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Real-space approach to the calculation of magnetocrystalline anisotropy in metals
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We have implemented the fully relativistic and spin-polarized extension of the locally self-consistent
multiple-scattering method. We have calculated the spin and orbital magnetic moments and magnetocrystalline
anisotropy energy of Fe, Ni, and Co in the face-centered-ditig and hexagonal-close-packéitp crystal
structures. We have obtained fast convergence of these quantities in real space. Moreover, these results
compare favorably with the results of conventiokadpace method$S0163-182@08)00722-X]

[. INTRODUCTION In the LSMS method it is assumed that the Green function
for each site in the solid can be obtained by considering only
The consideration of magnetic interactions in solidla-  multiple-scattering effects from a finite cluster of atoms, re-
tivistically leads to magnetocrystalline anisotropy that is oneferred to as the local interaction zofldZ), surrounding that
of the important physical quantities that determine the techsite. In the LSMS method the LIZ size is the central conver-
nical magnetic properties of bulk metallic alldyand thin  gence parameter rather thkepoint sampling as in conven-
films®>* and is also of importance to the physics of heavytional reciprocal space band-structure methods. As has been
fermion systems. So far, first-principles quantum- pointed out previously, the convergence rate with respect to
mechanical calculations of the magnetocrystalline anisotropy.1Z size depends on the quantity that is being calculated. For
have nearly all been carried out by usikgspace methods example, the electronic charge density is much more rapidly
designed for periodic systems. This however considerablgonvergent than the total energy. For fcc and bcc transition
limits the range of applications. In this paper we advocatanetals, a LIZ consisting of one or two nearest-neighbor
use of a real-space method that offers the hope of allowinghells(NNS's) is sufficient to converge the electronic charge
us to perform spin-polarized relativistic total-energy calcula-density while, for simple casdsg.g., Cu, Z), a minimum of
tions in complex systems such as disordered alloys, thifive or six NNS’s are required to converge the total energy,
films, magnetic multilayers, and interfaces where nonperiand for more difficult case®.g., M9 an even larger LIZ and
odic effects, such as compositional inhomogeneities, latticghe use of a finite temperature, Harris-Foulkes-like, free-
relaxations, strains, and noncollinear magnetizations, are imenergy functiondland a fictitious electron temperature of a
portant. Moreover, in the case of periodic systems, a realfew thousand degrees is required to obtain convergence. For
space approach might provide a way of analyzing such prophe magnetic moments of transition metals calculated with
erties as orbital magnetic moment and even such subtlihe standard nonrelativistic local spin-density approximation,
relativistic effects as the magnetocrystalline anisotropy.  those of Fe and Co are obtained accurately with just two or
In this paper we present the spin-polarized relativisticthree NNS'’s, while no magnetic moment is found for Ni with
(SPR implementation of the real-space locally self- a LIZ of less than four NNS'’s after which it converges rap-
consistent multiple-scattering.SMS) method®’ A prelimi- idly to the result obtained using conventional band-structure
nary account of this work has recently been publishédk methods. Here, we make a detailed study of the convergence
though in this paper we only present results for elementahs a function of LIZ size of the spin and orbital moments and
metals, the resulting SPR-LSMS method has the propertyjnagnetocrystalline anisotropy energMAE) of elemental
that computational effort will scale linearlyO(N)], with Fe (bco, Ni (fcc), and Co(fcc and hcp using the SPR-
system sizeN, in the same manner as the standard nonrelat SMS method and compare the results with standard meth-
tivistic LSMS method. Consequently, the SPR-LSMS can beods.
trivially extended to large € hundreds of atomssystems The magnetocrystalline anisotropy energy of a transition
using currently available massively parallel computers. metal is a notoriously difficult quantity to calculate
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space’*?In some calculations in excess of 300 G0Points  G(r,r’,E) has been discussed by Strangeal®>% In the
were required to converge the necessary Brillouin Z8¥®  vicinity of sitei it can be written as
integrationst? Special procedures such as the state tracking
method have been developed to obtain faskespace , i ii ix,
convergencé? With this method these authors studied the G(r.r 'E):AEA:, Zy(ri B[ B)I A 20 (11 E)
contributions to the Brillouin zone integral from the various '
k-space regions. However, different BZ integration tech- i ix
nigues can give rise to very different results, even to the _; ZA(r«B)Ix (1>, B), @
extent of identifying different easy axes of magnetization. _ _

