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Atomistic analysis of the field-ion microscopy image of Fgl
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A unified lattice inversion method is applied to calculation of interatomic potentials and binding-energy
differences between various kinds of surface atoms. Based on these calculated interatomic potentials, the
field-ion microscopy images for RAl are discussed in detail in order to develop the general concept and the
evaluation method of selective evaporation for binary ordered al[@®&163-182@08)01022-4

[. INTRODUCTION is based on two assumptior(4) In a binary alloy one of the
species is invisible, and the other is visibl@) The atom
The study of the field-ion microscop§IM) shows per- with lower sublimation energy in its pure metallic state is
fect ring structures in FIM images for pure metals. The sizenvisible. Obviously, both assumptions are empirical rather
of concentric rings corresponds to the local curvature radiughan theoretical. Both have been used to successfully explain
of the specimen’s tip surface. Larger planar density of atomghe FIM images of NjMo, NizAl, and PtCo with the asser-
corresponds to more prominent poles in the FIM imdgfes. tion that parameters such as sublimation energies for pure
The clear ring structures also occur in the FIM images forbulk metals are transferable to alloy’s surfaces.

binary ordered alloy$-® However, there exists an additional ~ However, this explanation does not work forJA¢. First,
phenomenon in experiment, which is called invisibility. Thattwo types of Fe atoms exist in the DQype of FeAl, Fe'
is, one of the species seems to have disappeared from Fllghd Fé'. The Fé atoms at the “corners” form a simple
images for binary ordered alloys. For instance, Co atoms irubic sublattice. The Featoms at the “centers” form a fcc
L1, PtCo and Ni atoms in D1NisMo seem to be invisible sublattice that is identical with the Al atoms in §4. There-
in the corresponding FIM imag&® Apparently, the invis-  fore, we have no reason to conclude from the experiment that
ibility can be explained by selective evaporation assuminghe fcc-related rings in the FIM images for £ are neces-
that the applied voltage can cause evaporation of surfacsarily attributed to the Al atoms, and not to the'Fatoms,
atoms from the tip sample. According to previous works,and likewise not to the Al and Featoms together. Second,
atoms with lower sublimation energy valu@ the pure since Al has a lower sublimation energy value compared to
metal statg are invisible since they seem to be evaporatedre, the Al atoms should be more easily evaporated than the
easily, and the remaining atoms, which have higher sublimaFe atoms. The visible atoms therefore should b iRstead
tion energy(see Table)lin their pure metallic state, would of Al.
preferably remain at the tip surface and construct the stable In order to resolve the above controversy, one has to give
FIM image. We denote the sublimation energy for pureup conventional premises. It is now necessary to consider the
metal by ES, thenEZ,<ER,, andE};<Ey,. Therefore, the binding-energy difference between various kinds of surface
conception in previous works is apparently in good agreeatoms of FgAl, which include Fé, Fe'', and Al, and perhaps

ment with the experimental results. more. The evaluation of interatomic potentials
Dpra sy Pre-pe and @, becomes the key issue. In the
Il. PREVIOUS WORK ON FIM FOR Fe ; Al present work, a unified formula for inverse lattice probl&mns

will be applied to obtain the pair potentia®a.a » Prere
Recently, the FIM image of Rl has been attracting and ® 4., based onab initio calculated cohesive energy

attention§~*°because of its potential applicatioHsFigure 1 curves. The unified solution of the inverse lattice problems is
shows the unit cell of a R\l superlattice. The D@ super-  presented in Sec. Il with examples of the fcc, bee, and;DO
lattice can be considered as eighs Btructures stacked to- structures. Section IV shows the cohesive energy curves
gether to allow maximum distance between aluminum atbased on theab initio calculation and the universal Rose
oms. By comparing the sublimation energy values of puresquatiort® for fcc Al, bce Fe, and DQ FezAl. In addition,
metals Fe and Al, we can assert that Al should be the invis- o _
ible specie§. However, in the experiment by Wereg aI.,g TABLE I. The sublimation energy values of various pure metals
perfect rings, which correspond to a fcc structure, exist in thdRef. 7.
image of FgAl. Given that the Al sublattice has the fcc
structure, Wenget al. asserted that Fe is the invisible species

in the image of FgAl. Therefore, there is controversy on suplimation energyeviatom 5.84 4.39 4.44 6.82 4.28 3.39
which kind of atoms is invisible. Note that the first argument

Element Pt Co Ni Mo Fe Al
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| | | FesAl
U (0 =U3 00+ U0+ Ui, (D)

wherex is the lattice constant of RAl. The first term in the
right-hand side corresponds to the interactions among Al at-
oms, the second one corresponds to the iron-iron interations,
and the last represents the contribution from the Fe-Al inter-
actions.

