Zrovides
Haldané&® applied this method to the nondegenerate Andera schematic representation of the renormalizatiog,oh the
son model with a flat scattering rate£0). The main effect caser =0 and illustrates the crossover from valence fluctua-
of many-body interactions was found to be a temperaturetion into the three low-temperature regimes.
dependent shift in the effective energy of a nonsymmetric The poor-man’s scaling treatment was recently extended

impurity level from its bare value to to a power-law scattering rafeThe depression of the scat-
tering rate at low energies can be represented as a renormal-
_ r (UD) ization of the parametdr entering Eq(1.3):
eg(T)=e€g+ —=In| —|, r=0 (6.2 o
Tt To(T)=T- (T/D)’, T<D. 6.3

HereUp=min(U, D) is the energy scale below which many- This in turn feeds back to produce a smaller renormalization
body effects come into play. Neither nor I is significantly  of €4 than occurs in the cage=0:
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Up| [T\
D) \D
The crossover temperature characterizing the freezing-out of

real charge fluctuations on the impurity site must be rede- o) :ZFO(TF)(ijL 1
fined to be o o 1 u-T)

_ Ty Vp(e)p(e')I(e,€')=podg |€ €' ID?|"?, (6.9
Ed(T):Ed+ —

ar

, r>0. (6.4

where

(6.9

Te=max{ |eq(Te)|,To(Te)]. (6.5 In this instance, Eq(6.5) reduces toT-= — e4(Tg).
For given impurity parametersef, U, andTl'y), the ex-
The scaling ofeq(T) for r>0 is shown schematically in change decreases with increasingas shown in Fig. 2 of
Fig. 12b). Note that the trajectories are flatter than(@,  Ref. 8. Both the depression df(Tg) and the weaker renor-
reflecting the reduction in the many-body shiftqf. More- ~ malization ofey (which increased¢) contribute to this ef-
over, the energy dependence of the scattering rate pushes ig§t. A conservative bound on the multiplicative reduction
vertical line T=T"y(T) significantly to the left, thereby fa;ctor fﬁr po‘t]ﬁ’ rObitTm?%Fy.lr_figleﬁmrg trhed retrso:]mahz‘]anon
shrinking the range ok, values which result in a mixed- Of €q altOgeIner, 15€q - This sharp reduction opgJo

valence ground statéFor r >1 the vertical line is driven to with increasing' militates strongly against any Kondo effect,

T=0, and the mixed-valence regime disappears altogéther.bec""useé"’IS first shown by Withoff and Fradkinan impurity

Bounds on the mixed-valence regidWithin the poor- Spin becomes screened onlyJ§>J;, wherepgJe~r.

, . In summary, the poor-man’s scaling analysis captures the
man’s scaling approach, upper and lower bounds on the ) y p 9 ys p
. . N . . éssential features of the Anderson problem with a power-law
mixed-valence regimee;, and e;_, respectively, can be

scattering rate, and provides a convenient theoretical frame-
work for understanding the numerical results. A number of
quantitative features, however, are not accounted for cor-

tween dashed lines in Fig. 12, i.e., as roots of the impIicitrectly within the scaling approach

equation

Tolea(Tr))=*a. eq(Te), (6.6 B. Screened Kondo model
The conventionals=3 (“exactly screened) Kondo
) model with a power-law exchange couplifigqg. (6.8)] has
solutions of Eq{6.6) are been discusse% extensively in R(gfs. 2—$a[r11§dqreviewed briefly
; in the Introduction above(Some of the papers cit&d for-
a_i+1) 6.7 mally treat the degenerate Anderson model using I&fge-
ar ' methods; however, the focus throughout is the Kondo phys-
ics of the local-moment regimeWe recall that the novel
Figure 7 superimposes these bounds for the mixedfeature of the model is the existence of a finite exchange
valence region in the cadé=« (plotted as lineson those coupling J.(r,V,) which separates a region of parameter
defined in Sec. VI A 1 based on the computed value of thespace within which the impurity spin becomes asymptoti-
local-moment fractiorf,,, (individual symbol$. The choice cally free Jy<<J;) from another in which the impurity mo-
a_=0.9 brings the alternative definitions ef,_ into good ~mentis quenched. The latter case is governed by two distinct
quantitative agreement. The dashed lines represegjingn ~ fixed points: under conditions of strict particle-hole
Fig. 7, computed foa., = 0.6, fit the numerical data reason- symmetryf’ the low-temperature susce;l)/nblhty is a universal
ably well for small values of , but deviate considerably for function of T/Ty, where Tye<|Jo—Jc[*"; otherwise, the
stronger impurity scattering. This discrepancy is not espeProperties are determined by two independent energy stales.
cially surprising, given the approximations inherent to poor- Rather than attempting to provide a comprehensive treat-

man’s scaling and the degree of arbitrariness present in bofR€nt of the exactly screened Kondo model, which would
definitions of €} necessarily duplicate much previously published work, we
.-

For the symmetric case shown in Figs. 8 and 9, the Critetocus in this section on three topics that have received little

rion f w=0.75 for the border of the local-moment regime attention. First,_ we addr_ess the properties of the Kondo
model at the critical coupling. We show that over a range of

can be compared with the scaling definitidfy(|e3-[) | there in fact exist two distinct intermediate-coupling fixed
=—a_¢g_. (Recall that the level energy does not renormal-points—one accessible only under conditions of exact
ize at particle-hole symmetry, and gg=¢€4.) A value of particle-hole symmetry, the other reached when this symme-
a_~0.4 seems to yield reasonable agreement with the nuty is broken. Second, we present results for a local response
merics, at least for=<0.5. function which is a candidate order parameter for the critical
Exchange on entry to the local-moment regiffiee scal- behavior at the intermediate-coupling fixed p&htFinally,

ing theory also sheds light on the disappearance of thave examine the relationship between the Kondo and Ander-
Kondo effect with increasing. On entry to the local- son models in systems with a power-law scattering rate. Al-
moment regime, the Anderson model can be mapped ontthough each RG fixed point of the Kondo model is equiva-
the Kondo problem by projecting into the subspace in whichent to a fixed point of the Anderson model, we argue that the
ng=1. Applying Egs.(2.10, one obtain$a dimensionless two models are independent to a greater extent than is the
exchange having a power-law energy-dependence, case forr=0.

wherea, anda_ are positive constants of order unity. The

11—
T (1-r)

a.D
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FIG. 13. Low-lying eigenvaluesE* at the particle-hole- N 06T e <Lyt
symmetric intermediate-coupling fixed point of the exactly screened (/% 7 ‘_IQ
Kondo model, plotted vs the exponandescribing the power-law 0.4r e >§<
exchange. Data computed with=3 are shown both foN even 0ok e Flio2 10—
(open symbolsand forN odd (solid symbol$. Solid lines are pro- ’ 7 ' 1/2_'r
vided as a guide to the eye. The curves are extrapolated to the ooL . o . o oy
weak-coupling values at=0 and to symmetric strong coupling at 0.0 O. 0.4 0.6 08 1.0
r=0.5. r

. ) . o ) FIG. 14. Impurity susceptibilityT x;n, and entropySi,, at the
1. Properties of the intermediate-coupling fixed point intermediate-coupling fixed points of the exactly screened Kondo
Unlike the weak- and strong-coupling fixed points dis- model, plotted vs. Solid lines are provided as a guide to the eye.
cussed in Sec. 1V, the intermediate-coupling fixed points offhe curves are extrapolated to weak coupling a, and forV,
the Anderson and Kondo Hamiltonians are not amenable tg O @€ extrapolated to the symmetric strong-coupling valge®n
conventional perturbative methods, and our knowledge ofY Ed-(5.33, dashed linefatr=5. Inset: approach of xim t0 its
their properties comes entirely from numerical studies. Thig/alue atr =z, plotted on a log-log scale.
subsection presents numerical RG results for the Kondo Away from particle-hole symmetry, a finite critical cou-
model obtained by tuning the exchange paraméjext fixed  pling J'(r,V,) can be identified for any>0. Forr<3, J’
r andVy to lie very close to the border between the strong-deviates smoothly from its particle-hole-symmetric value
and weak-coupling basins of attractighese results will be J.(r) asV, is increased from zero. The initial slopd’/dV,
compared with those for the Anderson model in Seccan be of either sign, but for strong potential scattering
VIB3.) (which disfavors the presence of a single conduction electron
Since we focus on zero-temperatufixed-poiny proper-  at the impurity sitg J’ invariably rises sharplysee Fig. 1 of
ties, it is not necessary to average over different discretizagef. 7).
tions of the conduction ban@s described in Sec. V)CThe The nature of the fixed point reached fiy=J' is found
results discussed below were obtained using a single discretip e fundamentally different for small and large values.of
zation, corresponding to=1 in Egs.(2.18 and(2.19. Particle-hole symmetry proves to be marginally irrelevant for
We begin by considering the particle-hole-symmetrico<r<r*~0.4, over which range the intermediate fixed
problem corresponding td,=0, for which the critical cou- point is identical to that obtained for,=0. Forr>r*, by
pling Jo(r) is finite only over the range Qr <rp,, where  contrast, all positive bare values ¥, result in flow to a
Fmax=12- ' When the bare exchandg is tuned precisely to new, particle-hole-asymmetric fixed point located &
Je(r), the problem flows to the intermediate-coupling fixed —y/_ Jo=J.=J'(r,V,). Thus, over the limited range ¥
point mentioned previously. Figure 13 plots the lowest-lying—y < there exist two distinct intermediate-coupling
eigenenergies at this fixed point over the range €05  fj,eq pointsjocated atl, andJ.. Potential scattering is mar-
=0.48, while Fig. 14 showssolid symbol$ the impurity  ginayy relevant at the former, whereas the coupling
contribution to _the tc_)tal susceptibility and entrop_y for 0.1\/0_\/C is marginally irrelevant at the lattefYet another
<r=0.49. Asr is varied from zero tg each curve interpo- gy point is reached for aW,<0, but since it is trivially
lates smoothly between the corresponding weak-couplinge|ated to that fol/,>0 by particle-hole exchange, we treat
and strong-coupling values. Over the entire range,ahe o pair as being physically equivalent.
computed entropy at the intermediate fixed point remains g5t for the statements contained in the previous para-
within 1% of In2. The inset to Fig. 14 shows that the ap-g5ph comes from the impurity susceptibility and entropy
proach ofT ximp to its value ar =3 is described by & power ghown in Fig. 14. Properties computed for a fixed value of
law: T ximp— 16% (3 — )" With »=0.54+0.05. All the quan- the potential scatteringyoV,=0.1, are essentially indistin-
tities plotted in Figs. 13 and 14 vary linearly at smalland  guishable from theivy=0 counterparts for alt <0.4. Be-
are consistent with the divergence of the critical couplipgg yond this point, Txim, and Sy, at the particle-hole-
asr—r =13 asymmetric fixed point rise monotonically with increasimg
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FIG. 15. Energy splittings\E* of the lowest pair of charge-
conjugate eigenstates at the particle-hole-asymmetric intermediate-
coupling fixed point of the exactly screened Kondo model, plotted
vs the reduced exponent/r*—1, for A=3 and r*=0.3754.
Straight lines show fits to the leftmost four data points for odd- and
even-numbered iterations of the numerical RG method.