Recently, a self-consistent real-space recursion metho@herer;=r—R; and the scattering path matrix for the cluster
using a tight-binding linear muffin-tin orbitalTB-LMTO)  Of the sizeM is
Hubbard Hamiltonian with spin-orbit coupling was 1 1
implemented® to study the MAE of thin Fe films on a m(LZ]E)=[Tu —gml ™ G

Cu(00) substrate. This study, coupled with our earlier Here A stands for the pair of relativistic quantum numbers
results® indicates that real-space approaches have suffic,, 1), X refers to taking the complex conjugate of the com-
ciently rapid convergence to make the task of calculating th?)lex spherical harmonic term of Z is the one-electron

magnetocrystalline anisotropy possible. In addition, theyenergy, and ¢]; denotes a configuration of the cluster sur-
have the potential to make the identification of underlyingyoynding the sité. The real-space structure constants matrix
mechanisms more transparent and also to allow us to invei’—M consists ofM XM matrix subblocks that are calculated

tigate more complex systems. with respect to sité. The clustet matrix T,y hasM nonzero

In the past theD(N) behavior of the LSMS meth8thas  jqcks on the diagonal, each of which corresponds to a
allowed the investigation of a number of properties of COM-gjngle-site relativistic scattering matrix.2>
plex systems based on large (250000 atom unit-cell Rajagopal and MacDonald and Vodkdave shown that
models of disordered and amorphous alloys. These includge ground-state energy of relativistic many-electron systems
the calculation of the energies of random and short-rangg 5 functional of the ground-state four current, and that the
ordered Ct; —)Zn (Ref. § and Ni-richB-phase Nk _)Alc  Kohn-Sham-Dirac equations after the Gordon decomposition

alloys;®*the study of the electronic structure and energetic$ the current and neglect of diamagnetic effects are
of bulk amorphous metal$;'®investigation of the nature of

screening and Coulomb correlations in random alf§ys, {—itcap+Bmc+ Ve n(r),m(r)]

the study of magnetic short-range order in CuNi all&}/and off

the study of noncollinear magnetism in NiFe allGydere +BoB[n(r),m(r)]—-E}¢i(r)=0, (4
we extend its range of applicability by incorporating relativ-

istic effects that allow us to treat magnetocrystalline anisot- _ + _

oDy, n(r)=2 4 (Ne(r), (5)

The organization of the paper is as follows. In the next
section we discuss the formalism and computational imple-
mentation of the relativistic LSMS. In Sec. Il we study the
convergence of our method for bulk Fe, Co, and Ni, and in
Sec. IV we present our conclusions.

m(r)=2, ¢ (r)Boyi(r), (6)

Veff[n(r),m(r)]ZVeXt(r)Jr_ oE [gr(]E)r')m(r)]
Il. METHOD

n(r’)

The real-space M) multiple-scattering method involves ezj U—Tdr,’ 7
self-consistent calculations in which the Poisson equation is ]
solved for the whole system, while the quantum-mechanical SEXC

” : : [n(r),m(r)]
guantities such as electron density, the density of states, andBeff[n(r),m(r)]:(eﬁ/2m0)< gextg — -~ > 7' 7
thereby the total energy of a system, are obtained by solving om(r)
the multiple-scattering problem for a local interaction zone ®)
centered on each of the atom sites. Thus the total electroRere ;(r) is a four-component one-electron Dirac spinor,
density, used in solving the Poisson equation, is given by thgeff js an effective potential that is the sum of three terms:
set of individual site densitié$ an external potentiav®*! due to atomic nuclei, the relativis-

tic exchange-correlation potential, and the electrostatic po-
=S gl tential. The matricegr and 8 are the standard Dirac matri-
p(r)= —~ PmT (), @) ces:o is the 4x4 Pauli matrix vectorB®'' is an effective
magnetic field consisting of an external magnetic field and an
wherea;(r) is the truncation function for the Voronoi poly- exchange correlation term that couples to the spin of the
hedron that confines atomandM corresponds to the size of electron only. The functiong, andJ), of Eq. (2) are, re-
the LIZ around sitd. spectively, properly normalized regular and irregular scatter-

