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Applicability of the coherent-potential approximation in the theory of random alloys
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The applicability of the coherent-potential approximation~CPA! for the description of electronic properties
of completely random alloys is investigated. This is done by calculating the density of states and the total
energy for different systems and by comparing the results with those obtained for large supercells consisting of
up to 320 atoms in the framework of the order-N locally self-consistent Green’s function method. Thereby it
is found that in the framework of the CPA one obtains a reliable description of the electronic structure of
random alloys. The total energy of a completely disordered alloy can also be reliably estimated provided an
appropriate account is given for the electrostatic contribution to the one-electron potential and energy. There-
fore, we conclude that the CPA can be safely applied to study the influence of disorder on various properties
of metallic alloys for which the muffin-tin or atomic sphere approximation is sufficient and the chemical
contribution to the total energy dominates.@S0163-1829~98!03122-1#
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I. INTRODUCTION

The coherent-potential approximation~CPA!, originally
introduced by Soven1 for the electronic structure problem
and by Taylor2 for phonons in random alloys, has becom
one of the most popular techniques to deal with subst
tional disorder. The success of the CPA is to a large ex
associated with its formulation in the framework of the m
tiple scattering theory given by Gyo¨rffy.3 Combined with the
Korringa-Kohn-Rostoker~KKR! basis set or the linea
muffin-tin orbital ~LMTO! basis set, the CPA has been us
for calculations of bulk electronic structure,4 ground state
thermodynamic properties,5–15 phase stabilities,16–21 mag-
netic properties,22–29 surface electronic structure,30–33

segregations,34–37 and many other characteristics of alloys
However, it is very difficult to control the error of th

coherent-potential approximation. If one derives the C
formally as an expansion of the Green’s function for a d
ordered system,38–41 it is possible to show that the corre
sponding series contains all diagrams describing elec
scattering by a single site to infinite order. However, there
no small parameter in such an expansion, which allows
to judge the applicability of this approximation. A small p
rameter, the ratio between the concentration and the coo
nation numberc/Z, has been proposed based on an intuit
argument.41 A comparison with simple analytical mode
cannot clarify the problem. The result of such a comparis
can neither completely justify nor disprove an approximat
because as a rule these models have very little in com
with the situation in real materials. So far the success of
CPA has been measured mostly by comparisons betw
theory and experiment, which, though impressive, can so
times be misleading. First, it is known that negative resu
are seldom presented in the literature. Second, the ex
mental information is obtained for alloys that almost alwa
exhibit short-range-order effects, neglected in the CPA.
the other hand, it is also very difficult to compare CPA c
culations with other theoretical methods, such
Connolly-Williams42 or special quasirandom structure~SQS!
method43,44 with small SQS’s. Recently, it has been show
570163-1829/98/57~22!/14164~10!/$15.00
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that the mixing energies of random fcc Al-Ag~Ref. 45! and
Ag-Au ~Ref. 46! alloys obtained from CPA calculations, th
Connolly-Williams method, and the SQS methods agree w
with each other provided one uses similar approximatio
among these methods. However, there are examples w
the agreement is not as good,44 but it is not cleara priori
which of the methods is more accurate than the other. Th
fore, there exist some doubts about the reliability of the
sults obtained within the CPA.44,47–49

In the present paper we will compare the electronic d
sity of states and the total energies of random substitutio
alloys between different metals calculated within t
coherent-potential approximation and by the recently p
posed locally self-consistent Green’s function~LSGF!
method.50,51 The LSGF method is an order-N method for
calculation of the electronic structure of systems with an
bitrary distribution of atoms of different kinds on an unde
lying crystal lattice. It is shown to be particularly suitable f
the investigations of random alloys that are modeled by la
periodic supercells with several hundreds of atoms in the
cell. The order-N scaling is achieved by associating ea
atom in the system with its so-called local interaction zo
~LIZ !.52,53 Inside each LIZ the multiple scattering problem
solved exactly. The accuracy of the LSGF calculations
controlled by the size of the LIZ and its minimal size
ensured by embedding the LIZ into a self-consistent me
field CPA-like effective medium. For the simplest case of t
single-site LIZ, the LSGF is almost equivalent to the CP
for a multicomponent alloy~with a number of component
equal to the number of atoms in the supercell! and the only
difference is a correct~in the framework of the atomic spher
approximation! account of the electrostatic contribution
the one-electron potential and the total energy of an alloy
the LSGF method. Therefore, it is clear that the LSGF allo
us to treat a random alloy problem better than the CP
Because of this and also because all other computationa
tails ~i.e., basis set, local density approximation, etc.! will be
essentially equivalent in the CPA and LSGF calculations
comparison between their results is meaningful and the
14 164 © 1998 The American Physical Society
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57 14 165APPLICABILITY OF THE COHERENT-POTENTIAL . . .
ference, if it occurs, must be directly attributed to errors
the CPA.

