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Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems
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Thermodynamic properties are presented for four magnetic impurity models describing the scattering of
fermions from a localized orbital at an energy-dependent rateG(e) which vanishes precisely at the Fermi level,
e50. Specifically, it is assumed that for smallueu, G(e)}ueur with r .0. The casesr 51 andr 52 describe
dilute magnetic impurities in unconventional (d- and p-wave! superconductors, ‘‘flux phases’’ of the two-
dimensional electron gas, and certain zero-gap semiconductors. For the nondegenerate Anderson model, the
main effects of the depression of the low-energy scattering rate are the suppression of mixed valence in favor
of local-moment behavior and a marked reduction in the exchange coupling on entry to the local-moment
regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes
Kondo screened. The precise relationship between the Anderson model and the exactly screened Kondo model
with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by
Withoff and Fradkin~WF! is shown to have clear signatures both in the thermodynamic properties and in the
local magnetic response of the impurity. The underscreened, impurity-spin-1 Kondo model and the over-
screened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in
addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole
symmetry plays a crucial role in determining the physics both at strong coupling and in the vicinity of the WF
transition. These results are obtained using an extension of Wilson’s numerical renormalization-group tech-
nique to treat energy-dependent scattering. The strong- and weak-coupling fixed points of each model are
identified and their stability is analyzed. Algebraic expressions are derived for the fixed-point thermodynamic
properties and for low-temperature corrections about the stable fixed points. Numerical data are presented
confirming the algebraic results, identifying and characterizing intermediate-coupling~non-Fermi-liquid! fixed
points, and exploring temperature-driven crossovers between different physical regimes.
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I. INTRODUCTION

In conventional metallic systems, it is well understo
how many-body correlations induced by dilute magnetic i
purities in an otherwise noninteracting conduction band
at low temperatures effectively quench all spin fluctuatio
on each impurity site.1 This, the Kondo effect, depends crit
cally on the presence of fermionic excitations down to ar
trarily small energy scales. The impurity properties are s
sitive to the density of electronic statesr(e) only through its
value at the Fermi level,e50. Other details of the band
shape have negligible effect on the low-temperature phys

A growing body of theoretical work2–10 shows that the
standard picture of the Kondo effect must be fundament
revised in order to treat ‘‘gapless’’ systems, in which t
effective density of states vanishes precisely ate50 but is
nonzero everywhere else in the vicinity of the Fermi ener
The goal of the present paper is to extend the understan
of this issue through a comprehensive account of the dif
ent physical regimes exhibited by magnetic impurities
gapless host materials, including detailed calculations
thermodynamic properties.

Gaplessness may be realized in a number of physical
tems:~1! The quasiparticle density of states in an unconv
tional superconductor can vary likeueu or ueu2 near line or
point nodes in the gap.11 Heavy-fermion and cuprate supe
conductors are strong candidates for this behavior.~2! The
valence and conduction bands of certain semiconduc
570163-1829/98/57~22!/14254~40!/$15.00
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touch in such a way that, for smallueu, r(e) is proportional
to ueud21 in d spatial dimensions. Examples include PbT
SnTe heterojunctions12 and the ternary compound
Pb12xSnxSe, Pb12xSnxTe, and Hg12xCdxTe, each at a
temperature-dependent critical composition.13 ~Zero-gap
mercury cadmium telluride has been proposed as the b
for a giant magnetoresistance read-head for high-den
storage.14! ~3! Various two-dimensional electron systems
including graphite sheets,15 ‘‘flux phases’’ in a strong mag-
netic field,16 and exotic phases of the Hubbard model17—are
predicted to exhibit a linear pseudogap. It is a matter
ongoing debate whether this pseudogap survives the p
ence of disorder.18 ~4! The single-particle density of states
the one-dimensional Luttinger model varies likeueu2a, where
a changes continuously with the strength of the bu
interactions.19 In all these examples, the effective density
states can be approximated near the Fermi level by a po
law, r(e)}ueur with r .0.

The first theoretical study of magnetic impurities in ga
less Fermi systems was carried out by Withoff and Fradk2

who assumed a simplified density of states in which
power-law variation extends across an entire band of h
width D:

r~e!5H r0ue/Dur , ueu<D,

0, otherwise.
~1.1!
14 254 © 1998 The American Physical Society
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Using poor-man’s scaling for the spin-1
2 ~i.e., impurity de-

generacyN52) Kondo model and a large-N treatment of the
Coqblin-Schrieffer model—both methods being valid for
<r & 1

2—these authors demonstrated that the Kondo ef
takes place only if the dimensionless, antiferromagne
electron-impurity exchanger0J exceeds a critical value
r0Jc'r ; for J,Jc , the depletion of low-energy conductio
states causes the impurity to decouple from the band at
temperatures.

Subsequent work has analyzed values ofr up to 2 and
beyond. Large-N methods have been applied3,4 to models
describing magnetic impurities in unconventional superc
ductors, in which the power-law variation ofr(e) is re-
stricted to a regionueu,D!D. These studies, which may b
directly relevant for Ni-doping experiments20 on
YBa2Cu3O72d , have yielded results in general agreeme
with Ref. 2. The logarithmic dependences on temperaturT
and frequencyv which characterize the standard (r 50)
Kondo effect are replaced forr .0 by power laws. In the
specific caser 51, these power laws acquire logarithm
corrections.4 For r<1 or N52, any finite impurity concen-
tration produces a small infilling of the pseudogap wh
drivesJc to zero.3

Numerical renormalization-group~RG! calculations5,7 for
the caseN52 have revealed a number of additional featur
At particle-hole symmetry, the critical couplingJc is infinite
for all r . 1

2, while for r , 1
2 the strong-coupling limit exhibits

anomalous properties, including values of the impurity e
tropy and the effective impurity moment which are nonze
~even atT50) and which vary continuously withr .5 Away
from particle-hole symmetry, the picture is marked
different.7 Progressive introduction of band asymmetry or
impurity potential scattering initially drivesJc for r . 1

2 back
down towards the large-N valuer0Jc'r ; eventually, though,
further increasing the asymmetry tends to freeze the mo
of conduction electrons near the impurity site, leading to
upturn inJc . For J.Jc and r .0, the impurity entropy and
the effective impurity moment both approach zero atT50.
An electron phase shift ofp suggests that the impurity con
tribution to the resistivity also vanishes,7 instead of taking its
maximum possible value as it does in the standard Ko
effect.1

The spin-s Kondo model presupposes the existence o
local moment at the impurity site, i.e., an impurity level ha
ing an average occupancy^nd&'2s. The more fundamenta
Anderson model allows for real charge fluctuations on
impurity site. In the nondegenerate (N52) version of this
model, mixed-valence (0,^nd&,1) and empty-impurity
(^nd&'0) regimes compete withs5 1

2 local-moment behav-
ior. Poor-man’s scaling has been applied8 to an Anderson
impurity lying inside a power-law pseudogap. The reduct
in the density of states near the Fermi level has three m
effects, each of which grows more pronounced asr in-
creases: the mixed-valence region of parameter sp
shrinks, and forr>1 disappears altogether; there is a co
pensating expansion of the local-moment regime and,
lesser extent, of the empty-impurity regime; and the value
the Kondo exchangeJ on entry to the local-moment regim
is reduced. Since the threshold exchange for the Kondo
fect (Jc defined above! rises withr , these results imply—a
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least in the cases of greatest interest,r 51 and 2—that over
a large region of phase space, the low-temperature state
sesses an uncompensated local moment. This should be
trasted with systems having a regular density of states
which an Anderson impurity is always quenched at ze
temperature.1

This paper contains a detailed study of four models
scribing a magnetic impurity in a gapless host: the non
generate Anderson model and three variants of the Ko
model, representing~in the nomenclature introduced by No
zières and Blandin21! ‘‘exactly screened,’’ ‘‘underscreened,’
and ‘‘overscreened’’ impurity spins. The nonperturbative R
formalism originally developed to describe magnetic impu
ties in metals22,23 is extended to provide algebraic results f
the stability of, and properties near, the weak- and stro
coupling fixed points of each model. Numerical impleme
tation of the RG scheme enables characterization of the t
modynamic properties at intermediate-coupling~non-Fermi-
liquid! fixed points, and allows the study of temperatur
driven crossovers between fixed-point regimes.

Three effects of the pseudogap are found to be commo
all the models.~1! Over a finite fraction of parameter spac
the impurity becomes asymptotically free in the limitT→0.
The size of this weak-coupling region grows with increasi
r . ~2! The presence or absence of particle-hole symme
plays a crucial role in determining the low-energy behavi
It turns out that each model can exhibit two distinct fix
points of the Withoff-Fradkin type: one preserving and t
other violating particle-hole symmetry.~These fixed points
coexist only over a limited range ofr values.! The strong-
coupling physics is also very sensitive to particle-ho
~a!symmetry.~3! Power-law dependences of physical qua
tities on temperature and frequency are generally differ
for sublinear and superlinear densities of states. Specific
in many places where the exponentr enters physical quanti
ties for r ,1, it is replaced forr .1 by either 1 orr 21. The
caser 51, of particular interest in the contexts of high-Tc
superconductivity and of two-dimensional flux phases,
hibits logarithmic corrections to simple power laws.

Extensive results are provided for the Anderson mod
We investigate in a systematic fashion the nature of
phase diagram at a fixed, positive value ofr , and study the
various trends produced by increasingr . For r *0.5, it
proves impossible to observe Kondo screening of an And
son impurity in a system having a pure power-law density
states. The suppression of the Kondo effect becomes
dramatic, however, if the power law is restricted to
pseudogap of half-widthD!D. ~A preliminary version of
these results was used to support the perturbative sca
theory presented in Ref. 8.!

Recently, Bullaet al.10 have also applied the numerica
RG approach to the Anderson model with a pure power-
scattering rate, limited to cases of strict particle-hole symm
try. With one minor exception, the weak- and stron
coupling thermodynamics reported forr , 1

2 are in agreemen
with Ref. 8 and the present work. The authors of Ref.
interpret these results, and certain noninteger exponents
scribing their numerical data for the impurity spectral fun
tion, as evidence for non-Fermi-liquid behavior. We demo
strate, however, that the fixed-point properties are precis
those expected for a noninteracting gapless system. He
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we argue that the weak- and strong-coupling limits can
described within a generalized Fermi-liquid framework.

Previous studies of the exactly screeneds5 1
2 Kondo

model with power-law exchange have focused on the e
tence and positionJc of the intermediate-coupling fixed
point and on the thermodynamics in the weak- and stro
coupling regimes. Here we concentrate instead on the p
erties of theJc fixed point, which is shown to have a clea
signature in the impurity contribution to total thermodynam
quantities and in a static response function which probes
local behavior at the impurity site. We also examine in so
detail the relationship between the Kondo and Ander
models in gapless hosts, and conclude that the models
independent to a greater extent than in the standard car
50.

Our investigation of the underscreened,s51 Kondo
model and the overscreened,s5 1

2, two-channel Kondo
model focuses on the fixed-point physics. Over a range
exponents 0,r &1/4, each problem exhibits an unstab
fixed point of the Withoff-Fradkin type at a critical couplin
r0Jc'r . The novel feature, however, is the existence
some exchangeJ!.Jc of a second intermediate-couplin
fixed point which is locally stable with respect to perturb
tions in J. The J! fixed point of the underscreened proble
has no counterpart in metals, but that of the overscree
model is the generalization tor .0 of the non-Fermi-liquid
fixed point identified by Nozie`res and Blandin.21 For r
*1/4, theJ! fixed point disappears, and theJc fixed point
can be reached~and hence the Kondo effect observed! only
under conditions of strong particle-hole asymmetry.

Before proceeding, we remark on a matter of terminolo
It will be shown in the next section that the conduction-ba
density of statesr(e) and the energy-dependent hybridiz
tion t(e) ~describing hopping between a magnetic level a
the conduction band! enter the Anderson impurity problem
only in combination, through the scattering rate

G~e!5pr~e!t2~e!. ~1.2!

The exchange and potential scattering in the Kondo mo
have the same energy dependence asG(e). In gapless sys-
tems it is natural to assume thatr(e) is given by Eq.~1.1!
while t(e) is essentially constant. However, the separ
forms of the density of states and the hybridization are
important provided that one is interested only in impur
properties. In the remainder of the paper, we shall there
refer to a power-lawscattering rateor exchange. We shall
focus mainly on the simplest case, that of pure power-
scattering,

G~e!5H G0ue/Dur , ueu<D,

0, otherwise.
~1.3!

However, we will examine the effect of including more r
alistic features such as band asymmetry and restriction o
power-law variation to a finite pseudogap region.

The organization of this paper is as follows: In Sec. II w
describe the generalization of Wilson’s numerical R
method to handle magnetic impurity problems with
energy-dependent impurity scattering rate. The three sect
that follow develop the analytical aspects of the technique
the specific context of a pure power-law scattering rate
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given in Eq. ~1.3!. Section III deals with the discretize
conduction-band Hamiltonians that lie at the heart of W
son’s method. Section IV addresses the stability of the we
and strong-coupling fixed points of the four magnetic imp
rity models of interest, while Sec. V focuses on their th
modynamic properties. The reader who is already fami
with the models we study and who wishes to pass over
technical details of our treatment may wish to jump direc
to Sec. VI, where detailed numerical results are presen
The results are summarized in Sec. VII. Two appendi
contain mainly technical details.

II. GENERALIZED FORMULATION OF THE NUMERICAL
RG METHOD

In this section, we describe a generalization of Wilson
nonperturbative numerical RG method22,23 to treat impurity
models in which the scattering rate of conduction electro
from the impurity site is energy dependent. The generali
tion, presented here in the context of the single-impur
Kondo and Anderson Hamiltonians, was developed indep
dently by several groups. It has been applied to the tw
impurity Anderson model,24 the two-impurity, two-channel
Kondo model,25 the Anderson lattice in infinite spatia
dimensions,26 and the single-impurity Kondo7 and
Anderson8,10 models with a power-law scattering rate. On
the last of the papers cited reports any technical details. H
we provide a comprehensive explanation of the method.

An alternative~but closely related! generalization of the
numerical RG method, developed by Chen a
Jayaprakash,27 has been used to obtain equivalent physi
results for the Kondo model with a pure power-law scatt
ing rate.5 The relationship between the two formulations
discussed in Ref. 10.

A. Anderson impurity model

The nondegenerate Anderson Hamiltonian28 for a single
magnetic impurity in a nonmagnetic host can be written
the sum of conduction-band, impurity, and hybridizati
terms:

HA5Hc1Hd1Hh , ~2.1!

where

Hc5(
k

ekcks
† cks , ~2.2a!

Hd5ednd1Und↑nd↓ , ~2.2b!

Hh5(
k

tk

AN0

~cks
† ds1H.c.!. ~2.2c!

The energiesek and ed of electrons in the conduction ban
and in the localized impurity state, respectively, are m
sured from the Fermi energy;N0 is the number of unit cells
in the host,nd5nd↑1nd↓ is the total occupancy of the im
purity level, andU.0 is the Coulomb repulsion between
pair of localized electrons. Without loss of generality, t
hybridization matrix elementstk between localized and con
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duction states can be taken to be real and non-nega
Throughout the paper, summation over repeated spin ind
(s in the equations above! is implied.

For simplicity, we consider a spatially isotropic problem
i.e., one in whichek[e uku and tk[t(e uku), so that the impu-
rity interacts only withs-wave conduction states centered
the impurity site. The energiese of suchs-wave states are
assumed to be distributed over the range2(11m)D<e
<(12m)D. It proves convenient to work with a dimension
less energy scale,«5e/D. Then, dropping the kinetic energ
of all non-s-wave conduction states, Eqs.~2.2! can be trans-
formed to the following one-dimensional form:

Hc5DE
2~11m!

12m

d« «c«s
† c«s , ~2.3a!

Hd5ednd1Und↑nd↓ , ~2.3b!

Hh5E
2~11m!

12m

d«Ar~«D !Dt~«D !~c«s
† ds1H.c.!.

~2.3c!

The operatorc«s , which annihilates an electron in a
s-wave state of energy«, satisfies the anticommutation rela
tions $c«s

† ,c«8s8%5d(«2«8)ds,s8.
In this model, the impurity couples to a unique line

combination ofs-wave conduction states associated with
operator

f 0s5F21E
2~11m!

12m

d« w~«!c«s , ~2.4!

where

F25E
2~11m!

12m

d« w2~«!. ~2.5!

The weighting functionw(«) entering Eqs.~2.4! and~2.5! is

w~«!5A1G~«D !/G0, ~2.6!

where G(e) is defined in Eq.~1.2! and G0 is a reference
value of the scattering rate~for example, that at the Ferm
level!. With these definitions, the hybridization term in th
Hamiltonian can be rewritten

Hh5AG0D/pF~ f 0s
† ds1H.c.!. ~2.7!

B. Kondo impurity model

The Kondo model29 describes the interaction between
conduction band and a localized impurity which has a sps
of magnitudeAs(s11). The Hamiltonian is

HK5Hc1Hs , ~2.8!

whereHc is the conduction-band Hamiltonian given in E
~2.2a! and

Hs5(
k,k8

FJk,k8

N0

cks
† 1

2 sss8ck8s8•s1
Vk,k8

N0

cks
† ck8sG .

~2.9!
e.
es

n

The first and second terms inHs describe exchange and po
tential scattering, respectively.

The impurity-spin-12 version of the Kondo model can b
regarded as a limiting case of the nondegenerate Ande
model @Eq. ~2.1!#. If 2ed , U1ed@G, kBT ~where kBT is
the thermal energy scale!, then single occupancy of th
Anderson impurity level is overwhelmingly favored ove
zero or double occupancy, in effect localizing a pure-s
degree of freedom at the impurity site. The exchange
potential scattering coefficients can be determined using
Schrieffer-Wolff transformation:30

Jk,k852S 1

uedu
1

1

uU1edu
D tktk8 , ~2.10a!

Vk,k85
1

2 S 1

uedu
2

1

uU1edu
D tktk8 . ~2.10b!

Equations~2.10! imply that the exchange and potenti
scattering both exhibit the same dependence onk, and hence
~in a spatially isotropic problem! on «. Thus, just as for the
Anderson model, the Kondo impurity interacts with a sing
linear combination of conduction states. Equation~2.9! can
be rewritten

Hs5E
2~11m!

12m

d«Ar~«D !DE
2~11m!

12m

d«8Ar~«8D !D

3@J~«D,«8D ! sss8•s1V~«D,«8D ! ds,s8#c«s
† c«8s8

5D@r0J0
1
2 sss81r0V0ds,s8#F

2f 0s
† f 0s8, ~2.11!

where f 0s and F are defined in Eqs.~2.4!–~2.6!; r0J0 and
r0V0 are reference values ofAr(e)r(e8)J(e,e8) and
Ar(e)r(e8)V(e,e8), respectively.

While we shall primarily focus on the convention
Kondo model@Eq. ~2.8! with s5 1

2#, we shall also presen
results for thes51 model and for thes5 1

2, two-channel
model. Following Ref. 21, we refer to these three variants
the ‘‘exactly screened,’’ ‘‘underscreened,’’ and ‘‘ove
screened’’ cases, respectively.

The Nc-channel Kondo Hamiltonian,21 describing an im-
purity spin degree of freedom interacting withNc.1 degen-
erate bands~or ‘‘channels’’! of conduction electrons, corre
sponds to Eq.~2.8! with

Hc5(
k, j

ekck j s
† ck j s ~2.12!

and

Hs5 (
k,k8, j

F Jk,k8
~ j !

N0

ck j s
† 1

2 sss8ck8 j s8•s1
Vk,k8

~ j !

N0

ck j s
† ck8 j sG ,

~2.13!

where j 51,2, . . . ,Nc is the channel index. In this paper w
treat only the channel-symmetric version of the two-chan
problem; i.e., we takeNc52, Jk,k8

(1)
5Jk,k8

(2) , andVk,k8
(1)

5Vk,k8
(2) .

~Multichannel variants of the Anderson model also exist, b
they lie beyond the scope of the present work.!
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C. Tridiagonalization of the conduction-band Hamiltonian

Given the form of the weighting functionw(«) which
definesf 0s—the particular linear combination of delocalize
states that interacts with the impurity degrees of freedom
the Anderson or Kondo model—the conduction-band Ham
tonian can be mapped exactly, using the Lanc
procedure,31 onto a tight-binding Hamiltonian describing
semi-infinite chain:

Hc5D (
n50

`

@«n f ns
† f ns1tn ~ f ns

† f n21,s1H.c.!#,

~2.14!

wheret0[0. The operatorf ns annihilates an electron in
spherical shell centered on the impurity site; this shell m
be reached, starting from shell 0, byn applications of the
kinetic energy operator, Eq.~2.3a!. The f ns’s obey the anti-
commutation relations$ f ns

† , f n8s%5dn,n8ds,s8.
The dimensionless coefficients«n andtn are determined

by the following recursion relations:31

«n5^ f nsuHc /Du f ns&, ~2.15a!

tn11u f n11,s&5~Hc /D2«n!u f ns&2tnu f n21,s&,
~2.15b!

15^ f n11,su f n11,s&. ~2.15c!

Here,u f ns&5 f ns
† u0&, whereu0& is the vacuum state. There

no summation overs in Eqs.~2.15!.
The first two coefficients generated by the recursion re

tions are

«05F22E
2~11m!

12m

d« «w2~«! ~2.16!

and

t15F22E
2~11m!

12m

d«~«2«0!2w2~«!. ~2.17!

Beyond this point, the expressions for the coefficients en
ing Eq. ~2.14! rapidly become complicated. It is straightfo
ward to show, however, that if the problem is symmet
about the Fermi energy—i.e., if m50 and
w(«)5w(2«)—then«n50 for all n.

For most functional forms ofw(«), the hopping coeffi-
cients tn rapidly converge with increasingn to a constant
value. This prevents a faithful approximation of the proble
using any finite-length chain, because terms inHc involving
sitesn which are remote from the impurity are just as lar
as terms involving sites very close to the impurity.

D. Discretization of the conduction band

Wilson showed22 that, by replacing the continuum of con
duction band states by a discrete subset, one can introdu
artificial separation of energy scales into the hopping coe
cients tn entering Eq.~2.14!. This provides a convergen
approximation to the infinite-chain problem using finit
length chains, which correctly reproduces the impurity co
tribution to system properties. Wilson’s procedure was
veloped for a flat conduction-band density of states, a
in
l-
s

y

-

r-

an
-

-
-
d

hence in the notation introduced above, forw(«)5w0 ~a
constant!. Here, we present a generalization of the method
arbitraryw(«).