A. Expression of inverse lattice problems

Now let us write down the expressions fbrF%A'(x),

AL-Al
UESE:Q(X), and U,E?ﬁ'l(x) in terms of pairwise potentials.

9.3 . . . . . _

@ re' @ Fe’ O Al U,y (X) is composed of the interatomic interactions be

tween the Al atoms in the Al sublattice in g&l, that is
FIG. 1. The unit cell of FeAl (Ref. 9.

the converted pair potential curve® ., Prere and Feal, o, N1 ————
® 5.r. based on the unified lattice inversion formula are in- ~ Jaal (X =7 2(mniZ000 Para(YM=HN7H1%0)
troduced. The above results will be used to evaluate the bind-
ing energies of various kinds of atoms on different surfaces n E §E P
of FesAl. In true, the outcome of the evaluation will be 4 24 TAA
compared to experimental data. The conclusion and discus-
sion are in Sec. V. X[J(Mm=1/2)*+(n—1/2*+1%], 2

lll. THE INVERSE LATTICE PROBLEMS anduizfﬁ'e(x) is composed of the interatomic potentials be-

The total energy of a R\l system containing N atoms tween the Fe atoms, including Fand Fé'. This can be
includes three partial energies expressed as
Fepl, . N1 N 3 . —
Ur()=—= > D JMP+nZ+120)+ — = >, Ppepd (M= 122+ (n—1/2%+1%]
4 2(mn)Z(000 4 2hm)

N Z
N =

J’_

X
2 (DFQ-F4 \/m +n +| ~
(m,n,1)#(0,0,0 2

+g§‘,l cppe_Fe( \/(m—1/2)2+(n—1/2)2+(l—1/2)2g )

The last partial energy is composed of the interactions between the Al atoms and the Fe atoms, that is,

Ur (x) = ; m§r:,| che_Al( J(M=1/22+ (n—1/2) %+ (1- 1/2)2 ;) + ; m}ﬂ‘,l Do Al V(M—1/2)2+ (n—1/2)2+ (1 — 1/2)%x]

+ETNEI breal VM +nZ+ (1 —1/2)%X]. 4

The cohesive energy can be obtained by eitdtemitio cal- B. Carlsson-Gelatt-Ehrenreich technique(Ref. 16

culation or experimental data combined with the application  For most applications the pair potential approximation is
of universal Rose equatidri.In the next step, in order to considered to have spherical symmetry. And in various situ-
determine the pairwise potentiaBa.a (X),Pre.rdX), and  ations either the Lennard-Jones form is used for Van der
®r..a(X) based on the cohesive energy or the partial cohewaals solids:* or the different modified Morse-type poten-
sive energy, we need to solve the inverse lattice problems.tials are used for metdfsextensively. The simplicity of pair
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potentials has made it possible to study the mechanical and C. Generalized Chen-Mdius inversion formula (Ref. 12

defect properties of metals, on the other hand, to study the g, convenience, we replace the lattice constany the

phase t(;iiatgram_t'of binatrj/ aIIoI\)//ls, ?nd the para—kto arlltiffrrothearest—neighbor distance, correspondingly, {S,} by

magnetic transition problem. Most previous works only trea

the nearest-neighbor interactions. Carlssoral!® usedab {bo(n)}, and{Wp} by {ro(n)}, such that

initio band-structure calculation to obtain a pair potential 1.7

with long-range interactions. E(x)= —Z ro(n)®(bg(n)x),
Band-structure calculation can produce the total energy, 2i=1

(12

Ei(r), as a function of lattice constant In general, the
cohesive energ¥(r) =E;u(r) — Ei(°) for each atom in a

wherebg(n) in a monotonically increasing series represents
the distance between the origin on which the reference atom

three-dimensional crystal lattice can be expressed as a sU|ocated and theth set of lattice points;o(n) is the num-

of interatomic pair potential®(x) such that

1
E(r)== > ®(R), (5)

2 R£0

wherer is the lattice constanfR is the lattice vector. For

ber of thenth set of lattice points. For examplbg(1)=1
corresponds to the nearest-neighbor distance. The inverse lat-
tice problem is to determin®(x) from the fitting curve of
E(x), which can be obtained from thab initio calculation.