II. ANALYSIS OF ASSUMPTIONS
UNDERLYING THE CPA

In order to understand the critical comments that ha
been made in the literature on the CPA~Refs. 44 and 47–49!
and problems for which the comparison with more advan
theoretical method have to be made, we will first repeat
analysis of the basic assumptions behind the coher
potential approximation. A complete discussion can be fou
in Ref. 4. We will consider a completely random binary all
AcB12c with only one type of disorder, the substitution
disorder. This means, in particular, that there exists an
derlying crystal lattice and the sites of this lattice are oc
pied by the alloy components with probabilities equal to th
concentrations. The occupation of each site does not dep
on whether neighboring sites are occupied byA or B atoms,
i.e., there is no short-range order in the alloy. Though
size mismatch of alloy components can cause different in
atomic distancies to be different, i.e., so-called local rel
ation effects, we will not take these effects into consid
ation. We remark that such local relaxations can influe
the results for the density of states and the total energy
culations in some cases of very large size mismatche44

However, the recent systematic study of lattice relaxati
around a single impurity in Cu by Papanikolaouet al.54 has
shown that this contribution to the impurity solution ener
in general is small compared to the values calculated ea
without lattice relaxations.49 Based on the results of thes
two papers, we leave the investigation of the relaxation pr
lem beyond the scope of the present paper. Finally, any c
plications due to partial ordering will not be considere
though these effects could easily be included in the C
~Ref. 13! as well as in the LSGF~Ref. 51! calculations.

The key quantity in the calculation of electronic and th
modynamic properties of solids is the one-electron Gree
function and the CPA is an approximation for calculating
average value in random alloys. In this approximation a r
system is replaced by an ordered lattice of effective sca
ers. The properties of these effective atoms have to be d
mined self-consistently by the condition that the scattering
electrons off real atoms embedded in the effective med
vanishes on the average. In the atomic sphere approxima
~ASA! and within the LMTO basis set,55–59 this condition is
written as

g̃5cgA1~12c!gB, ~1!

where g is the so-called KKR ASA Green’s function, th
tilde refers to the effective medium, bold symbols denot
matrix in LL8, L being the combined angular-momentu
quantum numbers (l ,m), andgi 5(A,B) are Green’s functions
of the alloy components embedded into the effective m
dium. The latter are given by the solution of the single-s
Dyson equation

gi5g̃1g̃~P̃2Pi !gi . ~2!

In Eq. ~2! Pi and P̃ are potential functions for the allo
components and for the effective atoms, respectively.55–59,33
f
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The success of the CPA in comparison with other sing
site approximations@virtual crystal approximation~VCA! or
averaget-matrix approximation~ATA !# is determined by Eq.
~1!, where the averaging is performed on the self-averag
quantity, that is, the one-electron Green’s function. On
contrary, neither the one-electron potential that is avera
in the VCA nor thet matrix in the ATA has a property o
self-averaging. Despite this fact, a comparison of the C
spectra with models that can be solved either analytically
by computer simulations, for example, the random bin
alloy model,40 has revealed the following trends. The CP
gives a very good description of the alloy density of state
the separation between the energy levels of the alloy com
nents is not too large. If this is not the case the CPA den
of states turns out to be much smoother than the ‘‘exa
results, that is, sharp peaks that occur for the latter are alm
totally smeared out for the former. In other words, the CP
should not work well for the systems with a split band b
havior.

There is also a concern related to the accuracy of Eq.~2!.
First, in the conventional CPA for a two-component allo
one always assumes that if a particular site is occupied b
atom A (B), then the potential function determined by th
corresponding one-electron potential for this site isPA (PB).
Any variations of these functions due to local environment
the chosen site are neglected. On the other hand, calcula
that goes beyond the single-site approximation, for exam
by the so-called embedded cluster method60 or using
SQS’s,44 have shown that the density of states changes d
tically for atoms of the same kind but with different loc
surroundings. The net charges of alloy components also
pend strongly on the number of unlike neare
neighbors.44,7,61 Recently, an effect of these charge fluctu
tions has been observed experimentally as a disorder br
ening of the core electron photoemission spectra.62 As a re-
sult one should expect substantial variations of the poten
and potential functions between the chemically equival
atoms; it is not clear to what extent these variations are
important. In particular, it was suggested44 that some fine
structure of the density of states that is present in real r
dom alloys is destroyed due to the neglect of these fluc
tions. Second, the application of the single-site Dyson eq
tion for the problem of a single impurity in an ideal host49

resulted in a substantial error for the calculated impurity
lution energies. Though recently Ruban and Skriver63 have
shown that to a large extent this situation is improved by
proper use of the single-site approximation, the quest
about the reliability of this approximation itself still remain