We divide the band into two sets of logarithmic ener
bins, one each for positive and negative values of«. Themth
positive bin (m50,1,2, . . . ) extends over energies«m11

1

,«<«m
1 , where

«0
1512m, «m

15~12m!L12z2m, m.0. ~2.18!

The corresponding negative bin covers the range«m
2<«

,«m11
2 , where

«0
252~11m!, «m

252~11m!L12z2m, m.0.
~2.19!

Here L parametrizes the discretization: numerical calcu
tions are typically performed withL5 2–3, while the con-
tinuum is recovered in the limitL→1. Wilson’s original
treatment of the Kondo problem corresponds to settingm
50 andz51. ValueszÞ1 are used in the direct calculatio
of dynamical32 and thermodynamic33 quantities.~Thermody-
namic results are presented in Sec. VI below.!

Within the mth positive@negative# bin, we define a com-
plete set of destruction operatorsams

(q) @bms
(q) # and an associ-

ated set of orthonormal functionscam
(q)(«) @cbm

(q)(«)#, q50,
61,62, . . . , all of which vanish for any« outside themth
positive @negative# bin. Given such a basis, one can write

c«s5 (
m50

`

(
q52`

`

@cam
~q!~«!ams

~q!1cbm
~q!~«!bms

~q! # ~2.20!

and

Hc5D (
m,q,q8

E
2~11m!

12m

d« «[cam
~q!* ~«!cam

~q8!~«!ams
~q!†ams

~q8!

1cbm
~q!* ~«!cbm

~q8!~«!bms
~q!†bms

~q8!]. ~2.21!

The key step in generalizing the numerical RG method
arbitraryw(«) is the choice of aq50 function within each
bin that has the same energy dependence asw(«):

cam
~0!~«!5H w~«!/Fam , «m11

1 ,«<«m
1 ,

0, otherwise,
~2.22a!

cbm
~0!~«!5H w~«!/Fbm , «m

2<«,«m11
2 ,

0, otherwise.
~2.22b!

The orthonormality condition on these functions implies th

Fam
2 5E

«m11
1

«m
1

d« w2~«!, Fbm
2 5E

«m
2

«m11
2

d« w2~«!.

~2.23!

With this choice,

f 0s5F21 (
m50

`

@Famams
~0!1Fbmbms

~0! #; ~2.24!

i.e., the impurity couples only to theq50 mode within each
bin. Following an extension of the reasoning applied
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Wilson,22 it can be shown that the coupling between mod
qÞq8 contained in the kinetic energy@Eq. ~2.21!# vanishes
in the continuum limitL→1. To a good approximation thi
coupling can be neglected forL.1 as well.~The ‘‘discreti-
zation error’’ arising from this approximation is estimated
Sec. V.! We therefore assume that theqÞ0 modes decouple
completely from the impurity, and contribute to the kine
energy an uninteresting constant term which is drop
henceforth. Then,

Hc>D (
m50

`

~«amams
~0!†ams

~0!1«bmbms
~0!†bms

~0! !, ~2.25!

where

«am5Fam
22E

«m11
1

«m
1

d« «w2~«!, ~2.26a!

«bm5Fbm
22E

«m
2

«m11
2

d« «w2~«!. ~2.26b!

Equation ~2.25! can now be tridiagonalized using th
Lanczos recursion relations introduced in the previous s
tion. We define

f ns5 (
m50

`

~unmams
~0!1vnmbms

~0! !, ~2.27!

where

u0m5Fam /F, v0m5Fbm /F. ~2.28!

Then Eqs.~2.15! imply that

«n5(
m

~unm
2 «am1vnm

2 «bm!, ~2.29a!

tn11un11,m5~«am2«n!unm2tnun21,m , ~2.29b!

tn11vn11,m5~«bm2«n!vnm2tnvn21,m , ~2.29c!

15(
m

~un11,m
2 1vn11,m

2 !. ~2.29d!

These equations retain the feature of the undiscretized
duction band that ifm50 andw(«)5w(2«), then «n50
for all n.

As will be discussed in greater detail below, the hopp
coefficients tn typically decrease likeL2n/2 for large n,
while the on-site energies«n drop off at least this fast. Fo
this reason, it is convenient to work with scaled tight-bindi
parameters

en5a21Ln/2«n , tn5a21Ln/2tn , ~2.30!

where

a5 1
2 ~11L21!L3/22z ~2.31!

is a conventional factor22,23,32which approaches unity in th
continuum limit L→1. With these definitions, the dis
cretized conduction-band Hamiltonian becomes
s

d

c-

n-

g

Hc5aD (
n50

`

L2n/2@enf ns
† f ns1tn~ f ns

† f n21,s1H.c.!#.

~2.32!

In the special casew(«)5w0 with m51 and z51,
Wilson22,34 was able to derive a closed-form algebraic e
pression for the hopping coefficientstn . Bulla et al.10 have
recently presented an ansatz fortn when the scattering rate
has the pure power-law form given in Eq.~1.3!. In general,
though, the algebraic expressions for the coefficients rap
become extremely cumbersome, and Eqs.~2.29! must be it-
erated numerically. A drawback of this approach is that
recursion relations prove to be numerically unstable.33,5 With
double-precision arithmetic performed to roughly 16 decim
places, it is typically possible to iterate Eqs.~2.29! only to
n510 for L53, and ton513 for L52.

Chen and Jayaprakash have shown5 that it is possible to
reorder the calculation of thetn’s in such a way as to cir-
cumvent the instability. In this work, however, we hav
adopted a brute-force approach, employing a high-precis
arithmetic package to compute the coefficients. Typica
120 decimal places suffice for the calculation of all coe
cients up ton530, beyond which point the deviation oftn
anden from their asymptotic values is insignificant~less than
one part in 1015).

E. Discretized impurity problem

After discretization of the conduction band, the on
impurity Anderson or Kondo Hamiltonian can be written
the limit of a series of finite Hamiltonians,35

H5 lim
N→`

aL2N/2DHN , ~2.33!

whereHN , describing an (N11)-site chain, is defined for al
N.0 by the recursion relation

HN5L1/2HN211eNf Ns
† f Ns1tN~ f Ns

† f N21,s1H.c.!2EG,N .
~2.34!

Here,EG,N is chosen so that the ground-state energy ofHN is
zero. The HamiltonianH0 describes the atomic limit of the
impurity problem. For the Anderson model,

H05e0f 0s
† f 0s1 «̃dnd1Ũnd↑nd↓

1G̃1/2~ f 0s
† ds1H.c.!2EG,0 , ~2.35!

where

«̃d5
ed

aD
, Ũ5

U

aD
, G̃5

F2G0

pa2D
, ~2.36!

while for the Kondo models,

H05~e01Ṽ! f 0s
† f 0s1 J̃ f 0s

† 1
2 ss,s8 f 0s8•s2EG,0 ,

~2.37!

with

J̃5F2r0J0 /a, Ṽ5F2r0V0 /a. ~2.38!
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In the two-channel variant of the Kondo model, eachf and
f † operator in Eqs.~2.34! and ~2.37! acquires a channel in
dex j , which is summed over.

An important feature of both the Anderson and Kon
Hamiltonians is their behavior under the following particl
hole transformations:

Anderson f ns→~21!nf ns
† , ds→2ds

† ,

Kondo f ns→~21!nf ns
† , s→2s†. ~2.39!

Examination of Eqs.~2.34!–~2.38! indicates that the effec

tive values oftn , G̃, Ũ, and J̃ remain unchanged under th
transformations, but thaten→2en , «̃d→2( «̃d1Ũ), andṼ

→2Ṽ.
A symmetric weighting function such thatw(2«)

5w(«) guarantees thaten50 for all n. In this case, one see
that the physical properties of the Anderson model are id
tical for impurity energiesed and 2(ed1U), all other pa-
rameters being the same. Thus, it is necessary to con
only ed>2U/2 ~or «̃d>2Ũ/2) in order to fully explore the
physical properties of the model.23

It should further be noted that, providedw(2«)5w(«),
the symmetric Anderson model~defined by the conditionU
12ed50) and the Kondo models with zero potential sc
tering (V050) are completely invariant under the transfo
mations in Eqs.~2.39!. In cases where the impurity scatterin
rate is regular @w(0).0#, the presence or absence
particle-hole symmetry does little to affect the physics.
contrast, this symmetry turns out to play a crucial role
determining the strong-coupling behavior of systems w
power-law scattering.

F. Iterative solution of the discretized problem

The sequence of HamiltoniansHN defined by Eq.~2.34!
can be solved iteratively in the manner described in Refs
and 23. The many-body eigenstates of iterationN21 are
used to construct the basis for iterationN. Before each step
the Hamiltonian is rescaled by a factor ofL1/2 so that the
smallest scale in the energy spectrum remains of order u
and at the end of the iteration the ground-state energ
subtracted from each eigenvalue. This procedure is repe
until the eigensolution approaches a fixed point, at which
low-lying eigenvalues ofHN are identical to those ofHN12.
~The spectra ofHN andHN11 do not coincide because of
fundamental inequivalence between the eigensolutions
chains containing odd and even numbers of sites. For
ample, particle-hole symmetry ensures the existence o
zero eigenvalue forN11 odd, whereas there is no such r
striction for N11 even.!

All the Hamiltonians described in this paper commu
with the total spin operator

SN5 (
n50

N

f ns
† 1

2 sss8 f ns81ds
† 1

2 sss8ds8 ~2.40!

and with the charge operator

QN5 (
n50

N

~ f ns
† f ns21!1~nd21!. ~2.41!
n-

er

-

h

2

ty,
is
ted
e

or
x-
a

At particle-hole symmetry,HN commutes with all three com
ponents of an ‘‘axial charge’’ operatorJN :36

Jz,N5 1
2 QN , ~2.42a!

J1,N5 (
n50

N

~21!nf n↑
† f n↓

† 2d↑
†d↓

† , ~2.42b!

J2,N5~J1,N!†. ~2.42c!

Thus, the HamiltonianHN can be diagonalized indepen
dently in subspaces labeled by different values of the qu
tum numbersSz , S, Q, and ~at particle-hole symmetry! J.
Moreover, the energy eigenvalues are independent ofSz ,
and whenJ is a good quantum number they are also ind
pendent ofQ. It is therefore possible to perform the nume
cal RG calculations using a reduced basis consisting onl
states withSz5S and, where appropriate,Q522J. ~See
Refs. 23 and 36 for further details. Note that in the tw
channel Kondo model, axial charge quantum numbersQ( j )

andJ( j ) can be defined separately for channelsj 51 and 2.!
By taking advantage of these symmetries of the Hamiltoni
the numerical effort required to diagonalizeHN can be con-
siderably reduced.

Even with the optimizations described in the previo
paragraph, after only a few iterations the Hilbert space ofHN
becomes too large for a complete solution to be feasi
Instead, the basis is truncated according to one of two p
sible strategies, which give essentially the same results:
either retains theM states of lowest energy, whereM is a
predetermined number, or one retains all eigenstates ha
an energy within some rangeEc of the ground-state energy
A compromise must be made between two conflicting go
accurate reproduction of results for the original undiscretiz
system, favored by choosingL to be close to unity to mini-
mize discretization errorand by makingM or Ec large to
reduce truncation error, and a short computational time
which points to largeL and smallM or Ec . Unless other-
wise noted, the thermodynamic quantities presented in
paper were obtained usingL53 and Ec>25, for which
choices the primary source of error is the discretization.~The
magnitude of the error is estimated in Sec. V C.!

In summary, the numerical RG method can be generali
in a fairly straightforward manner to treat energy-depend
scattering of conduction electrons from the impurity site. T
conduction band is divided into logarithmic energy bins ju
as for the case of a constant scattering rate. However,
mode expansion within each energy bin has to be modifie
order that the impurity couples to a single mode (q50). This
in turn alters the hopping coefficientstn which enter the re-
cursive definition of the HamiltoniansHN @see Eq.~2.34!#;
away from strict particle-hole symmetry, furthermore, t
hopping terms are complemented by on-site terms of
form enf ns

† f ns . Finally, a factorF, which depends on the
overall normalization of the weighting functionw(«), is in-
troduced into the starting HamiltonianH0 @see Eqs.~2.35!–
~2.38!#.
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III. CONDUCTION-BAND HAMILTONIANS

For the remainder of the paper, we focus on system
which the scattering rateG(e) vanishes in power-law fashio
at the Fermi level. Initially, we consider the simplest possi
form of G(e), given by Eq.~1.3!. In the notation of Sec. II,
this corresponds to a particle-hole-symmetric problem
which m50 and the weighting functionw(«) satisfies

w~«!5H u«ur /2, u«u<1,

0, otherwise.
~3.1!

Herer can take any non-negative value;r 50 corresponds to
a constant density of states. Subsequently, we shall gen
ize this form to restrict the power-law variation inw(e) to a
narrow region around the Fermi level, and to allow f
particle-hole asymmetry. However, the essential physic
captured by the prototypical function in Eq.~3.1!.

In this section, we apply the formalism described in S
II to construct and analyze a family of discretize
conduction-band Hamiltonians based on Eq.~3.1!,

HN
~L !5 (

n5L

N

L~N2n!/2@enf n
† f n1tn~ f n

† f n211H.c.!#.

~3.2!

The parameterL determines the innermost shellf L onto
which conduction electrons can hop, and sotL is necessarily
zero. The caseL50 represents the free-electron proble
while L51 and L52 will turn out to describe electronic
excitations at different strong-coupling fixed points of t
Anderson and Kondo models. In each of these limits, spin
and spin-down electrons decouple from one another, an
the indexs can be dropped.

All information about the energy dependence of scatter
from the impurity site enters the discretized Anderson a
Kondo Hamiltonians through the normalization factorF and
through the tight-binding parametersen and tn . From Eq.
~2.5!, it is straightforward to see thatF252/(11r ), while
the particle-hole symmetry of Eq.~3.1! ensures thaten50
for all n. By contrast, the coefficientstn must be determined
numerically, as outlined in Sec. II D.~Bulla et al.10 have
recently deduced an algebraic formula which appears to
the numerical value oftn for all n.!

Values oftn for r 50, 0.2, and 1 are illustrated in Table
Whereas for a constant scattering rate (r 50), tn rapidly ap-
proaches unity, in the power-law cases the asymptotic va
alternates with the parity ofn:

lim
n→`

tn5H t!, n odd,

t!L2r /2, n even,
~3.3!

where

t!5
2

11L21

11r

21r

12L2~21r !

12L2~11r !
. ~3.4!

The asymptotic behavior oftn given by Eq.~3.3! should
be contrasted with that obtained for all weighting functio
in which w(0) is finite and nonzero:
in

e

n

al-

is

.

,

p
so

g
d

fit

e

lim
n→`

en50, lim
n→`

tn51. ~3.5!

All such problems can be shown to exhibit essentially
same physics,22,23 and in particular to be described by th
same set of RG fixed points. The functional form ofw(«)
away from the Fermi energy determines only the deviatio
of en and tn from their asymptotic values. These deviatio
act as irrelevant perturbations in the RG sense. The o
exception ise0, which acts as a marginal variable, equivale
to an additional potential scattering term of the type appe
ing in Eq. ~2.9!. The scenario of power-law scattering co
sidered in this paper is interesting precisely becausew(0)
50, which places the impurity problem in a different un
versality class.

A. Free-electron Hamiltonian „L 50…

The free-electron Hamiltonian, describing the nonintera
ing conduction band in the absence of any magnetic impu
level, corresponds to the large-N limit of HN

(0) as defined in
Eq. ~3.2!.

Eigenvalues:Numerical diagonalization indicates that fo
largeN, the eigenvalues approach limiting values, which
denote

TABLE I. Tight-binding parameterstn for three different pow-
ers r entering Eq.~3.1!.

Scaled hopping coefficient,tn

n r50 r 50.2 r 51

1 0.8320502943 0.8839953062 1.0277402396
2 0.9076912302 0.8239937041 0.5598150205
3 0.9651711910 0.9890229755 1.0707750620
4 0.9879052953 0.9005285244 0.6177933421
5 0.9959128837 1.0141188271 1.0818574579
6 0.9986313897 0.9103510027 0.6246054709
7 0.9995431009 1.0170838067 1.0831683420
8 0.9998476229 0.9114602761 0.6253674693
9 0.9999491990 1.0174154894 1.0833149885
10 0.9999830654 0.9115837523 0.6254521995
11 0.9999943550 1.0174523707 1.0833312949
12 0.9999981183 0.9115974746 0.6254616147
13 0.9999993728 1.0174564690 1.0833331068
14 0.9999997909 0.9115989993 0.6254626609
15 0.9999999303 1.0174569244 1.0833333082
16 0.9999999768 0.9115991687 0.6254627771
17 0.9999999923 1.0174569750 1.0833333305
18 0.9999999974 0.9115991876 0.6254627900
19 0.9999999991 1.0174569806 1.0833333330
20 0.9999999997 0.9115991897 0.6254627914
21 0.9999999999 1.0174569812 1.0833333333
22 1.0000000000 0.9115991899 0.6254627916
23 1.0000000000 1.0174569813 1.0833333333
24 1.0000000000 0.9115991899 0.6254627916
25 1.0000000000 1.0174569813 1.0833333333
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N odd: h j
! , j 561,62, . . . ,6 1

2 ~N11!;
~3.6!

N even: ĥ j
! , j 50,61,62, . . . ,6 1

2 N.

Due to the particle-hole symmetry,ĥ0
!50. For u j u@1 the

eigenvalues are well approximated by

h j
! , ĥ j

!5sgn~ j ! t!L u j u2nN, ~3.7!

where

nN5H 1, N odd,

1
2 , N even.

~3.8!

Eigenvectors:We also consider the single-particle eige
states ofHN

(0) , associated with particle operatorsgj ( j >0)
and hole operatorsh2 j ( j ,0). It will later prove useful to
have expansions of the original operatorsf n in terms of these
eigenoperators:

f n55 (
j 51

~N11!/2

An j@gj1~21!nhj
†#, N odd,

An0g01(
j 51

N/2

An j@gj1~21!nhj
†#, N even.

~3.9!

It is found, again numerically, that forj @1, the coefficients
A0 j and A1 j separate into anN-dependent prefactor and
part that depends only on the parity ofN:

An j5L2~2n111r !N/4an j , n50,1, ~3.10!

where

an j5an~z!L~2n111r !~ j 2nN!/2,

@a0~z!#25 1
2 @12L2~11r !#L~11r !~z21/2!, ~3.11!

@a1~1!#25 1
2 @12L2~31r !#L~31r !/2.

~The generalz dependence ofa1 cannot be written so com
pactly as that ofa0.!

Just as in the standard caser 50, the expansion of al
other f n’s becomes more complicated.22 For n.1, f n con-
tains components which vary asL2(2m111r )N/4, for m5n,
n22, n24, . . . ,n mod 2.

We emphasize that Eqs.~3.7!, ~3.10!, and~3.11! are very
good approximations even for comparatively small values
N and j . For L53, for instance, these formulas hold to
least seven decimal places for all 3< j <N/2. The rate of
convergence to the asymptotic forms with increasingj seems
to be independent ofr , at least in the range 0<r<2.

B. Symmetric strong-coupling Hamiltonian „L 51…

In Sec. IV E, we shall discuss thesymmetric strong-
couplingfixed point of the Anderson and Kondo models.
this fixed point, an infinite coupling between the localiz
level and conduction electrons at the impurity site co
pletely suppresses hopping of conduction electrons ont
off shell 0; i.e., thef 0 degrees of freedom are ‘‘frozen out.
f

-
or

In this situation, the conduction-band excitations of the s
tem are described by an effective HamiltonianHN

(1) obtained
by settingL51 in Eq. ~3.2!.

Eigenvalues:For large N, the eigenvalues ofHN
(1) are

found to approach limiting values which we denote

N odd: v j
! , j 50,61,62, . . . ,6 1

2 ~N21!;
~3.12!

N even: v̂ j
! , j 561,62, . . . ,6 1

2 N.

Due to the particle-hole symmetry,v0
!50, while for N/2

@u j u@1, the eigenvalues are well approximated by

v j
! , v̂ j

!5sgn~ j ! ~ t!L2r 1/2!L u j u2nN21, ~3.13!

wherer 1[min(r,1). Alternatively, one can write

v j
!5L2r 1/2ĥ j

! , v̂ j
!5L2r 1/2h j

! . ~3.14!

These expressions point to a significant difference
tween the casesr 50 andr .0. In the former instance, the
strong-coupling energies given byHN

(1) become identical to
the weak-coupling energies ofHN21

(0) in the limit of largeN.
In other words, the transition from weak to strong coupling
equivalent to an interchange between the odd-N and even-
Nspectra.22 This relation between weak and strong coupli
no longer holds true in the presence of a power-law scat
ing rate. For r .1, however, an even simpler patte
emerges:v j

!5h j
! ( j Þ0) and v̂ j

!5ĥ j 2sgn(j )
! . Thus, for su-

perlinear scattering rates, the low-energy sector of
strong-coupling spectrum differs from that at weak coupli
only by the insertion of one additional zero-energy eige
state.

Phase shifts:TheL51 eigenvalues can also be express
in terms ofs-wave phase shiftsd0(e) applied to theL50
spectrum: forN odd,

v j
!5L2sgn~h j

!
!d0~aL2N/2h j

!
!/ph j

! , ~3.15!

and similarly forN even. The values ofd0(e) in the limits
e→06 can be deduced from Eqs.~3.7! and~3.13!, while the
form of the leading corrections away from the Fermi ener
can be inferred by studying either pure potential scatter
from the impurity site5 or power-law mixing between con
duction electrons and a noninteracting resonant level~see
Appendix A!. The result is

d0~e!5~12r 1!
p

2
sgn~2e!1O~ ue/Du u12r u!. ~3.16!

The main feature of Eq.~3.16! is a jump of (12r 1)p in the
phase shift on crossing the Fermi energy. The interpreta
of this jump will be deferred until Sec. V D 4.

Eigenvectors:We can expand the annihilation operato
f ns in terms of single-particle eigenoperators ofHN

(1) :

f n55 Bn0g01 (
j 51

~N21!/2

Bn j@gj2~21!nhj
†#, N odd,

(
j 51

N/2

Bn j@gj2~21!nhj
†#, N even.

~3.17!
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For sufficiently largeN andN/2@ j @1, the coefficientsB1 j
and B2 j separate into anN-dependent prefactor and a pa
that depends onN only throughnN21:

Bn j5L2~2n221u12r u!N/4bn j , n51,2, ~3.18!

where

bn j5bnL~2n221u12r u!~ j 2nN21!/2. ~3.19!

