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Landau theory of stripe phases in cuprates and nickelates

Oron Zachar and S. A. Kivelson
Department of Physics, UCLA, Los Angeles, California 90095-1547

V. J. Emery
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000

~Received 29 January 1997!

We consider a Landau theory of coupled charge and spin-density-wave order parameters as a simple model
for the ordering that has been observed experimentally in the La2NiO4 and La2CuO4 families of doped
antiferromagnets. The period of the charge-density wave is generically half that of the spin-density wave, or
equivalently the charges form antiphase domain walls in the antiferromagnetic order. A sharp distinction exists
between the case in which the ordering is primarily charge driven~which produces a sequence of transitions in
qualitative agreement with experiment! or spin driven~which does not!. We also find that stripes with non-
collinear spin order~i.e., spiral phases! are possible in a region of the phase diagram where the transition is
spin driven; the spiral is circular only when there is no charge order, and is otherwise elliptical with an
eccentricity proportional to the magnitude of the charge order.@S0163-1829~97!06027-X#
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Experiments on the doped lanthanum nickelate1 and lan-
thanum cuprate2,3 families of materials have established th
topological stripe phases are a prominent feature of do
antiferromagnets. In the low-temperature stripe phase,
doped holes are concentrated in periodic walls, which
simultaneously discommensurations in the Ne´el order. In this
paper, the phase diagram of coupled charge-density-w
~CDW! and spin-density-wave~SDW! order parameters wil
be constructed from the Landau theory of phase transitio4

By associating the experimental observations withdistinct
regions of the global phase diagram it is possible to g
insight into the microscopic mechanism of stripe formati
and the nature of the spin ordering. It will be shown that
experiments are consistent with the suggestion that str
are produced by frustrated phase separation5–8 and not by a
Fermi surface instability.9

The analysis also addresses the existence of spiral m
netic order found in some theoretical studies of dop
antiferromagnets.10 A circular spiral phase~in which the
magnitude of the ordered moment is a constant! is only pos-
sible if there is no accompanying charge order; the coup
of the spin and charge order generally produces an ellipt
spiral phase, with the eccentricity of the ellipse proportio
to the magnitude of the charge order parameter. In the re
of the phase diagram that we associate with all known
periments, spiral phases are a remote possibility. They
appear only as a third transition~yet undetected! at very low
temperatures.

It will be assumed that the Landau free-energy functio
depends on only the fundamental Fourier components of
SDW and CDW order parameters. Of course, as alwa
higher harmonics will appear as the magnitude of the or
increases, but this has no effect on the nature of the ph
diagram. So as to focus on the situation of immediate exp
mental relevance, we will consider the quasi-tw
dimensional case in which the ordering vectors lie in a pla
570163-1829/98/57~3!/1422~5!/$15.00
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~and, ultimately, in a line!, but the generalization to othe
geometries is straightforward.~We shall return to the issue o
the fluctuation effects peculiar to quasi-two-dimensional s
tems at the end.! Also, we consider the case in which th
crystal has the symmetry of a square lattice, and the orde
vectors lie along a symmetry direction, so that there are o
two inequivalent directions of the ordering vector~along the
diagonals in the case of the lanthanum nickelates, and a
the vertical and horizontal directions for the lanthanum c
prates!. This will allow us to extract the essential physics
a relatively simple way. The generalizations to the vario
space groups of the structures of any given material~which
in principle should be used! and to allow different ordering
vectors is straightforward.

With these restrictions, the stripe order can be descri
by the two complex scalarsrkW andrkW8 and the complex spin
vectorsSqW and SqW 8, corresponding to charge order and sp
order, respectively. Here, the vectors (kW , qW ) are related to
(kW8, qW 8) by rotation throughp/2, andqW is measured relative
to the magnetic ordering vectorQW of the undoped system.~It
is assumed thatQW is unique, which requires thatQW [2QW ,
i.e., that 2QW must be equal to a reciprocal lattice vector.!