The properties forpyVy=0.5 (not shown in Fig. 1% are (e)
identical to those fopyVy=0.1, at least to within our esti-
mated accuracy. .
The many-body spectrum provides additional evidence | [ | Ne-
for the existence of dual fixed points over the ramgecr
<rmax- Certain pairs of charge-conjugate states which are
necessarily degenerate fdg=0 are split at the asymmetric
fixed point. Figure 15 plots the splittingE* of the lowest
pair of affected states, both for odd- and even-numbered it-
erationsN, over the range 0.38r<1. The vanishing of
AE" defines the critical value®. Forr=0.45, we find that FIG. 16. Schematic renormalization-group flow diagrams for the
AE*OC(r—r*)V', with r*=0.375-0.002 and »*=0.67 exactly screened Kondo model, showing theV, plane forV,
+0.15. It seems probable that the magnitude of the splitting=0 and for fixedr: (@ 0<r<r*, (b) r*<r<rp,, and(c) r
is directly proportional to the critical potential scattering, at>rmax- Thin lines with arrows show the renormalization of effec-
least for smallV,, but we have no proof of this conjecture. tive couplings with decreasing temperature. Solid circles indicate
Figures 16a), 16(b), and 16c) summarize the effect of RG fixed points. Da;hed lines repr.esent ﬂpws ouF of the plane to-
particle-hole asymmetry on the exactly screened Konddvards the asymmetric strong-couplitGSC) fixed point, located at
model for a fixed value ofr, where O<r<r*, r*<r Va|=c.
<I'max,» @Ndr>r.., respectively. These figures sketch the
RG flow of the effective couplingdy, andV, on the plane
V;=0 for fixedr. [HereV; measures the strength of poten-
tial scattering experienced by electrons in the Wilson shel
Iel,sgce)i dlzsqt(c?\./ll?-:tlftgﬁifﬁg:? ﬁ;wsstgwsrgstiﬁ:;n%; ; é Xloc p.rovides evid?nce for the existence pf a finite_ critical
couplingJ, for r>3—even thoughyim, provides no sign of

point are represented by dashed lifigs r increases from such a critical coupling—and that the low-temperature phys-
zero, the intermediate-coupling fixed point moves steadily toCs is f ndamentalllg dgfferent folo< 3. andJ >'3 n th'g y
the right along the horizontal axis. At=r*, the particle- '°>'> ! yd 0=+c 0~ ~ce !

hole-asymmetric fixed point separates from that Vige=0. subsection we reexamine this issue, and conclude that there

The two fixed points grow further apart asrises towards Is no such Critica_l point for >, and tha_t the Ioc_al properties
1 : N : and total properties are perfectly consistent with one another.
rmax= 32, at which value the symmetric fixed point merges

o the stong-coupling i, Beyonty, the asymmetric. o 52 68 METENC Thwe, SRS S LR B
fixed point remains at finite couplings. We believe that it q y resp y

ntin mov ward an he right with increasi
continues to move upward and to the right with increasing Yo _<9<Sz> (s)

= =lim — , (6.10
2. Local impurity susceptibility Qus oh |, _, nw0o h

<

0 Je o0

contribution to the total magnetic susceptibiljthe thermo-
dynamic quantityy;y, defined in Eq.(5.11) aboveg and a
|oca| susceptibilityy,,c which directly probes the magnetic
response of the impurity. It was argued that the behavior of

In a recent papetChen and Jayaprakash studied a Kondowheres, is the z component of the impurity spirh is a
impurity with a pure power-law exchange coupling undermagnetic field which acts only on the impurity and which
conditions of strict particle-hole symmetry. An interesting enters the Kondo Hamiltonian through an additional term
feature of this work was a comparison between the impurityA H, =gughs, .
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In the standard case=0, yj,. closely tracksyiy, as a
function of temperatur& Chen and Jayaprakash'’s results for
r>0 can be summarized as follows.

(i) For r<3 and Jo<Jc(r), limr_oTximp=1/4 while
Txioc @approaches a smaller, but still nonzero, value.

(i) Forr<3andJy>J.(r), Tximp heads to the valug/s,
whereas lim_,oTxjoc=0.

(i) For r>3 there exists a finite critical valu@yJ,
=((r) such that the behavior fal,<J is the same as in
().

(iv) For r>3 and Jo>J,, Tximp approaches 1/4 but
limt_oT X10c=0.

The authors of Ref. 5 interpreted resl(iit) as indicating
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that the impurity spin is locally quenched even though the [, 17. Low-temperature limit of the local impurity suscepti-

total magnetic susceptibility shows no Kondo effect. This

bility Tyxoc VS the dimensionless Kondo couplipgJ, in the ex-

implies the existence of a third low-temperature regime, inactly screened Kondo model, calculated for different values of the
addition to those governed by the local-moment fixed poinexponentr describing the power-law exchange. The data points

[reached in casef) and (iii)] and the symmetric strong-
coupling fixed poinfthe ground state fofii)].

Since the total thermodynamic properties fof 3 seem to
indicate flow to the local-moment fixed point for &}, we

were computed using a discretization paraméter9. Solid lines
are provided as a guide to the eye, and vertical dashed lines indicate
the critical couplings for the cases=0.3 andr=0.4.

have systematically examined the zero-temperature limit of? roughly exponential fashion. It appears probable that for

TXioc- Within the numerical RG framework the right-hand
expression in Eq(6.10 can be evaluated for a small but
finite value ofh. (This is the same method as employed by
Chen and Jayaprakash. It should be noted thah{60, the
total spinS is no longer a good quantum numbeEquation
(6.10 implies that a finite limiting value ofT y,,. reveals
itself in aT~! variation of(s,). The fieldh must be chosen
sufficiently small that any suchi~* regime can be detected
before(s,) saturates, as it must ultimately do sinsg<3.
Our calculations were performed for 1¥<gugh/D

all Jg, Txoc heads to a nonzero value, describing incomplete
guenching of the impurity spin.

These observations are consistent with our previous
conclusion] based on the finite-size spectrum and the com-
puted thermodynamic properties, that the low-temperature
behavior of the particle-hole-symmetric Kondo model for
>1 is described quite straightforwardly by the weak-
coupling (local-moment limit. For r <3, the approach o,
to its critical value from below is signaled by the vanishing
of Txoc, While the divergence of . marks the approach

<1077. As a check, it was established that the results werd0m above. The behavior dfy,qc makes it a candidate order
insensitive to the precise field used. In order to reduce th@arameter for describing thk critical point. Further inves-

computer time required for these runs, we uged 9 with
E.=40. As mentioned in Sec. V C, it is possible to obtain

accurate zero-temperature results even with such a large dis-

cretization parameter. We have verified that reducingnay
produce small shifts in the critical coupliny, but does not
change our essential conclusiaipsesented beloyw

Figure 17 plots the low-temperature limit @fy,,. versus
the exchange couplingyJ, for four values ofr. Consider
first the data forr=0.3 and 0.4, which indicate that
limr_oTx0c is finite for all Jp<J., and vanishes fod,
>J.. Here, the critical couplingl, coincides with that de-
duced from the thermodynamic properties or the low-
temperature many-body eigenspectrunmpgJ.(r=0.3)
=0.343 andp(J.(0.4)=0.491both to three significant fig-
ures. As shown in Fig. 18, the form of the curves fiy just
below J; is well described by a power law lim,oT x|oc
«(J.—J)”, with v(r=0.3)=0.70=0.05 and»(0.4)=1.80
+0.08. (Figure 18 also presents data fo=0.4 computed
using a discretization parametdr=3. The resulting expo-
nentr=1.81+0.05 is in close agreement with that obtained
usingA =9.) On the strong-coupling side of the critical point
(not shown it is found that limt_ gxjoca® (Jo—Jo) ~*, Where
A(r=0.3)=4.3+0.1 andA(0.4)=3.9+0.1.