The parametersbn can be determined numerically, but w
have not obtained algebraic expressions for their depend
on L andr . There is an important exception to Eq.~3.18! for
r .1: in the limit N→`, B10 for N odd (B11 for N even!
approaches a constant value which is independent ofN.
Therefore, the effective scaling isf 1}L2(12r 1)N/4 and f 2

}L2(21u12r u)N/4. These forms will turn out to have impor
tant implications for the stability of the symmetric stron
coupling fixed point.

The approximate expressions for the eigenvalues
eigenvectors ofHN

(1) do not apply so widely as those forL
50. First, Eqs.~3.13!, ~3.18!, and ~3.19! are restricted not
only to j @1, but also toj !N/2. Second, the rate of conve
gence with increasingN is slower than forL50 and depends
explicitly on r : for instance, the deviation of each eigenval
(v j or v̂ j ) from its large-N limit ( v j

! or v̂ j
!) is proportional

to L2u12r uN/2. There is again an exception forr .1: the two
smallest even-N eigenvalues obey the relationv̂61

}L2(r 21)N/4, and hence converge to their asymptotes (v̂61
!

50) even more slowly than the other eigenvalues.
The results above provide clear evidence that a lin

scattering rate represents a singular case. The expansio
f 1 acquires anN-independent component atr 51, and for
this value ofr alone several quantities~the eigenvalues and
eigenvectors as functions ofN, the conduction-band phas
shift as a function of energy! converge in a logarithmic
rather than exponential, fashion. As pointed out by C
sanello and Fradkin,4 this case in some sense represents
upper critical dimension of the theory.

C. Asymmetric strong-coupling Hamiltonian „L 52…

It will be shown below that, in most cases, the sta
strong-coupling fixed point of the Anderson and Kon
problems is not described by the conduction-band Ham
tonian HN

(1) introduced in the previous subsection. Inste
the system reaches either thefrozen-impurityfixed point, de-
scribed byHN

(0) , or the asymmetric strong-couplingfixed
point, at which both thef 0 and f 1 degrees of freedom ar
frozen out and the low-lying excitations of the system a
described byHN

(2) . Due to the asymptotic form of the hop
ping coefficientstn @see Eq.~3.3!#, which only depend on
whethern is odd or even, the low-energy properties ofHN

(2)

are equivalent to those ofHN22
(0) , provided that one relabel

the operatorsf n appropriately; i.e.,f n at theL52 fixed point
has the same expansion asf n22 at theL50 fixed point. The
L52 eigenstates are related to those forL50 by a low-
energy phase shiftd0(e)5psgn(2e).
ce
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IV. STRONG- AND WEAK-COUPLING FIXED POINTS
OF THE IMPURITY MODELS

In this section, we analyze RG fixed points of the Ande
son and Kondo models with a power-law scattering rate
scribed by Eq.~3.1!. The focus is on hosts having a sing
conduction channel, although reference will be made in pa
ing to the two-channel Kondo model.

We consider only those fixed points that can be obtain
by setting each impurity parameter enteringH0 @see Eqs.
~2.35! and~2.37!# either to zero or to infinity. In such case
a local Fermi-liquid description applies: the low-ener
many-body excitations of the system can be constructed
the product of two independent sets of single-particle exc
tions, one set describing the conduction band, the other a
ing from any active impurity degrees of freedom. By stud
ing small deviations from the fixed-point Hamiltonian, on
can determine the stability of the fixed point and the fun
tional dependence of certain physical properties. These
sults can be obtained by largely algebraic means.~The only
numerical step is the derivation of the results presented
Sec. III, which involves diagonalization of simple quadra
Hamiltonians.!

In Sec. VI, we shall also discuss a number of fixed poi
which appear at intermediate~neither zero nor infinite! cou-
plings. Such fixed points are generally non-Fermi-liquid
nature, and at present can be studied only via a full imp
mentation of the numerical RG scheme outlined in Sec.

A. Stability of RG fixed points

Within the nonperturbative RG approach, a fixed-po
HamiltonianH! satisfies

HN125HN5H!. ~4.1!

In this context, ‘‘5’’ means that two Hamiltonians hav
identical low-energy spectra and that they share the sam
of matrix elements of any physically significant operator b
tween their low-lying eigenstates.22

Any deviation from a fixed-point Hamiltonian must b
describable in the form

dHN5HN2H!5(
g

g̃Og , ~4.2!

whereg̃ is a dimensionless coupling, andOg is composed of
operators associated with those degrees of freedom~from
amongf ns , ds , or s) that remain active at the fixed poin
multiplied by an overall factor ofLN/2 which reproduces the
scaling ofHN implied by Eq.~2.34!. The only constraint on
the combination of operators enteringOg is that the pertur-
bation must preserve all symmetries of the original mode

As explained in detail in Refs. 22 and 23, one can use
expansion of the operatorsf n developed in Sec. III to ana
lyze the stability of the strong- and weak-coupling fixe
points with respect to all possible perturbations. Consid
for example, the weak-coupling limit in which the electron
degrees of freedom are described byHN

(0) . Equations~3.9!
and ~3.10! imply that the perturbationOV5LN/2( f 0s

† f 0s

2 1
2 ) can be written asL2rN/2 times anN-independent part

composed of the single-particle and single-hole operatorgj
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andhj . Making use of the effective temperatureTN associ-
ated with iterationN ~see Sec. V for more details!,

kBTN5aL2N/2D/b̄, ~4.3!

where b̄ is a small dimensionless parameter, one sees
OV}Tr ; i.e., the perturbation isirrelevant for all r .0.

In the remainder of this section, we identify the mo
relevant~or least irrelevant! operators in the vicinity of the
various Fermi-liquid fixed points. At each fixed point, th
expansion off n (n>L) contains a piece which varies lik
T(n2L)1u16r u/2. The dominant perturbations are therefo
those operatorsOg that contain the fewest possiblef n’s, and
in which the f n’s that are present have the smallest poss
indicesn.

We shall present our analysis in the context of the non
generate Anderson model. Features of the various Ko
models will be noted where they are different.

B. Free-impurity fixed point

The free-impurity or ‘‘free-orbital’’ 23 fixed point of the

Anderson model corresponds to setting«̃d5Ũ5G̃50 in Eq.
~2.35!. This fixed point, which has no analog in the Kond
models, is described by an effective Hamiltonian

HWC,N
! 5HN

~0!2EG,N . ~4.4!

Each many-body eigenstate is the product of an eigensta
HN

(0) and a zero-energy eigenstate of a free impurity leve
By combining the reasoning outlined in the previous su

section with theN-dependences given in Sec. III A, one c
identify four operators which are, or may be, relevant in
vicinity of the free-impurity fixed point:

Oed
5LN/2~nd21!}T21,

OU5LN/2~nd21!2}T21,
~4.5!

OG5LN/2~ f 0s
† ds1H.c.!}T2~12r !/2,

OGd
5LN/2nd,2s~ f 0s

† ds1H.c.!}T2~12r !/2.

Here, Oed
, OU , and OG are essentially equivalent to th

on-site energy, on-site Coulomb repulsion, and hybridizat
terms ~respectively! in the original Hamiltonian, whileOGd

represents correlated hybridization. Of these operators,
OU andOG respect particle-hole symmetry and are allow
in the symmetric limit of the Anderson model. Note thatOed

and OU are always relevant, whereasOG and OGd
are rel-

evant forr ,1 but are irrelevant forr .1. Since there is a
least one relevant operator for both the symmetric and as
metric cases, and also for allr , the free-impurity fixed poin
is always unstable.

C. Valence-fluctuation fixed point

The valence-fluctuationfixed point23 of the Anderson

model corresponds to the original model with«̃d5G̃50, but

Ũ5`. This is clearly not a fixed point of the symmetr
Anderson model sinceŨ12«̃d5” 0, and it has no analog in
at

t

e

e-
o

of

-

e

n

ly

-

the Kondo models. It is described by the same effect
Hamiltonian as the free-impurity fixed point, but doubly o
cupied impurity configurations are eliminated from the H
bert space. Of the four dominant perturbations at the fr
impurity fixed point @see Eqs.~4.5!#, only Oed

and OG

survive. Since the former is a relevant operator for allr , the
valence-fluctuation fixed point is always unstable.

D. Local-moment fixed point

The local-momentfixed point corresponds to the origina

Anderson model withG̃50 and Ũ522«̃d5`. The effec-
tive Hamiltonian at the fixed point is still given by Eq.~4.4!,
but only singly occupied impurity states are allowed, and
there is a decoupled spin-1

2 degree of freedom,

s5dm
† 1

2 smm8d0m8, ~4.6!

localized at the impurity site. This is the weak-coupling fix
point of the Kondo models; i.e., it corresponds to settingJ̃

5Ṽ50 in Eq. ~2.37!.
None of the perturbations in Eqs.~4.5! is allowed at the

local-moment fixed point. Instead, the dominant pertur
tions are as follows:

OJ5LN/2f 0s
† 1

2 sss8 f 0s8•s}Tr ,

OV5LN/2~ f 0s
† f 0s21!}Tr ,

~4.7!

Ot1
5LN/2~ f 0s

† f 1s1H.c.!}T11r ,

OU0
5LN/2~ f 0s

† f 0s21!2}T112r .

Here,OJ andOV describe exchange~Kondo! scattering and
pure potential scattering, respectively,Ot1

is a term from the

kinetic energy, andOU0
represents a Coulomb interactio

between two conduction electrons in shell 0. OnlyOV breaks
particle-hole symmetry.

In the standard caser 50, exchange and potential scatte
ing are marginal; further analysis37,22 reveals that antiferro-
magnetic ~ferromagnetic! exchange is marginally relevan
~marginally irrelevant!, and hence the fixed point is unstab
~stable!. For r .0, by contrast, all perturbations are irre
evant, and sothe local-moment fixed point is stable irrespe
tive of the sign of J.This is the first of several importan
differences between the fixed-point behaviors forr 50 and
r .0.

We note that for the two-channel Kondo model, each
the operatorsOg listed in Eq.~4.7! should be replaced by a
pair of operators,Og

(6)5Og
(1)6Og

(2) , whereOg
( j ) ( j 51,2! is

identical toOg except that all itsf operators carry a channe
label j . Throughout this paper it is assumed that the t
conduction channels couple to the impurity spin with eq
strength, in which case only the symmetric operatorOg

(1)

can enterdHN . In addition, one can construct allowed pe
turbations that containf ’s belonging to both channels. At th
local-moment fixed point, the leading perturbation of th
type is

OU
08
5LN/2~ f 01s

† f 01s21!~ f 02s
† f 02s21!}T112r . ~4.8!
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Similar remarks concerning the two-channel Kondo mo
apply at each of the remaining fixed points described in
section.

E. Symmetric strong-coupling fixed point

The symmetric strong-couplingfixed point is obtained by

settingG̃5` in Eq. ~2.35! while keeping«̃d andŨ finite, or
by settingJ̃5` in Eq. ~2.37!. We first consider the ground
state of the atomic HamiltonianH0. In the nondegenerat
Anderson model and the conventionals5 1

2 Kondo model,
any moment at the impurity site is completely screened byf 0
electrons.~In the Anderson model, the ground-state impur
occupancŷ nd& varies continuously with the parameters«̃d

and Ũ. For any given set of couplings, however, there is
unique ground state, and hence no residual impurity deg
of freedom.! The s51 Kondo model and the two-chann
Kondo model have spin-1

2 ground states;21 in the former in-
stance, the impurity isunderscreened, and in the latter, it is
overscreened.

In all cases, an infinite energy gap separates the gro
state~s! from all other eigenstates of the atomic Hamiltonia
As a consequence, thef 0s degrees of freedom are frozen o
and the effective Hamiltonian becomes

HSSC,N
! 5HN

~1!2EG,N . ~4.9!

Based on the results of Sec. III B, the dominant pertur
tions at this fixed point are

OJ1
5LN/2f 1s

† 1
2 sss8 f 1s8•t }T2r 1,

OV1
5LN/2~ f 1s

† f 1s21!}T2r 1,
~4.10!

OU1
5LN/2~ f 1s

† f 1s21!2}T122r 1,

Ot2
5LN/2~ f 1s

† f 2s1H.c.!}T~12r 11u12r u!/2,

where, as before,r 15min(r,1). OJ1
, a Kondo-like operator

involving the residual spint, is present only in the under
screened and overscreened models.OV1

describes nonloca
potential scattering of electrons in shell 1 from the impur
site. BothOJ1

and OV1
are relevant perturbations for allr

.0. OU1
, representing Coulomb repulsion betweenf 1 elec-

trons, is relevant forr . 1
2. Finally, the kinetic energy term

Ot2
is marginal forr 51, but is irrelevant otherwise.

The fixed point is stable forr .0 if, and only if, three
conditions are satisfied: the impurity moment is exac
screened~to rule out OJ1

as an allowed perturbation!, the

powerr is less than1
2 ~to ensure thatOU1

is irrelevant!, and

the problem exhibits particle-hole symmetry~so thatOV1
is

disallowed!. Thus, one sees thatthe symmetric strong
coupling fixed point is generically unstable.This represents
another significant departure from the standard caser 50, in
which the fixed point is always marginally stable, except
overscreened problems, where it is marginally unstable.21
l
is

a
ee

nd
.

-

F. Asymmetric strong-coupling fixed point

Theasymmetric strong-couplingfixed point of the Ander-
son model and of the single-channel Kondo models is
tained in the same fashion as the symmetric strong-coup
fixed point considered above, with a further condition: eith
the coefficiente1 entering Eqs.~2.32! and ~2.34! is made
infinite, or the model HamiltonianHN is augmented by a
term Ṽ1OV1

, whereOV1
is defined in Eqs.~4.10! and uṼ1u

→`. As a result, thef 1 degrees of freedom are frozen,
addition to those associated with shell 0 and the impur
The effective Hamiltonian becomes

HASC,N
! 5HN

~2!2EG,N . ~4.11!

The two fixed points described bye151` ande152` ~or
by Ṽ151` and Ṽ152`) have different ground-state
charges as defined in Eq.~2.41!, but they are otherwise
physically equivalent and will henceforth be treated as
single fixed point.

The dominant perturbations are

OJ2
5LN/2f 2s

† 1
2 sss8 f 2s8• t̃ }Tr ,

OV2
5LN/2~ f 2s

† f 2s21!}Tr ,
~4.12!

Ot3
5LN/2~ f 2s

† f 3s1H.c.!}T11r ,

OU2
5LN/2~ f 2s

† f 2s21!2}T112r ,

where t̃ describes a residual spin-1
2 degree of freedom

present only in the underscreened Kondo model. Since th
operators are all irrelevant,the asymmetric strong-couplin
fixed point is stable for all r.0.

In the standard case (r 50), the symmetric and asymme
ric strong-coupling fixed points represent two points on
continuous line of marginally stable fixed points describ
by a family of effective Hamiltonians

HN
! ~Ṽ1!5HN

~1!1Ṽ1LN/2~ f 1s
† f 1s21!2EG,N . ~4.13!

These fixed points share essentially the same physical p
erties, independent of the value ofṼ1 . The effect of a power-
law scattering rate is to destroy all but two of the fixed poin
and to make the caseṼ150 unstable with respect to th
breaking of particle-hole symmetry.

The two-channel Kondo model also has a stable, stro
coupling fixed point atJ̃5`, e156`. However, we have
not found any choice of the bare parametersJ0 andV0 that
produces flow to this limit, in which the ground state carri
a residual spin-12 degree of freedom. Instead, it is helpful
consider the HamiltonianHN1 J̃1OJ1

(1)1Ṽ1OV1

(1) @see Eqs.

~4.10! and the last paragraph of Sec. IV D#. The asymmetric
strong-coupling fixed point of interest is reached by first s
ting J̃5` and Ṽ50 to lock the impurity into an over-
screened spin doublet, and then taking the simultaneous
its J̃1→` and Ṽ1→6` in such a way that 1/2,uṼ1u/ J̃1
,3/4. Under this prescription, the impurity combines wi
shells 0 and 1 to produce two degenerate ground states
rying quantum numbers (S,Q(1),Q(2))5(0,71,0) and
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(0,0,71). This pair of spinless states represents a ‘‘flav
1
2’’ degree of freedom.@The generators of electron flavo
symmetry are obtained from the standard spin generator
interchanging spin and channel indices:↑↔1, ↓↔2. For
example, thez component of flavor measures the differen
between the number of electrons in channels 1 and 2,
Jz

flavor5 1
2 (Q(1)2Q(2)).# The fixed point is described by th

effective HamiltonianHASC,N
! defined in Eq.~4.11!; the lead-

ing irrelevant perturbations areOV2

(1) and a flavor analog o

OJ2

(1) .

G. Frozen-impurity fixed point

The frozen-impurityfixed point of the Anderson model i
obtained by setting«̃d51` in Eq. ~2.35!. Here, the impurity
level becomes completely depopulated, and the excitat
of the system are just described by Eq.~4.4!. The leading
perturbations at this fixed point areOV , Ot1

, andOU0
from

Eqs.~4.7!, and so the fixed point is stable for allr .0.
The electronic excitations at the frozen-impurity a

asymmetric strong-coupling fixed points are described
HN

(0) and HN
(2) , respectively. As pointed out in Sec. III C

these two Hamiltonians can be made equivalent by a suit
relabeling of the operatorsf n . The leading irrelevant pertur
bations about the two fixed points become identical un
this relabeling. Thus,the frozen-impurity and asymmetr
strong-coupling fixed points are physically equivalent,up to
a shift in the ground-state charge. In treating the Ander
Hamiltonian, it will prove more convenient to refer to th
frozen-impurity fixed point~since ^nd& can be made arbi
trarily small in this model!, whereas the asymmetric stron
coupling fixed point more naturally describes the Kon
models~which correspond to the limitnd52s).

V. THERMODYNAMIC PROPERTIES

This section is primarily concerned with the numeric
and analytical calculation of the contribution made by ma
netic impurities to various thermodynamic properties. Fi
though, we remark briefly on the thermodynamics of t
pure host Fermi systems.

A. Host thermodynamic properties

As we have emphasized in the Introduction, the impur
properties of the models we consider depend on
conduction-band density of states and the energy-depen
hybridization only in the particular combinationG(e)
5pr(e)t2(e). However, in order to compute the properti
of the pure system in the absence of magnetic impurities,
necessary to specifyr(e) explicitly. If the power-law energy
dependence of the scattering rate arises solely from the
bridization, then the host properties will be those of a co
ventional metal. Here we focus on the opposite limit, mo
appropriate for describing the gapless systems listed in
Introduction, in which the hybridization is essentially co
stant and the density of states has the form given in Eq.~1.1!.
In this case, unit normalization ofr(e) implies that
-
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2D
. ~5.1!

With these assumptions, it is straightforward to show t
for kBT!D, the host entropy, specific heat capacity, a
static susceptibility are given by

S~0!

kB

52N0 ~21r !f~11r !S kBT

D
D 11r

, ~5.2a!

C~0!

kB

52N0~11r !~21r !f~11r !S kBT

D
D 11r

, ~5.2b!

kBTx~0!

~gmB!2
5

N0

2
f̄~11r !S kBT

D
D 11r

. ~5.2c!

N0 is the number of unit cells making up the solid, and

f~x!5z1~x11!, f̄~x!5x@z1~x!2z2~x!#, ~5.3!

where, for allx.0 and all positive integersn, we define38

zn~x!5E
0

`

du
ux21

~eu11!n
. ~5.4!

~The functionsf and f̄ will also enter the impurity proper-
ties calculated in Sec. V D.!

One sees from Eqs.~5.2! that the exponentr which deter-
mines the density of states is directly reflected in the te
perature dependence of the host properties. For later re
ence, we define the host Wilson22 ~or Sommerfeld! ratio

RW
~0!5 lim

T→0

4p2

3

kB
2Tx~0!

~gmB!2C~0!
5

p2f̄~11r !

3~11r !~21r !f~11r !
.

~5.5!

Sincef(1)5p2/12 andf̄(1)5 1
2, Eq. ~5.5! reduces in the

limit r→0 to the standard resultRW
(0)51.

B. Impurity thermodynamic properties

The impurity contribution to a thermodynamic propertyA
is defined to be the change in the total measured value oA
brought about by adding a single impurity to the syste
Each such contribution can be computed from an expres
of the form

Aimp5^A& imp5^A&2^A&0

5 lim
N→`

@Tr~Ae2bNHN!2Tr0~Ae2bNHN
~0!

!#, ~5.6!

whereA is an operator which depends on the property
interest,

bN5aDL2N/2/~kBT! ~5.7!

is the natural energy scale of iterationN divided by the ther-
mal energy scale, and ‘‘Tr0’’ means a trace taken over a
impurity-free system.

For example, the impurity contributions to the entro
and the specific heat are obtained as
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Simp52
]F imp

]T
, Cimp52T

]2F imp

]T2
. ~5.8!

Here,F imp is the difference between the total Helmholtz fr
energy of the system with and without the impurity:

F imp52kBTlnZimp5 lim
N→`

kBTln~ZN
~0!/ZN!, ~5.9!

with

ZN5Tre2bNHN, ZN
~0!5Tr0e2bNHN

~0!
. ~5.10!

Another quantity of interest is the impurity contribution
the zero-field magnetic susceptibility, given by

kBTx imp

~gmB!2
5^Sz

2/Z& imp

5 lim
N→`

H Tr~Sz
2e2bNHN!

ZN

2
Tr0~Sz

2e2bNHN
~0!

!

ZN
~0! J ,

~5.11!

where mB is the Bohr magneton,g is the Lande´ g factor
~assumed to be the same for conduction and localized e
trons!, and Sz is the z component of the total spin of th
system. The quantity 3kBTx imp equals the square of the e
fective moment contributed by the impurity to the system

The numerical RG formulation provides a controlled a
proximation for computing the impurity contributions t
each thermodynamic property according to Eq.~5.6!. The
method does not yield reliable results for^A& or ^A&0 sepa-
rately, even though these are the values that would hav
be measured experimentally in order to determineAimp .

C. Numerical evaluation of impurity
thermodynamic properties

In Sec. VI, we present thermodynamic properties obtai
via the direct numerical evaluation of Eqs.~5.9! and ~5.11!.
This subsection briefly reviews some of the technical det
of these calculations.