Another problem is the calculation of the electrosta
contribution to the alloy one-electron potential and total e
ergy. As a matter of fact, the CPA determines a way
calculating the average one-electron Green’s function fo
given potential, but does not provide a prescription of how
calculate this potential.64 In practice, of course, starting with
the work of Winter and Stocks65 self-consistent one-electro
potentials were calculated in the framework of the CPA a
an expression for the alloy total energy was justified.6 How-
ever, the Madelung contribution to the alloy potential a
energy was not included. Moreover, it is not possible to ta
this effect into account completely within the single-site a
proximation and one needs to go beyond the mean-field
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14 166 57I. A. ABRIKOSOV AND B. JOHANSSON
proximation when calculating the alloy electronic structu
in order to understand the nature of the electrostatic inte
tions in random alloys and to suggest a reasonable m
for the Madelung potential and energy that can be u
in the framework of the CPA. At present this proble
is widely discussed in the literature from th
theoretical47,48,9–15,7,61,64,66,67,46and experimental62 points of
view. For example, Faulkneret al.61,64 have performed an
analysis of the electrostatic potential and energy in rand
Cu-Zn and Cu-Pd alloys modeled by very large superce
They have found a nontrivial functional relation between
net charge on site and Coulomb potential at site, the
called qV relation. They also introduced a model for th
Coulomb energy. Unfortunately it is too complicated to
directly applicable for CPA calculations. Magriet al.47 and
Lu et al.48 examined the Madelung energy in random met
lic alloys on the basis of calculations for ordered compou
They found that the net charge on an atom in a metallic a
depends linearly on the number of its nearest unlike ne
bors and used this fact to formulate a simple model
charge correlations in alloys. A similar conclusion was o
tained by Johnson and Pinski7 on the basis of calculations fo
random alloys in the framework of the charge-correla
~CC! CPA. These authors suggested a mean-field versio
the CC CPA, the so-called screened CPA model. Recen
this type of model has been generalized to account for m
distant correlations by Wolvertonet al.67 A different ap-
proach to the problem allowed Korzhavyiet al.12,9,11,13 to
formulate the screened impurity model~SIM!.

This model is based on the empirical observation that
net charge on an impurity atom in a metallic matrix is alm
completely screened by the net charges of its nea
neighbors.68 Based on this, there are two simple assumptio
behind the SIM. First, the net charge of an alloy compon
QA(B) embedded in the effective CPA medium is complet
screened by the first shell of effective atoms that surroun
This assumption must not be confused with screening of
charges of real atoms in real alloys. The SIM deals with
restricted average net charge for theA or B component of the
alloy. Second, the screening charge is uniformly distribu
among all nearest neighbor atoms. The corresponding M
lung contribution to the one-electron potential is then giv
as

VM
A~B!52e2

QA~B!

R1
, ~3!

whereR1 is the radius of the first coordination shell,e is the
electron charge, and the net chargeQA(B) is defined as

Qi5E
SWS

d3r r i2Zi . ~4!

In Eq. ~4! the integral is taken over the atomic sphere, d
fined by the radiusSWS, andZi andr i are the atomic numbe
and the electron density of componenti , respectively. The
expression for the Madelung energy may then be written

EM52be2c~12c!
~QA2QB!2

R1
. ~5!
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Surprisingly, all the models mentioned above, except t
of Refs. 61 and 64, may be reduced to formula~5! with
different prefactorsb.12 The prefactorb cannot be defined
exactly within the CPA. In Refs. 12 and 13 it was demo
strated that even though a single value ofb can be chosen
for all concentrations and values of lattice parameters, it v
ies from system to system. However, this conclusion w
made on the basis of a comparison with experiment or w
calculations using the Connolly-Williams method and the
fore is not completely reliable. Also in the model of Faulkn
et al.61,64 the Madelung energy consists of two terms. T
first ~denoted asuC1) corresponds to Eq.~5! with b50.5.
The second term (uC2) describes the contribution to the Cou
lomb energy due to local environment fluctuations and c
not be directly calculated within the CPA. However, the ra
of these two terms may be viewed as a measure of the
viation of b from 0.5,

b50.51uC2/2uC1 . ~6!