To calculatep,, we have used the real-space relativisticing solutions of the single-site Dirac equation corresponding
spin-polarized scattering theory approach. The multipleto an incident wave in th. channel for the potential cen-
scattering formula for the relativistic Green function tered at the sité. For spin-dependent muffin-tin potentials,
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the spinor wave functioZ, as well as single-sité matrix ~ spherically symmetric charge densities in the total-density
have a complicated structure of the folfiy =2 ,, Zy 5/, calculation, will not necessarily give a more accurate answer
where the contributions Z,. satisfy a set of coupled, than the force theorem. We have calculated the Fermi energy
single-site Dirac equations. However, in almost all cases it i$or every magnetization directiom, since the procedure of
sufficient to retain only two terms, i.eZ, ,=Z, .., assuming common Fermi energies for all magnetization di-
R AR Y 2520 rections is not always justifietl.

iy .
Once we have found the Green functidfy. (2)] we can Since the values of MAE for bulk metals are extremely
calculate such quantities as the density of states small, being of the order of severakV, we are interested in
1 a method that would allow one to get the necessary accuracy
n(E)=—Im f Tr G(r,r,E)d’, (9) with the Iez_ist effort. Almost all calculations of the MAE for
™ bulk materials that we are aware of have been carried out by
spin magnetic moment using k-space band-structure methods, in which a lot of at-

tention must be given to the BZ integration, in particular to
—ug 5 [FF the partitioning of the BZ. The main difficulty of this ap-
Mg pin=———1M f d ff Tr BoG(r,r,E)dE, (10)  proach is that this integration is very slowly convergent. For
example, as it has been shown in Ref. 4, a converged single-
and orbital magnetic moment particle sum to the accuracy required for the calculation of
e the MAE of Ni and Fe requires use of several millionskof
morb:ﬂ"ﬂ f dsrf FTr BLG(r,r,E)dE, (11) points. To avc_Jld the use of such a hu_ge numbek pbints,
™ schemes for interpolation of the BZ integral have been de-
veloped. The state tracking procedure introduced in Ref. 14
yses the information about the changes of the band structure
with increase of the spin-orbit interaction to do such interpo-
lation. However the accuracy of this method is not always

where the trace is over spin space dnds the orbital mo-
ment operator. The charge density, which is needed to pe
form self-consistent calculations, is defined as

_ £ clear’*
p(r)= —1Im f Tr G(r,r,E)dE. (12 In the real-space approach we avoid BZ integration and
™ thus are able to calculate the MAE for any possible direction
The total energy then has been calculated as of magnetization. Construction of the scattering matex
each site requires an inversion of a matrix whose size is
occ 1 p(Np(r’) (Imax+ 1)2XM, whereM is the sizg .o_f.the cluster included
Eror= >, €— —f f —,d3rd3r’+ Exdpi.p] in the LIZ. There are several possibilities to reduce the com-
i 2 Ir—r’| putational effort needed to invert such a matrix. One possi-
bility is to reduce the maximum value of the on-site angular
-> Vie.olNp(r)d3r, (13)  momentum cutoff .,,, as we go further out in real space, so

that the total size of the matrix is reduced. As has been

wherep=p;+p, and we have used a nonrelativistic form of shown in many cases, it suffices to ppf,,=3 on the first
the exchange-correlation potentigl ,, where the total WO shells 7of the cluster, cuttn_‘lgnax to 2 or less for the rest
spin-up and spin-down potentialg, are related to tha/e'® of the LIZ.” In all our calculations we have pul,,,=3 on

andBe'" potential terms occurring in the Dirac equation via the first three shells, while for the rest of the clustge,
=2 has been used. Furthermore, due to the symmetry prop-

. (Vi+V)) erties of periodic systems, the scattering matrix becomes
% N=—5 (14 rather sparse, so that taking this into account by using a
special package designed for linear algebra calculations of

V.=V, sparse matrices, we can further reduce the computational ef-
Be”(r)z%. (150  fort. Combining these we speed up the calculations by a

factor of 2 for the hcp Co calculations with a local interac-
Due to the variational character of the expression for the totdion zone containing 81 atoms.
energy in density-functional theory, the main contribution to It is crucial for the method that the convergence of the
the change in the total energy upon rotation of the magnetitotal energy with respect to the size of the LIZ is sufficiently
zation direction comes from the change in the sums over thést to make the calculation feasié.As it has been
occupied single-particle energies shown’ four shells of scatteres, corresponding Nb=55,
results in an error of less than 1 mRy in case of fcc Cu.
o ~ ~ However the question remains as to how far we should go to
AE(R, A") =2 e()i— > e(R');, (16)  get a convergence within the value of the MAE of bulk met-