The general strategy for computing thermodynamic pr
erties using the discretized HamiltoniansHN is as follows:
One first selects a value for the dimensionless parameteb̄.
Then for each iterationN50,1, . . . , oneassigns the result o
Eq. ~5.6! to the temperature defined through Eq.~5.7! by the
condition bN5b̄. This gives the quantitŷA& imp at a se-
quence of temperaturesTN satisfying Eq.~4.3!. TheTN’s are
equally spaced at intervals of1

2 lnL on a logarithmic scale. If
desired, this ‘‘grid’’ of temperatures can be refined by usi
several different values ofb̄ at each iteration. The choic
b̄5b̄0L2 j /2M for j 50, . . . ,M ~we have usedM54) proves
convenient because the corresponding temperature
$TN, j% contains the redundanciesTN,05TN11,M . The dis-
crepancy between the two independent evaluations of a t
modynamic property at the same temperature provides a
ful measure of the error in the result.

Since the smallest energy scale ofHN is of order unity,
one expects Eq.~5.6! to provide increasingly reliable result
c-

-

to

d

ls

-

rid

er-
e-

for L.1 asb̄ becomes much smaller than unity. Howeve
there is another factor which militates against takingb̄!1.
Limitations of computer time and memory permit the rete
tion only of those states having an energy withinEc of the
ground state. In order to minimize the contribution of t
missing states tôA& imp , one wantsb̄Ec to be as large as
possible. In practice, therefore,b̄ is chosen as a compromis
to take a value somewhat smaller than 1. The results
sented in Sec. VI were calculated forL53 or 9, retaining all
eigenstates up to a dimensionless energy 25 and using va
of b̄ between 0.6 and 0.6L21/2. It is shown in Ref. 23 how
one can calculate corrections to compensate for such r
tively large values ofb̄. Our studies indicate that while th
corrections are formally of orderb̄/L'0.1–0.2, they have
small prefactors which reduce the overall shift inCimp and
x imp to less than 1 part in 103. Since this level of error is
smaller than that arising from the discretization of the co
duction band, we have neglected theb̄/L corrections.

As a practical matter, Eqs.~5.8! are not used directly to
evaluateSimp and Cimp . A more accurate evaluation of th
entropy, which avoids numerical differentiation, exploits t
relation

Simp5kB~^bH/Z& imp2bF imp!. ~5.12!

It is likewise possible to obtain the specific heat witho
differentiation, through the equation

Cimp5kB@^~bH/Z!2& imp2~^bH/Z& imp!
2#, ~5.13!

but the results turn out to be rather prone to discretizat
error. All plots of the specific heat presented below we
instead obtained usingCimp5T]Simp /]T with a simple two-
point approximation to the derivative.

As mentioned above, the thermodynamic quantities p
sented in this paper were obtained usingL53 or L59 and
an energy cutoffEc>25. With these choices, the primar
source of error is the discretization. One of the main effe
of working with a value ofL greater than unity is the intro
duction into^A& imp of oscillations which are periodic in lnT.
The oscillations have a period lnL and a magnitude propor
tional to exp(2p2/lnL). Oliveira and Oliveira have shown33

that these oscillations can be greatly reduced by avera
values of^A& imp computed for different band discretizatio
parametersz ~see Sec. II D!. We have employed fourz’s
(0.5, 0.75, 1, 1.25) in obtaining the results presented bel

Another consequence of the band discretization is a
duction in the effective coupling between impurity and de
calized degrees of freedom.39 Study of a discretized
resonant-level model with a power-law scattering rate40 indi-
cates that the most faithful description of the continuu
problems described by Eqs.~2.7! and ~2.11! is obtained by
premultiplying the parametersG0, r0J0, andr0V0 entering
the discretized calculations by a factor

A~L,r !5F12L2~21r !

21r
G 11rF 11r

12L2~11r !G 21r

lnL

'11O~ lnL!2 for L→1. ~5.14!
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For r 50, Eq. ~5.14! reduces to the standard result given
Ref. 39. In the remainder of this paper, we quote the c
tinuum equivalent of each coupling. Thus, any numeri
data labeled with a particular value ofG0, r0J0, or r0V0

were actually computed by substitutingAG0, Ar0J0, or
Ar0V0 into Eqs.~2.36! or Eqs.~2.38!. Note that parameter
describing the impurity alone, i.e.,ed and U entering Eqs.
~2.36!, do not have to be corrected.

The measures outlined in the preceding paragra
greatly reduce, but cannot completely eliminate, discret
tion errors in the computed thermodynamic properties.
estimate on the basis of limited calculations performed
other values ofL that for L53, the overall error in the
impurity contributions to the susceptibilityTx or the entropy
S is less than 5%, while that for the specific heatC is less
than 10%. It should be emphasized that these are erro
absolute quantities at finite temperatures. Zero-tempera
properties and exponents describing the ratios of prope
at different temperatures or couplings generally have m
smaller errors~below 1%!. Indeed, fixed-point properties ca
be computed to better than 1% using values ofL as large as
10, with a considerable reduction in the numerical eff
compared to that required forL53.

D. Perturbative evaluation of impurity
thermodynamic properties

In the vicinity of any of the fixed points described in Se
IV, perturbation theory can be applied to the appropriate
fective Hamiltonian to obtain analytical expressions for th
modynamic quantities as functions of the couplingsg̃ which
parametrize the deviation from the fixed point@see Eq.
~4.2!#. Once perturbative expressions have been obtained
the discretized version of the problem (L.1), they can be
extrapolated to the continuum limit (L51).

A similar perturbative treatment of the standard Kon
and Anderson models is described in detail in Refs. 22
23, respectively. The extension to systems with a power-
scattering rate is conceptually straightforward but algeb
ically laborious. One novel feature is that in certain physi
regimes the dominant temperature dependences derive
second-order corrections to the fixed-point properti
whereas in the standard case (r 50) it is not necessary to go
beyond first order in perturbation theory.

The remainder of this section summarizes properties
the five distinct fixed points discussed in Sec. IV. Pertur
tive corrections to the fixed-point properties are presented
each of the three stable~or conditionally stable! regimes.
Certain technical details have been relegated to Appendi

1. Free-impurity fixed point

The free-impurity fixed point describes a decoupled
bital which has four degenerate states. The impurity cont
utes to the thermodynamic properties as follows:

Simp5kBln4, Cimp50,
kBTx imp

~gmB!2
5

1

8
. ~5.15!
-
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2. Valence-fluctuation fixed point

The valence-fluctuation fixed point describes a decoup
orbital which has three degenerate states, double occupa
being forbidden. The impurity properties include

Simp5kBln3, Cimp50,
kBTx imp

~gmB!2
5

1

6
. ~5.16!

3. Local-moment regime

One can apply standard perturbative methods22,23 to the
effective Hamiltonian HN5HWC,N

! 1(gg̃Og , where the
fixed-point HamiltonianHWC,N

! is given by Eq.~4.4! and the
perturbationsOg are those defined in Eq.~4.7!. For the non-
degenerate Anderson model or the exactly screened Ko
model one finds, to lowest order in each of the perturbat
couplings, that

2
F imp

kBT
5 ln228 t̃ 1bNL2~11r !N/2(

j
a0 ja1 j pj

12~Ṽ21 3
16 J̃2!bNL2rN

3H (
j ,k

a0 j
2 a0k

2

h j
!1hk

!
2(

j
a0 j

4 pj S 1

h j
!

1bNp̄j D
24(

j Þk

a0 j
2 a0k

2 h j
!pj

h j
!22hk

!2 J ~5.17!

and

kBTx imp

~gmB!2
5

1

4
1

J̃

2
bNL2rN/2(

j
a0 j

2 pj p̄j

22 t̃ 1bNL2~11r !N/2(
j

a0 ja1 j pj p̄ j~ p̄ j2pj !

14Ũ0bNL2~112r !N/2S (
j

a0 j
2 pj p̄j D 2

2
Ṽ2

2
bNL2rNH 4(

j Þk

a0 j
2 a0k

2 h j
!

h j
!22hk

!2
pj p̄j~ p̄ j2pj !

1(
j

a0 j
4 pj p̄jF p̄ j2pj

h j
!

2bN~126pj p̄j !G J .

~5.18!

Here,

pj[12 p̄ j5
e2bNh j

!

11e2bNh j
! ~5.19!

is the occupation probability of a fermionic state having e
ergy h j

! , and the indicesj and k run over the range 1 to
(N11)/2, inclusive. We have omitted the lowest-order co
tribution of OU0

to F imp because it is highly irrelevant

(}T314r). The equations above are written forN odd; simi-
lar expressions hold forN even.
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In the continuum limit (N→`, L→1, andbN!1), the
sums entering Eqs.~5.17! and ~5.18! can be evaluated alge
braically ~see Appendix B!. The resulting equations, vali
for all positive r except r51, are

2
F imp

kBT
5 ln224 t̃ 1A~11r !~31r ! f~11r !S kBT

D
D 11r

12~Ṽ21 3
16 J̃2!~11r !2c~r !f~r 11r !S kBT

D
D r 11r

~5.20!

and

kBTx imp

~gmB!2
5

1

4
1

J̃

4
f̄~11r !S kBT

D
D r

2 t̃ 1A~11r !~31r ! f̄~11r !S kBT

D
D 11r

1Ũ0@f̄~11r !#2S kBT

D
D 112r

1
Ṽ2

2
~11r !2c~r !f̄~r 11r !S kBT

D
D r 11r

.

~5.21!

Both f(x) and f̄(x), defined in Eqs.~5.3!, vary smoothly
with x and are of order unity over the range 0<x<3. By
contrast, the function

c~r !5H p

2
tan

rp

2
for 0<r ,1,

~r 21!21 for r>1,

~5.22!

has a simple pole atr 51.
Similar calculations can be performed for thes51 and

two-channel Kondo models. To summarize the results,
fixed-point impurity properties of the Anderson model and
the two s5 1

2 Kondo models are just those expected for
decoupled spin-12 impurity:

Simp5kBln2, Cimp50,
kBTx imp

~gmB!2
5

1

4
. ~5.23!

The corresponding results for the underscreened model

Simp5kBln3, Cimp50,
kBTx imp

~gmB!2
5

2

3
. ~5.24!

In all four models, the leading corrections at low tempe
tures take the form

DSimp ,DCimp}Tr 11r , D~Tx imp!}Tr ~5.25!

for all positive rÞ1.
For the special caser 51, the second-order terms inF imp

and x imp acquire logarithmic corrections, necessitating t
replacement
e
f

e

-

e

c~r !→ lnS D

b̄kBT
D ~5.26!

in Eqs. ~5.20! and ~5.21!. Here, b̄ is the small paramete
introduced in Eq.~4.3!, the precise value of which cannot b
determined uniquely within the present formalism.~See Ap-
pendix B for further discussion.! As a result, there is some
uncertainty in the thermodynamic properties, but it is cle
that DSimp and DCimp must contain contributions propor
tional to T2lnT and others varying likeT2. The ratio of the
prefactors of these terms will determine whether or not
logarithmic correction is observable at temperatures
physical interest. We shall return to this point in Sec. VI

4. Symmetric strong-coupling regime

The methods of the previous section can be applied
compute impurity properties at the symmetric stron
coupling fixed point, plus the leading corrections for tho
cases in which the fixed point is stable, i.e., for the partic
hole-symmetric Anderson model and the exactly scree
Kondo model, both withr , 1

2. Here, first-order perturbation
theory suffices, yielding the expressions

2
F imp

kBT
5 ln41(

l
4lnq̄l2(

j
4lnp̄ j

28 t̃ 2bNL2~12r !N/2(
l

b1lb2lql ~5.27!

and

kBTx imp

~gmB!2
5

1

8
1(

l
ql q̄l2(

j
pj p̄ j

22 t̃ 2bNL2~12r !N/2(
l

b1lb2lql q̄l~ q̄l2ql !

14Ũ1bNL2~122r !N/2F(
l

b1l
2 qlq̄l G2

, ~5.28!

wherepj and p̄ j are given by Eq.~5.19!, andql and q̄l are
the analogous quantities defined for the eigenenergies
HSSC,N

! :

ql[12q̄l5
e2bNv l

!

11e2bNv l
! . ~5.29!

The indexl runs from 1 to (N21)/2, inclusive, whilej still
runs from 1 to (N11)/2.

The sums entering Eqs.~5.27! and ~5.28! can be per-
formed algebraically for values ofL close to unity. Extrapo-
lation of the resulting expressions~see Appendix B! to the
continuum limit gives

2
F imp

kBT
5r 1ln424 t̃ 2b1b2A~12r !~32r ! f~12r !

3S kBT

D
D 12r

~5.30!
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and

kBTx imp

~gmB!2
5

r 1

8
2Ũ1@b1f̄~12r !#2S kBT

D
D 122r

2 t̃ 2b1b2A~12r !~32r ! f̄~12r !S kBT

D
D 12r

,

~5.31!

where

bn
2~r !5 lim

L→1

2bn
2

~2n112r !lnL
. ~5.32!

It is found numerically thatb1 andb2 are of order unity, at
least for all 0<r< 1

2, the range over which the symmetr
strong-coupling fixed point is stable.

Thus, the fixed-point impurity properties of the Anders
and exactly screened Kondo models are

Simp52r 1kBln2,
kBTx imp

~gmB!2
5

r 1

8
; ~5.33!

those of the underscreened Kondo model are

Simp5~112r 1!kBln2,
kBTx imp

~gmB!2
5

21r 1

8
; ~5.34!

and those of the overscreened model are

Simp5~114r 1!kBln2,
kBTximp

~gmB!2
5

11r 1

4
. ~5.35!

In all four models,Cimp50 at the fixed point, and the leadin
corrections to the fixed-point properties vary as

DSimp ,DCimp}T12r , D~Tx imp!}T122r . ~5.36!

The fixed-point properties and temperature expone
above agree with those obtained for 0,r ,1 by Chen and
Jayaprakash5 for the exactly screened Kondo model and
Bulla et al.10 for the Anderson model.@At extremely low
temperatures,kBT/D,10210, the latter authors identify a
T122r variation in the specific heat. Such a term can ar
only from the operatorOU1

defined in Eqs.~4.10!. Under

conditions of strict particle-hole symmetry, however,OU1

cannot contribute to the specific heat.41 We suspect, there
fore, that theT122r behavior is a numerical artifact.# In ad-
dition, Bullaet al.find that for 0,r ,1 the impurity spectral
function A(v) varies like uvu2r in the limit v→0, in con-
trast to the Lorentzian form found in the standard casr
50.

At the symmetric strong-coupling fixed point, one se
that each conduction band makes a contribution to the
tropy and to the susceptibility equal tor 1 times that of an
isolated level described by Eq.~2.2b! with ed5U50. Fur-
thermore, the impurity density of states,r imp(e)
5p21]d0 /]e computed using Eq.~3.16!, has ad-function
peak of weightr 1 at e50 ~see also Ref. 5!. These observa
tions suggest the phenomenological interpretation that a f
ts

e

s
n-

c-

tion r 1 of a conduction electron from each band occupie
decoupled level of zero energy, the remaining fraction 12r 1
presumably being absorbed into a many-body resonance
tered on the Fermi energy.

The properties described above appear to be hig
anomalous. It should be emphasized, though, that since
impurity has no internal degree of freedom at the fixed po
~at least in the Anderson and exactly screened Kondo m
els!, it acts only to exclude conduction electrons from
immediate vicinity. The fixed-point behaviors are simp
those of independent electrons subjected to a phase s
Indeed, the noninteracting (U50) limit of the Anderson
model reproduces the low-energy phase shifts of Eq.~3.16!
and hence yields precisely the thermodynamic properties
scribed in Eqs.~5.33!. Furthermore, the noninteracting mod
is shown in Appendix A to exhibit a spectral functio
A(v)}uvu u12r u21, in agreement with theU.0 results of
Ref. 10. We conclude thatthe symmetric strong-coupling
fixed point embodies a natural generalization of standa
Fermi-liquid physics to gapless hosts.

5. Asymmetric strong-coupling or frozen-impurity regime

The thermodynamic properties at the frozen-impur
fixed point of the Anderson model and at the asymme
strong-coupling fixed point of the exactly screened Kon
model are simply

Simp50, Cimp50, Tx imp50. ~5.37!

The corresponding properties of the underscreened Ko
model are those of a free spin-1

2 impurity, given by Eqs.
~5.23!. The overscreened Kondo model has a decoup
flavor-1

2 degree of freedom, which contributes

Simp5 ln2, Cimp50, Tx imp50. ~5.38!

The corrections to the fixed-point values can be obtain
from the corrections at the local-moment fixed point by t
replacementsJ̃→0, Ṽ→Ṽ2, t̃ 1→ t̃ 3, and Ũ0→Ũ2. The re-
sults are of the form

DSimp ,DCimp}Tr 11r , D~Tx imp!}Tr 11r . ~5.39!

Note that these expressions do not extrapolate tor 50, in
which limit the leading corrections arelinear in T.

For r 51, the thermodynamic properties above should
supplemented by terms proportional toT2lnT. In this same
case, Cassanello and Fradkin4 have found logarithmic cor-
rections to the Kondo temperature, the static susceptibi
and theT matrix. These authors point out that under su
circumstances, multiple energy scales enter the problem
physical quantities are no longer controlled by the Kon
scale alone.

The results of the previous two paragraphs imply that
the Anderson and exactly screened Kondo models, bothCimp
andTx imp approach zero asTr 11r . This is the only instance
among all the fixed points and models discussed in this pa
in which a system described by a scattering exponentr .0
exhibits a nontrivial impurity Wilson ratio

RW5 lim
T→0

4p2

3

kB
2Tx imp

~gmB!2Cimp

. ~5.40!
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Examination of Eqs.~5.20! and ~5.21! shows that forr
>1, RW is a function ofṼ2

2/ t̃ 3 as well as ofr , and is thus
expected to depend on the bare couplings (G0, ed , andU for
the Anderson model,J0 and V0 for the Kondo model!. For
0,r ,1, however, the leading contribution to both the su
ceptibility and the specific heat is proportional toṼ2

2 alone,
and so the Wilson ratio takes a universal value

RW~r !5
p2f̄~2r !

6r ~112r !f~2r !
. ~5.41!

This expression will be compared with the host Wilson ra
RW

(0)(r ) in the next section.

VI. NUMERICAL RESULTS

This section presents numerical RG results obtained u
the formalism described in the earlier parts of this paper.
concentrate primarily on pure power-law scattering rates
the form of Eq.~1.3!. At the end of this section, we discus
the effect of various modifications to the scattering rate,
cluding the introduction of particle-hole asymmetry and t
restriction of the power-law variation to a pseudogap reg
around the Fermi energy.

For simplicity, we shall henceforth setkB5gmB51. ~We
remind the reader that theg factor is assumed to be the sam
for localized and conduction electrons.!

A. Anderson model

This subsection treats the nondegenerate Anderson m
Eq. ~2.1!, restricted to the domainU.0. For pure power-law
scattering rates of the form of Eq.~1.3! it is necessary to
consider onlyed>2U/2 ~see Sec. II E!. Most of the results
will be presented for the extreme casesU522ed and U
5` which, respectively, preserve and maximally bre
particle-hole symmetry.

We first examine in some detail the properties of t
model for a fixed exponentr 50.2. In particular, we show
how the variation of the thermodynamic properties with d
creasing temperature can be interpreted in terms of cr
overs between various of the fixed-point regimes enumer
in Sec. IV. This interpretation can in some instances be c
roborated by computing the relative populations of the fo
impurity configurations. We then explore some of the s
tematic changes that take place asr is varied, focusing on the
progressive damping of impurity charge fluctuations and
consequent suppression of the Kondo effect. Finally, we
late the preceding results to the simple scaling theory
Ref. 8.

1. Pure power-law scattering rate with r50.2

Figures 1 and 2 provide an idea of the range of poss
behaviors in the temperature variation of the impurity ma
netic susceptibility and specific heat. In these plots,U and
G0 are held fixed, and each curve represents a different v
of ed . ~To prevent overcrowding, we generally place a sy
bol at only one in every six temperature points along e
curve when plotting thermodynamic quantities. The line co
necting the symbols results from a fit through the compl
data set.!
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The caseU5` is shown in Fig. 1. At very high tempera
turesT@D ~not shown!, the properties are close to those
the valence-fluctuation fixed point~Sec. IV C!: Tx imp'1/6
andCimp'0. OnceT drops belowD, the properties become
sensitive to the position of the impurity level relative to th
Fermi level. Ifed is positive or weakly negative~e.g., see the
curve fored /D520.1), Tx imp falls monotonically with de-
creasing temperature, indicating a crossover from vale
fluctuation to the frozen-impurity regime~Sec. IV G!. This
crossover is accompanied by a peak in the specific heat
resenting a loss of impurity entropy equal to ln3.

For more negative values ofed , Tx imp initially rises asT
falls below D, but at lower temperatures it drops back t
wards zero~see the curves fored /D520.15 and20.175 in
Fig. 1!. The rise can be associated with a crossover fr
valence-fluctuation to local-moment behavior~Sec. IV D!,
even thoughTx imp does not climb all the way to 1/4, th
value characterizing a free spins5 1

2. The subsequent drop in
Tx imp signals a second crossover to the frozen-impurity fix
point as the impurity becomes Kondo screened. The spe
heat shows two well-defined peaks, corresponding to
two-stage quenching of the impurity entropy from ln3 at t
valence-fluctuation fixed point to ln2 in the local-mome
regime to zero at strong coupling. This double-peak struct
may be taken as a signature of the Kondo effect, just as
in a system with a flat scattering rate.

If the impurity level lies far below the Fermi energ
(ed /D520.3 and20.5 in Fig. 1!, then as the temperatur

FIG. 1. Impurity susceptibilityTx imp and specific heatCimp vs
temperatureT for the infinite-U Anderson model with values ofed

as labeled and a pure power-law scattering rate specified br
50.2 andG050.1D. The legend shows the local-moment fractio
f LM @see Eq.~6.1!# for each curve.
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falls, Tx imp rises monotonically towards the local-mome
value of 1/4. The crossover from valence fluctuation to loc
moment behavior is marked by a single peak in the spec
heat as the impurity loses the entropy associated with
empty-impurity configuration. In contrast to the standa
caser 50, where the system eventually flows to strong co
pling for any choice of bare impurity parameters, the
curves show that forr 50.2 anded sufficiently negative, an
unscreened spin survives on the impurity site down to ab
lute zero. This is made possible by the local stability of t
local-moment fixed point for allr .0 ~see Sec. IV D!.

The final curve shown in Fig. 1 (ed /D520.223) quickly
reaches a plateau atTx imp'0.2, and remains there down t
at leastT51026D. This behavior is not compatible with an
of the fixed points described in Secs. IV and V. Moreover
is achieved only by a careful tuning ofed for a givenr , U,
andG0. We therefore interpret it as evidence for an unstab
intermediate-coupling fixed point—the manifestation in t
Anderson model of the fixed point identified by Withoff an
Fradkin2 in the Kondo model. This interpretation is discuss
further in Sec. VI B 1.