In Eq. ~6! we have used the fact that in Refs. 61 and 64
‘‘effective’’ radius for the Cu-Zn alloy was found to be ver
close to the radius of the first coordination shell@R1 in Eq.
~5!#. From the results presented in Ref. 64 one can see th
generaluC2 /uC1 depends on the system and concentrati
but it is not clear to what extent this dependence influen
the total and the electrostatic energy of an alloy. Again, m
systems have to be tested because, as a matter of fact, th
no other simple suggestion except three mathematic
equivalent models, the SIM, the screened CPA, and
charge-correlated model, on how to calculate the Madel
energy and potential in random alloys in the framework
the CPA.

III. COMPUTATIONAL DETAILS

In order to make a comparison between the CPA and
supercell LSGF calculations as meaningful as possible
have used essentially the same computational setup in
cases. All calculations were performed by means of the s
lar relativistic LMTO method in the tight-binding represe
tation employings,p, andd orbitals in conjunction with the
atomic sphere approximation.55–59 Exchange and correlation
were included within the local-density approximation usi
the Perdew-Zunger parametrization69 of the many-body cal-
culations of Ceperley and Alder.70 During the self-consisten
procedure the reciprocal space integrals were calculated
means of 280–540k points in the irreducible part of the bc
or fcc Brillouin zone, while the energy integrals were eva
ated on a semicircular contour in the complex energy pl
using 16–25 energy points distributed in such a way that
sampling near the Fermi level is increased. When calcula
the density of states~DOS! we increased the number ofk
points by an order of magnitude. The Green’s function w
evaluated for 1000 points on a line in the complex ene
plane parallel to the real axis and was then analytically c
tinued towards the real axis.

In our LSGF calculations we model a random alloy
means of a supercell consisting of 144 atoms for fcc allo
and 128 atoms for bcc alloys. Inside the supercell the ato
are distributed in such a way that the pair correlation fu
tions are zero up to the sixth shell of nearest neighbo
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which ensures a very good convergence of the total ene
and the alloy density of states with respect to the super
size.51 However, in some cases larger supercells with up
320 atoms were considered. In Refs. 50 and 51 it was
shown that the convergence of the total energy calculat
by the LSGF method with respect to the size of the lo
interaction zone is particularly good for the random allo
and as a rule a single-site LIZ is sufficient to obtain an
curacy of the order of 0.1 mRy. However, to eliminate po
sible artificial agreement between the CPA and the LS
calculations we have used the LIZ that includes up to f
shells of neighboring atoms. In addition, this ensures v
good convergence of the calculated site-decomposed D
The total DOS was found to converge already for mu
smaller, in general, single-site LIZ sizes.

IV. RESULTS AND DISCUSSION

A. Density of states for a completely random alloy

Let us start the discussion by considering the question
how well the CPA describes the density of states for bin
random fcc alloys when the separation between the b
centers of the alloy components increases. For this purp
we have considered three Cu-based alloys on the fcc cry
lattice, Cu-Pd, Cu-Au, and Cu-Zn. These systems have b
extensively studied in the framework of the CPA~Refs. 71–
80, 13, 5, and 6! and the supercell approaches.81,44,61,64Here
they are chosen for a reason that becomes clear from Fi
In this figure we show the distribution of the number
atoms having particular values of the LMTO band cen
parametersC ~Refs. 55–59! as obtained from our LSGF ca
culations for 144 atom supercells. One observes that
Cu-Pd system exhibits a common band behavior, whil
separation between the bands increases through the C
alloy towards the Cu-Zn alloy, which is already definitely
case with well separated bands. In addition, there are sig
cant variations of the potential parameters for the same a
components in all alloys, thereby allowing us to check
accuracy of the CPA with respect to this effect.

In Fig. 2 we show the density of states for the Cu50Pd50
alloy. The total density of states calculated in the framew
of the CPA and that for the supercell by the LSGF meth
are indistinguishable from each other@Fig. 2~a!#. The same
conclusion can be made for the restricted averages of
DOS calculated for each alloy component separately@Fig.
2~b!#. To illustrate the fact that the observed agreement is
just an artifact of using a CPA-like effective medium in o
LSGF calculations we show in Fig. 2~c! the DOS for severa
atoms in the supercell that have different local environme
One can clearly identify a substantial difference betwe
say, a Pd atom that has 11 unlike nearest neighbors and
with just 3 of them and similar effects for the Cu atom
However, when averaged in the total alloy density of sta
the result become essentially the same as that obtained b
CPA mean-field treatment.