By contrast, the curves in Fig. 17 representirg0.6 and
0.7 offer no hint of critical behavior within a range p§J,
extending well beyond. For largedg, limt_ T x|y falls off

tigation of this possibility is under way.

3. Relationship between the Kondo and Anderson models

The mapping between the Anderson and Kondo models
via the Schrieffer-Wolff transformatiofEgs.(2.10] can be
formally justified only for—e4,U>T and 0<pyJg,|poVol
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FIG. 18. Same as Fig. 17, restricted rtei% and plotted on a
log-log scale. Data are shown for two different discretization pa-
rametersA =3 and 9. Straight lines represent fits to thase 9
data points having an exchange coupliigwithin 3% of the criti-
cal valuel..
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FIG. 20. Position of the intermediate-coupling fixed pqgigd,
(defined in the tejtvsr for the Anderson model with a pure power-
law scattering rate. Solid lines are provided as a guide to the eye.
The dashed line shows the corresponding quantity computed for the
particle-hole-symmetric Kondo modé&data from Ref. V.

Simp/ ke

not mean that strong coupling is unattainable within the
Anderson model, only that the route to strong coupling via
the local-moment regime is blocked. A direct crossover from
valence fluctuation to asymmetric strong couplirigr,

0.0 L 1 I L L 1 equivalently, to the frozen-impurity regiméakes place for
1078 10-% 10-*% 103 102 107 all r>0 whenever the impurity level is placed above, or only
keT/D or kgT/|ed| slightly below, the Fermi energy.

We now turn to a comparison between the intermediate-
FIG. 19. Impurity susceptibilityT xim, and entropySi,/kg for - coupling fixed points of the Kondo and Anderson models. A
r=0.2, plotted vs eithel/D (screened Kondo model witlo=0,  number of pieces of evidence point to the complete equiva-
solid symbolg or T/[eq| (symmetric Anderson model with's  |ence of these fixed point€l) The thermodynamic proper-
=0.1D, open symbols In four of the six cases shown, the entropy jeg coincide to within the accuracy of our calculations. Fig-
rapidly converges with decreasing temperature to the Vellre. o 19 jllustrates this explicitly far=0.2, while Figs. 10 and
14 show that for =1, T xjmp~0.164 in both models. Similar
<1. In these limits, the physical properties of the Kondoagreement is found for other values of as well. (2) An
model must be equivalent to those presented in Sec. VI fAextensive comparison of the energies and quantum numbers
provided that one equates the half-bandwiditiKkondo) with of the many-body eigenstates indicates that the low-energy
Te(Anderson, the temperature at which charge fluctuationsspectra at the Kondo and Anderson fixed points are identical.
freeze out. For the standard caseO, the properties of the In each model, there is a range of exponentsyr <r .y,
Kondo model are universal for all,>0 and can be fully over which there are two distinct intermediate-coupling fixed
explored from within the Anderson model. The relation be-points(see Sec. VI B L Within this range, the spectra at the
tween the two models becomes nontrivial, however, in thearticle-hole-symmetric fixed points of the two models
presence of a power-law scattering rate, which introduces match, as do the levels at the nonsymmetric fixed poiB}s.
new energy scalé. into the problem. It is shown in the next paragraphs that for smmakhe critical
For small, positive values af, Egs.(2.10 can yield val-  couplingI'; of the Anderson model corresponds to an effec-
ues ofJ, greater thad.., as well as values less thdp. One  tive exchange coupling very close to the valueJgfmea-
therefore expects all behaviors of the Kondo model to besured directly in the Kondo modgWe argue below that the
reproduced by the Anderson Hamiltonian. This is confirmedpositions of the two fixed points are not expected to coincide
by Fig. 19, which superimposes thermodynamic propertie$or larger values of .)
computed for the particle-hole-symmetric Kondo and Ander- The position of the two intermediate-coupling fixed points
son models withr =0.2. The figure shows flows to weak can be compared using the scaling theory discussed in Sec.
coupling and to symmetric strong coupling, as well as thevl A 3. Equations(6.3)—(6.5 and(6.9) may be combined to
critical behavior associated with the intermediate-couplingconvert the critical value of the bare scattering rétgplot-
fixed point. Each Anderson curve—computed for one of theed in Fig. 5, into the dimensionless exchanpgéd, on entry
parameter sets from Fig. 2, and plotted ver§lj&y| because to the local-moment regime. Figure 20 shows that this trans-
Te~| ey in these examples—is reproduced almost exacthformation collapses the two data sets fo=—2¢4 onto a
by the Kondo model with a suitable choice &. single curve. A dashed line shows the critical exchange com-
Forr=0.5, by contrast, it is impossible to attain values of puted directly within the particle-hole-symmetric Kondo
the exchangdy>J.; under the Schrieffer-Wolff transforma- model’*® The critical couplings of the two models are in
tion, and the strong-coupling behavior of the Kondo modelclose agreement for small The significant differences that
(e.g., the particle-hole-asymmetric thermodynamic propertiegevelop for larger, in a range wherd'. becomes of order
in Figs. 2 and 3 of Ref. J7cannot be reproduced. This does |e4|, may be attributed to a breakdown of the Schrieffer-
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Wolff transformation as charge fluctuations become impor- T ' T ' T T
tant. (In Ref. 10 a similar comparison is made between the 0.6 M
effective values ol in the Anderson and Kondo models. )

The infinitelU curves plotted in Fig. 20 lie close to each o e
other, and to the data for a symmetric impurity, only for g
=<0.25. For larger, J.(I',) turns sharply downward, a fea- 204
ture not seen in the particle-hole-asymmetric Kondo model \g
(see Fig. 1 of Ref. )7 It is clear from Fig. 5 that the position = - podo poVo
of the critical point is much better described by a relation of 202t . 8:;24 Q
the form I .xr|eq4| than by pgd.<r. Again, charge fluctua- ® 035 "
tions on the impurity site account for these differences. The - so4 05
Kondo intermediate-coupling fixed point is always ap- 0.0 ’

proached from within the local-moment regime. For large 10'_6 10'_5 10'_4 10'_3 16_2 10'_1
however, thd" . fixed point of the Anderson model is instead keT /D
reached directly from the high-temperature regifeee Fig. B

: : I
10, for instancg Indeed, comparison ofy with €4 given FIG. 21. Impurity susceptibilityl x;y, Vs temperaturd for the

by Eqg. (6.7) shows that the value df; places the system s—1 Kondo model with pure power-law scattering specifiedrby
outside the local-moment regime for al=0.25 in the case =0.2.

€4=—0.1D and for allr=0.15 in the casey= —0.01D. We

conclude, therefore, that in all situations where the mappin%uted forr =0.2. For all values of the exchange coupliig

of the_: Anderso_n model (_)nto fche Kon_do model_|SJUS_tlfled. theTXimp varies rather slowly with temperature and heads to a
position of_ th_e intermediate fixed point determined in the tWop, o -ar6T =0 limit. However, closer inspection reveals three
problems is in good agreement. qualitatively distinct cases. Tuning,J, to 0.254 yields a flat

In summary, the RG fixed points of the Kondo model o\ e reminiscent of théunstable J. fixed point of the ex-
appear to form a true subset of those of the Anderson mode ctly screened modéee Fig. 18 whereas any smaller ex-

Forr=0.5, though, certain paths between these fixed pomtﬁhange produces a monotonic rise Tiyim, towards the

that can be followed in the pure-spin problem cannot b%eak-coupling value of 2/3. FopeJo>0.254, Tyim, falls

Sfowards a low-temperature limit of approximately 0.33, sig-

C‘fﬁificantly higher than the strong-coupling value+2;)/8
=0.275. We interpret this as one piece of evidence fodthe
fixed point alluded to in the previous paragraph.

C. Underscreened Kondo model Behavior qualitatively similar to that shown in Fig. 21 is

In this section we present results for the Kondo Hamil-:0>u?d forbalL(?:t:;[ mt?‘é \tl\r/1he?rrr?og'2n§rrr1Tgx<r?).2e7r:[ig:r<:§rl1ltain
tonian describing the interaction of a spin-1 impurity with a max: 0¥ ' Y prop

single band of electrons. We focus on the differences be-> signature of any intermediate-coupling fixed point. In-

tween this model and the convention@xactly screened stead, the system flows to weak coupliiByimy=2/3) for

problem addressed in the previous section. “ ;glrlrfes gff i?\i b: rgt:r):\(;?iin?reénds with increasingare
The weak-coupling limit of thes=1 model shares many y g

features with the conventional case. In particular, the fixedsggmgnm '?gséfztzhgzﬁ'n;'gglr: ﬁeﬂ?g?;?e_sgotbﬁf tr}&e d
point atJo=0 is marginally unstable far=0 but(according P Pove piing

to the analysis in Sec. IV Dit is stable for allr>0. For
small positive values af, one can apply poor-man’s scaling
to demonstraf€ the existence of an intermediate-coupling

the Kondo model with power-law scattering has an existen
independent of the Anderson model.