As mentioned in the introduction to this subsection, it c
also be useful to examine the ground-state impurity confi
ration. At temperatures sufficiently high that the system is
the free-impurity (T.U) or valence-fluctuation (T,U) re-
gime, one expects the Anderson model to exhibit cha
fluctuations between subspaces labeled by different value
nd . However, onceT drops below the effective values o
both G and uedu, real charge transfer is frozen out and~at
least fored>2U/2) the local level should be well describe
by one of three configurations:~i! a local moment~only
states withnd51 are significantly populated!, ~ii ! an empty
impurity (^nd&'0), or ~iii ! a mixed-valence configuration
~involving significant occupation of states with more th
onend value!.

The three low-temperature impurity configurations can
differentiated using the local-moment fraction

f LM5 lim
T→0

^nd22nd↑nd↓&. ~6.1!

For U5`, f LM is identical to the ground-state impurity oc
cupancy^nd&. For U522ed , however,̂ nd& always equals
1 ~due to particle-hole symmetry!, whereasf LM varies from 0
to 1

2 to 1 ased is changed from1` to 0 to 2`.
The legend of Fig. 1 lists the local-moment fraction f

each of the curves. The valuef LM50.63 for ed /D520.1
places the impurity within the mixed-valence range. All t
remaining curves havef LM.0.75, signaling the existence o
a well-developed local moment. It is interesting to comp
this information with that provided by the thermodynam
properties. Note that the casesed /D520.10 and20.175
result in flow to the same fixed point, despite having diffe
ent ground-state impurity configurations. Conversely,
local-moment configuration present fored /D520.175,
20.223, and20.30 is nonetheless associated with three d
tinct fixed-point behaviors. These observations serve to
phasize thatf LM , which probes only the local impurity con
figuration in the ground state of the system,
complementary to the fixed-point analysis, which is based
the low-energy excitations above the many-body grou
state.
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The susceptibility plots for a symmetric Anderson imp
rity in Fig. 2 exhibit many of the features found forU5`. In
particular, large, negative values ofed drive the system to the
local-moment regime, and there exists a critical va
(ed /D520.40) for which Tx imp remains approximately
equal to 0.2 down to very low temperatures. However,
susceptibility curves fored /D.20.40 head towards a low
temperature limit ofTx imp'0.025 instead of zero. This i
precisely the behavior expected at the symmetric stro
coupling fixed point~see Secs. IV E and V D 4!, which ex-
hibits a susceptibilityTx imp5r 1/8, wherer 15min(r,1). This
departure from the caseU5` demonstrates the importanc
of particle-hole ~a!symmetry in determining the low
temperature properties.

The specific heat curves in Fig. 2 are qualitatively simi
to those in Fig. 1, a double peak again indicating the form
tion and subsequent Kondo screening of a local mom
However, differences in quantitative features such as the
under each peak reflect the fact that the casesU5` andU
522ed have different fixed points in both the high- an
low-temperature limits.

The approach to the low-temperature fixed points is hi
lighted in Fig. 3, which shows the deviations ofTx imp and
Cimp from their zero-temperature limits. Examples are p
vided of both the infinite-U and symmetric cases, and fo
flow both to strong coupling (ed /D520.05) and to the
local-moment fixed point (ed /D520.50,20.65). ~A sym-
bol is placed at every second data point in this figure.!

Each curve in Fig. 3 is labeled with an exponent obtain

FIG. 2. Impurity susceptibilityTx imp and specific heatCimp vs
temperatureT for the symmetric Anderson model with values ofed

as labeled and a pure power-law scattering rate specified br
50.2 andG050.1D.



th

a

t
a

o

ca
T
es
in
e
e

re

tr

th

int
sins
is

an

xed

ly

ing

ly

s:

er
t
u

ng

57 14 273RENORMALIZATION-GROUP STUDY OF ANDERSON AND . . .
by fitting the low-temperature data to a power law inT. The
exponents for theU5` curves are all close tor or 2r , in
good quantitative agreement with Eqs.~5.25! and~5.39!. For
a symmetric impurity there are greater departures from
asymptotic forms in Eqs.~5.25! and~5.36!. The exponent of
0.6460.01 for D(Tx imp) in the symmetric strong-coupling
regime (ed520.05D) probably reflects the admixture of
substantial residualT12r contribution into the leadingT122r

term @see Eq.~5.31!#. The deviation fromT2r behavior in
DCimp near the local-moment fixed point (ed520.65D) can
also be attributed to incomplete convergence; fits limited
the lowest decade of temperatures for which reliable data
available yield an exponent of 0.3960.02, completely con-
sistent with perturbation theory.

Figure 4 shows that the low-temperature state can als
tuned by varyingU at fixedG0 anded . Particularly interest-
ing are the three curves that show signs of entry to the lo
moment regime and subsequent Kondo screening.
middle curve (U/D50.5) displays the anomalous properti
associated with the symmetric strong-coupling fixed po
(Tx imp5r 1/8, Simp5r 1ln4). The curves on either sid
(U/D50.4 and 0.6) eventually enter the frozen-impurity r
gime (Tx imp50, Simp50), but only after lingering close to
the symmetric fixed point over some range of temperatu
~The effect is especially pronounced forU/D50.6. This
curve has only just begun to move away from the symme
fixed point at the lowest temperatures shown.!

2. Trends with increasing r

In the paragraphs that follow, we examine some of
systematic trends that arise whenr is varied. We begin with

FIG. 3. Deviation of properties from their fixed-point value
impurity susceptibilityD(Tx imp) and specific heatDCimp vs tem-
peratureT for the Anderson model with a pure power-law scatt
ing rate specified byr 50.2 andG050.1D. Straight lines represen
fits to the data points over three decades of temperature. Each c
is labeled with its fitted slope~estimated error60.01).
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the position of the unstable intermediate-coupling fixed po
which separates the stable weak- and strong-coupling ba
of attraction. Discussion of the physical properties of th
fixed point will be deferred until Sec. VI B 1.

As shown in Figs. 1–4, the intermediate fixed point c
be located by adjustinged at fixedG0 andU or by tuningU
while holdingG0 anded constant. The third possibility is to
define a critical scattering rateGc , such that forG0.Gc the
system flows to strong coupling, while forG0,Gc the low-
temperature physics is governed by the local-moment fi
point. Figure 5 plotsGc /uedu as a function ofr for two fixed
values ofed and for bothU5` and U522ed . The two
infinite-U curves coincide almost perfectly and are rough
linear in r . For a symmetric impurity, the dependence onr
and ed is more complicated, the most notable feature be
the divergence of the critical scattering rate asr→ 1

2, beyond
which point the strong-coupling fixed point is complete

-

rve

FIG. 4. Impurity susceptibilityTx imp , specific heatCimp , and
entropy Simp vs temperatureT for the Anderson model withed

520.25D, values ofU as labeled, and a pure power-law scatteri
rate specified byr 50.2 andG050.1D.
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inaccessible. These trends will be discussed further in S
VI B 3.

We now turn to the strong-coupling behavior governed
the frozen-impurity fixed point. The perturbation theory
Sec. V indicates that in this regime the impurity Wilson ra
RW defined in Eq. ~5.40! takes a universal~although
r -dependent! value over the range 0,r ,1. The Wilson ra-
tio can be obtained numerically from the computed values
Tx imp and Cimp . To the accuracy that we can achieve, o
results for 0.2<r<0.8 confirm that there is indeed a sing
value ofRW for eachr .

Figure 6 compares the best value ofRW ~i.e., the value
with the smallest estimated error! determined numerically
using a discretization parameterL53 with the continuum
perturbative value, Eq.~5.41!. The two sets of results agre
to within 1.5% for r<0.5, 5% for r 50.6, and 8% forr
50.8. ~As shown in Sec. V D 5, the subleading correctio
to Tx imp and Cimp are smaller than the leading terms by
factor proportional toT12r . Thus, asr increasesRW must be
calculated at progressively lower temperatures, produc
larger errors.! Figure 6 also plots the host Wilson ratioRW

(0) ,

FIG. 5. Position of the intermediate-coupling fixed point,Gc vs
r for the Anderson model with a pure power-law scattering ra
Solid lines are provided as a guide to the eye.

FIG. 6. Wilson ratioRW vs r for the infinite-U Anderson model
with a power-law scattering rate. Individual points, representing
impurity Wilson ratio defined in Eq.~5.40!, were determined nu-
merically using a discretization parameterL53. The solid line
shows the perturbative result of Eq.~5.41! for the continuum limit,
L→1. The dashed line plots the host Wilson ratio in the absenc
impurities, calculated assuming a power-law density of states@see
Eq. ~5.5!#.
c.
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defined in Eqs.~5.5!. If the deviation from unity of the ratio
RW /RW

(0) can be taken as a measure of the impurity-induc
many-body effects, it appears that these effects weake
even vanish asr approaches 1.

As noted above, the strong-coupling regime can
divided—based on the ground-state impurity configuration
into empty-impurity, mixed-valence, and local-moment su
regions. Figure 3 of Ref. 8 shows the variation of the imp
rity occupancy withed for U5`, G050.1D, and for values
of r ranging from 0 to 2. In all cases,^nd& ([ f LM for U
5`) increases from 0 to 1 as the impurity level moves fro
far below to far above the Fermi energy. The effect of
power-law scattering rate is to narrow the range ofed over
which the crossover takes place from an empty impur
through mixed valence, to a full local moment.

In order to quantify the narrowing of the mixed-valen
regime, we defineed1

! anded2
! as the values of the impurity

energy which result in a ground-state occupationf LM50.25
and 0.75, respectively. These energies, which we take to
resent upper and lower bounds on the mixed-valence reg
are plotted in Fig. 7. It is clear that the mixed-valence reg
of parameter space shrinks monotonically as the power
increases at fixedG0.

The local-moment fraction for a symmetric impurity wit
G050.1D is plotted as a function of the impurity energy
Fig. 8. ~Only negative values ofed are shown. Due to
particle-hole symmetry,f LM is mapped to 12 f LM when the
sign of ed is reversed.! Just as for the infinite-U case, the
range ofed over which f LM takes values between 0.75 an
0.25 decreases dramatically with increasingr .

Figure 9 plotsf LM2 1
2 against2ed on a log-log scale. For

r<0.5, f LM clearly dips downward to approach the value1
2

linearly ased→0. The curves forr 50.75 and 0.9 also show
signs of the same behavior, although the linear regime
pushed to much smalleruedu. By contrast, the curvature o
the data forr 51 and r 52 suggests thatf LM approaches a
value greater than12 ased→02, and hence undergoes a di

.

e

of

FIG. 7. Boundaries of the mixed-valence regime,ed1
! ~open

symbols, dashed lines! and ed2
! ~solid symbols, solid lines! vs G0

for the infinite-U Anderson model with several different pur
power-law scattering rates. Individual points were determined
the criteriaf LM50.75 and 0.25 while the lines were obtained usi
poor-man’s scaling~see Sec. VI A 3!. Dashed lines from top to
bottom correspond tor 50, 0.25, 0.5, and 0.75. Forr>1, the scal-
ing theory predictsed1

! 5ed2
! .
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continuous jump when the impurity level passes through
Fermi energy.

Figures 7–9 show that as the exponentr describing the
power-law scattering rate increases, there is a progres
shrinking of the mixed-valence region of parameter spac
favor of the local-moment and empty-impurity regimes. Th
trend is a natural consequence of the depression of the
tering rate near the Fermi level, which strongly inhibits m
ing between the impurity level and low-energy conducti
states.

The numerics also reveal a second trend with increas
r , namely, the progressive disappearance of the Kondo
fect. For r *0.5 it proves almost impossible to find any r
gion of parameter space within which the thermodynam
properties indicate that entry to the local-moment regime
followed by a crossover to either of the two strong-coupli
fixed points. This is illustrated in Fig. 10, which shows t
impurity susceptibility and specific heat for a linear scatt
ing rate. As noted above, the caser 51 is of particular inter-
est because it may describe a magnetic impurity in ad-wave
superconductor3,4 and in flux phases of two-dimension
electrons.

Consider first the solid curves in Fig. 10 representing
caseU5`. For ed /D>20.037, the impurity level is almos

FIG. 8. Local-moment fractionf LM vs impurity energyed for
the symmetric Anderson model with pure power-law scatter
rates specified byG050.1D and several different values ofr . The
lines are provided as a guide to the eye.

FIG. 9. Same as Fig. 8, plotted on a log-log scale.
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unoccupied in the ground state (f LM&1/4), and the system
crosses directly from valence fluctuation to the froze
impurity regime; there is neither a peak inTx imp nor a
double peak inCimp to signal the Kondo effect. Fored /D
<20.040, the renormalization is from valence fluctuation
the stable local-moment fixed point, and theT50 ground
state has an unquenched spin at the impurity site. Betw
these behaviors lies an unstable intermediate-coupling fi
point, obtained by tuning the impurity level toed /D
'20.0379. The absolutely flatTx imp curve in this case in-
dicates that the fixed point is reached directly from the hig
temperature regime, rather than from the local-moment
gime as was found forr 50.2 ~see Figs. 1 and 2!.

Figure 10 also provides one representative example of
properties exhibited by a symmetric impurity with a line
scattering rate~dashed line!. As far as we have been able t
determine, any negative value ofed , however small in mag-
nitude, results in flow to the local-moment fixed point. Th
observation is consistent both with the absence of any fi
critical couplingGc for r . 1

2 ~as shown in Fig. 5! and with
the evidence that there is a jump in the local-moment fr
tion at ed50 for r>1 ~see the discussion of Fig. 9!.

Figure 11 illustrates the approach of ther 51 thermody-
namic properties to their zero-temperature values. As
cussed in Sec. V D, a linear scattering rate admits logar
mic corrections to power-law behaviors at both the loc
moment and frozen-impurity fixed points. ForT&1023D,

g

FIG. 10. Impurity susceptibilityTx imp and specific heatCimp vs
temperatureT for the Anderson model with a linear scattering ra
specified byr 51 andG050.1D. Data points connected by soli
lines correspond toU5` and values ofed shown in the legend.
The dashed line shows the symmetric caseU/252ed50.04D.
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DTx imp is linear inT on approach to the local-moment fixe
point @as predicted by Eq.~5.21!# and quadratic~with no
significant component ofT2lnT) in the frozen-impurity re-
gime. The specific heat is expected to behave asT2lnT at
both fixed points. The deviations from a pureT2 form are
only weak for the frozen-impurity example (ed520.01D)
but are considerably stronger for the two flows to the loc
moment fixed point. In all three cases, the lowest decad
temperature before the data become too noisy for a reli
fit seems to be consistent with aT2lnT form, although
higher-accuracy calculations would be needed to rule
completely any other behavior.

3. Comparison with scaling theory

The numerical results presented above can be comp
with the predictions of an approximate analytical treatm
of the problem based on the poor-man’s scaling techni
first developed for the Kondo problem.37 Jefferson42 and
Haldane43 applied this method to the nondegenerate And
son model with a flat scattering rate (r 50). The main effect
of many-body interactions was found to be a temperatu
dependent shift in the effective energy of a nonsymme
impurity level from its bare valueed to

ēd~T!5ed1
G

p
lnS UD

T
D , r 50. ~6.2!

HereUD5min(U, D) is the energy scale below which man
body effects come into play. NeitherU nor G is significantly

FIG. 11. Deviation of properties from their fixed-point valu
for the Anderson model with a linear scattering rate specified
r 51 andG050.1D. Top: impurity susceptibilityD(Tx imp) vs tem-
peratureT. Straight lines represent fits to the data over the ra
kBT/D,1023. Each curve is labeled with its fitted slope~estimated
error 60.01). Bottom: specific heatDCimp /T2 vs T, with straight-
line fits to the data over selected temperature ranges.
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renormalized.~Note that particle-hole symmetry preven
renormalization ofed for a symmetric impurity. In this case
the upper boundUD on the range ofT within which renor-
malization occurs essentially coincides with the lower bou
uedu.!

In this scaling picture, real charge fluctuations on the i
purity site are expected to become frozen out around a t
perature TF5max(uēdu,G). ~As usual, we assume thatU
>2uedu.! If TF52 ēd@G, then only the singly occupied con
figurations will be significantly populated, and the impuri
will possess a local moment, while an empty impurity w
result if TF51 ēd@G. Finally, if TF5G@u ēdu, then the
ground state will have mixed valence. Figure 12~a! provides
a schematic representation of the renormalization ofed in the
caser 50 and illustrates the crossover from valence fluctu
tion into the three low-temperature regimes.

The poor-man’s scaling treatment was recently exten
to a power-law scattering rate.8 The depression of the sca
tering rate at low energies can be represented as a renor
ization of the parameterG0 entering Eq.~1.3!:

Ḡ0~T!5G0•~T/D !r , T,D. ~6.3!

This in turn feeds back to produce a smaller renormalizat
of ed than occurs in the caser 50:

y

e FIG. 12. Scaling of the effective impurity energyēd with the
temperatureT, shown schematically for~a! r 50 and~b! 0,r ,1.

Renormalization ofēd from its bare valueed begins on entry into
the valence-fluctuation~VF! regime, atD'UD5min(U,D). Scal-
ing ends at a crossover to local-moment~LM !, empty-impurity~EI!,
or mixed-valence~MV ! behavior. A power-law scattering rate fla

tens the trajectoriesēd(T) and also moves the boundary of the M
regime to the left, reducing the range of bare impurity energ
(ed2

! ,ed,ed1
! ) which yield MV behavior.
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ēd~T!5ed1
G0

pr
F S UD

D
D r

2S T

D D r G , r .0. ~6.4!

The crossover temperature characterizing the freezing-ou
real charge fluctuations on the impurity site must be re
fined to be

TF5max@ u ēd~TF!u,Ḡ0~TF!#. ~6.5!

The scaling ofēd(T) for r .0 is shown schematically in
Fig. 12~b!. Note that the trajectories are flatter than in~a!,
reflecting the reduction in the many-body shift ofed . More-
over, the energy dependence of the scattering rate pushe

vertical line T5Ḡ0(T) significantly to the left, thereby
shrinking the range ofed values which result in a mixed
valence ground state.~For r .1 the vertical line is driven to
T50, and the mixed-valence regime disappears altogeth!

Bounds on the mixed-valence region.Within the poor-
man’s scaling approach, upper and lower bounds on
mixed-valence regime,ed1

! and ed2
! , respectively, can be

defined as the bare values ofed for which the scaling trajec-
tories pass through the upper and lower intersections
tween dashed lines in Fig. 12, i.e., as roots of the impl
equation

G0„u ēd~TF!u…56a6ēd~TF!, ~6.6!

wherea1 anda2 are positive constants of order unity. Th
solutions of Eq.~6.6! are

ed6
!

D
5S a6

pr
61D S G0

a6D
D 1/~12r !

2
G0

prD
S UD

D
D r

. ~6.7!

Figure 7 superimposes these bounds for the mix
valence region in the caseU5` ~plotted as lines! on those
defined in Sec. VI A 1 based on the computed value of
local-moment fractionf LM ~individual symbols!. The choice
a250.9 brings the alternative definitions ofed2

! into good
quantitative agreement. The dashed lines representinged1

! in
Fig. 7, computed fora150.6, fit the numerical data reason
ably well for small values ofG0 but deviate considerably fo
stronger impurity scattering. This discrepancy is not es
cially surprising, given the approximations inherent to po
man’s scaling and the degree of arbitrariness present in
definitions ofed1

! .
For the symmetric case shown in Figs. 8 and 9, the cr

rion f LM50.75 for the border of the local-moment regim

can be compared with the scaling definitionḠ0(ued2
! u)

52a2ed2
! . ~Recall that the level energy does not renorm

ize at particle-hole symmetry, and soēd5ed .) A value of
a2'0.4 seems to yield reasonable agreement with the
merics, at least forr<0.5.

Exchange on entry to the local-moment regime.The scal-
ing theory also sheds light on the disappearance of
Kondo effect with increasingr . On entry to the local-
moment regime, the Anderson model can be mapped o
the Kondo problem by projecting into the subspace in wh
nd51. Applying Eqs.~2.10!, one obtains8 a dimensionless
exchange having a power-law energy-dependence,
of
-

the
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Ar~e!r~e8!J~e,e8!5r0J0 ue e8/D2ur /2, ~6.8!

where

r0J05
2Ḡ0~TF!

p
S 1

TF

1
1

U2TF
D . ~6.9!

In this instance, Eq.~6.5! reduces toTF52 ēd(TF).
For given impurity parameters (ed , U, andG0), the ex-

change decreases with increasingr , as shown in Fig. 2 of
Ref. 8. Both the depression ofG(TF) and the weaker renor
malization ofed ~which increasesTF) contribute to this ef-
fect. A conservative bound on the multiplicative reducti
factor for r0J0, obtained by neglecting the renormalizatio
of ed altogether, isued /Dur . This sharp reduction ofr0J0
with increasingr militates strongly against any Kondo effec
because~as first shown by Withoff and Fradkin2! an impurity
spin becomes screened only ifJ0.Jc , wherer0Jc'r .

In summary, the poor-man’s scaling analysis captures
essential features of the Anderson problem with a power-
scattering rate, and provides a convenient theoretical fra
work for understanding the numerical results. A number
quantitative features, however, are not accounted for c
rectly within the scaling approach.

B. Screened Kondo model

The conventionals5 1
2 ~‘‘exactly screened’’! Kondo

model with a power-law exchange coupling@Eq. ~6.8!# has
been discussed extensively in Refs. 2–7 and reviewed br
in the Introduction above.~Some of the papers cited2–4 for-
mally treat the degenerate Anderson model using largN
methods; however, the focus throughout is the Kondo ph
ics of the local-moment regime.! We recall that the nove
feature of the model is the existence of a finite exchan
coupling Jc(r ,V0) which separates a region of parame
space within which the impurity spin becomes asympto
cally free (J0,Jc) from another in which the impurity mo
ment is quenched. The latter case is governed by two dist
fixed points: under conditions of strict particle-ho
symmetry,5 the low-temperature susceptibility is a univers
function of T/TK , where TK}uJ02Jcu1/r ; otherwise, the
properties are determined by two independent energy sca7

Rather than attempting to provide a comprehensive tr
ment of the exactly screened Kondo model, which wou
necessarily duplicate much previously published work,
focus in this section on three topics that have received li
attention. First, we address the properties of the Kon
model at the critical coupling. We show that over a range
r there in fact exist two distinct intermediate-coupling fixe
points—one accessible only under conditions of ex
particle-hole symmetry, the other reached when this sym
try is broken. Second, we present results for a local respo
function which is a candidate order parameter for the criti
behavior at the intermediate-coupling fixed point~s!. Finally,
we examine the relationship between the Kondo and And
son models in systems with a power-law scattering rate.
though each RG fixed point of the Kondo model is equiv
lent to a fixed point of the Anderson model, we argue that
two models are independent to a greater extent than is
case forr 50.
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1. Properties of the intermediate-coupling fixed point

Unlike the weak- and strong-coupling fixed points d
cussed in Sec. IV, the intermediate-coupling fixed points
the Anderson and Kondo Hamiltonians are not amenabl
conventional perturbative methods, and our knowledge
their properties comes entirely from numerical studies. T
subsection presents numerical RG results for the Ko
model obtained by tuning the exchange parameterJ0 at fixed
r andV0 to lie very close to the border between the stron
and weak-coupling basins of attraction.~These results will be
compared with those for the Anderson model in S
VI B 3.!