The most general free energy up to fourth order is c
structed by including all terms allowed by symmetry, i.
translation, time reversal, reflection, and spin rotation inva
ance, and the crystal point-group symmetries

F5F~rkW ,SqW !1F~rkW8,SqW 8!1Fint~rkW ,SqW ,rkW8,SqW 8!,

F5
1

2
r ruru21Ururu41

1

2
r suSu21UsuSu4

1Ux~S3S* !•~S3S* !1l1@~S•S!r* 1c.c.#

12l2uSu2uru2. ~1!
1422 © 1998 The American Physical Society
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57 1423LANDAU THEORY OF STRIPE PHASES IN CUPRATES . . .
Note that it is not necessary to include separate contribut
from wave vectors2qW and 2kW since the charge and spi
densities are real, and hencer2kW5rkW

* and S2qW5SqW
* . Also,

there is no separate contribution of the formuS•Su2 because
it may be written as a linear combination of the other qua
terms.Fint , which is entirely quartic, has cross terms co
pling the order at (qW ,kW ) and (qW 8,kW8) ~e.g.,V1uSu2uuS8u2). For
simplicity, and because it is the case of experimental inter
it will be assumed that the interactions inFint are uniformly
repulsive, so that unidirectional order is favored~i.e., spin
order will occur atqW or qW 8, but not both!. For example, we
do not allowFint to contain terms that favor checkerboa
order6 as an alternative to stripe order.

The third-order term (l1) coupling spin and charge i
allowed if and only if

kW52qW . ~2!

As discussed previously,11 this relation is the generic reaso
for the ‘‘topological’’ character of the dopant-induced stru
ture, as it implies that the period of the spin modulation
twice the period of the charge modulation or, in other wor
a periodic array of hole lines induces an array of antiph
spin domains.

The free energy in Eq.~1! does not contain umklapp
terms, in which the sum of wave vectors is equal to a rec
rocal lattice vectorGW , which become important in the neigh
borhood of a commensurability. Assuming that Eq.~2! is
satisfied, the possible umklapp contributions up to fourth
der areS•S ~when 2qW 5GW ); r2, S•Sr, and (S•S)2 ~all when
4qW 5G); r3 ~when 6qW 5G) andr4 ~when 8qW 5G). Higher-
order terms give~weaker! commensurabilities at smalle
wave vectors. As usual,12 the system will display commen
surate regions separated by soliton ‘‘discommensuratio
when the wave vector is close to a commensurate value

From now on we will drop the subscripts on the ord
parameters, since each order parameter has a single
vector, as specified above. Also the normalization of the
der parameters will be chosen so thatUr515Us .

Nature of the ordered phases.With only two wave vec-
tors (6qW ), the spin order must be either collinear or cop
nar, since a full three-dimensional spin texture requires
least three ordering vectors. We consider the collinear
the noncollinear cases separately.

When the spin order is collinear, the axes and origin
coordinates may be chosen so thatS5uSue1 and r5urueiu,
whereu determines the relative phase of the charge and
density waves. In real space this means that the charge
spin density are

r~rW !2 r̄ 52urucos~2qW •rW2u!,

S~rW !eiQW •rW52uSue1cos~qW •rW !. ~3!

It is easily seen that the free energy is minimized w
u5p for l1.0 andu50 for l1,0. Clearly, foru5p, the
charge density is peaked on the spin domain walls where
magnitude of the spin order is zero. Since, in all microsco
models studied to date, doping tends to depress magn
order, we expect on general grounds thatl1.0.
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Thus, for collinear spins, the Landau free energy can
expressed in terms of the magnitudes of the order parame
as

F linear~ uru,uSu!5
1

2
r suSu21uSu41

1

2
r ruru21uru4

22ul1uuSu2uru12l2uSu2uru2. ~4!

For a coplanar spiral phase, the origin of coordinates a
axis of quantization may be chosen so th
S5uSu@cos(a)e16 isin(a)e2#, which corresponds to a real
space spin density

S~rW !eiQW •rW52uSu@cos~a!cos~qW •rW !e16sin~a!sin~qW •rW !e2#.
~5!

Clearly, tana determines the eccentricity of the elliptical sp
ral, anda5p/4 corresponds to an ideal spiral, in which th
magnitude of the magnetic order is a constant. The minim
zation of the free energy~with the assumption thatuSuÞ0)
with respect toa ~in the range 0,a<p/4) andu can be
carried out straightforwardly. Iful1uuru/UxuSu2>1, the result
is a50, or in other words the collinear state is recovere
For ul1uuru/UxuSu2,1, the free energy is minimized for

uSu2cos~2a!5uS1u22uS2u25ul1uuru/Ux ~6!

and as a function ofuru and uSu the free energy of the spira
state is

Fspiral~ uru,uSu!5
1

2
r suSu21~12Ux!uSu41

1

2S r r2
2l1

2

Ux
D uru2

1uru412l2uSu2uru2. ~7!