2.5

fixed point atpgJ.~r. = 2.0
At antiferromagnetic strong coupling, tise=1 model be- S
haves very differently from thes=31 problem. The larger = 1.5

impurity spin is “underscreened” and retains a net spin <
=1. Forr=0 this limit is known to be marginally stabfé, 5 1.0
but (as shown in Sec. IV Efor anyr >0 the residual impu- ?g
rity spin destabilizes the symmetric strong-coupling fixed 0.5
point.

Given the instability of the fixed points d4=J. andJ, 0.0
=00, one might expect any,>J. to produce flow to asym-
metric strong coupling. At particle-hole symmetry this op-
tion is ruled out, however, suggesting the existence of a g 22 critical couplings vs for thes=1 Kondo model with
stable fixed point at some exchange coupling that we shajlyre power-law scattering. Solid lines are provided as a guide to the
denote]*, whereJ < J* <. Our numerical RG calculations eye. The particle-hole-symmetric fixed-point couplidg (solid
support this conjecture, at least for small symbolg is plotted both to scale and magnifieck5 For nonzero
We begin by considering the particle-hole symmetric casgotential scatteringopen symbolsthere can be zero, one, or two
Vy=0. Figure 21 shows the impurity susceptibility com- critical couplings ¢’ <J"), depending on the value of
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susr in Fig. 23. For smalk, the deviation of thel.. levels
from the weak-coupling energies is linear tin consistent
with the relationpgJ.~r. It appears thaf* is infinite atr

=0 (at which point the extrapolated levels for the stable
intermediate fixed point coincide with the strong-coupling
values, and falls progressively asincreases. The energies
at the two intermediate fixed points are projected to cross at
a value ofr between 0.26 and 0.27—precisely the range in
which these fixed points disappear.

Figure 24 shows the impurity susceptibility and entropy at
the two intermediate-coupling fixed points. For each prop-
erty, theJ. andJ* curves deviate with increasingfrom the
* ; _ weak- and strong-coupling limits, respectively. Just as for
r the eigenenergies, the two sets of curves appear to cross in
the range 0.261<0.27. BothT iy, and Sy, vary linearly

FIG. 23. Lowest eigenvalues™ of the discretizes=1 Kondo  for smallr. Empirically, the susceptibilities for<0.15 are
model (A=23) plotted vsr. Data are shown for the four fixed points oIl described by the formulas

of the particle-hole-symmetric problem, both fof even (open
symbolg and forN odd (solid symbol$. Solid lines are provided as 2 1
a guide to the eye. Thé andJ* curves are extrapolated |_art=0 to TXimp(Je) = §—0.7r, TXimp(J") = 1 +0.4r, (6.11)
the weak-coupling and strong-coupling values, respectively.
while the entropies for<0.2 have an excellent fit to the

point as a function of. For smallr, pgJ.~r, as expected weak- and strong-coupling expressions
from poor-man’s scaling, but the curve turns upward and
then abruptly terminates at=r g, . Simp(Je) =1In3, Simp(J*) =In2+rIn4. (6.12

The critical couplingJ* corresponding to the second
intermediate-coupling fixed point cannot be determined di
rectly because the low-temperature behavior does not u
dergo any qualitative change ag passes through*. How-

ever, one can estimate the value f by examining the = ) ot i symmarize the situation at particle-hole symmetry.
low-energy many-body spectrum. The eigenvalue of the firS, oy < there are two intermediate-coupling fixed

excited state at each of the four fixed points of the Symmetri%oints—one stableX’), the other unstableJ(). These fixed
underscreened problendd=0, J, J* andx) is plotted ver- points merge at =rma>'<, above which value they both dis-

appear, leaving weak coupling as the only stable fixed point.
(We remind the reader that in the exactly screened Kondo
model, the disappearance of thg fixed point can be tied

E*

We have been unable to reproduce these properties by con-
'structing suitable phase shifts for noninteracting electrons.

We speculate that these intermediate-coupling fixed points

are truly non-Fermi-liquid in character.

o 0.6

’g directly to the value .= 3 at which the symmetric strong-
= coupling fixed point becomes unstable. We have no such
~ argument to fix the precise value of,, in the under-

>§< 0.4 screened model.

K The introduction of potential scattering considerably
X

modifies the picture presented above. As shown in Sec.
IV D, this perturbation is irrelevant in the weak-coupling re-
gime. However, our numerics indicate that it destabilizes the
J* fixed point—found in the symmetric problem for all 0
<r <rmna—towards asymmetric strong coupling. The effect
on theJ, fixed point is more subtle, as will be explained in
the paragraphs that follow. There are several parallels with
(but also clear differences frognthe behavior of an exactly
screened Kondo impurity described in Sec. VIB 1.
We first consider values afless tharr ... For eachr in

this range and for any,# 0 one can find a critical coupling

L L L L L J'(r,Vy) such that anyly<J' yields weak-coupling behav-
0001 02 03 04 0506 ior while anyJy,>J’ drives the system to asymmetric strong

r coupling. (The latter case is exemplified by the curve for

FIG. 24. Impurity susceptibilityT x;, and entropySy, at the =0.2, pgJo=0.45, andpoVo=0.3 in Fig. 21, which shows
two intermediate-coupling fixed points of tee=1 Kondo model, 1 Ximp N€ading towards its asymmetric strong-coupling value
plotted vsr. Solid lines are provided as a guide to the eye. The Of 1/4)
andJ* curves are extrapolated Bt 0 to the values for weak cou- The behavior ford, precisely equal td'(r,V,) depends
pling [given by Eq.(5.24] and strong couplingEg. (5.34], respec-  on the value of . For 0<r <r*~0.245, particle-hole asym-
tively. metry is irrelevant on the separatrix, and the system ap-

Simp/ ks
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FIG. 26. Energy splittingsAE* of the lowest pair of charge-
conjugate eigenstates at the particle-hole-asymmetric intermediate-
coupling fixed point of thes=1 Kondo model, plotted vs the re-
duced exponent/r*—1, for A=3 andr*=0.245. Straight lines
show fits to the leftmost four data points for odd- and even-
numbered iterations of the numerical RG method.

It was shown in Sec. IV E that there are two equally rel-
evant operators in the vicinity of symmetric strong coupling
(Jp=,Vy=0). Figure 25 illustrates the competition be-
tweenO; , which drives the system towards weak coupling,
and OVl* which causes flow towards asymmetric strong cou-
pling. Forr<r., theJ. and J* fixed points block flow
along the axisvy=0, allowing potential scattering to domi-

nate the low-temperature behavior. Fofr .., by contrast,
the sole surviving intermediate-coupling fixed point at

FIG. 25. Schematic renormalization-group flow diagrams for the(J¢ ,Vc) stifles the growth of particle-hole asymmetry and

s=1 Kondo model, showing th&)-V, plane forV,;=0 and fixedr: instead steers the system to weak coupling.
(@ o<r<r*, (b) r*<r<rpmay, and(c) r>r... See Fig. 16 for an We now present some of the numerical evidence in sup-
explanation of the symbols. port of the picture laid out above. Figure 22 pldtsfor fixed

poVo and for 0<r=<0.7. Forr>r,,,, the second critical

proaches the fixed point located\4§=0, J,=J.=J'(r,0).  couplingJ” is also plotted. One sees thHtis typically very
The RG flows for this case are sketched in Fig(a@5For  large (greater than the bandwidthimplying that the upper
M*<r<rm. by contrast, the flow along the lind, Pound on the asymmetric strong-coupling regime is unlikely
—J'(r,V,) is towards a new intermediate-coupling fixed t0 be accessible in practice. We identify the rightmost point
point at Vo=V, Jo=J.(r)=J'(r,V,), as shown in Fig. on each crlt_|cal cur.veéthe meeting pf the]f andJ” curyes)
25(b). (As was the case for a screened impurity spin, there iwith the J;, fixed point. Note that this particular plot yields
actually a pair ofJ; fixed points atVo=+V,. Throughout andpoJc as functions ofpeV,. However, by inverting the
this section, these two fixed points—which are related byProcedure to make the independent variable, one can de-
particle-hole interchange—are treated as one, and all propefllice that both); and V, are increasing functions df, at
ties discussed will be assumed to depend only on the abségast over the parameter range shown. One can deduce, for
lute value ofV,.) instance, thapyV.(r=0.38)~0.1 andpyV.(r=0.68)~0.5.
For r>rm. there is a range of potential scatterings These rather large values 9 suggest that for=0.5, flow
[Vo| <V, over which the low-temperature physics is gov-to asymmetric strong coupling.e., Kondo screening of the
erned by the weak-coupling fixed point, whatever the bardmpurity) can be achieved only under conditions of strong
exchange couplindy; i.e., no critical exchang@’ (r,V,) can  particle-hole asymmetry.
be found. ForVo|>V,, by contrast, there arevo critical Figure 26 shows the energy splittinge™ of the lowest
couplings. The system flows to weak coupling both Jgr ~ pair of charge-conjugate states at thg fixed point for
<J'(r,Vo) and forJy>J"(r,V,), while asymmetric strong 0.25<r<0.6. Forr=0.3, this splitting is well fit byAE*
coupling is reached for couplings which fall between thesex(r —r*)*", with r*=0.245-0.002 and v*=0.44=0.15.
critical values. IfJ, is tuned precisely td’ or to J”, the  Forr<r* the fixed-point spectrum is observed always to be
system flows to an intermediate-coupling fixed point whichparticle-hole symmetric.
we take to be located aVy=V., Jo=Ji(r)=J'(r,V,) The impurity susceptibility and entropy at the various
=J"(r,V.). The RG flows that we deduce for this range of intermediate-coupling fixed points are compared in Fig. 24.
are sketched in Fig. 26). Over the rather narrow range <r <r ., in which the J.
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and J/ fixed points coexist, their properties are seen to di- 1.5 T T T
verge steadily. For larger, both T ximy(Jc) andSin(J;) rise
monotonically. -
Finally, we note that all properties of thE fixed point S 10} %4 |
shown in Figs. 22, 24, and 26 appear to vary smoothly as =
passes through,,.. This serves as an indication that the S
fixed-point couplings {;,V.) evolve continuously across the 5
border between the regimes shown in Figsb2and 25c). 2051 P°(\)’° 1
=]
o 0.1
D. Overscreened Kondo model 4 05
In this section we present results for the Kondo Hamil- 0.0 60 01 02 o3 o0a