Since we focus on zero-temperature~fixed-point! proper-
ties, it is not necessary to average over different discret
tions of the conduction band~as described in Sec. V C!. The
results discussed below were obtained using a single disc
zation, corresponding toz51 in Eqs.~2.18! and ~2.19!.

We begin by considering the particle-hole-symmet
problem corresponding toV050, for which the critical cou-
pling Jc(r ) is finite only over the range 0,r ,r max, where
r max5

1
2.

5–7 When the bare exchangeJ0 is tuned precisely to
Jc(r ), the problem flows to the intermediate-coupling fix
point mentioned previously. Figure 13 plots the lowest-lyi
eigenenergies at this fixed point over the range 0.05<r
<0.48, while Fig. 14 shows~solid symbols! the impurity
contribution to the total susceptibility and entropy for 0
<r<0.49. Asr is varied from zero to1

2 each curve interpo-
lates smoothly between the corresponding weak-coup
and strong-coupling values. Over the entire range ofr , the
computed entropy at the intermediate fixed point rema
within 1% of ln2. The inset to Fig. 14 shows that the a
proach ofTx imp to its value atr 5 1

2 is described by a powe

law: Tx imp2
1

16 }( 1
2 2r )n with n50.5460.05. All the quan-

tities plotted in Figs. 13 and 14 vary linearly at smallr , and
are consistent with the divergence of the critical couplingJc
as r→r max[

1
2.

FIG. 13. Low-lying eigenvaluesE! at the particle-hole-
symmetric intermediate-coupling fixed point of the exactly scree
Kondo model, plotted vs the exponentr describing the power-law
exchange. Data computed withL53 are shown both forN even
~open symbols! and forN odd ~solid symbols!. Solid lines are pro-
vided as a guide to the eye. The curves are extrapolated to
weak-coupling values atr 50 and to symmetric strong coupling a
r 50.5.
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Away from particle-hole symmetry, a finite critical cou
pling J8(r ,V0) can be identified for anyr .0. For r , 1

2, J8
deviates smoothly from its particle-hole-symmetric val
Jc(r ) asV0 is increased from zero. The initial slopedJ8/dV0
can be of either sign, but for strong potential scatter
~which disfavors the presence of a single conduction elec
at the impurity site!, J8 invariably rises sharply~see Fig. 1 of
Ref. 7!.

The nature of the fixed point reached forJ05J8 is found
to be fundamentally different for small and large values ofr .
Particle-hole symmetry proves to be marginally irrelevant
0,r ,r !'0.4, over which range the intermediate fixe
point is identical to that obtained forV050. For r .r !, by
contrast, all positive bare values ofV0 result in flow to a
new, particle-hole-asymmetric fixed point located atV0

5Vc , J05Jc8[J8(r ,Vc). Thus, over the limited range r!

,r ,r max, there exist two distinct intermediate-couplin
fixed points,located atJc andJc8. Potential scattering is mar
ginally relevant at the former, whereas the coupli
V02Vc is marginally irrelevant at the latter.~Yet another
fixed point is reached for allV0,0, but since it is trivially
related to that forV0.0 by particle-hole exchange, we tre
this pair as being physically equivalent.!

Support for the statements contained in the previous p
graph comes from the impurity susceptibility and entro
shown in Fig. 14. Properties computed for a fixed value
the potential scattering,r0V050.1, are essentially indistin
guishable from theirV050 counterparts for allr &0.4. Be-
yond this point, Tx imp and Simp at the particle-hole-
asymmetric fixed point rise monotonically with increasingr .

d

he

FIG. 14. Impurity susceptibilityTx imp and entropySimp at the
intermediate-coupling fixed points of the exactly screened Kon
model, plotted vsr . Solid lines are provided as a guide to the ey
The curves are extrapolated to weak coupling atr 50, and forV0

50 are extrapolated to the symmetric strong-coupling values@given
by Eq. ~5.33!, dashed lines# at r 5

1
2. Inset: approach ofTx imp to its

value atr 5
1
2, plotted on a log-log scale.
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The properties forr0V050.5 ~not shown in Fig. 14! are
identical to those forr0V050.1, at least to within our esti
mated accuracy.

The many-body spectrum provides additional eviden
for the existence of dual fixed points over the ranger !,r
,r max. Certain pairs of charge-conjugate states which
necessarily degenerate forV050 are split at the asymmetri
fixed point. Figure 15 plots the splittingDE! of the lowest
pair of affected states, both for odd- and even-numbered
erationsN, over the range 0.38<r<1. The vanishing of
DE! defines the critical valuer !. For r &0.45, we find that
DE!}(r 2r !)n!

, with r !50.37560.002 and n!50.67
60.15. It seems probable that the magnitude of the split
is directly proportional to the critical potential scattering,
least for smallVc , but we have no proof of this conjecture

Figures 16~a!, 16~b!, and 16~c! summarize the effect o
particle-hole asymmetry on the exactly screened Kon
model for a fixed value ofr , where 0,r ,r !, r !,r
,r max, and r .r max, respectively. These figures sketch t
RG flow of the effective couplingsJ0 and V0 on the plane
V150 for fixed r . @HereV1 measures the strength of pote
tial scattering experienced by electrons in the Wilson sh
f 1; see Eq.~4.10!. Note that asymmetric strong coupling co
responds touV1u5`. Out-of-plane flows towards this fixe
point are represented by dashed lines.# As r increases from
zero, the intermediate-coupling fixed point moves steadily
the right along the horizontal axis. Atr 5r !, the particle-
hole-asymmetric fixed point separates from that forV050.
The two fixed points grow further apart asr rises towards
r max5

1
2, at which value the symmetric fixed point merg

into the strong-coupling limit. Beyondr max, the asymmetric
fixed point remains at finite couplings. We believe that
continues to move upward and to the right with increasingr .

2. Local impurity susceptibility

In a recent paper,5 Chen and Jayaprakash studied a Kon
impurity with a pure power-law exchange coupling und
conditions of strict particle-hole symmetry. An interestin
feature of this work was a comparison between the impu

FIG. 15. Energy splittingsDE* of the lowest pair of charge
conjugate eigenstates at the particle-hole-asymmetric intermed
coupling fixed point of the exactly screened Kondo model, plot
vs the reduced exponentr /r !21, for L53 and r !50.3754.
Straight lines show fits to the leftmost four data points for odd- a
even-numbered iterations of the numerical RG method.
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contribution to the total magnetic susceptibility@the thermo-
dynamic quantityx imp defined in Eq.~5.11! above# and a
local susceptibilityx loc which directly probes the magneti
response of the impurity. It was argued that the behavio
x loc provides evidence for the existence of a finite critic
couplingJc for r . 1

2—even thoughx imp provides no sign of
such a critical coupling—and that the low-temperature ph
ics is fundamentally different forJ0,Jc andJ0.Jc . In this
subsection we reexamine this issue, and conclude that t
is no such critical point forr . 1

2, and that the local propertie
and total properties are perfectly consistent with one anot

The local susceptibilityx loc , denoted̂ ^sz ;sz&& in Ref. 5,
is a zero-frequency response function defined by the rela

x loc

gmB

52
]^sz&

]h
U

h50

5 lim
h→0

2
^sz&

h
, ~6.10!

where sz is the z component of the impurity spin;h is a
magnetic field which acts only on the impurity and whic
enters the Kondo Hamiltonian through an additional te
DHK5gmBhsz .

te-
d

d

FIG. 16. Schematic renormalization-group flow diagrams for
exactly screened Kondo model, showing theJ0-V0 plane for V1

50 and for fixed r : ~a! 0,r ,r !, ~b! r !,r ,r max, and ~c! r
.r max. Thin lines with arrows show the renormalization of effe
tive couplings with decreasing temperature. Solid circles indic
RG fixed points. Dashed lines represent flows out of the plane
wards the asymmetric strong-coupling~ASC! fixed point, located at
uV1u5`.
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In the standard caser 50, x loc closely tracksx imp as a
function of temperature.44 Chen and Jayaprakash’s results f
r .0 can be summarized as follows.

~i! For r , 1
2 and J0,Jc(r ), limT→0Tx imp51/4 while

Tx loc approaches a smaller, but still nonzero, value.
~ii ! For r , 1

2 andJ0.Jc(r ), Tx imp heads to the valuer /8,
whereas limT→0Tx loc50.

~iii ! For r . 1
2 there exists a finite critical valuer0Jc

5O(r ) such that the behavior forJ0,Jc is the same as in
~i!.

~iv! For r . 1
2 and J0.Jc , Tx imp approaches 1/4 bu

limT→0Tx loc50.
The authors of Ref. 5 interpreted result~iv! as indicating

that the impurity spin is locally quenched even though
total magnetic susceptibility shows no Kondo effect. Th
implies the existence of a third low-temperature regime,
addition to those governed by the local-moment fixed po
@reached in cases~i! and ~iii !# and the symmetric strong
coupling fixed point@the ground state for~ii !#.

Since the total thermodynamic properties forr . 1
2 seem to

indicate flow to the local-moment fixed point for allJ0, we
have systematically examined the zero-temperature limi
Tx loc . Within the numerical RG framework the right-han
expression in Eq.~6.10! can be evaluated for a small bu
finite value ofh. ~This is the same method as employed
Chen and Jayaprakash. It should be noted that forhÞ0, the
total spinS is no longer a good quantum number.! Equation
~6.10! implies that a finite limiting value ofTx loc reveals
itself in a T21 variation of^sz&. The fieldh must be chosen
sufficiently small that any suchT21 regime can be detecte
before^sz& saturates, as it must ultimately do sinceuszu<

1
2.

Our calculations were performed for 10213<gmBh/D
<1027. As a check, it was established that the results w
insensitive to the precise field used. In order to reduce
computer time required for these runs, we usedL59 with
Ec540. As mentioned in Sec. V C, it is possible to obta
accurate zero-temperature results even with such a large
cretization parameter. We have verified that reducingL may
produce small shifts in the critical couplingJc , but does not
change our essential conclusions~presented below!.

Figure 17 plots the low-temperature limit ofTx loc versus
the exchange couplingr0J0 for four values ofr . Consider
first the data for r 50.3 and 0.4, which indicate tha
limT→0Tx loc is finite for all J0,Jc , and vanishes forJ0
.Jc . Here, the critical couplingJc coincides with that de-
duced from the thermodynamic properties or the lo
temperature many-body eigenspectrum:r0Jc(r 50.3)
50.343 andr0Jc(0.4)50.491~both to three significant fig-
ures!. As shown in Fig. 18, the form of the curves forJ0 just
below Jc is well described by a power law limT→0Tx loc
}(Jc2J)n, with n(r 50.3)50.7060.05 andn(0.4)51.80
60.08. ~Figure 18 also presents data forr 50.4 computed
using a discretization parameterL53. The resulting expo-
nentn51.8160.05 is in close agreement with that obtain
usingL59.! On the strong-coupling side of the critical poi
~not shown! it is found that limT→0x local}(J02Jc)

2l, where
l(r 50.3)54.360.1 andl(0.4)53.960.1.

By contrast, the curves in Fig. 17 representingr 50.6 and
0.7 offer no hint of critical behavior within a range ofr0J0
extending well beyondr . For largeJ0, limT→0Tx loc falls off
e

n
t

f

e
e

is-

-

in roughly exponential fashion. It appears probable that
all J0, Tx loc heads to a nonzero value, describing incompl
quenching of the impurity spin.

These observations are consistent with our previ
conclusion,7 based on the finite-size spectrum and the co
puted thermodynamic properties, that the low-temperat
behavior of the particle-hole-symmetric Kondo model forr
. 1

2 is described quite straightforwardly by the wea
coupling ~local-moment! limit. For r , 1

2, the approach ofJ0
to its critical value from below is signaled by the vanishin
of Tx loc , while the divergence ofx loc marks the approach
from above. The behavior ofTx loc makes it a candidate orde
parameter for describing theJc critical point. Further inves-
tigation of this possibility is under way.45

3. Relationship between the Kondo and Anderson models

The mapping between the Anderson and Kondo mod
via the Schrieffer-Wolff transformation@Eqs.~2.10!# can be
formally justified only for2ed ,U@G and 0<r0J0 ,ur0V0u

FIG. 17. Low-temperature limit of the local impurity suscep
bility Tx loc vs the dimensionless Kondo couplingr0J0 in the ex-
actly screened Kondo model, calculated for different values of
exponentr describing the power-law exchange. The data poi
were computed using a discretization parameterL59. Solid lines
are provided as a guide to the eye, and vertical dashed lines ind
the critical couplings for the casesr 50.3 andr 50.4.

FIG. 18. Same as Fig. 17, restricted tor ,
1
2 and plotted on a

log-log scale. Data are shown for two different discretization p
rametersL53 and 9. Straight lines represent fits to thoseL59
data points having an exchange couplingJ0 within 3% of the criti-
cal valueJc .
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!1. In these limits, the physical properties of the Kon
model must be equivalent to those presented in Sec. V
provided that one equates the half-bandwidthD~Kondo! with
TF~Anderson!, the temperature at which charge fluctuatio
freeze out. For the standard caser 50, the properties of the
Kondo model are universal for allJ0.0 and can be fully
explored from within the Anderson model. The relation b
tween the two models becomes nontrivial, however, in
presence of a power-law scattering rate, which introduce
new energy scaleJc into the problem.

For small, positive values ofr , Eqs.~2.10! can yield val-
ues ofJ0 greater thanJc , as well as values less thanJc . One
therefore expects all behaviors of the Kondo model to
reproduced by the Anderson Hamiltonian. This is confirm
by Fig. 19, which superimposes thermodynamic proper
computed for the particle-hole-symmetric Kondo and And
son models withr 50.2. The figure shows flows to wea
coupling and to symmetric strong coupling, as well as
critical behavior associated with the intermediate-coupl
fixed point. Each Anderson curve—computed for one of
parameter sets from Fig. 2, and plotted versusT/uedu because
TF'uedu in these examples—is reproduced almost exa
by the Kondo model with a suitable choice ofJ0.

For r *0.5, by contrast, it is impossible to attain values
the exchangeJ0.Jc under the Schrieffer-Wolff transforma
tion, and the strong-coupling behavior of the Kondo mo
~e.g., the particle-hole-asymmetric thermodynamic proper
in Figs. 2 and 3 of Ref. 7! cannot be reproduced. This doe

FIG. 19. Impurity susceptibilityTx imp and entropySimp /kB for
r 50.2, plotted vs eitherT/D ~screened Kondo model withV050,
solid symbols! or T/uedu ~symmetric Anderson model withG0

50.1D, open symbols!. In four of the six cases shown, the entrop
rapidly converges with decreasing temperature to the valuekBln2.
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not mean that strong coupling is unattainable within t
Anderson model, only that the route to strong coupling
the local-moment regime is blocked. A direct crossover fro
valence fluctuation to asymmetric strong coupling~or,
equivalently, to the frozen-impurity regime! takes place for
all r .0 whenever the impurity level is placed above, or on
slightly below, the Fermi energy.

We now turn to a comparison between the intermedia
coupling fixed points of the Kondo and Anderson models
number of pieces of evidence point to the complete equ
lence of these fixed points:~1! The thermodynamic proper
ties coincide to within the accuracy of our calculations. F
ure 19 illustrates this explicitly forr 50.2, while Figs. 10 and
14 show that forr 51, Tx imp'0.164 in both models. Simila
agreement is found for other values ofr , as well. ~2! An
extensive comparison of the energies and quantum num
of the many-body eigenstates indicates that the low-ene
spectra at the Kondo and Anderson fixed points are identi
In each model, there is a range of exponents,r !,r ,r max,
over which there are two distinct intermediate-coupling fix
points~see Sec. VI B 1!. Within this range, the spectra at th
particle-hole-symmetric fixed points of the two mode
match, as do the levels at the nonsymmetric fixed points.~3!
It is shown in the next paragraphs that for smallr , the critical
couplingGc of the Anderson model corresponds to an effe
tive exchange coupling very close to the value ofJc mea-
sured directly in the Kondo model.~We argue below that the
positions of the two fixed points are not expected to coinc
for larger values ofr .!

The position of the two intermediate-coupling fixed poin
can be compared using the scaling theory discussed in
VI A 3. Equations~6.3!–~6.5! and~6.9! may be combined to
convert the critical value of the bare scattering rate,Gc plot-
ted in Fig. 5, into the dimensionless exchanger0Jc on entry
to the local-moment regime. Figure 20 shows that this tra
formation collapses the two data sets forU522ed onto a
single curve. A dashed line shows the critical exchange co
puted directly within the particle-hole-symmetric Kond
model.7,46 The critical couplings of the two models are
close agreement for smallr . The significant differences tha
develop for largerr , in a range whereGc becomes of order
uedu, may be attributed to a breakdown of the Schrieffe

FIG. 20. Position of the intermediate-coupling fixed pointr0Jc

~defined in the text! vs r for the Anderson model with a pure powe
law scattering rate. Solid lines are provided as a guide to the
The dashed line shows the corresponding quantity computed fo
particle-hole-symmetric Kondo model~data from Ref. 7!.
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14 282 57CARLOS GONZALEZ-BUXTON AND KEVIN INGERSENT
Wolff transformation as charge fluctuations become imp
tant. ~In Ref. 10 a similar comparison is made between
effective values ofGc in the Anderson and Kondo models!

The infinite-U curves plotted in Fig. 20 lie close to eac
other, and to the data for a symmetric impurity, only forr
&0.25. For largerr , Jc(Gc) turns sharply downward, a fea
ture not seen in the particle-hole-asymmetric Kondo mo
~see Fig. 1 of Ref. 7!. It is clear from Fig. 5 that the position
of the critical point is much better described by a relation
the form Gc}r uedu than byr0Jc}r . Again, charge fluctua-
tions on the impurity site account for these differences. T
Kondo intermediate-coupling fixed point is always a
proached from within the local-moment regime. For larger ,
however, theGc fixed point of the Anderson model is instea
reached directly from the high-temperature regime~see Fig.
10, for instance!. Indeed, comparison ofed with ed2

! given
by Eq. ~6.7! shows that the value ofGc places the system
outside the local-moment regime for allr *0.25 in the case
ed520.1D and for allr *0.15 in the caseed520.01D. We
conclude, therefore, that in all situations where the mapp
of the Anderson model onto the Kondo model is justified,
position of the intermediate fixed point determined in the t
problems is in good agreement.

In summary, the RG fixed points of the Kondo mod
appear to form a true subset of those of the Anderson mo
For r *0.5, though, certain paths between these fixed po
that can be followed in the pure-spin problem cannot
realized once charge fluctuations are allowed. In this se
the Kondo model with power-law scattering has an existe
independent of the Anderson model.

C. Underscreened Kondo model

In this section we present results for the Kondo Ham
tonian describing the interaction of a spin-1 impurity with
single band of electrons. We focus on the differences
tween this model and the conventional~exactly screened!
problem addressed in the previous section.

The weak-coupling limit of thes51 model shares man
features with the conventional case. In particular, the fix
point atJ050 is marginally unstable forr 50 but~according
to the analysis in Sec. IV D! it is stable for allr .0. For
small positive values ofr , one can apply poor-man’s scalin
to demonstrate40 the existence of an intermediate-couplin
fixed point atr0Jc'r .

At antiferromagnetic strong coupling, thes51 model be-
haves very differently from thes5 1

2 problem. The larger
impurity spin is ‘‘underscreened’’ and retains a net spint
5 1

2. For r 50 this limit is known to be marginally stable,21

but ~as shown in Sec. IV E! for any r .0 the residual impu-
rity spin destabilizes the symmetric strong-coupling fix
point.

Given the instability of the fixed points atJ05Jc andJ0
5`, one might expect anyJ0.Jc to produce flow to asym-
metric strong coupling. At particle-hole symmetry this o
tion is ruled out, however, suggesting the existence o
stable fixed point at some exchange coupling that we s
denoteJ!, whereJc,J!,`. Our numerical RG calculation
support this conjecture, at least for smallr .

We begin by considering the particle-hole symmetric c
V050. Figure 21 shows the impurity susceptibility com
-
e

l

f

e

g
e

l
el.
ts
e
e,
e

-

e-

d

a
ll

e

puted forr 50.2. For all values of the exchange couplingJ0,
Tx imp varies rather slowly with temperature and heads t
nonzeroT50 limit. However, closer inspection reveals thre
qualitatively distinct cases. Tuningr0J0 to 0.254 yields a flat
curve reminiscent of the~unstable! Jc fixed point of the ex-
actly screened model~see Fig. 19!, whereas any smaller ex
change produces a monotonic rise inTx imp towards the
weak-coupling value of 2/3. Forr0J0.0.254, Tx imp falls
towards a low-temperature limit of approximately 0.33, s
nificantly higher than the strong-coupling value (21r 1)/8
50.275. We interpret this as one piece of evidence for theJ!

fixed point alluded to in the previous paragraph.
Behavior qualitatively similar to that shown in Fig. 21

found for all 0,r ,r max, where 0.26,r max,0.27. For all
r .r max, by contrast, the thermodynamic properties cont
no signature of any intermediate-coupling fixed point. I
stead, the system flows to weak coupling (Tx imp52/3) for
all values of the bare exchangeJ0.

Some of the systematic trends with increasingr are
shown in Figs. 22–24. Figure 22 plots~solid symbols! the
position r0Jc of the unstable intermediate-coupling fixe

FIG. 21. Impurity susceptibilityTx imp vs temperatureT for the
s51 Kondo model with pure power-law scattering specified byr
50.2.