The spiral phase is limited by the constraintucos(2a)u<1,
which for the simple case ofl250 is satisfied only for

r s
2F Ux

2ul1u~12Ux!
G2

1S r r2
2l1

2

Ux
D>0. ~8!

The phase diagram shown in Fig. 1 was derived by mi

FIG. 1. A phase diagram showing the location of the pha
boundaries forl250 and 0,Ux,1.
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mizing the free energy in Eq.~1! with respect tor and S
where, to be concrete, we have shown the locations of
phase boundaries for the casesl250 and 0,Ux,1. It ex-
hibits five distinct phases:~I! a disordered phase, withuru50
and uSu50; ~II ! a charge ordered phase withuruÞ0 and
uSu50; ~III ! a collinear stripe ordered phase withuruÞ0 and
uSuÞ0; ~IV ! an elliptical-spiral phase, withuruÞ0 and uSu
Þ0 and 0,a,p/4 as determined from Eq.~6!. ~V! a cir-
cular spiral phase with spin order but no accompany
charge order. ForUx<0, the two spiral phases are elim
nated from the phase diagram, but the remaining ph
boundaries are unchanged. Let us briefly sketch the ana
that leads to this phase diagram:

The spin driven transition to a collinear phase.For r r.0,
minimizing F linear with respect tor gives

uru5
2l1uSu2

r r
1O~ uSu4!, ~9!

and, on eliminatingr to obtain an effective free energy fo
the spins,

F linear
eff ~ uSu!5

1

2
r suSu21S 12

2l1
2

r r
D uSu41O~ uSu6!. ~10!

Clearly, for r r.2l1
2, there is a second-order transition as

function of r s from the disordered phase forr s.0 to the
collinear stripe phase forr s,0. This transition is spin
driven; if we assume thatr s}(T2Tc), we find the usual
mean-field exponent,uSu;(Tc2T)1/2, while the charge
modulation, which is parasitic to the spin order, grows m
slowly, asuru;uSu2;(Tc2T). The second-order line alon
r s50 ends at a tricritical point, denoted byT1 in Fig. 1,
wherer s50 andr r52l1

2, so that the coefficients of both th
uSu2 and uSu4 terms inFeff(uSu) vanish.

The transition driven by spin-charge coupling.Below the
tricritical point, wherer r,2l1

2, the transition becomes firs
order, and moves into the quadrant in which bothr s.0 and
r r.0; here, the transition is driven by the coupling betwe
spin and charge. The precise shape of the first-order
depends, in general, onl2 and on the values of higher-orde
terms neglected in our truncated form of the Landau f
energy in Eq.~1!; the general topology and structure of th
phase diagram shown in Fig. 1 are, however, unchange
these higher-order terms.

The charge driven transitions.For r s positive and suffi-
ciently large, there is a second-order line along ther r50
axis separating the disordered and charge-ordered ph
This line ends at a critical end point,E1 in the figure, where
the first-order line discussed previously crosses the axis
this range ofr s , there is a second transition at negativer r

from the charge-ordered phase to the collinear stripe ph
at which the spin-charge coupling finally causes the s
density to order as well. Again, one can analyze this tra
tion by first minimizing the free energy with respect tor,
and then analyzingFeff as a function ofS. As a result, there
is a second tricritical point,T2, at which this transition
changes from first order~an extention of the previously dis
cussed first order line! to second order. In either case the sp
order enhances the charge order. In this region of the ph
diagram, higher-order terms in the Landau free energy
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have quantitative~but, we believe, not qualitative! effects on
the results. However, to be concrete, it is useful to disp
analytic results obtained withl2 and all higher-order terms
neglected. Specifically, in this case,

r5r01@l1 /ur ru#uSu21O~ uSu4!, ~11!

where r05Aur ru/2 is the value ofr in the charge-ordered
phase,T2 is the pointr s52l1

2 andr r52l1
2, and the second-

order line is given by the expressionr s52l1Aur ru. The first-
order line, which is given by the expressionr s5l1

21ur ru,
can be located straightforwardly once it is realized that
approaching this line from the stripe-ordered side,r5l1/2
and uSu25(1/4)(2l1

22r s).
The transition to the spiral phases.For Ux,0, it is easy

to see that a collinear phase always has lower free en
than any competitive spiral phase. ForUx.1, the Landau
free energy as written is unbounded below, so higher-or
terms must be included in any analysis. However, forr s,0
and 0,Ux,1, there is the possiblility of a spiral phase.