tonian describing the interaction of a sgirimpurity with r
two degenerate bands or channels of electfétss. (2.12
and (2.13]. The weak-coupling properties of the two-
channel problem are very similar to those presented in th
previous two subsections—including the existence for smal

FIG. 27. Critical couplings for the two-channel Kondo model
é/ith pure power-law scattering. Solid lines are provided as a guide
fo the eye. The data fgs,Vy=0 and 0.1 are plotted both to scale
and magnified &. For nonzero potential scattering there can be

r of an unstable fixed point gigJ.~r. We focus on the

intermediate—to—strong-coupling regime, where the thre

models differ markedly.

At strong coupling, the impurity is “overscreened” by

the two conduction bands and retains a net spig. dfor r
=0, this limit is marginally unstabl& giving rise to a
stable, intermediate-coupling fixed pointgt)*=O(1). For

r>0, the symmetric strong-coupling fixed point is outright
unstable due to the residual impurity degree of freedom, an

so one might again expect flow to sord&>J., just as in
the underscreened model.

The existence of two intermediate-coupling fixed points
was predicted previously using an extension of Withoff and

Fradkin’s poor-man’s scaling analy3iso the N-channel

Kondo problenf. The dimensionless Kondo coupling,J
was found to rescale from its bare valpgl, according to
the equation

d(pod)
dinT

=1 pod—(pod)?+c(pod)°. (6.13

The coefficientc is a complicated function of and N,
which reduces tac=N/2 in the limitsr<1 and N> 1.
Then Eq.(6.13 has fixed points satisfyind(poJd)/dInT=0
at pod=0, ©, and (1=y1—2N.). For small r, the
intermediate-coupling fixed points are located pgtl.~r
(unstablg and pgJ*~2/N.—r (stablg. However, these two
fixed points merge at=1/2N,, pgd=1/N.. Forr>1/2N,

there is no intermediate-coupling fixed point and the RG;

e

zero, one, or two critical couplingsJ(<J"), depending on the
values ofr andV,,.

E.=25, as was done in the single-channel problems. This
prevents reliable determination of the temperature depen-
dence of the thermodynamic properties. However, experi-
ence indicates that fixed-point properties can be computed
ccurately for values ol as large as 10. Below we present
any-body eigenstates computed fbr=3, but thermody-
namic properties obtained usidg=9 andE.=25.

Figure 27 plots the positionpgJ, of the unstable
intermediate-coupling fixed point as a function of For
smallr, pgJ.~r, as expected from poor-man’s scaling. At
particle-hole symmetry, the curve turns upward and then
abruptly terminates at=r,, where 0.23r,,,<0.24. In
this respect, the underscreened and overscreened problems
are very similar.

Just as for the underscreened problem, one can obtain
indirect evidence for the value df by examining the low-
lying many-body spectrum. The energy of the first excited
state at each of the four fixed points of the symmetric over-
screened problem){=0, J., J*, andx) is plotted versus
in Fig. 28. The levels at thd; fixed point progressively
diverge from the weak-coupling energies rass increased
from zero, consistent with the relatigsyJ.~r reported in
the previous paragraph. The smooth evolution of the levels at
the stable intermediate fixed point suggests #ladecreases
continuously with increasing from its value for a constant
scattering ratepyJ*(r=0)~1. The energies at the two in-
ermediate fixed points can be extrapolated to cross in the

trajectories flow directly from strong coupling to weak cou- range 0.23r <0.24 where both fixed points disappear.

pling.

Figure 29 shows the impurity contributions to the suscep-

Although the two-channel case does not strictly satisfy theiibility and the entropy at the two intermediate-coupling

condition N> 1, the predictions of scaling theory are well
borne out by numerical RG calculations. Moreover, the in

fixed points. For each property, tlde andJ* curves deviate
with increasingr from their weak-coupling and=0 non-

termediate fixed points turn out to survive the inclusion OfFermi—quuid values, respectively, and the two curves can be
potential scatteringwhich was not taken into account in Ref. extrapolated to cros's in the rang’e 0<23<0.24. BothT
< .24. imp

6). ; ; .
. ) . and S, vary linearly withr for r<0.15. Empirically, the
The addition of a second conduction band greatly in-g,scapyibilities are well described by the formulas
creases the size of the basis of the discretized version of the

Kondo model and, hence, the computer time required for a
solution of the problem. We have found it impractical to

compute thermodynamic properties using a discretization pa-
rameterA = 3 while keeping all states up to an energy cutoff while the entropies fit

1 r r
TXimp(Jc):Z_Ev TXimp(‘]*):gi (6.14
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FIG. 28. Lowest eigenvalues™ of the discretized two-channel
Kondo model A=3) plotted vs the exponent describing the

power-law exchange. Data are shown for the four fixed points of the

particle-hole-symmetric problem, both fof even(open symbols
and forN odd (solid symbol$. Solid lines are provided as a guide
to the eye. Thel, curves are extrapolated at=0 to the weak-
coupling values.

Simp(Je) =IN2, Sipp(3*) = %In2+ rind.  (6.19

Two factors greatly impede the study of the effects of

potential scattering in the overscreened Kondo modBl:

CARLOS GONZALEZ-BUXTON AND KEVIN INGERSENT

> > Jo
o0

FIG. 30. Schematic renormalization-group flow diagrams for the
two-channel Kondo model, showing tlg-V, plane forV,;=0 and
fixedr: (@) 0<r<ra and(b) r>r .. The thick line represents a
line of RG fixed points. See Fig. 16 for an explanation of the other
symbols.

of the numerical RG procedure. Even working with a dis-

Away from particle-hole symmetry, the total axial charge cretization parameter as large 4s=9, we have found it
(see Sec. Il Fis no longer a good quantum number. This feasible to retain only those many-body eigenstates with
change roughly doubles the size of the basis at each iteratitaled eigenvaluds*<E ~ 15 (compared tdE .= 25 for the

0.3

o
)

kBTXimp/ (gus)?
o

o ©
0, 0

0.0

0.3

FIG. 29. Impurity susceptibilityT xim, and entropyS,,, at the

two intermediate-coupling fixed points of the two-channel Kondo

particle-hole-symmetric problem(2) The instability of the
two-channel Kondo model with respect to channel
asymmetr§! is found to rise markedly with increasingand
|Vo|. Over much of the parameter space, unavoidable nu-
merical asymmetry at the level of the machine precision
grows to of order unity before the many-body energy levels
get close to the zero-temperature fixed point of the channel-
symmetric problem. In light of these obstacles, we focus our
remarks on the qualitative features of the RG flow diagrams
for r=0.3 and|pyVo|=0.5.