FIG. 22. Critical couplings vsr for thes51 Kondo model with
pure power-law scattering. Solid lines are provided as a guide to
eye. The particle-hole-symmetric fixed-point couplingJc ~solid
symbols! is plotted both to scale and magnified 53. For nonzero
potential scattering~open symbols! there can be zero, one, or tw
critical couplings (J8,J9), depending on the value ofr .
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point as a function ofr . For smallr , r0Jc'r , as expected
from poor-man’s scaling, but the curve turns upward a
then abruptly terminates atr 5r max.

The critical couplingJ! corresponding to the secon
intermediate-coupling fixed point cannot be determined
rectly because the low-temperature behavior does not
dergo any qualitative change asJ0 passes throughJ!. How-
ever, one can estimate the value ofJ! by examining the
low-energy many-body spectrum. The eigenvalue of the fi
excited state at each of the four fixed points of the symme
underscreened problem (J050, Jc , J! and`) is plotted ver-

FIG. 23. Lowest eigenvaluesE! of the discretizeds51 Kondo
model (L53) plotted vsr . Data are shown for the four fixed point
of the particle-hole-symmetric problem, both forN even ~open
symbols! and forN odd ~solid symbols!. Solid lines are provided as
a guide to the eye. TheJc andJ! curves are extrapolated atr 50 to
the weak-coupling and strong-coupling values, respectively.

FIG. 24. Impurity susceptibilityTx imp and entropySimp at the
two intermediate-coupling fixed points of thes51 Kondo model,
plotted vsr . Solid lines are provided as a guide to the eye. TheJc

andJ! curves are extrapolated atr 50 to the values for weak cou
pling @given by Eq.~5.24!# and strong coupling@Eq. ~5.34!#, respec-
tively.
d
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susr in Fig. 23. For smallr , the deviation of theJc levels
from the weak-coupling energies is linear inr , consistent
with the relationr0Jc'r . It appears thatJ! is infinite at r
50 ~at which point the extrapolated levels for the stab
intermediate fixed point coincide with the strong-coupli
values!, and falls progressively asr increases. The energie
at the two intermediate fixed points are projected to cros
a value ofr between 0.26 and 0.27—precisely the range
which these fixed points disappear.

Figure 24 shows the impurity susceptibility and entropy
the two intermediate-coupling fixed points. For each pro
erty, theJc andJ! curves deviate with increasingr from the
weak- and strong-coupling limits, respectively. Just as
the eigenenergies, the two sets of curves appear to cro
the range 0.26,r ,0.27. BothTx imp andSimp vary linearly
for small r . Empirically, the susceptibilities forr &0.15 are
well described by the formulas

Tx imp~Jc!5
2

3
20.7r , Tx imp~J!!5

1

4
10.4r , ~6.11!

while the entropies forr &0.2 have an excellent fit to the
weak- and strong-coupling expressions

Simp~Jc!5 ln3, Simp~J!!5 ln21r ln4. ~6.12!

We have been unable to reproduce these properties by
structing suitable phase shifts for noninteracting electro
We speculate that these intermediate-coupling fixed po
are truly non-Fermi-liquid in character.

Let us summarize the situation at particle-hole symme
For 0,r ,r max there are two intermediate-coupling fixe
points—one stable (J!), the other unstable (Jc). These fixed
points merge atr 5r max, above which value they both dis
appear, leaving weak coupling as the only stable fixed po
~We remind the reader that in the exactly screened Ko
model, the disappearance of theJc fixed point can be tied
directly to the valuer max5

1
2 at which the symmetric strong

coupling fixed point becomes unstable. We have no s
argument to fix the precise value ofr max in the under-
screened model.!

The introduction of potential scattering considerab
modifies the picture presented above. As shown in S
IV D, this perturbation is irrelevant in the weak-coupling r
gime. However, our numerics indicate that it destabilizes
J! fixed point—found in the symmetric problem for all
,r ,r max—towards asymmetric strong coupling. The effe
on theJc fixed point is more subtle, as will be explained
the paragraphs that follow. There are several parallels w
~but also clear differences from! the behavior of an exactly
screened Kondo impurity described in Sec. VI B 1.

We first consider values ofr less thanr max. For eachr in
this range and for anyV0Þ0 one can find a critical coupling
J8(r ,V0) such that anyJ0,J8 yields weak-coupling behav
ior while anyJ0.J8 drives the system to asymmetric stron
coupling. ~The latter case is exemplified by the curve forr
50.2, r0J050.45, andr0V050.3 in Fig. 21, which shows
Tx imp heading towards its asymmetric strong-coupling va
of 1/4.!

The behavior forJ0 precisely equal toJ8(r ,V0) depends
on the value ofr . For 0,r ,r !'0.245, particle-hole asym
metry is irrelevant on the separatrix, and the system
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proaches the fixed point located atV050, J05Jc[J8(r ,0).
The RG flows for this case are sketched in Fig. 25~a!. For
r !,r ,r max, by contrast, the flow along the lineJ0
5J8(r ,V0) is towards a new intermediate-coupling fixe
point at V05Vc , J05Jc8(r )[J8(r ,Vc), as shown in Fig.
25~b!. ~As was the case for a screened impurity spin, ther
actually a pair ofJc8 fixed points atV056Vc . Throughout
this section, these two fixed points—which are related
particle-hole interchange—are treated as one, and all pro
ties discussed will be assumed to depend only on the a
lute value ofV0.!

For r .r max, there is a range of potential scatterin
uV0u,Vc over which the low-temperature physics is go
erned by the weak-coupling fixed point, whatever the b
exchange couplingJ0; i.e., no critical exchangeJ8(r ,V0) can
be found. ForuV0u.Vc , by contrast, there aretwo critical
couplings. The system flows to weak coupling both forJ0
,J8(r ,V0) and for J0.J9(r ,V0), while asymmetric strong
coupling is reached for couplings which fall between the
critical values. IfJ0 is tuned precisely toJ8 or to J9, the
system flows to an intermediate-coupling fixed point wh
we take to be located atV05Vc , J05Jc8(r )[J8(r ,Vc)
[J9(r ,Vc). The RG flows that we deduce for this range or
are sketched in Fig. 25~c!.

FIG. 25. Schematic renormalization-group flow diagrams for
s51 Kondo model, showing theJ0-V0 plane forV150 and fixedr :
~a! 0,r ,r !, ~b! r !,r ,r max, and~c! r .r max. See Fig. 16 for an
explanation of the symbols.
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It was shown in Sec. IV E that there are two equally r
evant operators in the vicinity of symmetric strong coupli
(J05`,V050). Figure 25 illustrates the competition be
tweenOJ1

, which drives the system towards weak couplin

andOV1
, which causes flow towards asymmetric strong co

pling. For r ,r max, the Jc and J! fixed points block flow
along the axisV050, allowing potential scattering to domi
nate the low-temperature behavior. Forr .r max, by contrast,
the sole surviving intermediate-coupling fixed point
(Jc8 ,Vc) stifles the growth of particle-hole asymmetry an
instead steers the system to weak coupling.

We now present some of the numerical evidence in s
port of the picture laid out above. Figure 22 plotsJ8 for fixed
r0V0 and for 0,r<0.7. For r .r max, the second critical
couplingJ9 is also plotted. One sees thatJ9 is typically very
large ~greater than the bandwidth!, implying that the upper
bound on the asymmetric strong-coupling regime is unlik
to be accessible in practice. We identify the rightmost po
on each critical curve~the meeting of theJ8 andJ9 curves!
with theJc8 fixed point. Note that this particular plot yieldsr
and r0Jc8 as functions ofr0Vc . However, by inverting the
procedure to maker the independent variable, one can d
duce that bothJc8 and Vc are increasing functions ofr , at
least over the parameter range shown. One can deduce
instance, thatr0Vc(r 50.38)'0.1 andr0Vc(r 50.68)'0.5.
These rather large values ofVc suggest that forr *0.5, flow
to asymmetric strong coupling~i.e., Kondo screening of the
impurity! can be achieved only under conditions of stro
particle-hole asymmetry.

Figure 26 shows the energy splittingDE! of the lowest
pair of charge-conjugate states at theJc8 fixed point for
0.25<r<0.6. For r &0.3, this splitting is well fit byDE!

}(r 2r !)n!
, with r !50.24560.002 and n!50.4460.15.

For r ,r ! the fixed-point spectrum is observed always to
particle-hole symmetric.

The impurity susceptibility and entropy at the vario
intermediate-coupling fixed points are compared in Fig.
Over the rather narrow ranger !,r ,r max in which theJc

e

FIG. 26. Energy splittingsDE* of the lowest pair of charge-
conjugate eigenstates at the particle-hole-asymmetric intermed
coupling fixed point of thes51 Kondo model, plotted vs the re
duced exponentr /r !21, for L53 and r !50.245. Straight lines
show fits to the leftmost four data points for odd- and eve
numbered iterations of the numerical RG method.
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and Jc8 fixed points coexist, their properties are seen to
verge steadily. For largerr , bothTx imp(Jc8) andSimp(Jc8) rise
monotonically.

Finally, we note that all properties of theJc8 fixed point
shown in Figs. 22, 24, and 26 appear to vary smoothly ar
passes throughr max. This serves as an indication that th
fixed-point couplings (Jc8,Vc) evolve continuously across th
border between the regimes shown in Figs. 25~b! and 25~c!.

D. Overscreened Kondo model

In this section we present results for the Kondo Ham
tonian describing the interaction of a spin-1

2 impurity with
two degenerate bands or channels of electrons@Eqs. ~2.12!
and ~2.13!#. The weak-coupling properties of the two
channel problem are very similar to those presented in
previous two subsections—including the existence for sm
r of an unstable fixed point atr0Jc'r . We focus on the
intermediate–to–strong-coupling regime, where the th
models differ markedly.

At strong coupling, the impurity is ‘‘overscreened’’ b
the two conduction bands and retains a net spin of1

2. For r
50, this limit is marginally unstable,21 giving rise to a
stable, intermediate-coupling fixed point atr0J!5O(1). For
r .0, the symmetric strong-coupling fixed point is outrig
unstable due to the residual impurity degree of freedom,
so one might again expect flow to someJ!.Jc , just as in
the underscreened model.

The existence of two intermediate-coupling fixed poin
was predicted previously using an extension of Withoff a
Fradkin’s poor-man’s scaling analysis2 to the Nc-channel
Kondo problem.6 The dimensionless Kondo couplingr0J̄
was found to rescale from its bare valuer0J0 according to
the equation

d~r0J̄!

dlnT
5rr0J̄2~r0J̄!21c~r0J̄!3. ~6.13!

The coefficientc is a complicated function ofr and Nc ,
which reduces toc5Nc/2 in the limits r !1 and Nc@1.
Then Eq.~6.13! has fixed points satisfyingd(r0J̄)/dlnT50
at r0J̄50, `, and (16A122Ncr ). For small r , the
intermediate-coupling fixed points are located atr0Jc'r
~unstable! and r0J!'2/Nc2r ~stable!. However, these two
fixed points merge atr 51/2Nc , r0J̄51/Nc . For r .1/2Nc
there is no intermediate-coupling fixed point and the R
trajectories flow directly from strong coupling to weak co
pling.

Although the two-channel case does not strictly satisfy
condition Nc@1, the predictions of scaling theory are we
borne out by numerical RG calculations. Moreover, the
termediate fixed points turn out to survive the inclusion
potential scattering~which was not taken into account in Re
6!.

The addition of a second conduction band greatly
creases the size of the basis of the discretized version o
Kondo model and, hence, the computer time required fo
solution of the problem. We have found it impractical
compute thermodynamic properties using a discretization
rameterL53 while keeping all states up to an energy cut
i-

-
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d

d
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-
f

-
he
a

a-
f

Ec>25, as was done in the single-channel problems. T
prevents reliable determination of the temperature dep
dence of the thermodynamic properties. However, exp
ence indicates that fixed-point properties can be compu
accurately for values ofL as large as 10. Below we prese
many-body eigenstates computed forL53, but thermody-
namic properties obtained usingL59 andEc525.

Figure 27 plots the positionr0Jc of the unstable
intermediate-coupling fixed point as a function ofr . For
small r , r0Jc'r , as expected from poor-man’s scaling. A
particle-hole symmetry, the curve turns upward and th
abruptly terminates atr 5r max where 0.23,r max,0.24. In
this respect, the underscreened and overscreened prob
are very similar.

Just as for the underscreened problem, one can ob
indirect evidence for the value ofJ! by examining the low-
lying many-body spectrum. The energy of the first excit
state at each of the four fixed points of the symmetric ov
screened problem (J050, Jc , J!, and`) is plotted versusr
in Fig. 28. The levels at theJc fixed point progressively
diverge from the weak-coupling energies asr is increased
from zero, consistent with the relationr0Jc'r reported in
the previous paragraph. The smooth evolution of the level
the stable intermediate fixed point suggests thatJ! decreases
continuously with increasingr from its value for a constan
scattering rate,r0J!(r 50)'1. The energies at the two in
termediate fixed points can be extrapolated to cross in
range 0.23,r ,0.24 where both fixed points disappear.

Figure 29 shows the impurity contributions to the susc
tibility and the entropy at the two intermediate-couplin
fixed points. For each property, theJc andJ! curves deviate
with increasingr from their weak-coupling andr 50 non-
Fermi-liquid values, respectively, and the two curves can
extrapolated to cross in the range 0.23,r ,0.24. BothTx imp
and Simp vary linearly with r for r &0.15. Empirically, the
susceptibilities are well described by the formulas

Tx imp~Jc!5
1

4
2

r

2
, Tx imp~J!!5

r

6
, ~6.14!

while the entropies fit

FIG. 27. Critical couplings for the two-channel Kondo mod
with pure power-law scattering. Solid lines are provided as a gu
to the eye. The data forr0V050 and 0.1 are plotted both to sca
and magnified 43. For nonzero potential scattering there can
zero, one, or two critical couplings (J8,J9), depending on the
values ofr andV0.
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Simp~Jc!5 ln2, Simp~J!!5
1

2
ln21r ln4. ~6.15!

Two factors greatly impede the study of the effects
potential scattering in the overscreened Kondo model:~1!
Away from particle-hole symmetry, the total axial char
~see Sec. II F! is no longer a good quantum number. Th
change roughly doubles the size of the basis at each itera

FIG. 28. Lowest eigenvaluesE! of the discretized two-channe
Kondo model (L53) plotted vs the exponentr describing the
power-law exchange. Data are shown for the four fixed points of
particle-hole-symmetric problem, both forN even~open symbols!
and forN odd ~solid symbols!. Solid lines are provided as a guid
to the eye. TheJc curves are extrapolated atr 50 to the weak-
coupling values.

FIG. 29. Impurity susceptibilityTx imp and entropySimp at the
two intermediate-coupling fixed points of the two-channel Kon
model, plotted vsr . Solid lines are provided as a guide to the ey
The Jc curves are extrapolated atr 50 to the values for weak cou
pling, given by Eq.~5.23!. The strong-coupling properties@Eq.
~5.35!# are also plotted. Inset: impurity susceptibility~in the same
units as the main figure! at theJ! fixed point vs potential scattering
r0V0, for r 50.2 andr0J050.6.
f

on

of the numerical RG procedure. Even working with a d
cretization parameter as large asL59, we have found it
feasible to retain only those many-body eigenstates w
scaled eigenvaluesE!,Ec'15 ~compared toEc525 for the
particle-hole-symmetric problem!. ~2! The instability of the
two-channel Kondo model with respect to chann
asymmetry21 is found to rise markedly with increasingr and
uV0u. Over much of the parameter space, unavoidable
merical asymmetry at the level of the machine precis
grows to of order unity before the many-body energy lev
get close to the zero-temperature fixed point of the chan
symmetric problem. In light of these obstacles, we focus
remarks on the qualitative features of the RG flow diagra
for r &0.3 andur0V0u&0.5.

For all 0,r ,r max, there appears to be a critical couplin
J8(r ,V0) for any potential scattering strengthV0. Figure 27
plots J8(r ) for two fixed values ofV0. For J0,J8, the sys-
tem flows to weak coupling, while forJ05J8 it reaches the
Jc fixed point of the particle-hole-symmetric problem. F
J0.J8, the flow is to a generalization of theJ! fixed point
found forV050. Specifically, the energy levels are obtain
from those of theJ! fixed point by splitting each pair o
charge-conjugate states. At fixedJ0, this splitting grows with
increasingV0; with V0 held fixed andJ0 starting atJ8, the
splitting initially grows from zero asJ0 increases, then
passes through a maximum, and eventually falls back
wards zero asJ0→`. From this behavior, we deduce that th
RG flows have the form shown in Fig. 30~a!. To within the
accuracy that we can achieve~around 2%!, the impurity en-
tropy is the same everywhere along the line of fixed poin
but Tx imp falls as one moves away from the symmetric fix
point ~see the inset to Fig. 29!.

The RG flows forr .r max @Fig. 30~b!# are qualitatively
similar to those of the underscreeneds51 Kondo model.

e

.

FIG. 30. Schematic renormalization-group flow diagrams for
two-channel Kondo model, showing theJ0-V0 plane forV150 and
fixed r : ~a! 0,r ,r max and~b! r .r max. The thick line represents a
line of RG fixed points. See Fig. 16 for an explanation of the ot
symbols.
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There exists a single intermediate-coupling fixed point
J05Jc8(r ), V05Vc(r ). For all uV0u,Vc the system flows to
weak coupling, whatever the value of the bare exchange c
pling J0. For uV0u.Vc , by contrast, the flow is to wea
coupling forJ0,J8(r ,V0) and forJ0.J9(r ,V0); otherwise
the system flows to asymmetric strong coupling. Figure
plotsJ8(r ) andJ9(r ) for r0V050.5. ~Note the discontinuity
in the slope of theJc8(r ) curve atr 5r max.) The absence o
any critical coupling forr0V050.1 beyondr 5r max indicates
that r0Vc(r ).0.1 for all r max,r ,0.4.

We note that, unlike the exactly screened and und
screened models, the two-channel Kondo model does
seem to exhibit any range of exponentsr !,r ,r max within
which particle-hole-symmetric and -asymmetric versions
the Jc fixed point coexist. Due to the numerical difficultie
mentioned above, this possibility cannot be completely ru
out, but any range of dual fixed points is certainly very n
row (r max2r !,0.02).

E. Departures from a pure power-law scattering rate

Now we consider various changes to the form of t
power-law scattering rate defined in Eq.~1.3!. We focus on
three features which are likely to be present in real materi
~i! removal of the symmetryG(2e)5G(e), ~ii ! restriction of
the power-law variation inG(e) to a region of half-width
D!D, and ~iii ! the existence of a small but nonvanishin
scattering rate at the Fermi energy,G(0)Þ0. The effects of
these modifications can be predicted qualitatively us
poor-man’s scaling, and can be investigated in detail via
merical RG calculations. In the latter approach, each cha
in the form ofG(e) simply alters the values ofF defined in
Eq. ~2.5! and the tight-binding coefficientsen andtn entering
the discretized Hamiltonian, Eq.~2.32!; otherwise the nu-
merical treatment remains the same as for a pure power
scattering rate. It turns out that the first modification abov
relatively inconsequential, whereas the second can sig
cantly increase the likelihood of observing the Kondo eff
for values of r> 1

2, and the third can produce even mo
fundamental departures from the results obtained using
~1.3!.

1. Particle-hole-asymmetric scattering rate

It was pointed out in Sec. III that if the scattering ra
satisfiesG(2e)5G(e) for all e, then the parametersen en-
tering Eq.~2.32! are identically zero. This symmetry is un
likely to be exactly preserved in any real system. We ha
studied the effect of various symmetry-breaking pertur
tions, the simplest being the modification of Eq.~1.3! so that
the conduction band extends over energies2(11m)D<e
<(12m)D. SettingmÞ0 changes not only the hopping co
efficients tn entering the discretized conduction band, b
also leads to nonzero diagonal coefficientsen . This invali-
dates the asymptotic expressions for the conduction-ban
genvalues and eigenvectors presented in Sec. III, and vit
the fixed-point stability analysis of Sec. IV. However, n
merical RG results indicate that the physical behaviors of
Anderson model remain essentially the same. The b
asymmetry prevents the appearance of the symmetric str
coupling fixed point, but the other regimes discussed in S
IV exist and moreover exhibit the same power laws in th
t
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thermodynamic properties. The effect of band asymmetry
the intermediate-coupling fixed points of the three variants
the Kondo model is essentially equivalent to that of poten
scattering on the same problem with a symmetric band.

2. Restricted power-law scattering rate

In real gapless systems, the power-law variation of
scattering rate or of the Kondo exchange is unlikely to e
tend over the entire band in the manner assumed in Eq.~1.3!.
A more realistic form for the scattering rate rolls over to
roughly constant value outside a pseudogap of half-widthD.
This can be approximated by writing

G~e!5H G0ue/Dur , ueu<D,

G0, D,ueu<D,

0, ueu.D.

~6.16!

The effects of restricting the power-law scattering regim
can be predicted using poor-man’s scaling. Consider a lo
ized level described by the nondegenerate Anderson mo
At temperaturesT@D, the impurity is insensitive to the pres
ence of the pseudogap, and one expects the standard ph
exhibited in a metallic host. As the temperature is lower
the effective position of the impurity level scales upwa
according to Eq.~6.2!, while G0 remains essentially constan
Two qualitatively different situations can arise. In the fir
the impurity remains in the valence-fluctuation regime~see
Fig. 12! all the way down to temperaturesT!D. In this case,
once the temperature falls much belowD, the system will
behave very much like an Anderson impurity with a pu
power-law scattering rate, the role of the half-bandwidthD

being taken byD and withed replaced byēd(D) @given by
Eq. ~6.2!#. The qualitative effects of the pseudogap shou
therefore be those reported in Secs. VI A and VI B, althou
the magnitude of these effects will decrease as the pseud
narrows. For example, on any subsequent entry to the lo
moment regime, the effective Kondo exchangeJ will be re-
duced relative to the caser 50 by a factor of at least
u ēd(D)/Dur ~compared to a reduction ofued /Dur for D5D).