' ' als, i.e.,ueV. Fortunately, it does not seem to be important
where n and n’ are arbitrary magnetization directions. This to get such a good convergence in the absolute value of the
is the essence of the force theorem and gives a formal justtotal energy to obtain reasonable results for the MAE. This is
fication for calculating MAE as a difference between single-because the MAE is determined as an energy difference, so
particle eigenvalue sums. It has been noticed by Daalderofnat we have to check the convergence of eigenvalue sum
and co-workerthat subtractions of two total energies, de- difference for a particular LIZ. This we discuss in the next
termined from two self-consistent calculations, but usingsection.

occ occ
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FIG. 1. Convergence of the spin and orbital magnetic moments LIZ Size (Atoms)
and the ratio of orbital to spin moments as a function of the LIZ size
for BCC Fe(lattice spacing: 5.27 Bohr FIG. 2. Convergence of the magnetocrystalline anisotropy en-
ergy as a function of the LIZ size for BCC Flattice spacing: 5.27
1Il. RESULTS AND DISCUSSION Bohr). Results of previous calculations SPR-LMTGREf. 23,

LMTO (Ref. 28, FP-LMTO (Ref. 13, FP-LMTO-OPC(Ref. 11,

In Fig. 1 we show for Fe the convergence of the spinKKR-ASA (Ref. 34 are marked on the right-hand side of the fig-
moment, orbital moment, and the ratio of the orbital to spinure. Experiment is indicated by the dot-dash line.
moments as a function of the LIZ size. We note that for the
spin moment the value obtained with a LIZ of only one shellment with thek-space equivalent of our method, namely, the
(13 atoms is within 7% of the value for six shell§65 at-  spin-polarized relativistic Korringa, Kohn, and Rostoker
oms. Therefore, only slight improvement is obtained by in- (SPR-KKR method, for which the corresponding values are
cluding up to five additional shells. For the orbital moment,2.08.5 and 0.05¢.5.%*
the one shell result differs from the six shells result by 20%, The magnetocrystalline anisotropy results from the total-
while the five shell59 atoms result is within 2% of the energy difference between the easy and hard magnetization
result for six shells. Clearly, the spin and orbital momentsaxes. For bulk transition metal magnets Fe, Co, and Ni it is
have different convergence properties, the orbital momenyery small and, consequently, difficult to calculate using the
being more sensitive to the environment. For the case of thr-space methods. As can be seen from the results of previous
ratio of the orbital to spin moments, the one shell resultcalculations displayed in Fig. 2, it is possible to obtain
differs from the six shells result by 12%. Furthermore, thewidely different values for this quantity even within different
five and six shells results are essentially identical, implyingimplementations of the same band-structure method, some-
that the ratio is well converged after six shells. times to the point of obtaining the wrong sign. Since, the

In Table | we show our results for the spin and orbital anisotropy energy is only of the order pfeV’s, one might
moments together with literature values obtained ustAg presume such a quantity to be beyond the scope of the accu-
space methods and together with experimental values. On@cy of the real-space methodology used in this paper, where,
can see that our values of 208 and 0.04Lg for spin and  for six shells, the absolute convergence of the total energy is

orbital moments, respectively, compare very well with theonly ~1 mRy. However, if the truncation errors affect the
k-space results. Indeed, our results are in excellent agree-

0.0
TABLE I. Spin and orbital moments of BCC Fe. The experi- Fe

mental data stem from magnetomechani&sgf. 32 and magnetic BCC
circular x-ray dichroism(MCXD) (Ref. 33 measurements. a=5.27 Bohr

S 0.5
mg(ug) mo(ug) Method Reference =

~ LSMS
2.16 0.048 LMTO 9 =
2.21 0.053 SPR-LMTO 27 § f
2.19 0.059 LMTO 28 10 E @)=, Sin’(0) + a,*Sin' (0] I
2.19 0.091 LMTOrOPC | °
2.19 0.049 FP-LMTO 11 i
2.19 0.078 FP-LMTG-OPC s ‘ ‘ 4 Expt ‘
2.16 0.050 FLAPW 30 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
2.08 0.056 SPR-KKR 31 6 (Radians)
2.08 0.041 SPR-LSMS This work
2.08 0.092 Expt. 32 FIG. 3. Angular dependence of MAE in BCC Fe. Full circles are
2.02 0.087 Expt. 33 the seven calculated values. The full line is a least-squares fit

through these points.
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TABLE Il. Magnetocrystalline anisotropy energy, spin and orbital moments of FCC Ni.