As a matter of fact, this agreement should be expected
alloys with common band behavior. Therefore, the case
the Cu-Au alloy represents a more interesting example
the separation between the Cu and Au bands increases
compared to Cu-Pd. However, we remark that in the Cu-
system a band splitting is still smaller than the bandwid
gy
ll

o
so
ns
l

-
-
F
r
y
S.

h

of
y
nd
se
tal
en

1.

r

e
a
Au

fi-
y

e

k
d

he

ot

s.
,
ne

.
s,
the

or
f

as
en

u
.

The total densities of states for the Cu75Au 25 alloy calcu-
lated by the two methods is again shown in Fig. 3~a!, while
the corresponding restricted averages are given in Fig. 3~b!.
We have chosen this particular composition due to a v
interesting effect discussed earlier in the literature. Nam
an ordered Cu3Au alloy shows well pronounced peaks in th
low-energy Au-related part of the spectrum that are co
pletely washed out in the random alloy calculated by
scalar-relativistic CPA. It was also shown that the peaks
associated with Au atoms completely surrounded by
neighbors.78,44 As such a configuration must be present in
real random alloy, the traces of the peaks could survive,
the too smooth DOS calculated by the CPA for the Au p
of the spectrum has been viewed as a failure of t
approximation.44

In Fig. 3~c! we show that, indeed, the DOS for an A
atom surrounded by only Cu neighbors in the two first she
exhibits a sharp atomiclike virtual bound state originati
from the fact that there is almost no Cud electrons in this
energy interval and therefore there is no site available for
Au d electrons to hop to. However, due to the low probab

FIG. 1. Distribution of the number of atoms having certain v
ues of the LMTO band center potential parameterC in the 144
atom supercells modeling random equiatomic fcc~a! Cu-Pd, ~b!
Cu-Au, and~c! Cu-Zn alloys. The data for Cu are shown by the fu
line, the data for the other alloy components are shown by
dashed lines.
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14 168 57I. A. ABRIKOSOV AND B. JOHANSSON
ity of this configuration to occur in a random alloy, this pe
is hardly seen in the restricted average of the DOS for Au
the alloy, which turns out to be in good agreement with
CPA result@Fig. 3~b!#. Even better agreement is observed
the total density of states@Fig. 3~a!# because of the relatively
low concentration of Au in the Cu75Au25 alloy. In addition,
we show in Fig. 3~c! the average DOS for Au in this alloy
calculated by the LSGF method for supercells of differe
sizes. Very good convergence is clearly seen.

In this respect it is interesting to analyze what would
the response of the density of states of Cu-Au alloys t
change of concentration. If the Au concentration decrea
the relative probability to find an Au atom completely su
rounded by Cu neighbors increases and vice versa if the
concentration increases. Therefore, we expect that the ag
ment between the total DOS, calculated by the CPA and
LSGF, will be again very good. This is really the case, as o

FIG. 2. Density of states of the random fcc Cu50Pd50 alloy. The
~a! total DOS and~b! restricted average DOS were calculated fo
144 atom supercell by the LSGF method~thin black lines! and in
the framework of the CPA~thick gray lines!. In ~b! the restricted
average DOS for Cu is shown by dashed lines and for Pd by s
lines. In ~c! the site decomposed DOS calculated by the LS
method for several atoms having different numbers of unlike~the
first number in parentheses! and like ~the second number! nearest
neighbors is shown.
n
e
r

t

a
s,

u
ee-
e
e

can see in Figs. 4~a! and 4~b!, where we present a compar
son of the DOS calculated for fcc Cu90Au10 and Cu50Au50

alloys by these two methods. However, as one can see in
4~c!, the average local density of states for Au atoms in
Cu90Au10 alloy calculated in the framework of the CPA de
viates from the result obtained by the LSGF method fo
256 atom supercell. We will explain this deviation later, b
we would like to point out that our result is in agreeme
with the earlier observation made by Ruban and Skrive63

who also found that the CPA predictions for total avera
quantities, such as the total energy or the total density
states, are more reliable than predictions of restricted a
ages. In fact, the coherent-potential approximation was
mulated to calculate total averages in random alloys and
has to keep this in mind in actual applications.