Therefore, to complete the phase diagram forr s,0 and
0,Ux,1, one must compute the minimal value ofFspiral
@subject to the constraintucos(2a)u5ul1uuru/UxuS2u<1# and
compare it with the minimal value ofF linear. For simplicity,
we first consider the casel250. It is easy then to see that fo
r r /l1

222/Ux.0, Fspiral is minimized by r50 and that
Fspiral,F linear; this is region V of the phase diagram, th
circular spiral-spin phase. At the point wherer r /l1

222/Ux

changes sign, it is clear from Eqs.~6! and~7! that there is a
second-order transition~from region V to region IV! marked
by the onset of both charge order and an elliptical eccent
ity to the spin spiral. Asr r decreases, the spiral eccentrici
gradually increases until it achieves its maximum value~lin-
ear polarization!. The line cos(2a)51 thus determines the
phase boundary between regions IV and III of the ph
diagram; forl250, this line is simply the parabola dete
mined by Eq.~8!. The main effect ofl2.0 ~in this region of
the phase diagram! is to expand the region of the circula
spiral phase at the expense of the elliptical spiral phase.
l2.A(12Ux) the elliptical spiral phase is completely elim
nated. Conversely, of course,l2,0 tends to stabilize the
elliptical spiral phase.

Effect of higher harmonics.So far we have considere
only ordering at the fundamental wave vector, although
course higher harmonics are induced belowTc . It is impor-
tant to verify that these harmonics do not affect the stabi
of the various phases. Slightly belowTc , in a spin-ordered
phase, the effective free energy to orderuSnqW u2 for the nth
harmonic is of the form

Fn5r nuSnqW u21@An•SnqW1c.c.#, ~12!

wherer n.0 andAn is a function ofSqW and rkW , if there is
charge order as well. For a collinear phase, by rotatio
invariance,An}S, so the induced higher harmonics are a
ways parallel to the fundamental. Similarly, for a spir
phase with unbroken time-reversal symmetry, it is straig
forward to see thatAn must lie in the ordering plane, so tha
the planar character of this phase is unaffected by hig



n
r
n

a

th
c
s

is
m
e
th

s
e
a

e

.
F
in

th
er

is
er
ic
k,

ia
n
th
ot
a
i

re
a
t

th
ke
ta

ul
ar
e
n
in
o

o

er.
s

goes
gh

set

can
goes

n-
t in
ect
s it

ular

the
he

the

-
f
e

ing
ase
. In

rge
riv-

y,
re-
s.
nge
ise

ence
age,
the

mi

the
to-

on-
re-

a
en

57 1425LANDAU THEORY OF STRIPE PHASES IN CUPRATES . . .
harmonics. However, if time-reversal symmetry is broke
then a contribution toA0}SqW3S2qW is allowed and the plana
phase is unstable to the formation of a three-dimensio
spiral.

Goldstone modes and fluctuation effects in colline
phases.Landau theory is, of course, mean-field theory, so
is important to address the effects of fluctuations about
mean-field state. In the absence of commensurability effe
there is a Goldstone mode that reflects the broken tran
tional symmetry associated with finiteqW ordering; commen-
surability effects, if relevant, will produce a gap in th
mode, which will be smaller the higher the order of the co
mensurability. In any of the collinear spin-ordered phas
there are two additional Goldstone modes that reflect
broken spin-rotational symmetry. Any uniaxial~Ising! an-
isotropy would produce a gap in these modes.

Thermal fluctuations of these low-lying mode
may not dramatically alter the phase diagram in three dim
sions, but in quasi-two-dimensional systems, such
La1.62xNd0.4SrxCuO4, they always destroy the long-rang
order, unless terms that break the symmetry~e.g., Ising an-
isotropy and umklapp scattering! or interplane couplings
~i.e., three-dimensional effects! are included in the analysis
However, in many cases, this observation is academic.
instance, the correlation length of the two-dimensional sp
1
2 Heisenberg model is roughly proportional to exp(J/T) at
low temperatures13 ~whereJ is the exchange integral anda is
the lattice constant!. Thus the magnetic correlation leng
can exceed the size of the sample at temperatures of int
and, for all practical purposes, the state of the system
indistinguishable from long-range order. The effects of d
order are also potentially dramatic in two dimensions wh
the density wave order will generally break up into Lee-R
domains,14 but, again, if the disorder is sufficiently wea
this may be of largely academic interest.