The trick here is to extend the serifisy(n)} to {b(n)} to
achieve multiplicative closedness. Thus, for anyand n,

concrete deduction, let us assume that each term at a ﬁxetHere existk such that

value ofS,r occurs with a given weightv,, in the sum(5).

These pairs of valuesS, ,W,} are specific to a given lattice

b(k)=b(m)b(n). (13

structure, and can be easily generalized for different lattices

by computer. Thus we may rewrite E¢h) as

E(r)=p§=‘,l W, (S,r). (®)

In fact, denoting thaE(x)=U(x)/N, all the Egs.(2)—(4)
will take the same form as E¢6). Now define an operaték
such that

E(r)=Rd(r)=

> mp}fb(r), )
p=1
where the operatdR,, is defined by

Rpf(r)=W,f(Syr), (8)

in which f(r) is an arbitrary function. The formal inversion

is then
d(r)=9R""1E(r). 9

Carlssonet al. definesR ™! as

o0 -1
R1=|1+% 1D mp) Ry L, (10)
p=2
so that it is given as
1 r AV S,r
d(r)=|—|El = |- —E| =
i (Wl ( 1) ;JEZ(WE) (Sf)
- - Wqu SPSQ
+ L4 11
2 23S ”

The right-hand side of Eq(11) consists of infinite sums,

each of them has infinite terms. The convergence of this

In other words{by(n)} can always be replaced by a multi-
plicative semigrougb(n)}. Therefore, Eq(12) is equivalent
to the following:

©

1
E()=32, r(m®(b(n)x), (14
in which
ro(bg fb(m1), if b(n)e{by(n)},
"M=10, i b(n)e{by(m}. 19
The lattice point shell is called virtual wherfn)=0.
Then the solution to Eq.14) is given by
cb(x):zZl 1(n)E(b(n)x), (16)

in which the inversion coefficient or the generalized il
function(n) is given by
b(k)

“(bl b(m)

This indicates that(n) andr(n) are the modified Dirichlet
inverse of each other, which is a generalization of common
Dirichlet inverse in number theory. The following proves
that Eq.(16) is the solution to Eq(14), as well as to Eq.
(12):

17

) = 5kl .
b(n)[b(k)

221 I(N)E(b(n)x)

b(k)

b(n)

k=1 [ b(n)[b(k)

I(n)r(b‘1 )](D(b(k)x)

o

=k§l 8@ (b(k)x) =D (b(1)x)=D(x).

series is slow, and is analyzeed with difficulty. Thus we shall
illustrate an alternative method based on a generalizéd Mdn the case of b(n)]? not being integers, the least common

bius transform as follows.

multiple of all the denominators can be used in the recursive
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procedure. The solutiof16) with Eq. (17) can be applied to F. Inversion formula for a DO 3 structure
any lattice structure of interest in condensed-matter physics thea inverse lattice problem for a DOstructure or the

or statist_ical physics. Several examples relevent to this worka|ation between the total energy and partial energies can be
are provided as follows. expressed as

From a mathematical point of view, the general expres-
sion ro(n) of the number of the crystallographic lattice 1 o ol ol
points on a spherical surface is unsolved, but this can be EA"FE(X):N[UtoEtzl (x)—UA?AI(x)—UFZ?Fe(x)]. (22
obtained regirously by a very simple computer program up to
the shell as large as required. After this step, a generalizeyihe relation between the partially cohesive eneEgyre(x)

Dirichlet inverse can be introduced. And it is shown thatand pairwise potentiab 5 ro(X) is
once the technique in number theory is applied, the problem
4
Ve

can be solved in an unexpectedly concise manner.
Ealre(X) =8P pppe(X) + 6P o1pe

D. Inversion formula for a fcc structure (Ref. 12

. 11 19
The inverse problem can be expressed as + 24D 5 g \/;x +8<I>A|_Fe( \/;x)
1 o
E=5 > ®[V2(i%+]*+K)x] 20
{i,j,k}#0 +24(DA|_|:e ?X +24(DA|-F8(3X)+ ceel
3 1\? 1\?
+-> @ \/2('—— +j— =] +k3|x (23
2iTk 2 2
The corresponding solution is given as
=2 1(n)®(be(n)x). (18) 1 3 4
=t Parre(X) = g Earre(X) ~ 35EaRe| \/3X