Finally, let us consider the Cu-Zn system.84 As one can
see from Fig. 5, the separation between the Cu and Zd
bands is of the order of the bandwidth and this is a c
where a comparison between the CPA and the ‘‘exact’’

id
F

FIG. 3. Density of states for the random fcc Cu75Au25 alloy. The
notation in~a! and~b! is similar to that in Fig. 2. In~c! the DOS for
the Au atom having 18 Cu neighbors in the first two shells is sho
as a full black line. The restricted average DOS for the Au cal
lated for supercells with 144~full gray line!, 256~dotted black line!,
and 320~dot-dashed black line! atoms is also shown in~c!.



ge
e
an
ll

he
in
in

th
b
ut
le
m
i

u

del
ruc-

ith
po-
vi-

ree-
to
he
inst
ts

y of
in
n.
of

ion-
o-

F

wn

u
n
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sults for the simple analytical models shows lar
discrepancies.40 Thus the CPA is supposed to fail for th
Cu-Zn system. However, as a matter of fact, it does not
the agreement between the mean-field and the superce
sults is again very impressive for both the total DOS@Fig.
5~a!# and the DOS averaged over the alloy components@Fig.
5~b!#. In Fig. 5~c! we show again the density of states for t
different atoms in the supercell, which allows us to expla
why the CPA in fact works in this case. The point is that
the models it is customary to consider only two levels for
two alloy components. In the case of a large separation
tween them, the model DOS has sharp peaks, smeared o
the CPA due to the fact that its mass operator is comp
However, the situation when at least one of the alloy co
ponents has well defined energy level could occur only
dilute alloys. Indeed, in our calculations for the fcc Cu90Au10
alloy we have found that therestricted averageof the Au
DOS is almost totally dominated by the DOS for the A

FIG. 4. Density of states for the random fcc~a! Cu90Au10 and
~b! Cu50Au50 alloys calculated for 256 atom supercells by the LSG
method~thin black lines! and in the framework of the CPA~thick
gray lines!. In ~c! the restricted average DOS for Au atoms is sho
by solid lines (Cu90Au10) and dashed lines (Cu50Au50). The DOS
for an Au atom in Cu90Au10 alloy surrounded by 1 Au and 11 C
nearest neighbors is shown in~c! by black dotted line. It has bee
obtained by the LSGF method.
d
re-

e
e-
by

x.
-
n

atom surrounded by 1 Au and 11 Cu nearest neighbors@com-
pare the full and the dotted lines in Fig. 4~c!#. In this case the
situation is very similar to what has been observed in mo
calculations, namely, that the CPA smears out the fine st
ture of the DOS. This, however, is not seen in thetotal DOS
due to the dilution effect. On the other hand, in alloys w
higher concentrations the energy levels of the alloy com
nents have different locations due to the different local en
ronments of each atom@see Figs. 1~c! and 5~c!# and as a
result the DOS is smeared out and is in almost perfect ag
ment with the CPA DOS. It is amusing to notice that due
the existence of fluctuations of the local potentials for t
same alloy component, which is supposed to work aga
the applicability of the CPA, they turn out to contribute to i
accuracy.

B. Total energy of a completely random alloy

From the discussion above one can judge the accurac
the description of the electronic structure of random alloys
the framework of the coherent-potential approximatio
However, as has been pointed out in Sec. II, calculations
the self-consistent potentials and total energies are addit
ally complicated by the inability to account for the electr

FIG. 5. Density of states for the random fcc Cu50Zn50 alloy. The
notation is similar to that of Fig. 2.
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static potential and energy of disordered systems within
CPA. In the present paper we will concentrate on the pra
cal part of this problem, namely, we will try to understand
it is possible to describe in practice the total energy o
random alloy within the very simple screened impur
model~see Sec. II!. This will be done by considering a larg
number of different examples.

The main problem is that, unfortunately, the parameteb
of the model cannot be determined within the framework
the CPA itself. Therefore, in order to obtainb it has been
suggested in Ref. 13 to use other methods of total ene
calculations for random alloys that do not rely on the sing
site approximation. The LSGF method is very suitable
this purpose. There are several questions that must be
swered. First of all, one may investigate whether there ex
a single value of the parameterb in Eq. ~5! that gives satis-
factory results in different systems. At this point let us e
phasize that we will comparetotal energies obtained by dif
ferent techniques rather than theelectrostaticcontribution to
the total energy as has been done in earlier studies of ran
alloys with the help of large supercells.61,64,67 Our reasons
for this are the following. First, it is the total energy that
the quantity of main interest in most calculations. Seco
we have found that the total energy converges faster w
respect to the size of the supercell than its separate cont
tions ~including the Madelung energy!. This allows us to use
medium size supercells~between 100 and 200 atoms! in our
studies. However, there is also the second question
arises in this context, namely, whether Eq.~5! with b ob-
tained from a comparison with other first-principles metho
really describes the Madelung energy of a random alloy
whether it compensates both kinds of errors coming from
unknown part of the Coulomb energy and the CPA itself