This work

shells my(ug) Mo(mg) E(00D-E(11D) [neV]
4 0.51 970 0.0367 0.408

6 0.59 582 0.0463 -0.544

7 0.54 558 0.0444 -0.434
Method my(us) Mo(ug) E(00D-E(11D) [ueV]
SPR-LMTO (Ref. 9 0.59 800 0.044 -0.500
SPR-LMTO(Ref. 10 0.601 00 0.051 -2.700
SPR-KKR (Ref. 39 0.110
FP-LMTO (Ref. 1)) 0.6085 0.0457 -0.5
FP-LMTO+OPC (Ref. 1)) 0.6109 0.0655 0.5

Expt. (Ref. 39 0.57 000 0.05 2.700

easy and hard axis energies in the same way, it may still beonverged the MAE between tfie01] and[111] directions.

possible to obtain a reliable anisotropy energy. As we shalVe compare ouab initio values with a phenomenological

see now, this appears to be the case, suggesting that origisgpression E(8)=K,[sirf—(0.75-K,/K;)sin*6]

of the magnetocrystalline anisotropy are relatively local in+O(sin®¢).!® From the least-squares fit of our sewanini-

real space. tio calculated values we evaluake /K, to be around 0.35,
We have calculated E([001],[111]) for LIZ sizes from  which is in reasonable agreement with experimental values

one to six shells. For each LIZ size we converge the onearound 0.1 This demonstrates that our method has the pos-

electron term to an accuracy of 1D Ry. Our results are sibility to determine the ratio of the anisotropy constafis
shown in Fig. 2 together with the results of previous calcu-andK,.

lations using conventiond-space methods. We note that an  For Ni, Table Il, we find that we need at least four shells
attempt to calculat?\E([001],[111]) by means of th&k-  of atoms to obtain a magnetic moment. The values of orbital
space equivalent of our method, namely, the SPR-KKRand magnetic moments at the fourth shell are reasonably
band-structure method, with a non-self-consistent potentiaklose to the values for the six and seven shell calculations.
yielded an unrealistic value of 45.0 ueV.'> However, in  We observe again that different calculations give different
another SPR-KKR calculatidf with common Fermi ener- signs for the value of MAE. In our calculations the sign of
gies and within the atomic sphere approximation yielded ahe MAE changes as we increase the LIZ from four shells to
value of —0.95 ueV, very close to our result 6f 0.78 ueV.  six shells. This contrasts with the results on bcc Fe and fcc
Noteworthy is that, in our calculation, the sign, one of theCo where no sign change occurs as a function of LIZ. How-
major sources of contention between the varikispace cal-  ever, further increasing the LIZ to seven shells does not
culations, is independent of the number of shells up to sixhange the sign anymore. While this cannot be construed as
shells. converged, it is satisfactory to see agreement with the SPR-
The power of the real-space approach is illustrated in FigLMTO calculations>*! Comparing our results with thk-
3 where we plot the MAE as a function of anglebetween  space equivalent of our method, SPR-KKRye note that in
the magnetization direction and tteaxis ([001]). These comparison to the Fe calculations the agreement is less sat-
calculations were done for a LIZ of 5 shells or 59 atoms,isfactory.
with angular momentum cutoffs df,,,=4 on the central For fcc Co(see Table Il we find fast convergence of the
atom, | ,,,=3 on the first three shells, arg,,,=2 on the spin and orbital moments and the MAE. This situation is
final two shells of the LIZ. Such a LIZ, we showed above, reminiscent of the Fe results of Fig. 1. The orbital and spin

TABLE lll. Magnetocrystalline anisotropy energy, spin, and orbital moments of FCC Co.