The corresponding solution is

9 4 27 8
1 1 1 1 + —EA|_Fe<—x - —EA|_Fe< —x)
= - _Z - 128 3 512
O (%)= 5E(X) ~ 52E(V2%) — ZE(V3%) — T5E(2%) 3.3
1 N 81 £ 16 24

_gE(\/EX)+-~-. (19) 2048 AFel g X" 249
In the present work, we use this fcc lattice inversion formula IV. CALCULATION AND EXPLANATION
to obtain the pairwise potentidh ., (X) based on the cohe- OF FIM IMAGE OF Fe Al

sive energy curve for the fcc metal Al.
A. Energy analysis
E. Inversion formula for a bcc structure (Ref. 12 Let us consider a system of E#&l, which consists of N
For obtaining the pair potentiab g, -{x) from the cohe- atoms. The total energy of this system can be expressed as

sive energy curve for iron with bce structure, we need toth® sum of three parts:
solve the equation of the inversion problem of a bcc lattice,

FezAl
which can be expressed as Ured =Uperet Uaa + Unrre.

1 Step 1: To evaIuatéJEEﬁL(x) based on® g, r{X). The

E(x)= Enzl ©(b(n)x) latter can be converted frofESE "{x) in terms of the unified

lattice inversion formula for a body-centered cubic structure;
FeAl

_ } D [(I)( /i{i2+j2+k2}x) Step 2: To evaIuate!aJA??AI (x) based on® 5 (X). The
2(1,mmZ(0,0,0 3 latter can be converted froB(S5'(x) in terms of the unified

lattice inversion formula for a face-centered-cubic structure;

2 2

2
TP \/f - 1 +j- 1 + k= 1 X Step 3: To evaluateJ s from UE’%N(X)—UFe_F;x)
3 2 2 2 ' Up
(20 Step 4: To convert 5 g into ® 5. based on the unified

lattice inversion formula for a shifted simple cubic structure;

sur

The corresponding solution is given as follows: Step 5: To evaluate the cohesive enerdid andES of

1 3 2 9 (4 surface atoms for surfaces with different indices.
P (x)=—E(x)— —E( \ﬁx +—E(—x)
4 16 3 64713 B. The cohesive energy curves of Al, Fe, and Rl
_ EE \/@ L. .. 21) A few parameters are needed to establish the cohesive
256 27 ' energy curves based on Rose’s universal equation of states as
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TABLE Il. The ab initio calculated parameters for related metals.

Sublimation Lattice constant Bulk modulus
Metal Structure energgeV) ag (A) (102 dyn/cn?)
Al fcc 3.39 (exp 4.05 (exp) 0.722(exp
Fe bcc 4.87exp 2.87 (exp 1.683(exp
FeAl DO, 4.40(cal) 5.57(cal) 2.29(exp
4.22(exp) 5.792(exp)
Eo(a’)=Eq(1+a’)e @, (25  are different. For instance, Fand Fé' are invisible on sur-

faces(100) and(111), and Fé on surface(110). Therefore,
-pC _ : Fe' atoms are always invisible and Fare sometimes invis-
the equilibrium  nearest-neighbor distance, an  jple. The condition is that the applied voltage arrives at a
=(9BQq/x5Eq) ™, in which B is the bulk modulus anly  certain value such that evaporation occurs, and the FIM im-
is the equibrium atomic volume. Therefore, for each coheqges are attributed to the remaining atoms. The probabilities
sive energy curve three parametes Eo, andB are re-  for competitive evaporation of different kinds of surface at-
quired. For most pure metals, the experimental data can heéms can be evaluated by the Boltzmann distribution, which
found easily, which are taken for the present work. For thds temperature dependent. The smaller the probability for
ordered alloys, part of experimental data are hardly obtainedsvaporation, the longer the duration of the stationary FIM
which will be calculated fromab initio linear-argumented jmage obtained in experiment. Note that there are two kinds
plane-wave calculation. For example, the bulk modulus obf surfaces that consist of the Fatoms with indentical in-
FesAl is difficult to measure due to its brittleness, thus thedex(111) as shown in Fig. 4. This is why the binding energy

calculated data is taken. These equilibrium parameters args surface atoms Eeaakes two values as in Table III.
listed in Table II.