To answer the first question we have compared total
ergies, calculated by the LSGF method for different allo
~modeled again by large supercells! and in the framework of
the SIM CPA for different values of the prefactorb. The
so-obtained energy differences are shown in Fig. 6 as a fu

FIG. 6. Total energies of different~a! fcc and~b! bcc random
alloys calculated in the framework of the CPA and the scree
impurity model~SIM! as a function of the SIM parameterb relative
to the LSGF total energies calculated for the same alloys mod
by 144 atom~fcc! and 128 atom~bcc! supercells.
e
i-

a

f

gy
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n-

ts
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th
u-
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s

c-

tion of b for fcc @Fig. 6~a!# and bcc@Fig. 6~b!# alloys com-
posed from different elements. We observe that for
former all lines crosses the zero line~i.e., results of the SIM
CPA become equivalent to those of the LSGF supercell
culations! at about the same value of the parameterb50.6.
Of course, there could be examples where the agreem
would not be so good, but so far we have not yet found s
a case. It appears, therefore, that for the close-packed
structure there exists a universal value ofb50.6, which al-
lows one to calculate the total energy of a completely r
dom alloy in the framework of a mean-field treatment alm
with the same accuracy as with a method that goes bey
the single-site approximation. For the more open bcc str
ture we find larger discrepancies between the optimalb val-
ues in different alloys due to the larger role of the screen
from the second shell of nearest neighbors. Stillb;0.6 is a
rather good choice. The ordering energies calculated wi
the CPA for the Ni50Ti50 and Ni50Al50 alloys are230 and
236 mRy, respectively, and the error compared to the re
ence LSGF calculations (232 and238 mRy! is only of the
order of 2 mRy, or about 5% of the ordering energy itself.
any case, without taking the electrostatic contribution in
consideration these values become246 and245 mRy, re-
spectively, i.e., the error increases substantially.

The second question has already been discussed in
literature in Refs. 64 and 46, where it was found that Eq.~5!
with b50.6 gives a satisfactory, though not perfect, descr
tion of the Madelung energy at least in Cu-Zn~Ref. 64! and
Ag-Au ~Ref. 46! alloys. In Figs. 7 and 8 we illustrate directl
how well Eqs.~3! and~5! work. In Fig. 7 we have presente
the qV relations61,64 obtained by our LSGF calculations fo
144 atom supercells which model the completely rand

d

ed FIG. 7. Coulomb potential at a site as a function of the n
charge on site for three fcc Cu-Zn alloys@25% ~filled circles!, 50%
~filled squares!, and 75%~filled triangles! of Zn# calculated by the
LSGF method. Values to the left are for Zn and those to the ri
are for Cu. Averaged values are shown by open squares.
dashed line shows theqV relations as expected from the SIM an
the corresponding average values calculated self-consistently in
framework of the SIM CPA are shown by the open triangles.
fixed Wigner-Seitz radiusRWS52.70 a.u. was used for all alloys.
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fcc Cu-Zn alloy at three stoichiometric compositions: 25
~circles!, 50% ~squares!, and 75%~triangles! of Zn. Though
we have used smaller supercells compared to the calcula
reported in Refs. 61 and 64, the slopes of the lines in
calculations and in these works agree well with each oth
Also in Fig. 7 we show a line, calculated from Eq.~3!
~dashed line!. One can see that its slope differs from those
the qV relations and this disagreement is to be expected
cause the SIM has been suggested as a model to calc
average values of the electrostatic contributions to the o
electron potential and energy. When one consider ave
values for the alloy components, calculated by the SIM C
~open triangles in Fig. 7! and the LSGF~open squares!, very
good agreement is found. Notice also the very good ag
ment between not only potentials, but also average
charges in the CPA and the supercell calculations. This a
to our belief in the reliability and internal consistency of t
SIM because net charges were calculated self-consistent
the framework of the SIM CPA and in principle did not ha
to be the same as in the reference LSGF calculations.