For all 0<r<r ., there appears to be a critical coupling
J'(r,Vy) for any potential scattering strengthy. Figure 27
plotsJ’(r) for two fixed values oiV,. For Jo<J’, the sys-
tem flows to weak coupling, while falp=J" it reaches the
J. fixed point of the particle-hole-symmetric problem. For
Jo>J’, the flow is to a generalization of thE fixed point
found forVy=0. Specifically, the energy levels are obtained
from those of thel* fixed point by splitting each pair of
charge-conjugate states. At fixdgl this splitting grows with
increasingVy; with Vg held fixed andJ, starting atJ’, the
splitting initially grows from zero asly increases, then
passes through a maximum, and eventually falls back to-
wards zero agy— 0. From this behavior, we deduce that the
RG flows have the form shown in Fig. @). To within the

model, plotted vs. Solid lines are provided as a guide to the eye. 8Ccuracy that we can achievaround 2%, the impurity en-

The J.. curves are extrapolated et 0 to the values for weak cou-
pling, given by Eq.(5.23. The strong-coupling propertid€q.
(5.39] are also plotted. Inset: impurity susceptibiliys the same
units as the main figujeat theJ* fixed point vs potential scattering
poVo, for r=0.2 andpyJy=0.6.

tropy is the same everywhere along the line of fixed points,
but T xim, falls as one moves away from the symmetric fixed
point (see the inset to Fig. 29

The RG flows forr>r ., [Fig. 30b)] are qualitatively
similar to those of the underscreense1 Kondo model.
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There exists a single intermediate-coupling fixed point athermodynamic properties. The effect of band asymmetry on
Jo=JL(r), Vo=V,(r). For all [Vo| <V, the system flows to the intermediate-coupling fixed points of the three variants of
weak coupling, whatever the value of the bare exchange couhe Kondo model is essentially equivalent to that of potential
pling Jo. For |[Vo|>V,, by contrast, the flow is to weak scattering on the same problem with a symmetric band.
coupling forJy<<J'(r,V,) and forJy>J"(r,Vy); otherwise

the system flows to asymmetric strong coupling. Figure 27 2. Restricted power-law scattering rate

plots J’(r) andJ"(r) for poVo=0.5. (Note the discontinuity In real gapless systems, the power-law variation of the
in the slope of thel;(r) curve atr=rpn,,) The absence of scattering rate or of the Kondo exchange is unlikely to ex-
any critical coupling folpoVo=0.1 beyond =r ., indicates  tend over the entire band in the manner assumed ifIE§.

that poV¢(r)>0.1 for allr y<r <0.4. A more realistic form for the scattering rate rolls over to a

We note that, unlike the exactly screened and underroughly constant value outside a pseudogap of half-wixith
screened models, the two-channel Kondo model does nothis can be approximated by writing

seem to exhibit any range of exponents<r <r . Within

which particle-hole-symmetric and -asymmetric versions of Tole/Al", |e|<A,

the J.. fixed point coexist. Due to the numerical difficulties

mentioned above, this possibility cannot be completely ruled I(e)=1 Lo, A<|el<D, (6.16
out, but any range of dual fixed points is certainly very nar- 0, |e/>D.

row (I max—r*<0.02).
The effects of restricting the power-law scattering regime
E. Departures from a pure power-law scattering rate can be predicted using poor-man’s scaling. Consider a local-
Now we consider various changes to the form of the|zed level described by the nondegenerate Anderson model.

power-law scattering rate defined in Hd.3. We focus on At temperatureg > A, the impurity is insensitive to the pres-

three features which are likely to be present in real materials? €€ of the pseudogap, and one expects the standard physics

0 removal of e symmety (~ (e, (1) restricton of - oiet 1 3 metall Hos, e e erperatre s louered
the power-law variation if'(¢) to a region of half-width according to Ep (6.2, whileT" rerrp\ain)s{ essentiall congtant
A<D, and (jii) the existence of a small but nonvanishing 9 9.2, 0 y :

scattering rate at the Fermi enerdy(,0)+# 0. The effects of TWO. quah_tatlvely @ffgrent situations can arise. In t_he first,
o ! e . the impurity remains in the valence-fluctuation regifsee
these modifications can be predicted qualitatively usin

oor-man’s scaling, and can be investigated in detail via mﬂ:ig. 12 all the way down to temperaturds<A. In this case,
P 9 9 nce the temperature falls much beldw the system will

merical RG calculations. In the latter approach, each chang chave very much like an Anderson impurity with a pure

in the form ofI'(e) simply alters the values df defined in . .
Eq. (2.5 and the tight-binding coefficients, andt, entering power-law scattering rate, the role of the half-bandwibth

the discretized Hamiltonian, Eq2.32; otherwise the nu- Peing taken byA and with €4 replaced byeq(A) [given by
merical treatment remains the same as for a pure power-lafgd- (6.2]. The qualitative effects of the pseudogap should
scattering rate. It turns out that the first modification above igherefore be those reported in Secs. VI A and VI B, although
relatively inconsequential, whereas the second can signifin® magnitude of these effects will decrease as the pseudogap
cantly increase the likelihood of observing the Kondo effect@rrows. For example, on any subsequent entry to the local-
for values ofr=3, and the third can produce even more Moment regime, the effective Kondo exchargeill be re-
fundamental departures from the results obtained using E4luced relative to the case=0 by a factor of at least
(1.3. |eg(A)/A|" (compared to a reduction ¢é,/D|" for A=D).
Should there exist a solution to E¢.5 such thatTg

1. Particle-hole-asymmetric scattering rate = A, then real charge fluctuations on the impurity site will be
frozen out before the power-law density of states makes its
presence felt. Perhaps the most interesting situation arises
tering Eq.(2.32 are identically zero. This symmetry is un- when the system enters the local-moment regime, in which
likely to be exactly preserved in any real system. We hay&asS€ One can Schrieffer-Wolff transform to the Kondo de-
studied the effect of various symmetry-breaking perturba—Scrlptlon of the proplem. Over _the temperature range
tions, the simplest being the modification of Ef.3) so that _ZTE_A' the condl_Jctlon ba”‘?' W'”_ begin to screen out the
the conduction band extends over energietl + u)D<e impurity moment; in the §callng picture, the effective va_Iue
<(1— p)D. Setting#0 changes not only the hopping co- of the Kondo coupling will renormalize upwards according

efficients t, entering the discretized conduction band, but®© Eq.(6.13 with r:O_. At temperature3 <4, the Impurity

also leads to nonzero diagonal coefficieats This invali- maps onto a model with pure power-law exchange haﬂng an
dates the asymptotic expressions for the conduction-band effective half-bandwidthd and an exchange coupling,J,
genvalues and eigenvectors presented in Sec. Ill, and vitiates[IN(A/TR)] L. Here Tg=Dexd —1/(poJo)], the Kondo

the fixed-point stability analysis of Sec. IV. However, nu- temperature for a system having a constant density of states
merical RG results indicate that the physical behaviors of the,, is assumed to be smaller than (If T2>A, then the
Anderson model remain essentially the same. The bantmpurity will already have entered the strong-coupling re-
asymmetry prevents the appearance of the symmetric strongime before the pseudogap comes into play, in which event
coupling fixed point, but the other regimes discussed in Seqerturbative scaling can provide no insight into the behavior
IV exist and moreover exhibit the same power laws in theirfor T<A.)

It was pointed out in Sec. Ill that if the scattering rate
satisfiesI'(— €)=I"(¢€) for all €, then the parameteks, en-
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The scenario of the previous paragraph implies a signifi-
cant enlargement of the region of parameter space within
which a fully developed Kondo effect can take place. Con-

sider, for instance, the cakk=, with some fixed valué of N 021 —eo/D
the hybridization matrix element. Working to lowest order, &1 8 8:(1)8
let us neglect the many-body renormalization of the impurity = o 0.16
energy(which becomes increasingly weakramcreases; see > : 8:%
Sec. VI A 3. Then the exchangg,J, entering the effective >§< 0.1} = 0.30
low-temperature Kondo problem is approximatebyJ® ':%,

=t?/(D|ey]) for a constant scattering rater=0),
pol®|eq/D|" for pure power-law scatteringA(=D), and
pod[1—pod° In(|eyl/A)]~? for restricted power-law scatter-
ing. The last value ienhancedover that obtained with a
constant scattering rate, and ftsrsufficiently small,Jq will
exceed the threshold,(r). This is true even for=0.5, a 0.8
range in which no Kondo effect can be observed in cases of

pure power-law scattering.

The predictions made in the preceding paragraphs can be 2 0.6
tested against numerical RG results. Restriction of the ™
power-law scattering to a regide| <A alters the hopping U% 0.4

coefficientst,, entering Eq.(2.32. The values for smalh
[such that the characteristic temperatdrg given by Eq. 0.2
(4.3 greatly exceeda ] become essentially identical to the ’
corresponding values for the case0, while thet,’s for
largen (such thafT,,<<A) are still given by Eq(3.3). Since
it is the largen coefficients that determine the low-
temperature behavior of the system, the analysis of the stable
fixed points of the Anderson model in Sec. IV remains ap-
pllcqble. . eratureT for the infinitelU Anderson model with a restricted lin-
Flgure_31 presents numerical RG data for the Andersorgar scattering rate described by E6.16 with r=1, A=10"3D
model with r=1, A/D=10"° and I';/D=0.050. [The andI'y=0.05M (symbols, solid lines Data are also shown for the

value of I'y is chosen so that if the energy dependence ofame impurity parameters énd eg) but a constant scattering rate
I'(e) were to derive solely from the density of states, thendashed lines

the (energy-independentybridizationt would be identical
to that used in Fig. 10.The numerical results bear out quite range—0.17< e4/D < — 0.16 there presumably exists a criti-

well the predictions of poor-man’s scaling. Over the range. impurity energy that places the system precisely at the