This work

shells my(ue) Mo(e) E(00D)-E(111) [ueV]
1[13] 1.4160 0.0725 1.100

4 [55] 1.5812 0.0741 0.950

6 [87] 1.5900 0.0740 1.050
Method my(ug) Mo(g) E(00D-E(111) [ueV]
SPR-LMTO (Ref. 10 1.594 0.073

FP-LMTO (Ref. 1)) 1.6184 0.0745 0.5
FP-LMTO+OPC (Ref. 11 1.6187 0.1180 2.2
SPR-KKR (Ref. 39 0.86

Experiment(Ref. 36 1.300
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TABLE IV. Magnetocrystalline anisotropy energy, spin, and or- calculations. We have used the method to calculate the spin

bital moments of HCP Co. and orbital magnetic moments of Fe, Ni, and Co. These

quantities appear to be sufficiently rapidly convergent to

This work make their calculation in real space tractable. In addition, we
shells m(us) Mo(pg) E(000D-E(1010 [neV]  have calculated the magnetocrystalline anisotropy energy.
2[13] 1.496 0.074 -10.8 We have found that if the spin and orbital moments con-
3[19] 1586 0.077 12.1 verged rapidly, so did the MAE. This was the case for bcc Fe
5[33] 1.708  0.065 123.7 and fcc Co. For fcc Ni it took 55 atoms to build up a mag-

6 [39] 1.686 0.066 -106.0 netic moment and we needed a bigger number of atoms to
7 [51] 1.643  0.069 63.2 converge the spin and orbital moments and the MAE. Cobalt
10[81] 1572  0.082 -100.0 in the hcp structure was the worst case we have studied so
Method m(us) Mo(us) E(000D-E(1010 [wev] far, and for 81 atoms neither the spin and orbital moments
SPR-LMTO (Ref. 9 nor the MAE are converged.

spd 1.6100 0.085 .29 In case of hcp Co, the magnetic anisotropy is considerably
spdf 1.5700 0.079 16 larger than in cubic systems, because of reduced symmetry.
Expt. (Ref. 36 1.5900 0.16 65 Thus one might expect that the calculations should be easier.

However, as our calculations for the hcp Co show, neither
the magnetic moment nor the magnetocrystalline anisotropy
moments are converged to 0.5% and 0.1%, respectively, aénergy converge well for the LIZ sizes that are sufficient for
ter 4 shells. The result for the MAE is most interesting. ltsSsystems with cubic symmetry. To understand this result and
value of 1.05QueV is comparable to the result of 0.8&V  to improve the convergence, we are now implementing
obtained with the SPR-KKR, however it is twice as big as screened structure constants techniddeEhese will allow
the FP-LMTO result of 0.5.eV. The present result comes ys to construct the larger LIZ’s needed for hcp Co and, to a
within 20% of the experimentally deduced value of 1.3, sug{esser extent, fcc Ni. These techniques result in reasonably
gesting that in the case of Co the inclusion of orbital polar-sparse matrices whose inverse can be calculated by specially
ization correctioft' might not be necessary. designed sparse matrix algorithms, allowing one to deal with
Surprisingly, we find for hcp Co a much slower conver- gnsiderably larger clusters. The power of the real-space

gence of spin and orbital moment than encountered in any gf,ehoq lies in the possibility of considering nonperiodic sys-

our previous caIguIanns for pcc Fe, fcc Ni, and fcc Co. For}ems or systems with reduced symmetries. Thus, the question
instance, the spin moment is only converged up to 4.59

when comparing the results of 51 atoms with 81 atoms. It is%f real-space convergence fqr .SUCh systemg IS crucial for the

worse for the orbital moment where the same comparisor';netr.]Od and we will discuss it in more detail in future pub-

gives only a convergence of 16%. It should therefore com(l,"cat'ons' - . . . .

as no surprise that we did not manage to converge the MAE. Qur preliminary experience Wltf] the screening techniques

Sign changes occur frequently and still occur between 51 antfdicates that calculations for LIZ's of several hundreds of

81 atoms. These results might be a consequence of the ral0MS can be routinely performed on typical workstations.

duced symmetry since hcp has a lower symmetry than theince the methodology is by construction of order it

fcc and bec structures that we previously studied. MoreoverOPens up a possibility of studying spin and orbital moments

our calculations were performed for the experimemted ~ @nd magnetocrystalline anisotropy in complex inhomoge-

ratio that is 0.7% smaller than the idezlla ratio. This fur- Neous systems such as magnetic multilayers with interface

ther reduced the symmetry. Another possible source of corroughness and disordered alloys.

vergence problems might be associated with the angular mo-

mentum cutoff. A SPR-LMTO(Ref. 9 (Table IV) shows

that the spin and orbital moments still change substantially

on going _from Imax=2 to Im_aX:3 and the MAE even ACKNOWLEDGMENTS
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