Similar conclusion can be drawn from Fig. 8, where w
plot the Coulomb energy at a site calculated in the ASA a
function of the net charge on the site for three fcc Cu-
alloys: Cu75Zn25, Cu50Zn50, and Cu25Zn75. Here we make
use of the ASA decomposition of the alloy Madelung ene
into site contributionsEM

i for each sitei in the supercell

EM
i 5

1

2
QiVM

i . ~7!

This partitioning is not physical, but it allows us to compa
the LSGF results with those of the SIM CPA, where a sim
lar partitioning of the restricted averages of the Madelu
energy for theA or B alloy components have the form12

FIG. 8. Coulomb energy at a site decomposed into ato
sphere contributions as a function of the net charge on the site
the same fcc Cu-Zn alloys as in Fig. 7. The notation is similar
that in Fig. 7.
ns
r
r.

f
e-
late
e-
ge
A

e-
et
ds

in

a

y

-
g

EA~B!52be2
QA~B!

2

R1
. ~8!

A parabolic shape of the curves presented in Fig. 8 is
be expected from theqV relations. Again, one can see se
eral branches for different concentrations and the SIM
pression~8! with b50.6 ~dashed line in Fig. 8! does not fall
exactly on them. However, the average values again a
very well between the CPA and the supercell calculations
appears therefore that the SIM with universal prefactorb
50.6 can be used together with the CPA technique to ob
a reasonable ASA estimate of the energy of random allo

However, we remark that the SIM includes only th
monopole-monopole contribution to the electrostatic pot
tial and energy. Therefore, it is supposed to be used onl
connection with the muffin-tin~MT! approximation or ASA.
In view of the complications that arise in setting up a mod
for this contribution we expect it would be even more co
plicated to take into account other nonspherical terms
consequently to arrive at a generalization of the CPA to
case of the full potential or full charge density method
However, Koeperniket al.82 recently applied basic ideas o
the SIM in order to estimate the electrostatic potential
their linear combination of atomic orbitals CPA calculation
Also Korzhavyi and Ruban83 have found that in certain case
SIM CPA ASA calculations can reproduce the results of
LSGF calculations, which include nonspherical correctio
to the ASA. In the latter case, of course, neitherb50.6 nor
the screening radius in Eqs.~3! and ~5! remains universal.
However, we believe that a consistent way of treating t
problem is to go beyond the single-site approximation and
use other methods, for example, the LSGF~Refs. 50 and 51!
or the locally self-consistent multiple-scatterin
method.52,53,61,64

V. SUMMARY

We have compared results for the density of states and
total energy of completely random alloys in the framewo
of the coherent-potential approximation with those obtain
for large supercells by the order-N locally self-consistent
Green’s function method. As the LSGF goes beyond
single-site approximation, but keeps all other computatio
aspects essentially the same as in the CPA, such a com
son allows us to check precisely the applicability of th
approximation in the theory of random alloys. For the de
sity of states very good agreement was observed for th
alloy systems, Cu-Pd, Cu-Au, and Cu-Zn, despite the f
that the separation between the band centers increases
Pd to Au and from Au to Zn, and there are substantial va
tions in the potentials for the same alloy components hav
different local environments. We show that a reliable es
mate of the alloy total energy may be obtained within t
CPA. We also find that in the atomic sphere approximat
and in the framework of the screened impurity model th
exists a universal prefactor of this modelb50.6, which
gives satisfactory agreement between the CPA and the LS
total energies in all systems considered in the present st

However, we note that there are several aspects of
CPA that were not considered in the present work and li
its applications. Among those are the inability of the CPA
treat nonspherical contributions to the one-electron pot

ic
or
o
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tials, which makes it hardly possible to set up a meaning
full-potential version of the method, the inability to tre
consistently local lattice relaxations, and the inability to d
scribe directly the short-range-order effects in alloys. Ho
ever, our results strongly suggest that the CPA can be sa
applied to study the influence of disorder on various prop
ties of metallic alloys for which the MT or the atomic sphe
approximation is sufficient and the chemical contribution
the energy dominates over several other contributions,
example, elastic, vibrational, and due to many-electron
fects. Fortunately, the above-mentioned criteria are fulfil
for a large group of problems in most alloys between tran
tion metals or between transition and simple metals.
study more sensitive phenomena, for example, short-ra
,

,

-

,

.

B

,

,

n

l

-
-
ly

r-

or
f-
d
i-
o
e-

order effects,50 one must, of course, go beyond the single-s
approximation. This can be done, for instance, in the fram
work of the LSGF method, used here to provide referen
data.
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