Should there exist a solution to Eq.~6.5! such thatTF
*D, then real charge fluctuations on the impurity site will
frozen out before the power-law density of states makes
presence felt. Perhaps the most interesting situation ar
when the system enters the local-moment regime, in wh
case one can Schrieffer-Wolff transform to the Kondo d
scription of the problem. Over the temperature rangeTF
*T*D, the conduction band will begin to screen out t
impurity moment; in the scaling picture, the effective val
of the Kondo coupling will renormalize upwards accordin
to Eq. ~6.13! with r 50. At temperaturesT!D, the impurity
maps onto a model with pure power-law exchange having
effective half-bandwidthD and an exchange couplingr0J̄0

'@ ln(D/TK
0)#21. Here T K

0 5Dexp@21/(r0J0)#, the Kondo
temperature for a system having a constant density of st
r0, is assumed to be smaller thanD. ~If T K

0 .D, then the
impurity will already have entered the strong-coupling r
gime before the pseudogap comes into play, in which ev
perturbative scaling can provide no insight into the behav
for T<D.!
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The scenario of the previous paragraph implies a sign
cant enlargement of the region of parameter space wi
which a fully developed Kondo effect can take place. Co
sider, for instance, the caseU5`, with some fixed valuet of
the hybridization matrix element. Working to lowest orde
let us neglect the many-body renormalization of the impu
energy~which becomes increasingly weak asr increases; see
Sec. VI A 3!. Then the exchanger0J0 entering the effective
low-temperature Kondo problem is approximatelyr0J0

5t2/(Duedu) for a constant scattering rate (r 50),
r0J0ued /Dur for pure power-law scattering (D5D), and
r0J0@12r0J0 ln(uedu/D)#21 for restricted power-law scatter
ing. The last value isenhancedover that obtained with a
constant scattering rate, and forD sufficiently small,J0 will
exceed the thresholdJc(r ). This is true even forr *0.5, a
range in which no Kondo effect can be observed in case
pure power-law scattering.

The predictions made in the preceding paragraphs ca
tested against numerical RG results. Restriction of
power-law scattering to a regionueu,D alters the hopping
coefficientstn entering Eq.~2.32!. The values for smalln
@such that the characteristic temperatureTn given by Eq.
~4.3! greatly exceedsD# become essentially identical to th
corresponding values for the caser 50, while the tn’s for
largen ~such thatTn!D) are still given by Eq.~3.3!. Since
it is the large-n coefficients that determine the low
temperature behavior of the system, the analysis of the st
fixed points of the Anderson model in Sec. IV remains a
plicable.

Figure 31 presents numerical RG data for the Ander
model with r 51, D/D51023, and G0 /D50.050. @The
value of G0 is chosen so that if the energy dependence
G(e) were to derive solely from the density of states, th
the ~energy-independent! hybridization t would be identical
to that used in Fig. 10.# The numerical results bear out qui
well the predictions of poor-man’s scaling. Over the ran
T@D, the impurity susceptibility and entropy are very clo
to those obtained using the samet and ed but a constant
scattering rate~dashed lines!. For ed<20.16D, an initial
increase inTx imp signaling entry to the local-moment regim
is followed by a downturn as the conduction band begins
screen the impurity moment, whereas fored>20.1D, Tx imp
falls monotonically in the manner characteristic of t
mixed-valence and empty-impurity limits.

The pseudogap in the scattering rate begins to make
presence felt about a decade in temperature aboveD. For all
the values ofed shown in Fig. 31, the initial effect is to
produce an upturn in bothTx imp andSimp , signaling a weak-
ening in the effective coupling between the impurity lev
and the conduction band. Fored>20.16D, this weakening
is reversed as the temperature decreases further, and the
tem eventually flows to asymmetric strong coupling. In t
case ed520.16D, where the impurity clearly enters th
local-moment regime at a temperature well aboveD, the
downturn in each property indicates the existence of a Ko
effect where none was found in the pure power-law case~see
Fig. 10!. For ed<20.17D, the rise inTx imp towards the free
local-moment value indicates that when the system enco
ters the power-law scattering regime, the effective excha
coupling is smaller than the critical value needed to br
about Kondo screening of the impurity. Somewhere in
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range20.17,ed /D,20.16 there presumably exists a crit
cal impurity energy that places the system precisely at
intermediate-coupling fixed point, whereTx imp'1/6 ~see
Fig. 14!.

We have performed similar calculations for paramet
chosen so that real charge fluctuations remain possible w
the temperature becomes comparable with the width of
pseudogap~i.e., for a largerD or a smalleruedu andG0 than
used in Fig. 31!. As surmised in the scaling discussio
above, the physical properties depart less dramatically fr
those for a pure power-law scattering rate than in the c
shown in Fig. 31.

We have also investigated the effect of restricted pow
law exchange within the Kondo models. Results for the
actly screened case appear in Ref. 7. In this and the o
variants of the model, the low-temperature behavior can
accounted for by assuming a pure power-law exchange w
the bare couplingJ0 replaced by a~larger! effective value
that compensates for the elimination of conduction ba
states at energy scalesueu.D.

3. Finite Fermi-energy scattering rate

In the context ofd-wave superconductivity, it has bee
predicted3 that the pair-breaking effect of any finite conce
tration of magnetic impurities will feed back to produce
small but nonzero quasiparticle density of states at zero

FIG. 31. Impurity susceptibilityTx imp and entropySimp vs tem-
peratureT for the infinite-U Anderson model with a restricted lin
ear scattering rate described by Eq.~6.16! with r 51, D51023D
andG050.050D ~symbols, solid lines!. Data are also shown for the
same impurity parameters (t anded) but a constant scattering rat
~dashed lines!.
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ergy. This may be taken into account by introducing a low
cutoff D8 on the power-law scattering rate~in addition to the
upper cutoff D considered above!, such that G(e)
'G0(D8/D) r for ueu,D8.

Based on a heuristic scaling approach, similar to that e
ployed in the previous subsection, it is apparent that the
tem can exhibit a wide variety of behaviors, depending
the relative magnitudes of the energy scales in the probl
The lower cutoff on the power-law scattering rate can
significantly affect the physics until the temperature drops
become of orderD8. At this point, the clearest departur
from the caseD850 arises if the impurity is already in, o
subsequently enters, its local-moment regime. In such c
the existence of a nonzero Fermi-surface scattering rate
sures the eventual appearance of a standard, metallic Ko
effect. However, forr *1 at least, most plausible values
the various parameters in the model lead to screening of
impurity only at temperatures that are so low as to be ph
cally irrelevant.

VII. SUMMARY

In this work, we have studied four models in which th
interaction between a magnetic impurity level and
otherwise-uncorrelated host fermion system is described
an energy-dependent scattering rate that vanishes in po
law fashion at the Fermi level. Our principal results are su
marized in the following paragraphs.

In all four models, the effect of the pseudogap in t
low-energy scattering rate is to create a low-temperature
gime which has no counterpart in metals~where the scatter
ing rate is flat in the vicinity of the Fermi level!. This stable
weak-coupling limit, first identified2 in the exactly screened
Kondo model, is characterized by a free-impurity local m
ment which retains its Curie susceptibility down to zero te
perature.

Depending on the value ofr , the weak-coupling region o
parameter space is bounded in each model by either on
two unstable intermediate-coupling fixed points. A partic
hole-symmetric fixed point of this type exists for all 0,r
,r max and is the only such fixed point for 0,r ,r !, over
which range particle-hole asymmetry is marginally irre
evant. Forr .r ! a second fixed point with different prope
ties is reached whenever particle-hole asymmetry is pres
and for r .r max it is the only fixed point of this type. The
values ofr max andr ! are model dependent, but in all the fo
cases that we have studied 0,r !<r max<

1
2.

Another common feature of these models is the existe
of two distinct strong-coupling regimes. The first, symmet
strong coupling, is the natural generalization tor .0 of the
low-temperature limit of the metallic Kondo problem. In th
Anderson and screened Kondo models, the impurity deg
of freedom is completely quenched, as evidenced by the v
ishing of the quantityTx loc , and the sole effect of the mag
netic level is to impose a phase shift on electrons at
Fermi energy. This phase shift results in anomalous ther
dynamic properties, namely, those that would arise if a fr
tion min(r ,1) of an electron were to decouple from ea
conduction band. For exponentsr ,1, the phase shift should
also result in a zero-temperature peak in the electrical re
tivity. The magnitude of this peak should decrease with
r
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creasingr , and forr .1 it should disappear altogether.
Except under artificial conditions of strict particle-ho

symmetry, the symmetric strong-coupling limit is unstab
Generally, the system is driven to an asymmetric stro
coupling fixed point at which a Fermi-level phase shift
6p implies a vanishing impurity contribution to thermody
namic and transport properties. Underscreened and o
screened impurities, however, admit two other possibiliti
For r<1/4, one can obtain flow to~or, for thes51 model,
near! a non-Fermi-liquid fixed point, corresponding to a
effective couplingJ! which decreases with increasingr . For
r *1/4, the generic behavior is flow to weak coupling,
which case the absence of interesting many-body effects
vites comparison with theferromagneticKondo problem in
metals.

In addition to characterizing the location, stability, an
thermodynamics of the various fixed points mention
above, we have also studied the possible crossovers betw
regimes dominated by these fixed points. We have quanti
observations made previously based on a perturbative sca
analysis of the Anderson model that while local-moment f
mation is assisted by the presence of a pseudogap in
low-energy scattering rate, there is a strong suppressio
the effective exchange coupling between any such mom
and the delocalized electrons. As a result, it becomes
gressively harder asr increases from zero—and essentia
impossible for a pure power-law scattering rate w
r *0.5—to find any choice of model parameters which lea
to Kondo screening of the impurity moment. In more real
tic situations where the power-law scattering is confined t
narrow range of energies around the Fermi level, the s
pression is less complete. Even in such cases, though, t
is a significant region of parameter space in which an
screened local moment survives down to zero temperatu
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APPENDIX A: RESONANT LEVEL MODEL
WITH A POWER-LAW MIXING RATE

In this appendix, we analyze a noninteracting resona
level model for the mixing between an impurity level and
spinless conduction band. This model, described by
Hamiltonian

H5ekck
†ck1edd†d1(

k

tk

AN
~ck

†d1H.c!, ~A1!

represents the limitU50 of the Anderson model@Eq. ~2.1!#,
in which up and down spins decouple from one another,
the spin index can therefore be dropped. The mixing rate

G~e!5p(
k

utku2

N
d~e2ek! ~A2!
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is assumed to have the pure power-law form given in
~1.3!. Since the Hamiltonian is quadratic, various propert
of the model can be calculated analytically.

1. Impurity self-energy

The impurity self-energy in the model described by E
~A1! is

S~v!5(
k

utku2/N

v2ek1 i01
. ~A3!

The real and imaginary parts of this quantity are

ReS~v!5P(
k

utku2/N

v2ek

[
1

p
PE

2`

`

de
G~e!

v2e
, ~A4!

ImS~v!52G~v!. ~A5!

Substituting Eq.~1.3! into Eq. ~A4!, one obtains

ReS~v!5

¦

G0

p
lnUD1v

D2vU, r 50,

2G~v!tan
rp

2
sgn~v!, 0,r ,1,

2
G~v!

p
lnUD22v2

v2 Usgn~v!, r 51,

2
2G0

~r 21!p

v

D
, r .1.

~A6!

The expressions forr 50 andr 51 are exact, but those fo
other values ofr are approximations which are valid only fo
uvu,vc(r ). Here,vc(r ) is a cutoff energy scale which ap
proaches 0 asr approaches 1 from above or below. In a
cases, ReS(v) passes through zero atv50. However,
ReS(v) has the same sign asv for r 50, whereas the sign
are opposite for allr .0.

2. Impurity spectral function

The impurity spectral function is

A~v!5
2ImS~v!/p

@v2ed2ReS~v!#21@ ImS~v!#2
. ~A7!

If edÞ0, then for allr>0 the spectral function is feature
less in the vicinity of the impurity energy,

A~ed!5
G~ed!/p

@ReS~ed!#21@G~ed!#2
'const, ~A8!

and takes its low-frequency behavior fromG(v),

A~v!'
G~v!

ped
2

, uvu!uedu. ~A9!

For ed50, by contrast, the spectral function exhibits no
trivial structure nearv50:
.
s

.

-

A~v!'

¦

1

pG0

G0
2

G0
21v2

, r 50,

1

pG~v!
cos2

rp

2
, 0,r ,1,

1

pG~v!F11S D

G0

2
2

p
lnUvDU D 2G21

, r 51,

G~v!

p~gv!2
, r .1.

~A10!

Here,

g511
2G0

~r 21!pD
. ~A11!

For a flat mixing rate (r 50), the spectral function exhibits
the standard Lorentzian resonance centered onv50. For all
r .0 this feature is replaced by a power-law cusp,A(v)
;uv/Du u12r u21, such that the spectral function diverges f
0,r ,2 but instead vanishes forr .2.

3. Conduction-band phase shifts

The mixing term in the Hamiltonian effectively adds on
extra state to the band, centered on an energyēd which is a
root of the equationēd2ed2ReS( ēd)50. As a result, each
of the original band states is shifted in energy frome to
e2d0(e)/p. Hered0, thes-wave phase shift, satisfies

d0~e!5atanS ImS~e!

e2ed2ReS~e!
D . ~A12!

Since one expects the band states to be pushed away
the inserted level, the sign ofd0(e) should be opposite to
that of e2ed2ReS(e). Coupling to the impurity brings
about a change in the density of states,

r imp~e!5d~e2ed!1p21]d0 /]e. ~A13!

For the case of a pure power-law scattering rate withed
Þ0, d0(e)'G(e)/ed at low frequencies. The caseed50 is
again more interesting:

d0~e!

sgn~2e!
'5

~12r !
p

2
2

ueu
G~e!

cos2
rp

2
, 0<r ,1,

p

2lnuD/eu
, r 51,

G~e!

gueu
, r .1.

~A14!

Equations~A14! indicate that ate50, d0 jumps through
(12r 1)p while r imp has ad-function peak of weightr 1. In
the caser 50, the standard interpretation of the smoo
variation of the density of states is that the impurity lev
becomes completely absorbed into the band. This absorp
appears to be incomplete for allr .0, with thed function in
r imp representing the fraction of the impurity degree of fre
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dom that remains localized. Forr>1, not only does thed
function contain the entire weight of the original impurit
but a counterintuitive situation arises in which the impur
level repels delocalized states close to its renormalized p
tion ~here,ēd50) lessstrongly than it repels states that l
further away in energy.

APPENDIX B: DETAILS OF THE EXPANSION
OF F imp AND x imp

This appendix fills in some of the steps in the derivati
of the algebraic expressions for impurity thermodynam
properties presented in Sec. V. In particular, we focus on
methods for performing sums over single-particle eigenst
arising in the perturbative treatment of the discretized eff
tive Hamiltonians introduced in Sec. IV and on extrapolati
of the resulting expressions to the continuum limit.

Consider expansion of the properties in the vicinity of t
weak-coupling fixed point.~Analogous arguments apply a
strong coupling.! The summands encountered in these cal
lations can generally be separated into the product of
parts: the first increasing with the indexj which labels the
single-particle eigenvalues, but doing so no faster thana0 j

4 ,
the second decreasing for largej at least as fast a
exp(2bNhj

!). Provided thatkBT!D andbN!1, this decom-
position ensures that~a! the summand takes its largest val
for 1! j !N, in which range the asymptotic forms given
Eqs.~3.7!, ~3.10!, and~3.11! are essentially exact, and~b! the
summand is sufficiently small forj 5O(1) and for j
5O(N/2) that the range ofj can safely be extended to ru
from 2` to 1`. If, in addition, L is sufficiently close to
unity, the sum overj can be well approximated23 by an in-
tegral over the variableu5bNt!L j 2nN. This procedure,
which amounts to the replacements

(
j 51

~N11!/2

→
1

lnLE
0

`du

u
, ~B1a!

h j
!→u/bN , ~B1b!

an j→anS u

bNt!D ~2n111r !/2

, ~B1c!

converts a sum overj to aL-independent integral multiplied
by a simpleL-dependent prefactor.

The continuum limit is reached by simultaneously taki
L→1 andN→` in such a manner thatbN @defined by Eq.
~5.7!# approaches some valueb̄!1. For all valuesrÞ1, the
precise value ofb̄ drops out of the final expression for eac
thermodynamic property, and so this prescription produ
an unambiguous result. It will be shown below, howev
that for linear scattering rates the leading corrections at
weak-coupling and asymmetric strong-coupling fixed poi
depend explicitly on lnb̄. Sinceb̄ has no physical meanin
for L→1, the continuum limit of the discretized thermod
namic calculation contains a degree of ambiguity in this s
cial case.
si-

c
e

es
-

-
o

s
,
e

s

-

1. Local-moment regime

The starting point for computingF imp in the local-moment
regime is Eq.~5.17!, which contains four separate summ
tions over single-particle eigenstates. Consider first the
constrained double sum overj andk. One can show that this
term represents the second-order shift in the ground-state
ergy of the system due to the perturbationsOV andOJ @Eqs.
~4.7!#. This shift is a temperature-independent quant
which should not contribute to the impurity specific he
Moreover, since the RG transformation@Eq. ~2.34!# subtracts
off the ground-state energy at each iteration, such a term
not be detected numerically and can safely be neglected

Each of the remaining summations enteringF imp contains
at least one factor ofpj , which permits application of the
transformation~B1!. The last term in Eq.~5.17!, which con-
tains a summation over indicesj andkÞ j , requires special
attention. We find it convenient to define

SF52S lnL

a0
2 D 2

~ t!!212rbN
11r 1r 1L~r 12r !N/2(

j Þk

a0 j
2 a0k

2 h j
!pj

h j
!22hk

!2

→
~B1! lnL

a0
2 ~ t!!11rbN

r 121
L~r 12r !N/2

3E
0

`

du
u11r

eu11
(
k51

~N11!/2
~bNa0k!

2

~bNhk
!!22u2

. ~B2!

For 0,r ,1, SF will be dominated by contributions fromu
andk such thatbNhk

!'u5O(1). In this case, the sum ove
k can be converted to an integral overv5bNt!Lk2nN, yield-
ing

SF5E
0

`

duE
0

`

dv
v ru11r

v22u2

1

eu11
. ~B3!

Making the change of variablesv→uy, one obtains

SF5E
0

`

du
u2r

eu11
E

0

`

dy
yr

y221
for r ,1. ~B4!

The u integral is related to the Riemannz function,38 while
the y integral was evaluated in Ref. 2. As a result, one c
write

SF5f~r 11r !c~r !, ~B5!

wheref(x) and c(r ) are defined in Eqs.~5.3! and ~5.22!,
respectively.

For r>1, the k sum in Eq. ~B2! is dominated by the
largest values ofk, and is not well approximated by an inte
gral. If one neglectsu2 in the denominator, the sum can b
performed directly to give Eq.~B5! once again, but with

c~r !'5
lnL

12L2~r 21!
~ t!!r 21, r .1,

1

2
~N11!lnL, r 51.

~B6!
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These manipulations, when combined with Eq.~5.7!,
transform Eq.~5.17! into

2
F imp

kBT
5 ln228 t̃ 1

a0a1

lnL

f~11r !

~ t!!21r S kBT

aD
D 11r

14~Ṽ21 3
16 J̃2!S a0

2

lnL
D 2

1

~ t!!212r

3F lnL rf~2r !S kBT

aD
D 2r

12c~r !f~r 11r !S kBT

aD
D r 11r G . ~B7!

Similar methods can be applied to Eq.~5.18! for x imp .
Again, evaluation of the double sum requires the most c
We define

Sx5S lnL

a0
2 D 2

~ t!!212rbN
11r 1r 1

3L~r 12r !N/2(
j Þk

a0 j
2 a0k

2 h j
!

hk
!22h j

!2
pj p̄j~ p̄ j2pj !

→
~B1! lnL

a0
2 ~ t!!11rbN

r 121
L~r 12r !N/2

3E
0

`

du
ureu~eu21!

~eu11!3 (
k51

~N11!/2
~bNa0k!

2

~bNhk
!!22u2

.

~B8!

For r ,1, the k sum in Eq. ~B8! can be converted to a
integral, yielding

Sx5E
0

`

dvE
0

`

du
v ru11r

v22u2

eu~eu21!

~eu11!3
. ~B9!

Letting v→uy, one obtains

Sx5
f̄~11r !

11r
c~r !, ~B10!

where f̄(x) and c(r ) are defined in Eqs.~5.3! and ~5.22!,
respectively. Forr>1, direct summation neglectingu2 in the
denominator gives Eq.~B10! with c(r ) instead defined by
Eq. ~B6!.

The remaining sums in Eq.~5.18! are straightforward to
perform. The resulting expression for the impurity susce
bility is
e.

i-

kBTx imp

~gmB!2
5

1

4
1

J̃

2

a0
2

lnL

f̄~11r !

~11r !~ t!!11rS kBT

aD
D r

22 t̃ 1

a0a1

lnL

f̄~11r !

~ t!!21r S kBT

aD
D 11r

14Ũ0F a0
2

lnL

f̄~11r !

~11r !~ t!!11r G 2S kBT

aD
D 112r

1Ṽ2S a0
2

lnL
D 2

1

~ t!!212rF lnLr f̄~2r !S kBT

aD
D 2r

12c~r !f̄~r 11r !S kBT

aD
D r 11r G . ~B11!

The final step is to extrapolate the expressions forF imp
and x imp to the continuum limit. For lnL!1, Eqs. ~2.31!,
~3.4!, and~3.11! reduce to

a,t!'11O~ lnL!, an
2' 1

2 ~2n111r !lnL. ~B12!

Substituting these values into Eqs.~B6!, ~B7!, and ~B11!,
and then letting lnL→0, one obtains Eqs.~5.20! and ~5.21!
with

lim
L→1

c~r !5~r 21!21, r .1. ~B13!

In the special caser 51, application of Eqs.~2.31! and~5.7!
leads to the result

lim
N→`,L→1

NlnL522lnS b̄kBT

D
D , ~B14!

where, as stated above,b̄ is the limiting value ofbN . This in
turn leads to the replacement specified in Eq.~5.26!.

2. Symmetric strong-coupling regime

The sums entering Eqs.~5.27! and ~5.28! can also be
transformed into integrals using the methods described in
previous subsection. The leading deviations from the fix
point free energy and susceptibility arise from first-ord
terms in perturbation theory, and so there are no double s
mations to contribute logarithmic corrections to the simp
power laws in temperature. For small but finite lnL, one
obtains

2
F imp

kBT
5r 1ln428 t̃ 2

b1b2

lnL

f~12r !

~ t!L2r /2!22rS kBT

aD
D 12r

~B15!

and

kBTx imp

~gmB!2
5

r 1

8
22 t̃ 2

b1b2

lnL

f̄~12r !

~ t!L2r /2!22rS kBT

aD
D 12r

24Ũ1S b1
2

lnL
D 2F f̄~12r !

~12r !~ t!L r /2!12r G 2S kBT

aD
D 122r

,

~B16!

wheref(x) and f̄(x) are defined in Eqs.~5.3!. Extrapola-
tion to the continuum limit yields the final expressions co
tained in Eqs.~5.30! and ~5.31!.
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