T>A, the impurity susceptibility and entropy are very Closeintermediate-coupling fixed point, wherByim,~1/6 (see

to those obtained using the sarhend e4 but a constant Fig. 14
scattering rate(da_shecli_ lines For Egsl—O.ZILGD, an |n|t|a_l We have performed similar calculations for parameters
!nire”ase 'STS( imp zlgna Ing entryhtot € doca_ -m(t))megtbreg_|me chosen so that real charge fluctuations remain possible when
IS 1o OWﬁ Dy a downturn as the conduction band Begins Qg emperature becomes comparable with the width of the
screen the impurity moment, whereas &= —0.1D, Tyimp pseudogapi.e., for a largerA or a smallerfeg| andT'y than
falls monotonically in the manner characteristic of theused in Fig. 3L As surmised in the scaling discussion
mlxehd-valen((:je and _emEty-|mpur|t_y limits. beai K _above, the physical properties depart less dramatically from
The pseudogap In the scattering rate begins to make it§ose for 4 pure power-law scattering rate than in the case
presence felt about a decade in temperature aboweor all  ¢p5vn in Fig. 31.
the values ofey shown in Fig. 31, the initial effect is 10 \yg have also investigated the effect of restricted power-
produce an upturn in bofhxiy, andSiy,, signaling a weak- |y exchange within the Kondo models. Results for the ex-
ening in the effective coupling between the impurity level 3oy screened case appear in Ref. 7. In this and the other
and the conduction band. Feg=—0.16D, this weakening yariants of the model, the low-temperature behavior can be
is reversed as the temperature decreases further, and the s¥szqunted for by assuming a pure power-law exchange with
tem eventually flows to asymmetric strong coupling. In theihe pare couplingl, replaced by alargep effective value

case e;=—0.1, where the impurity clearly enters the {hat compensates for the elimination of conduction band
local-moment regime at a temperature well abavethe  giates at energy scalbg>A.

downturn in each property indicates the existence of a Kondo
effect where none was found in the pure power-law ¢ase

Fig. 10. Foreq<—0.17D, the rise inT x;n, towards the free
local-moment value indicates that when the system encoun- In the context ofd-wave superconductivity, it has been
ters the power-law scattering regime, the effective exchangpredictea that the pair-breaking effect of any finite concen-
coupling is smaller than the critical value needed to bringtration of magnetic impurities will feed back to produce a
about Kondo screening of the impurity. Somewhere in thesmall but nonzero quasiparticle density of states at zero en-

2, 1 1 1
10~* 1073 10-2 10~
keT/D

10-6 105

FIG. 31. Impurity susceptibilityl xim, and entropySim, vs tem-

3. Finite Fermi-energy scattering rate
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ergy. This may be taken into account by introducing a lowercreasingr, and forr>1 it should disappear altogether.

cutoff A’ on the power-law scattering rafi addition to the Except under artificial conditions of strict particle-hole
upper cutoff A considered aboye such that I'(e) symmetry, the symmetric strong-coupling limit is unstable.
~To(A'/A)" for |e|<A’. Generally, the system is driven to an asymmetric strong-

Based on a heuristic scaling approach, similar to that emeoupling fixed point at which a Fermi-level phase shift of
ployed in the previous subsection, it is apparent that the syst 7 implies a vanishing impurity contribution to thermody-
tem can exhibit a wide variety of behaviors, depending omamic and transport properties. Underscreened and over-
the relative magnitudes of the energy scales in the problenscreened impurities, however, admit two other possibilities:
The lower cutoff on the power-law scattering rate cannotFor r<1/4, one can obtain flow téor, for thes=1 model,
significantly affect the physics until the temperature drops tmea) a non-Fermi-liquid fixed point, corresponding to an
become of orderA’. At this point, the clearest departure effective couplingd* which decreases with increasingFor
from the casel’=0 arises if the impurity is already in, or r=1/4, the generic behavior is flow to weak coupling, in
subsequently enters, its local-moment regime. In such caseghich case the absence of interesting many-body effects in-
the existence of a nonzero Fermi-surface scattering rate enites comparison with théerromagneticKondo problem in
sures the eventual appearance of a standard, metallic Kondhoetals.
effect. However, for=1 at least, most plausible values of In addition to characterizing the location, stability, and
the various parameters in the model lead to screening of thihermodynamics of the various fixed points mentioned
impurity only at temperatures that are so low as to be physiabove, we have also studied the possible crossovers between
cally irrelevant. regimes dominated by these fixed points. We have quantified
observations made previously based on a perturbative scaling
analysis of the Anderson model that while local-moment for-
mation is assisted by the presence of a pseudogap in the

In this work, we have studied four models in which the low-energy scattering rate, there is a strong suppression of
interaction between a magnetic impurity level and anthe effective exchange coupling between any such moment
otherwise-uncorrelated host fermion system is described b§nd the delocalized electrons. As a result, it becomes pro-
an energy-dependent scattering rate that vanishes in powedtessively harder as increases from zero—and essentially
law fashion at the Fermi level. Our principal results are sumimpossible for a pure power-law scattering rate with
marized in the following paragraphs. r=0.5—to find any choice of model parameters which leads

In all four models, the effect of the pseudogap in theto Kondo screening of the impurity moment. In more realis-
low-energy scattering rate is to create a low-temperature reic situations where the power-law scattering is confined to a
gime which has no counterpart in met@ighere the scatter- narrow range of energies around the Fermi level, the sup-
ing rate is flat in the vicinity of the Fermi levelThis stable pression is less complete. Even in such cases, though, there
weak-coupling limit, first identifietlin the exactly screened is a significant region of parameter space in which an un-
Kondo model, is characterized by a free-impurity local mo-screened local moment survives down to zero temperature.
ment which retains its Curie susceptibility down to zero tem-
perature. , , ACKNOWLEDGMENTS
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values ofr .o andr* are model dependent, but in all the four  In this appendix, we analyze a noninteracting resonant-
cases that we have studieec®*<r .= 3. level model for the mixing between an impurity level and a

Another common feature of these models is the existencspinless conduction band. This model, described by the
of two distinct strong-coupling regimes. The first, symmetricHamiltonian
strong coupling, is the natural generalizationrte O of the
low-temperature limit of the metallic Kondo problem. In the i
Anderson and screened Kondo models, the impurity degree H= e Cici+ eqdTd+ >, L
of freedom is completely quenched, as evidenced by the van- K N
ishing of the quantityT y,,c, and the sole effect of the mag-
netic level is to impose a phase shift on electrons at theepresents the limit) =0 of the Anderson mod¢Eq. (2.1)],
Fermi energy. This phase shift results in anomalous therman which up and down spins decouple from one another, and
dynamic properties, namely, those that would arise if a fracthe spin index can therefore be dropped. The mixing rate
tion min(r,1) of an electron were to decouple from each
conduction band. For exponents 1, the phase shift should It 2
also result in a zero-temperature peak in the electrical resis- T(e)=m2, L5(€_ € (A2)
tivity. The magnitude of this peak should decrease with in- k N

VIl. SUMMARY

APPENDIX A: RESONANT LEVEL MODEL
WITH A POWER-LAW MIXING RATE

(cid+H.c), (A1)
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is assumed to have the pure power-law form given in Eq. 1 2
(1.3). Since the Hamiltonian is quadratic, various properties — = 0 5, =0,
of the model can be calculated analytically. o ot o
1 rao
1. Impurity self-energy T (@) C0§7, 0<r<1,
The impurity self-energy in the model described by Eq. A(w)=~ 1 D ol 12171
(Al) is 1+ ———In|= , r=1,
7I'(w) o, ™ D
S(=3 N (A3) (o)
= . ®
@ K w—e+i0" 5 r>L
o _ _ m(gw)
The real and imaginary parts of this quantity are (A10)
Here
tJ2N 1 (=  T(e :
ReE(w):PE LE—PJ' de ( ), (A4)
k w— €y ™ —x w—€ 2F0
g=1+——. (Al
(r—=1)#D

Im3(w)=—-T'(w). (A5)
- . . For a flat mixing rate (=0), the spectral function exhibits
Substituting Eq(1.3) into Eq. (A4), one obtains the standard Lorentzian resonance centerea o). For all

r>0 this feature is replaced by a power-law cuggw)

+ . ;
Em Dto r=o0, ~|w/D|I*="1=1, such that the spectral function diverges for
7 |D-w 0<r<2 but instead vanishes for>2.
rar
—F(w)tan7 sgnw), 0<r<1i, 3. Conduction-band phase shifts
ReX (w)= Mw) |D2—w? The mixing term in the Hamiltonian effectively adds one
———1n S—|sorw), r=1, extra state to the band, centered on an eneggyhich is a
T w root of the equatiorey— e4— Re% (e4) = 0. As a result, each
2T, o of the original band states is shifted in energy frento
- = >1. e— 6o(€)/m. Here 8,, the s-wave phase shift, satisfies
(r—-1)7 D
o So(€) =at Im=(e) ) (AL12)
. _ _ e)=atap ———— .
The expressions far=0 andr=1 are exact, but those for 0 e— eg—RES(e)

other values of are approximations which are valid only for
|w|<wq(r). Here,w (r) is a cutoff energy scale which ap- Since one expects the band states to be pushed away from
proaches 0 as approaches 1 from above or below. In all the inserted level, the sign afy(e) should be opposite to
cases, RE(w) passes through zero ab=0. However, that of e—eq—ReX(€). Coupling to the impurity brings
ReS (w) has the same sign asfor r=0, whereas the signs about a change in the density of states,

are opposite for alt >0.