Goldstone modes of the spiral phase.The elliptical spiral
phase has, in addition to the one Goldstone mode assoc
with broken translational symmetry, and the two Goldsto
modes associated with rotations of the principal axis of
elipse, an additional Goldstone mode associated with r
tions about the principal axis. Ising anisotropy will open
gap in two of the spin-related Goldstone modes, but w
leave the third one gapless; it requiresXYZ anisotropy to
fully gap the spin-related Goldstone modes. Thus, the p
ence of a third Goldstone mode, in particular one with
anomalously small gap, can be used as a diagnostic for
presence of elliptical spin order.

In the circular spiral phase, a rotation in the plane of
spiral is equivalent to a translation, so there is an unbro
composite symmetry consisting of a translation and a ro
tion, which is broken in the eliptical spiral phase. As a res
there are only three Goldstone modes, of which two
purely related to broken spin-rotational symmetry, and on
related to the broken combination of spin rotational a
translational symmetry; this latter mode is thus relatively
sensitive to commensurability effects and to the effects
disorder.

Relation to experimental results.Several features
of the experiments on the cuprates and nickelates may
discussed in terms of the Landau theory analysis. B
La1.62xNd0.4SrxCuO4 ~Ref. 2! and doped nickelates1
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show an onset of charge order prior to spin ord
La1.62xNd0.4SrxCuO4 undergoes two continuous transition
~onset of charge order and later spin order!, and therefore,
can be associated with a path on the phase diagram that
from phase I to phase II, and then to phase III throu
second-order transitions. Several La2NiO 41d samples1

clearly show a first-order transition associated with the on
of spin order in the transition from phase II (uruÞ0, uSu50)
to the full stripe order, phase III. Thus, these experiments
be associated with a path on the phase diagram that
through the first-order transition line between pointE1 and
the tricritical pointT2. In both cases, it is clear that the tra
sitions are charge driven rather than spin driven. Note tha
this region of the phase diagram there is very little prosp
of having a third phase transition to a spiral state, unles
occurs at much lower temperatures.

The above discussion has said nothing about the partic
value of the wave vectork52q. In the Landau theory, the
value of q can only depend on the~nonspecific!
q-dependence of the coefficients of the various terms in
free energy, or on commensurability. Experimentally, in t
cuprates,2,3 the ordered stripes in La1.62xNd0.4SrxCuO4 and
the fluctuating stripes in La22xSrxCuO4 have q'x for
x,1/8, which corresponds to one hole per two Cu along
stripe. Forx.1/8, q'1/8 in La22xSrxCuO4 and somewhat
larger in La1.62xNd0.4SrxCuO4. ~Here, q is measured in
units of 2p/a.! This suggests that the value ofq is influ-
enced by the internal structure of the stripe forx,1/8, and
by the r4 umklapp term forx.1/8. Furthermore, the tem
perature dependence ofq in the ordered phase o
La1.62xNd0.4SrxCuO4 is not strong, which suggests that th
amplitude of the stripe is well established at the order
temperature, and that the transition is produced by ph
ordering, as expected for quasi-two-dimensional systems
all respects, the value of the stripe wave vectorq is deter-
mined by charge dynamics, rather than spin dynamics.

The conclusion of this analysis that stripes are cha
driven rather than spin driven supports the idea that the d
ing force is Coulomb-frustrated phase separation5,6 driven by
the hole dynamics. In order to minimize their kinetic energ
the holes attempt to separate into hole-rich regions and
gions with significant local antiferromagnetic correlation
However, phase separation is frustrated by the long-ra
Coulomb interaction between the holes, and the comprom
between these two forces is the~charge-driven! stripe phase.
The antiphase ordering of the spin domains is a consequ
of transverse stripe fluctuations; it ensures that, on aver
adjacent spins are antiparallel, whatever the location of
stripe.

The alternative mechanism for stripe formation is a Fer
surface instability8 ~due to nesting!, in which the spins form
antiphase domains that are stabilized by holes bound to
domain walls. In this scenario, spin and charge order
gether or charge stripe order follows after spin order, c
trary to experiment. These microscopic theories also p
dicted the possibility of spiral phases10 ~though not that they
must be elliptical!. We conclude that theories based on
Fermi surface instability may be relevant in the spin-driv
region of the phase diagram (r r.0) but not for any of the
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materials of interest, which all show a charge driven
quence of transitions.

Indeed there are more general reasons to believe tha
ordered phases in the high-Tc cuprates should not arise from
a Fermi surface instability. It has been argued15 that these
materials belong to a class of ‘‘bad metals,’’ in which the
are no quasiparticles, and therefore no Fermi surface
Fermi surface instabilities.
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