wherea’ = B(x—Xg), Eq is the sublimation energyx, is

V. CONCLUSION AND DISCUSSION
C. The interatomic potentials ® 5.5 , Prepe, aNd P p

As long as selective evaporation dominates, the experi-
mental results agree well with the atomistic simulation of the
FIM image formation based on the approximately universal
Rose cohesive energy curve wilb initio calculated or ex-
perimental parameters and the universal lattice inversion
method within the pair-potential approximation. In fact, the
Based on the interatomic potentialsy n, Prere and presengtlgnethod has been proven to work well not only for
®re n, We can evaluate the binding energies or evaporatin{‘?sAL ' but also for Ni;Mo, PtCo, PtCe, NisFe, and
energies of various surface atoms of;Aé (see Table II). i3Al. According to the conventional selective evaporation
The calculated evaporating energies are listed in eV. Onljule, we will obtain the wrong conclusion for most of these
surfaces with indice&100), (110) or (111) have two or three  Ordered a!loyé. _ o
kinds of Fe atoms. For different surfaces the invisible atoms /According to convention, both selective ionizaticelec-

Now the lattice inversion formulas are used in order to
obtain the interatomic potentiatB 5.5 , Pre.per ANAP e 5,
the results are shown in Figs. 2 and 3.

D. The calculation of evaporating energies

1 05
0 025 |
%‘ i ~
}/B 1 3 0r
5 | 3
£ Ll b= i
@ § 025
2 &
23 g 05
© —Fe3Al , —Fe-Al
4 --fcc-Al -0.75 |- --Al-Al
» .--bcc-Fe ... Fe-Fe
_5 NN AT el b by L b _1 FRTERRETIN FRTTPIRET RS RETTTI RN ST RN PI ARNTSRRT L INRRTNAT IO T FYTRREEE
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Nearest neighbor distance (A) Interatomic distance (&)

FIG. 2. The binding-energy curves for fcc Al, bcc Fe, and PO FIG. 3. The pair potential® p.a; , Pre.pe, and® 5, cOnverted
Fes;Al based onab initio calculation and Rose formula. from binding-energy curveBa.a » Ere.rer @NdEa . re-
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TABLE IIl. Binding energy of various surface atoms of fAd.

Binding energy(eV) (100 (110 (111

Fe 5.319 5.381 4.317/4.648
Fé' 5.322 5.618 4.595

Al 5.822 5.723 5.145

tronic charge transfgand selective evaporation are possible
methods to explain the selective invisibility for different
kinds of atoms in the stable FIM images of a binary ordered

alloy. When the applied voltage is not high enough to cause L L ®
selective evaporation, the electron transfer between different® @ &

kinds of atoms will dominate the FIM images. Weatal® e e P
compare the work function values of component atoms of g ° o "

FesAl in its pure metallic state. In fact, the work function is

a characteristic of metal such as iron or aluminum, not that g 4. when(111) surface is occupied by Fatoms, there are

for atoms. In our case, the experiment was done in the conwo different cases: the next layer consistbfonly Al atoms,(2)

dition that the applied voltage was high eneough to causgnly Fe' atoms.

selective evaporation at first, then we decreased the voltage

for a stable FIM image. If we use the conventional rule of L I

selective evaporation, the Al atoms would evaporate easil (c) Morse approximation based aab initio calculated

and it would be invisible, and this is contrary to experimentEo-ao, and B, o _

(see Table)l (d) Rose approximation based on experimerigl,a,,
From a theoretical point of view, the many-body effect and B, o i

should be considered for a general situation. Also, the sur- (€) Morse approximation based on experimerig|,a,,

face relaxation might be important. These will be for furtherand B,

study. (f) others.
Finally we like to discuss the uncertainties in the approxi-

mations we used. First, the pair potential model is only a

popular and very simple approximation of interatomic ap-

proximation, especially for the surrface atoms. Second, even

the inversion procedure is suitable for any kind of cohesive The authors would like to express their thanks to Profes-

energy curves, the curve can be obtained in different wayssor Z. G. Liu, Q. J. Gao, and Dr. J. Weng for helpful discus-
(@) directab initio calculation, sions and encouragement. This work was supported partly by
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