Pimp( €)= O(e—€q)+ 7 295,/ de. (A13)
2. Impurity spectral function For the case of a pure power-law scattering rate wjth
The impurity spectral function is #0, 6p(€)~I'(€)/ 4 at low frequencies. The cagg=0 is
again more interesting:
—Im3(w)/
A(w)= ) A7 ( T € rao
(@) [0— €g— RS (w)]?+[IM2(w)]? (A7) (1—r)5—mcos’-7, o=r<1,
If e4# 0, then for allr =0 the spectral function is feature- So(€) T 3
less in the vicinity of the impurity energy, sgr{— ) ~9 2In|D/é’ r=1,
I'(e)
I'(eg)/ —
Aleq)= > S~const,  (A8) Lol
[ReX(eg)[“+[I'(eg)] (A14)
and takes its low-frequency behavior frdifw), Equations(A14) indicate that ate=0, &, jumps through
(1—r) 7 while pjn, has as-function peak of weight;. In
A(w)%r(“’) || <] e (A9) the caser=0, the standard interpretation of the smooth
2 dil- .. . . . .
me; variation of the density of states is that the impurity level

becomes completely absorbed into the band. This absorption
For e4=0, by contrast, the spectral function exhibits non-appears to be incomplete for ali-0, with the 6 function in
trivial structure neakw=0: pimp representing the fraction of the impurity degree of free-
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dom that remains localized. Foe=1, not only does thes 1. Local-moment regime

function contain the entire weight of the original impurity, g starting point for computing;y, in the local-moment
but a counterintuitive situation arises in which the impurity regime is Eq.(5.17, which contains four separate summa-
level repels delocalized states close to its renormalized posiong over single-particle eigenstates. Consider first the un-
tion (here,e4=0) lessstrongly than it repels states that lie constrained double sum oveandk. One can show that this
further away in energy. term represents the second-order shift in the ground-state en-
ergy of the system due to the perturbati@g andO; [Egs.
(4.7]. This shift is a temperature-independent quantity
which should not contribute to the impurity specific heat.
Moreover, since the RG transformatififq. (2.34)] subtracts
This appendix fills in some of the steps in the derivationoff the ground-state energy at each iteration, such a term will
of the algebraic expressions for impurity thermodynamicnot be detected numerically and can safely be neglected.
properties presented in Sec. V. In particular, we focus on the Each of the remaining summations enterkag,, contains
methods for performing sums over single-particle eigenstateat least one factor op;, which permits application of the
arising in the perturbative treatment of the discretized effectransformation(B1). The last term in Eq(5.17), which con-
tive Hamiltonians introduced in Sec. IV and on extrapolationtains a summation over indicgsandk+ j, requires special
of the resulting expressions to the continuum limit. attention. We find it convenient to define
Consider expansion of the properties in the vicinity of the ,
Weak—coupllng fixed point(Analogous argumgnts apply at _ In_A 2420 gl x (F-1INT2 aéj aéknj*pj
strong coupling. The summands encountered in these calcu- > () By At 2 EFCENETE
lations can generally be separated into the product of two Ikt
parts: the first increasing with the indg¢xwhich labels the
single-particle eigenvalues, but doing so no faster mén

APPENDIX B: DETAILS OF THE EXPANSION
OF Fimp AND Ximp

e0)

the second decreasing for large at least as fast as (B InA S
- . X X —>—(t*)l+r,31 A(rlfr)NIZ
exp(—=Bn7;)- Provided thakgT<D andfy<1, this decom- o2 N
0

position ensures thdh) the summand takes its largest value
for 1<j<N, in which range the asymptotic forms given in o (Bnaor)?
Egs.(3.7), (3.10, and(3.11) are essentially exact, aitk) the X f du . — 5
summand is sufficiently small foj=O(1) and for j 0 e'+1l k=1 (Bum)—u
= O(N/2) that the range of can safely be extended to run g oy <15 will be dominated by contributions from
from —oo to +oo. If, in addition, A is sufficiently close to 4\ sich thatBy7; ~u=O(1). In this case, the sum over

unity, the sum ovej can be well approximatétiby an in- : . x ke .
' . - : k can be converted to an integral ower B\t*A*™ "N, yield-
tegral over the variableu=gB\t*A!~"N. This procedure, g Pn y

141 (N+1)2

(B2)

which amounts to the replacements s
o . vru1+r
(N+1)/2 . 3, :J duf dv : (B3)
> _)LJ ﬂ (Bla " Jo 0 v2—ue+1
i=1 InAJo u’
Making the change of variables—uy, one obtains
7] —ul By, (Blb > u? e y'
EFIJ du f dy for r<1. (B4)
0 e'+1 Jo y?—1
(2n+1+r1)/2
anj_mn( , (Blg Theu integral is related to the Riemanfunction’ while
Bnt™ they integral was evaluated in Ref. 2. As a result, one can

write

converts a sum ovgrto aA-independent integral multiplied

by a simpleA -dependent prefactor. Sp=@(ro+r)e(r), (BY)
The cont|nuun_1 limit is reached by smultapeously taking,\here #(x) and y(r) are defined in Eqe(5.3 and (5.22,

A—1 andN—ce in such a manner tha8 [defined by Eq. respectively.

(5.7)] approaches some valye<1. For all values # 1, the For r=1, thek sum in Eq.(B2) is dominated by the

precise value of3 drops out of the final expression for each largest values ok, and is not well approximated by an inte-

thermodynamic property, and so this prescription producesgral. If one neglectsi? in the denominator, the sum can be

an unambiguous result. It will be shown below, however,performed directly to give EqB5) once again, but with

that for linear scattering rates the leading corrections at the

weak-coupling and asymmetric strong-coupling fixed points InA o1

depend explicitly on IB. Since8 has no physical meaning m(t ) >l

for A—1, the continuum limit of the discretized thermody- P(r)=~ (B6)
namic calculation contains a degree of ambiguity in this spe- E(NJF 1inA, r=1

cial case. 2 ' '
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These manipulations, when combined with E§.7),
transform Eq(5.17) into

Fimp:| a7 aoal ¢(1+r) kBT
keT YInA (1927 | oD
2\ 2
ag 1
+4(V2+ 232
( 16 )<| A) (t*)2+2r

x| InA r (2 )(kBT)Zr
n r rN|{—
&( D

KeT rotr
D .

Similar methods can be applied to E§.18 for ximp-

+2¢(r)(ry+r) (B7)

Again, evaluation of the double sum requires the most care.

We define

S o=

2
» nA (t )2+2r 1+r+rg
0‘0

OJ “0k7IJ

X AINZY, *zp,pj(p, p))

J#k 77

(BL) InA
R (t )1+rﬁr1 1A(r1 r)N/2
ao

><J du
0

urel(ev— 1)(N+1)/2

(Bnaok)?
(eV+1)3 '

(Bnmi)*—

k=1

(B8)

For r<1, thek sum in Eq.(B8) can be converted to an
integral, yielding

r 1+r U( u_l)
2= f dvf du . (B9)
v?2—u? (e+1)°3
Letting v —uy, one obtains
G(1+T)
Ty (r), (B10)

where ¢(x) and (r) are defined in Eqs5.3) and (5.22,
respectively. For=1, direct summation neglecting in the
denominator gives EqB10) with (r) instead defined by
Eq. (B6).
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1 J a  p(1+r)
_+__—
4 2InA (L+r)(t)H*r
~ apaq q’)(l-i-l’) kB_T
YInA (92 | aD
a_ﬁﬂr
%InA (1+r)(tH)H
2\ 2 2r

V2l 20 = nArg(2 (kB—T)

i (InA) (e "0 o

kBT)rl+r
D .

The final step is to extrapolate the expressionsHgy,
and xmp to the continuum limit. For In<1, Egs.(2.31),
(3.4), and(3.11) reduce to

kBT)(imp
(gue)?

keT '
aD

1+2r

kgT
aD

+24(r) p(ry+71) (B11)

a,t*~1+O(InA), (B12)

Substituting these values into Eq®6), (B7), and (B11),
and then letting IN—0, one obtains Eqg5.20 and (5.21)
with

a?~1(2n+1+r)InA.

lim g(r)=(r—1)"%, r>1.
A—1

(B13)

In the special case= 1, application of Eqs(2.31) and(5.7)
leads to the result

BksT
lim N|nA=—2|n(’8DB )

N—o, A—1

(B14)

where, as stated abovE,is the limiting value ofBy . This in
turn leads to the replacement specified in Ex26).

2. Symmetric strong-coupling regime

The sums entering Eqg5.27) and (5.28 can also be
transformed into integrals using the methods described in the
previous subsection. The leading deviations from the fixed-
point free energy and susceptibility arise from first-order
terms in perturbation theory, and so there are no double sum-
mations to contribute logarithmic corrections to the simple
power laws in temperature. For small but finiteAlnone
obtains

Fimp 3, P12 _#17D) [keT|""
- In4— = B15
kT 0 S22 0A (A-22 7| 4D (B15
and
KeTXimp 1 -~ BBz ¢(1-1) /kBT)lr
=212,
(gus)® 8  “InA A e | aD
InA) [(1-r)(t*A™2 "] | aD
(B16)

The remaining sums in Eq5.18 are straightforward to  where ¢(x) and ¢(x) are defined in Eqs(5.3). Extrapola-
perform. The resulting expression for the impurity susceptition to the continuum limit yields the final expressions con-

bility is

tained in Eqs(5.30 and (5.31).
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